
Signal Processing for Hyperspectral Image Exploitation

Electro-optical remote
sensing involves the
acquisition of infor-
mation about an ob-
ject or scene without

coming into physical contact with it.
This is achieved by exploiting the fact
that the materials comprising the var-

ious objects in a scene reflect, absorb,
and emit electromagnetic radiation in
ways characteristic of their molecular
composition and shape. If the radia-
tion arriving at the sensor is measured
at each wavelength over a sufficiently
broad spectral band, the resulting
spectral signature, or simply spec-

trum, can be used (in principle) to
uniquely characterize and identify
any given material.

The field of spectroscopy is con-
cerned with the measurement, analy-
sis, and interpretation of such
spectra. Combining spectroscopy
with methods to acquire spectral in-
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� 1. Principle of imaging spectroscopy.
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formation over large areas is known
as imaging spectroscopy. The princi-
ples involved in the application of im-
aging spectroscopy to perform
satellite remote sensing are illustrated
in Fig. 1. Hyperspectral sensors are a
class of imaging spectroscopy sensors
in which the waveband of interest is
divided into hundreds of contiguous
narrow bands for the purpose of sig-
nature analysis.

There are four sampling opera-
tions involved in the collection of
hyperspectral data: spatial, spectral,
radiometric, and temporal. The spa-
tial sampling resolution, or ground
pixel size, varies from meters to tens
of meters and is a function of the sen-
sor aperture and platform altitude
that, in turn, depend upon the kind of
platform (e.g., spaceborne versus air-
borne). The spectral sampling can be
accomplished by a variety of means
such as a prism or interferometer. An
A/D converter samples the radiance
measured in each spectral channel
producing the digital data, at the pre-
scribed radiometric resolution, that
comprises a hyperspectral cube. Tem-
poral sampling corresponds to the
collection of multiple hyperspectral

images of the same scene over time
and is an important mechanism for
studying environmental change.

Hyperspectral sensors have been
developed to sample the reflective
portion of the electromagnetic spec-
trum that extends from the visible re-
gion (0.4-0.7 µm) through the
near-infrared (about 2.4 µm) in hun-
dreds of narrow contiguous bands
about 10 nm wide. Other types of
hyperspectral sensors exploit the
emissive properties of objects by col-
lecting data in the mid-wave and
long-wave infrared (MWIR and
LWIR) regions of the spectrum.
Hyperspectral sensors represent an
evolution in technology from earlier
multispectral sensors, which typically
collect spectral information in only a
few discrete, noncontiguous bands.
As indicated in Fig. 2, multispectral
imaging (MSI) from space dates
back to the launch of Landsat-1 in
1972, whereas the first experimen-
tal hyperspectral sensor in space was
launched late in 2000 on the NASA
EO-1 satellite. The primary sensor
on EO-1 is the advanced landsat
imager (ALI) , a l ightwe ight
multispectral imager. However,

EO-1 also carries Hyperion, a visi-
ble/NIR hyper spectral sensor with
30-m spatial resolution.

The high spectral resolution char-
acteristic of hyperspectral sensors
preserves important aspects of the
spectrum (e.g., shape of narrow ab-
sorption bands) and makes differenti-
ation of different materials on the
ground possible. The spatially and
spectrally sampled information can
be described as a data cube, whose
face is a function of the spatial coor-
dinates and depth is a function of
spectral band (or wavelength). The
data in each band corresponds to a
narrowband image of the surface cov-
ered by the field of view of the sensor,
whereas along the wavelength di-
mension, each image pixel provides a
spectrum characterizing the materials
within the pixel. The nature and orga-
nization of the collected data is illus-
trated in Fig. 3.

The spectrum that is observed at
each pixel in a scene is determined by a
collection of processes as illustrated in
Fig. 4. The objective is to identify and
segregate materials based on their
unique reflective (and for IR wave-
lengths emissive) properties when ob-

JANUARY 2002 IEEE SIGNAL PROCESSING MAGAZINE 13

Visible
+

NIR AVIRIS
1987

HyDICE
1995

NVIS
1998

Airborne
Experimental
Hyperspectral

Sensors
SEBASS
HSI 1995

SHARP
HSI 1998

MWIR
+

LWIR

Landsat-1
(MSI) 1972

Landsat-7
(MSI) 1999

MTI (MSI)
2000

EO-1 (MSI/
HSI) 2000

Spaceborne Multispectral and Hyperspectral Imagers

� 2. An abbreviated chronology of hyperspectral and
multispectral sensor evolution.
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� 3. Imaging spectrometry data cube illustrating the 3-D spatial
and spectral character of the data.



served over a wide range of wave-
lengths. The quantity that can be ob-
served and digitized by a sensor is the
radiant flux, or radiance, entering the
aperture of the sensor. For a given
ground pixel, the radiance observed at
any particular wavelength is deter-
mined, to first order, by the solar illu-
mination at that wavelength and the
reflectivity (reflectance) of the mate-
rial at that wavelength, which estab-
lishes how much of the solar illumi-
nation is reflected into the sensor.

