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Abstract

If surfaces in a scene are to be distinguished by their color, their neural representation at some level should ideally
vary little with the color of the illumination. Four possible neural codes were considered: von-Kries-scaled cone
responses from single points in a scene, spatial ratios of cone responses produced by light reflected from pairs of
points, and these quantities obtained with sharpened (opponent-cone) responses. The effectiveness of these codes in
identifying surfaces was quantified by information-theoretic measures. Data were drawn from a sample of 25 rural
and urban scenes imaged with a hyperspectral camera, which provided estimates of surface reflectance at 10-nm
intervals at each of 13443 1024 pixels for each scene. In computer simulations, scenes were illuminated separately
by daylights of correlated color temperatures 4000 K, 6500 K, and 25,000 K. Points were sampled randomly in
each scene and identified according to each of the codes. It was found that the maximum information preserved
under illuminant changes varied with the code, but for a particular code it was remarkably stable across the
different scenes. The standard deviation over the 25 scenes was, on average, approximately 1 bit, suggesting that the
neural coding of surface color can be optimized independent of location for any particular range of illuminants.

Keywords: Information capacity, Natural scenes, Color constancy, Color vision, Spectral sharpening, Cone
opponency

Introduction

What limits our ability to identify surfaces by their color despite
changes in the color of the light on the scene? The answer to this
deceptively simple question depends on several factors, including
how many differently colored surfaces there are in a scene, how
surface colors are coded neurally, and how well such codings serve
to label uniquely objects under different lights. It is clear that if just
two surfaces are sampled from a variegated scene, there is very
little risk of confusion: in general, their spectral reflectances will
be different; their codings under a given illuminant will be differ-
ent; and this difference will persist when the illuminant is changed.
But, as the number of samples increases, the risk of confusion
increases. This is because the chance of similar spectral reflec-
tances being selected increases, and, as surface-color codings are
not perfectly invariant under illuminant changes, they are increas-
ingly unlikely to preserve the smaller differences between some
samples. These are, of course, physically determined limits on

identification, and, in practice, performance will also depend on a
variety of procedural, cognitive, and other factors.

The aim of this study was to obtain an estimate of the upper
limits on neural identification performance with some representa-
tive natural scenes. To this end, points were sampled from rural
and urban scenes under different daylights and the reflected light
at each point given one of four approximately illuminant-invariant
neural codes, based on von-Kries adaptation, spatial ratios of cone
responses, and these quantities obtained with sharpened (opponent-
cone) responses (see e.g. Wandell, 1995; Maloney, 1999; Hurlbert
& Wolf, 2004). The success of each code in allowing these samples
or pairs of samples to be identified under different illuminants was
quantified by information-theoretic methods. The principal mea-
sure of performance was the information capacity, which repre-
sents how much information in bits is preserved across the illuminant
change. As explained later, information capacity has certain ad-
vantages over a measure such as the proportion of correct identi-
fications, used in an earlier analysis of a different set of images
(Nascimento et al., 2002).

It was found that for each scene tested, the maximum informa-
tion preserved under illuminant changes varied with the code, but
for any particular code the variation over the scenes tested was
small, with a standard deviation of approximately 1 bit. A possible
implication of this result for the optimization of visual perfor-
mance in natural scenes is briefly considered.
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Methods

Image acquisition

A high-spatial-resolution hyperspectral imaging system was used
to acquire data from 25 rural and urban scenes in the Minho region
of Portugal, which has a temperate climate and variety of vegeta-
tion and natural rock formations. Details of an earlier version of
this system have been given in Nascimento et al. (2002). The
present system used a low-noise Peltier-cooled digital camera
providing a spatial resolution of 13443 1024 pixels (Hamamatsu,
model C4742-95-12ER, Hamamatsu Photonics K.K., Japan) with a
fast tunable liquid-crystal filter (VariSpec, model VS-VIS2-10-HC-
35-SQ, Cambridge Research & Instrumentation, Inc., MA) mounted
in front of the lens, together with an infrared blocking filter. Focal
length was typically set to 75 mm and aperture to f016 or f022 to
achieve a large depth of focus. The line-spread function of the
system was close to Gaussian with standard deviation approx. 1.3
pixels at 550 nm. The intensity response at each pixel, recorded
with 12-bit precision, was linear over the entire dynamic range.
The peak-transmission wavelength was varied in 10-nm steps over
400–720 nm and the bandwidth (FWHM) was 10 nm at 550 nm,
decreasing to 7 nm at 400 nm and increasing to 16 nm at 720 nm.
Spectral calibration was verified against test samples in a similar
way to that described in Nascimento et al. (2002).

Images of scenes were obtained during the summers of 2002
and 2003, almost always under a clear sky. Particular care was
taken to avoid scenes containing movement. Before image acqui-
sition, the exposure at each wavelength was determined by an
automatic routine so that maximum pixel output was within 86–
90% of saturation. Immediately after acquisition, the reflected
spectrum from a small flat gray (Munsell N5 or N7) reference
surface in the scene was recorded with a telespectroradiometer
(SpectraColorimeter, PR-650, Photo Research Inc., Chatsworth,
CA), the calibration of which was traceable to the National Phys-
ical Laboratory. Images were corrected for dark noise, spatial
nonuniformities (mainly off-axis vignetting), stray light, and any
wavelength-dependent variations in magnification or registration.
Spectral-reflectance functions at each pixel were estimated by
normalizing the corrected signal against that obtained from the
gray reference surface. Initially, the illumination was assumed to

be spatially uniform in all scenes; the effect of indirect illumination
is considered later.

Color pictures (reconstructed from reflectance data) of some
typical scenes are shown in Fig. 1.

Cone responses

Responses of long-, medium-, and short-wavelength-sensitive cones
at each point (pixel) in each scene were calculated from the Smith
and Pokorny set of fundamentals (Smith & Pokorny, 1972, 1975)
for daylight illuminants with correlated color temperatures 25,000
K, 6500 K, and 4000 K. Thus, if the illuminant spectrum isE~l!
and the spectral reflectance at a point isR~l!, then the activity in
long-, medium-, and short-wavelength-sensitive cones with spec-
tral sensitivitiesQ~l! 5 L~l!, M~l!, and S~l!, respectively, is
given byq 5 *E~l!R~l!Q~l! dl, evaluated over the wavelength
range 400 nm# l # 720 nm. To control for the effect of direct and
indirect illumination, calculations were performed with and with-
out cropping of shadows in the scenes (Nascimento et al., 2002).

Surface-color codes.
Four possible codes for surface color were tested: (1) a “gray-

world” von-Kries code in which each cone signalqi at a pointi in
the scene was divided by the mean for that cone class over all
points sampled in the scene (Buchsbaum, 1980; West & Brill,
1982); (2) a spatial ratio of cone responses in which the cone
excitationqi at a pointi was divided by the cone excitationqj from
the same cone class at another randomly chosen pointj in the scene
(Foster & Nascimento, 1994; Nascimento et al., 2002); (3) a
spectrally sharpened version of (1) in which the cone spectral
sensitivitiesQ were replaced by those from opponent combina-
tions of cone responses (Buchsbaum & Gottschalk, 1983; Foster &
Snelgar, 1983a; Finlayson et al., 1994), as detailed later; and (4) an
analogous spectrally sharpened version of (2). To avoid extreme
values of ratios in (2) and (4) distorting variance estimates, pairs of
points ~i, j ! were omitted when the divisorsqj were less than a
threshold valuea max~qi ! with a 5 0.01 (other values ofa were
also tested).

The codes in (1) and (3) provide information about the color of
single surfaces and the codes in (2) and (4) provide information

Fig. 1. Examples of color pictures obtained from a sample of 25 hyperspectral images of rural and urban scenes.
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about the relationship of surface colors, corresponding, respec-
tively, to the perceptual phenomena of color constancy and rela-
tional color constancy (Foster & Nascimento, 1994; Nascimento &
Foster, 1997). Despite the sample pointsi and j in (2), and in (4),
being chosen randomly, spatial ratios of cone excitations (and their
post-receptoral combinations) are almost invariant under changes
in illuminant (Foster & Nascimento, 1994; Nascimento et al.,
2002). They have been argued to underlie the constancy of per-
ceived color relations under illuminant changes in complex scenes
(Craven & Foster, 1992; Foster & Nascimento, 1994; Nascimento
& Foster, 1997), and used to explain performance in asymmetric
color matching (Tiplitz Blackwell & Buchsbaum, 1988; Nasci-
mento et al., 2004), as well as the spatially parallel detection of
violations in color constancy (Foster et al., 2001) and the judgment
of transparency (Westland & Ripamonti, 2000; Ripamonti & West-
land, 2003). They provide a compelling cue for distinguishing
between illuminant and reflectance changes in scenes with multi-
ple surfaces (Nascimento & Foster, 1997).