There are many important addi-
tional effects, however, that may need
to be accounted for to uniquely iden-
tify materials in the scene. As illus-
trated in Fig. 4, these effects include
� the angle of the sun;
� the viewing angle of the sensor;
� the upwelling solar radiance from
atmospheric scattering;
� the secondary illumination of the
material by light reflected from adja-
cent objects in the scene;

� shadowing;
� the scattering and absorption of
the reflected radiance by the atmo-
sphere;
� spatial and spectral aberrations in
the sensor.

Characterizing and compensating
for these environmental and atmo-
spheric modulations of the radiance
spectrum is a key preprocessing step
in the exploitation of hyperspectral
imagery. In the case of cooperative
data collections, the simplest method
to compensate for the environmental
and atmospheric effects is to place a
calibration panel, with known
reflectance in the scene, in an open
area, and use the observed radiance
spectrum from the panel to develop
gain and offset corrections for each
waveband of interest. Other more so-
phisticated methods have been devel-
oped for atmospheric compensation
and sensor calibration. However, to
maintain the focus of this special is-

sue, atmospheric compensation and
sensor calibration methods are rele-
gated to a preprocessing step with no
further elaboration.

Processing Algorithm
Taxonomy
The number and variety of potential
civilian and military applications for
hyperspectral remote sensing is enor-
mous. However, the majority of al-
gorithms used in these applications
can be organized according to the fol-
lowing primitive-application-specific
tasks (see Fig. 5).
� a) searching the pixels of a
hyperspectral data cube for “rare” (ei-
ther known or unknown) spectral sig-
natures [target detection (for the
purpose of this article a target is de-
fined as any object or material being
sought in a hypersepctral data cube)];
� b) finding the “significant” (i.e., im-
portant to the user) changes between
two hyperspectral scenes of the same
geographic region (change detection);
� c) assigning a label (class) to each
pixel of a hyperspectral data cube
(classification);
� d) estimating the fraction of the
pixel area covered by each material
present in the scene.
Note that from a signal processing per-
spective c) is a classification problem
whereas d) is an estimation problem.

Dimensionality Reduction
In most cases, hyperspectral sensors
oversample the spectral signal to en-
sure that that any narrow features are
adequately represented. In some
cases, sensors may oversample the
spatial signal as well. An important
function of hyperspectral signal pro-
cessing is to eliminate the redundancy
in the spectral and spatial sample data
while preserving the high-quality fea-
tures needed for detection, discrimi-
nation, and classification. This
dimensionality reduction is imple-
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� 4. Solar illumination and atmospheric path absorption and scattering modulate the di-
rect path radiance signal observed at the sensor.



mented in a scene-dependent (adap-
tive) manner and may be imple-
mented as a distinct step in the pro-
cessing or as an integral part of the
overall algorithm. Regardless of
how it is implemented, the dimen-
sionality reduction algorithm must
be designed to preserve the informa-
tion of interest to downstream de-
tection, classification, or spectral
unmixing algorithms. Since dimen-
sionality reduction with small loss of
information is always possible, the
reduction can be achieved without
significantly degrading detection
performance or decreasing the sepa-
rability among the different classes
(classification performance).

Dimensionality reduction leads to
significant reductions in computa-
tional complexity and also reduces
the number of pixels required to ob-
tain statistical estimates of a given ac-
curacy. (The number of samples
(pixels) required to obtain a statistical
estimate with a given accuracy in-
creases drastically with the dimen-
sionality of the data.) The most
widely used algorithm for dimen-
sionality reduction is principal com-
ponent analysis (PCA) or, equiva-
lently, Karhünen-Loéve transforma-
tion. Fig. 6 is a simplified block
diagram of the processing chain
showing the common elements of at-
mospheric compensation and
dimensionality reduction. Subsequent
processing is specialized depending
upon the intended application. Fig. 6
illustrates two of many possible appli-
cations, unmixing and detection, each
of which is discussed briefly in the fol-
lowing sections and developed more
fully in this issue’s articles.

Classification versus
Target Detection
Formally, classification is the pro-
cess of assigning a label to an obser-
vation (usually a vector of numeri-
cal values), whereas detection is the

process of identifying the existence
or occurrence of a condition. In this
sense, detection can be considered
as a two-class classification prob-
lem: target exists or target does not
exist. Traditional classifiers assign
one and only one label to each pixel
(hard classification) producing
what is known as a thematic map.
However, the need to deal more ef-
fectively with pixels containing a
mixture of different materials leads
to the concept of soft classification
of pixels. A soft classifier can assign
to each pixel multiple labels, with
each label accompanied by a num-
ber that can be interpreted as the
likelihood of being correct or, more

generally, as the proportion of the
material within the pixel.

In terms of data products, the goal
of target detection algorithms is to
generate target maps at a constant
false alarm rate (CFAR). This CFAR
property is a highly desirable feature
of target detection algorithms.
Change-detection algorithms pro-
duce a map of significant changes,
that, for reliable operation, depend
upon the existence of a CFAR
change-detection threshold.

At first glance, detection and clas-
sification applications may look de-
ceptively similar, if not identical.
However, the rarity of the target
class, the final product (target detec-
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tion maps versus thematic maps), and
the different cost functions (mis-
classifying a few pixels in a thematic
map is not as critical as missing a tar-
get or overloading the tracker with a
large number of false alarms), lead to
some fundamental theoretical and
practical differences between detec-
tion and classification applications.

Unmixing
Although the concept of mixed pixels
was introduced decades ago, the de-
velopment of algorithms to extract
the constituent spectra comprising a
pixel, termed unmixing, has been ag-
gressively pursued only during the
last decade. A fundamental question
in unmixing is whether the mixture of
spectral signatures is formed by linear
or nonlinear processes. The answer
depends upon a number of factors
and conditions in the scene. Never-
theless, the linear mixing model as-
sumption provides data products that
usually can be related to the abun-
dances of materials present in the
ground pixel footprint and has
proven useful in many applications.
In contrast to detection and classifica-
tion, unmixing is an estimation prob-
lem. Hence, it is a more involved
process and extracts more informa-
tion from the data.

Issue Overview
The first article, contributed by Prof.
David Landgrebe, provides an over-
view of classification concepts, with
an emphasis on some of the chal-

lenges that arise due to the high-di-
mensional nature of hyperspectral
data. Prof. Landgrebe has devoted
many years to research and algorithm
development for multispectral and
hyperspectral imagery. His article in-
cludes information on accessing a
public-domain tool, Multispec, that
readers may download and use to
gain hands-on experience with visual-
ization and processing of multi-
spectral and hyperspectral data.

The second article, “Detection Al-
gorithms for Hyperspectral Imaging
Applications,” by the guest editors,
examines target detection, in particu-
lar adaptive subspace detection algo-
rithms. This article traces many of the
algorithm concepts and derivations
to earlier work in radar and multi-
spectral systems. Theoretical perfor-
mance of the algorithms is presented
and compared to observed perfor-
mance on actual data. Departures
from theoretical performance are
identified and related to departures of
the statistics of the data from the
usual assumptions of normality.

The third article, “Spectral
Unmixing,” by Dr. Nirmal Keshava
and Prof. John Mustard, introduces
the intriguing topic of decomposing
or unmixing the composite spectra
observed within a pixel. This article
highlights some of the open issues
and research challenges associated
with developing improved unmixing
methods and a better understanding
the underlying phenomenology. An
example of the power of these meth-
ods is given using multispectral data

collected by the Clementine space-
craft during a lunar flyby.

The final article, by Dr. David
Stein and colleagues, also addresses
target detection, but for the case
where information regarding the tar-
get spectrum is either unavailable or
unreliable (for example due to delete-
rious atmospheric effects). This ap-
proach to target detection, termed
anomaly detection, can also be viewed
as an example of change detection in
the spatial domain, that is, detection
of pixels that appear different from the
(local) background pixels in the im-
age. Detection of targets with un-
known spectral signature is especially
difficult, and this article introduces a
novel technique for combining the de-
tection statistics of several different
detection algorithms to enhance over-
all detection performance.

As guest editors, our objective in
organizing this special issue is to intro-
duce this fascinating remote sensing
application to the broad readership of
IEEE Signal Processing Magazine. We
believe many opportunities remain to
develop innovative signal processing
algorithms and implementations for
hyperspectral image exploitation. We
hope you will find these articles inter-
esting, and perhaps be stimulated to
contribute to the development of this
emerging technology.
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