The invariance to illuminant changes produced by von-Kries
scaling is incomplete (West & Brill, 1982; D’Zmura & Lennie,
1986), as is that by spatial ratios (Foster & Nascimento, 1994;
Nascimento et al., 2002), but the effectiveness of each can be
improved (Finlayson et al., 1994) by applying them to sharpened
sensor spectral sensitivitiesL#, M #, andS# derived from opponent
interactions, mainly between long- and medium-wavelength-
sensitive cones with little involvement of short-wavelength-
sensitive cones (Sperling & Harwerth, 1971; Foster, 1981; Foster
& Snelgar, 1983b). These interactions can be modeled linearly,
both at the neural level in macaque monkeys (e.g. Shapley et al.,
1981; Lee et al., 1993) and behaviorally in rhesus monkeys
(Sperling & Harwerth, 1971) and humans (Foster & Snelgar,
1983a). On theoretical grounds, optimum weights for sensor shar-
pening have been calculated by Finlayson et al. (1994) asL# 5
2.5L 2 2.0M 1 0.1S for long-wavelength-sensitive mechanisms,
M # 5 1.6M 2 0.7L 2 0.1S for medium-wavelength-sensitive
mechanisms, andS# 5 1.0S2 0.1M 1 0.1L for short-wavelength-
sensitive mechanisms. Their peaks coincide with those observed
psychophysically (Foster & Snelgar, 1983b), and these weights
were the ones used here. Receptoral and post-receptoral compo-
nents of adaptation were not distinguished (Webster & Mollon,
1995).

These codes are neither exhaustive nor necessarily optimal (nor
do they involve the spatial domain (cf. Ruderman et al., 1998)), but
they are broadly representative (Maloney, 1999; Hurlbert & Wolf,
2004). Although (1) and (3) refer to single points and (2) and (4)
refer to pairs of points, both depend on scaling cone signals. That
is, in von-Kries coding each cone’s response is normalized by the
responses across all the points sampled in the scene, whereas in
spatial-ratio coding each cone’s response is normalized by the
response at another, single, randomly selected point. These two
models therefore represent two extremes of the spatial extent over
which cone responses are normalized. Without averaging, color-
code values from spatial ratios might therefore be expected to be
more variable than those from von-Kries scaling.

Information-theoretic measures

First consider the following simple representation of identification
performance. Suppose that for a fixed pair of illuminantsE1 andE2

(e.g. 25,000 K and 6500 K) and surface-color code (e.g. von-Kries-
scaled responses),n points (pixels) are drawn at random, without
replacement, from a selected scene. Suppose that each point under

illuminant E2 is paired with a point under illuminantE1 having the
closest color-code value. Depending on several factors, this iden-
tification may or may not be correct. In an earlier analysis of
spatial ratios of cone excitations (Nascimento et al., 2002, p. 1488),
the probabilityp of making a correct identification of pairs of
regions (pixels) within scenes was estimated for just two sizes of
samples,n 5 100 andn 5 1000, but larger, limiting values ofn
were not tested (nor was the separate question of the probability of
making a correct identification of single rather than pairs of
regions). Critically, this measure of performance does not fully
summarize the information preserved; for the probability of mak-
ing an error can have the same value whether the error is small or
large (i.e. whether the incorrectly identified point is close to or far
from the correct point). But if the error is small, more information
is preserved than when the error is large. In other words, estimates
of the probabilitiesp~i, j ! of identifying pointj under illuminantE2

with point i under illuminantE1 are required for all points 1# i,
j # n, and not just the single valuep 5 p~i, i ! averaged over alli .

A more comprehensive measure of identification performance
across illuminantsE1 andE2 is provided by the mutual information
I ~E1; E2! from information theory (e.g. Cover & Thomas, 1991;
MacKay, 2003). Informally,I ~E1; E2! represents the reduction in
uncertainty about then sample points under illuminantE1 given
knowledge about the points under illuminantE2. More formally, it
is defined as follows. Ifp~i, j ! is the probability of identifying
point j under illuminantE2 with point i under illuminantE1, then

I ~E1; E2! 5 (
i51

n

(
j51

n

p~i, j ! log
p~i, j !

p~i !p~ j !
, (1)

wherep~i ! 5 (j51
n p~i, j ! andp~ j ! 5 (i51

n p~i, j !. If the base of
the logarithm is 2, thenI ~E1; E2! is expressed in bits. Numerical
estimates will be given later, but for comparison upper limits on
the information used by observers have been estimated as 29–58
bits in some attentive-detection tasks (Verghese & Pelli, 1992) and
36–49 bits in a partial-report task (Sperling, 1960).

As the number of sample pointsn increases, so generally does
the mutual information. But difficulties with evaluating the form of
the estimate given in eqn. (1) can arise whenn is large and the
probabilitiesp~i, j ! are small (Brillinger, 2002). Fortunately, when
n is so large that the distribution of color-code values may be
treated as continuous, an estimate of an upper boundC on I ~E1:E2!
can be taken from an analysis of the capacity of an additive noise
channel, where the noise between input and output corresponds to
the differences in code values under illuminantsE1 andE2. Sup-
pose for the moment that the noise is distributed normally. Then
the capacity of a Gaussian channel has a simple formulation in
terms of the quotient of the variances (more generally covariances)
of the code values and of the noise (Cover & Thomas, 1991). This
quotient corresponds in effect to the number of distinguishable
code values.

Suppose, more precisely, that each point in the scene is coded,
say, as a triple of scaled cone responses~l1, m1,s1! under illumi-
nantE1, and that under illuminantE2 this triple becomes~l1 1 D l,
m1 1 Dm, s1 1 Ds!, so that~D l,Dm,Ds! is the difference in code
values. LetK1 be the covariance of~l1, m1,s1! andKD the covari-
ance of~D l,Dm,Ds!, evaluated over the 1,376,256 (13443 1024)
pixels in the scene. Then the information capacity of the channel is
given (Cover & Thomas, 1991) by

C 5
1

2
logS 6K1 1 KD 6

6KD 6
D, (2)

VNS 21-333 306 09002004 11:13 am Page: 3

Color information from natural scenes 3



where 6K 6 denotes the determinant ofK. It is emphasized that
eqn. (2) represents an upper bound for a particular color code: if
the code values are not distributed normally, then the mutual
information is less thanC. This formulation involves no contribu-
tion from receptoral or neural noise (Vorobyev & Osorio, 1998;
Simoncelli & Olshausen, 2001).

If the noise is not distributed normally, then it may still be
shown that eqn. (2) cannot be exceeded with normally distributed
code values and nearest-neighbor identification (Lapidoth, 1996).
In the present analysis, a nonlinear compression of code values
was assumed to occur before identification. A logarithmic nonlin-
earity (Ruderman et al., 1998) and a Naka-Rushton nonlinearity
(Naka & Rushton, 1966) produced almost identical decreases in
the kurtosis of code values from a mean of 27.7 to20.1 and
of differences in code values (the estimated noise) from a mean of
90.2 to 1.75. Interestingly, this improvement in the normality of
the distributions had only a moderate effect on values ofC: those
obtained with von-Kries scaling actually decreased on average by
0.8 bits, and those with spatial ratios increased on average by
1.4 bits.

Results

Fig. 2 shows the information capacityC in bits for surface
identification in scenes under changes in daylight illuminant from
a correlated color temperature of 25,000 K to 6500 K. Mean values
of C over the 25 scenes are shown for von-Kries scaling of
cone responses, the spatial ratio of unscaled cone responses, and
those codes with optimally sharpened cone spectral sensitivities,
all with logarithmic compression. Table 1 gives the corresponding
numerical values for all three illuminant changes, that is, 25,000 K
to 6500 K, 4000 K to 6500 K, and 25,000 K to 4000 K. Both
sample means and sample standard deviations are shown. The
sample standard deviations indicated by an asterisk are inflated
owing to the influence of one scene, a close-up of a red rose, which
produced low values ofC with spatial ratios of sharpened spectra,
particularly with the illuminant change 4000 K to 6500 K (where
C 5 8.2 bits).

For comparison, Table 2 shows the corresponding proportionp
of correct identifications for a fixed number of samplesn 5 100

drawn repeatedly from the 1,376,256 pixels available in each
scene. Included in this table are values ofp for raw, unscaled cone
responses, but still with logarithmic compression (estimates ofC
provided by eqn. (2) cannot be used with raw responses because
the estimated noise does not have zero mean). These values differ
from those given in Nascimento et al. (2002), where long-, medium-
and short-wavelength-sensitive samples were treated indepen-
dently. Asn increased, the value ofp decreased; for example, for
an illuminant change of 25,000 K to 6500 K and von-Kries scaling
with sharpened spectra,p 5 0.96 with n 5 100 (penultimate
column Table 2), whereasp 5 0.52 whenn 5 10000.

Similar results, not shown here, were obtained with scenes
cropped to minimize the effects of shadows (as in Nascimento
et al., 2002). Decreasing the thresholda for division in the
calculation of cone-excitation ratios from 0.01 to 0.005 (Methods)
produced a decrease in the largest value ofC for ratios from 14.1
(last column Table 1) to 13.8.

Fig. 2. Mean information capacityC, in bits, for surface identification in
scenes under daylight changes of correlated color temperature 25,000 K to
6500 K. Coding is by von-Kries scaling of cone responses, the spatial ratio
of unscaled cone responses, and those codes with optimally sharpened cone
spectral sensitivities. Data based on a sample of 25 rural and urban scenes.
Vertical bars show sample standard deviation.

Table 1. Information capacity C, in bits, preserved in natural
scenes under various changes in daylighta

Codes with
LMS spectra

Codes with
sharpened spectra

Illuminant change
von

Kries
Spatial
ratio

von
Kries

Spatial
ratio

25,000 K–6500 K MeanC 11.43 11.02 14.44 14.08
S.D. C 0.76 0.69 1.36 1.28

4000 K–6500 K MeanC 11.78 11.37 13.90 13.40
S.D. C 0.72 0.69 1.71* 1.84*

25,000 K–4000 K MeanC 8.62 8.19 11.34 10.83
S.D. C 0.73 0.67 1.42 1.55

aEntries show means and sample standard deviations ofC for von-Kries
scaling of cone responses, the spatial ratio of unscaled cone responses, and
those codes with optimally sharpened cone spectral sensitivities. Correlated
color temperature of the illuminant changed from 25,000 K to 6500 K,
4000 K to 6500 K, and 25,000 K to 4000 K. Data based on a sample of 25
rural and urban scenes each of size 13443 1024 pixels. “*”: S.D.# 1.53
if one scene omitted (see text).

Table 2. Proportion p of correct identifications of 100 surfaces
or pairs of surfaces in natural scenes under various
changes in daylighta

Codes with
LMS spectra

Codes with
sharpened spectra

Illuminant change
von

Kries
Spatial
ratio Raw

von
Kries

Spatial
ratio

25,000 K–6500 K Meanp 0.92 0.79 0.07 0.96 0.85
S.D. p 0.07 0.09 0.02 0.07 0.07

4000 K–6500 K Meanp 0.91 0.79 0.05 0.93 0.80
S.D. p 0.08 0.10 0.02 0.11 0.09

25,000 K–4000 K Meanp 0.75 0.59 0.04 0.85 0.67
S.D. p 0.13 0.13 0.01 0.13 0.11

aEntries show means and sample standard deviations ofp. Other details are
as in Table 1, but with additional data on raw unscaled cone responses with
logarithmic compression.
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As might be anticipated, a formal repeated-measures analysis
of variance of the data summarized in Table 1 showed highly
significant effects of spectral sharpening@F~1,24! 5 119, P ,
0.001# , von-Kries scaling versus spatial ratios@F~1,24! 5 54.0,
P , 0.001# , and illuminant change@F~2,48! 5 622,P , 0.001# .
There was, however, no significant difference between the effects
of spectral sharpening on von-Kries scaling and spatial ratios
~F~1,24! 5 0.67,P 5 0.4!.

Discussion

Surface color provides a highly reliable signal by which sur-
faces can be identified despite changes in the illuminant. But there
are physical factors limiting neural performance. Expressed in
information-theoretic terms, the maximum level of information
preserved by von-Kries scaling under changes in daylight was
approximately 14 bits for a shift in correlated color temperature of
25,000 K to 6500 K and 4000 K to 6500 K, and 11 bits for a shift
of 25,000 K to 4000 K, all with sharpened cone spectral sensitiv-
ities. Contrary to expectation, the potentially larger variance asso-
ciated with spatial ratios of cone excitations produced an only
slightly less effective code, by 0.4–0.5 bits, with both sharpened
and unsharpened spectra.

Despite the variety in the population of scenes analyzed, the
maximum information preserved by any particular surface-color
code was remarkably stable over those scenes. For all codes and
illuminant changes, the standard deviation in information capacity
over scenes varied between 0.7 and 1.5 bits (excluding the close-up
rose scene), suggesting an approximate invariance of natural scenes
that might be exploited by the visual system. That is, under a
particular illuminant change, the amount of information that can be
preserved by a particular neural coding of a scene is likely to be
within approximately 1 bit of the amount of information that can
be preserved by the same coding of any other scene under the same
illuminant change.

These results have yet to be confirmed with a larger population
of scenes, illuminant changes, and illuminant-invariant codes.
Moreover, they represent physical limits on visual performance set
by the spectral sensitivities of cone receptors, the spectral reflec-
tances of natural surfaces, and changes in natural illuminant spec-
tra. When noise within the visual pathway and the limitations of
memory are taken into account, these limits are likely to decrease.
Nevertheless, the present data suggest the possibility that, in
general, performance in using color information to identify sur-
faces within a scene is sufficiently stable that it can be optimized
independent of location for any particular range of illuminants.
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