Hyperspectral Image
Data Analysis

uring the 1950s, the dig-

ital computer began to

emerge as an indispens-

able tool for dealing
with data. It was not long in this pe-
riod before pattern recognition tech-
nology, the ability to discriminate
between different patterns of num-
bers, began significant development.
Then in 1957, Sputnik, the world’s
first artificial satellite, was launched,
thus beginning the space age. It was
the concurrence of these three devel-
opments, the possibility of spacecraft,
pattern recognition technology, and
the digital computer, that stimulated
thought into how one might make
observations from space to obtain in-
formation to better manage the
Earth’s renewable and nonrenewable
resources.

This question began to be seri-
ously addressed in the early 1960s.
(Details of the early history of
space-based land remote sensing are
given in [1]. This issue of this journal was written in com-
memoration of the 25th anniversary of the launch of
Landsat 1 in July, 1972.) Early work focused on what kind
of measurements to make and how to process these mea-
surements. The first thoughts quite naturally turned to
imagery and the emerging image processing technology;
however, it was not long before this approach was recog-
nized as having substantial limitations. To be viable, the
technology had to be economical. The desired informa-
tion had to become available to the user at minimal cost.
The great advantage of space-based technology was the
economy of scale. Large areas could be covered very
quickly and at low per unit cost. But, for example, to iden-
tify corn and its condition by direct image means would
require spatial resolution of the order of centimeters so
that the shape of a corn leaf could be discerned. Sensors
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with such resolution would be very expensive to build and
operate, but the big problem would be the unreasonable
volume of data that would be generated to cover even a
county-sized area. Spatial resolution is one of the most ex-
pensive parameters to achieve in a space system. A more
cconomical approach that did not require such high spa-
tial resolution was needed, aside from the limitation that
data processing technology of that day and the foreseeable
future would impose.

The Multispectral Concept

What was hit upon to solve this problem came to be
known as the multispectral approach. The fundamental
basis for space-based remote sensing is that information is
potentially available from the electromagnetic energy field
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The basis for space-based remote
sensing is that information is
available from the
electromagnetic energy field
arising from the Earth’s surface
and from the spatial, spectral, and
temporal variations in that field.

arising from the Earth’s surface and, in particular, from
the spatial, spectral, and temporal variations in that field.
Rather than focusing on the spatial variations, which im-
agery perhaps best conveys, why not move on to look at
how the spectral variations might be used. The idea was
to enlarge the size of a pixel until it includes an area that is
characteristic from a spectral response standpoint for the
surface cover to be discriminated. For example, for corn
this should be several meters so as to include an area in-
volving several rows of corn. This composite of several
rows of corn is assumed to have a response as a function of
wavelength that is relatively unique to corn. For an urban
area where the classes to be discriminated might be low
density housing, high density housing, commercial, in-
dustrial, etc, the pixels should be perhaps several tens of
meters so as to pick up a composite of the responses that
go to make up those classes. The idea was not to “see” a
house, but to sense the mixture that a collection of closely
spaced houses and the intervening materials characteristic
of high-density housing emits compared to the other
classes. Then the discrimination between classes would be
based upon the difference in distribution of the energy
trom a pixel in terms of the wavelength distribution. The
fundamental assumption is that different classes of sur-
face cover have families of spectral responses that are
unique to them within a data set.

Thus, the focus of data collection moved from imagery
per se, i.e., collecting measurements from every high res-
olution pixel location on the ground where pixels were to
be immediately adjacent to one another with a proper
geometric relationship between measurements, to one of
making measurements of the power level emanating from
each more moderate resolution pixel in each of several
bandwidths. In this case, pixels did not need to be imme-
diately adjacent to each other to facilitate identification of
the pixel contents, since the identification of a pixel’s con-
tents could be based on the spectral response of that pixel
only. This greatly reduces the number of pixels that must
be measured to survey a given area, and since data volume
increases as the square of the spatial resolution, but only
linearly as the number of spectral bands, upon reducing
the spatial resolution while increasing the number of
spectral bands, the data volume is greatly reduced.

The early research on this approach in the 1960s was
done with aircraft-mounted sensors that were opti-
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cal-mechanical line scanning devices capable of making
pixel measurements in less than 20 spectral bands over the
visible, reflective infrared (IR) and thermal IR regions of
the spectrum. However, when the time arrived to design
and build a space sensor of this type, the space-based sen-
sor technology would only permit a four-band system
with 80 m pixels and a S/N justifying a 6-bit data system.
This system, called MSS (multispectral scanner), was first
launched in July 1972 aboard the Landsat 1 satellite
(originally called Earth Resource Technology Satellite or
ERTS 1). This sensor system proved to be very success-
ful, but its rather crude spectral detail did limit the num-
ber and detail of ground cover classes that could be
mapped in this way.

The success of MSS resulted in consideration for a sec-
ond-generation system to begin in 1975. The resulting
system, called Thematic Mapper, has seven spectral
bands, 30 m pixels, and a SNR justifying an 8-bit data sys-
tem. This system first flew in 1982 and, with relatively
minor augmentations, is the current Landsat instrument,
having been most recently launched onboard Landsat 7
on 1 April 1999. Several other land-oriented sensor sys-
tems are now in orbit operated by commercial organiza-
tions and other countries. A number of aircraft-based
systems are also in routine use.

In the mean time, sensor technology has advanced
substantially, thus allowing multispectral sensors with
several hundred spectral bands and S/N requiring 10+
bit data systems. The launch of the experimental NASA
EO-1 spacecraft in November 2000 carrying a sensor
system called Hyperion, with 220 bands, 30 m pixels
and a 10-bit data system is a demonstration of what
sensor technology is now capable of producing. Sen-
sors with this many spectral bands are referred to as
hyperspectral.

Signal Representation

The data that is supplied by such systems is best repre-
sented in the form of an N-dimensional vector for each
pixel where N is the number of spectral bands. This view-
point of the data is referred to as a feature space represen-
tation, as compared to the image space and spectral space
presentation in Fig. 1. Typically there are several hundred
thousand pixels per data set. The spectral space graph of
Fig. 1(b) might lead one to believe that each ground
cover material is appropriately represented by a single
spectral curve; some use the term “spectral signature.” To
proceed from this assumption gives up a considerable
amount of potential. The angle of the sun, and thus the
time of day, season and latitude, the direction of view, the
atmospheric condition, and a number of other such un-
controllable variables substantially affects the spectral re-
sponse of any given material. From a scientific point of
view, it has been of interest to try to make adjustments for
these variables. However, this proves to be quite a daunt-
ing problem as it is difficult to accumulate the needed data
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tor each pixel and each column of atmosphere to enough
precision to do more than have a cosmetic effect on the
data in image space. Sound application of appropriate
analysis algorithms are not usually much improved by
such adjustments.

More significantly, beyond these observational variables,
the Earth’s surface itself is a highly variable and dynamic
place from a spectral point of view. Consider the grassy areas
of Fig. 1(a). Even in terms of the three bands used to gener-
ate this image, it is apparent to the unaided eye that the spec-
tral response of the class “grass” varies significantly over that
scene. From a data analysis point of view, it is important to
recognize that this variation in the ground scene response is
not all “noise.” Some (most) of this variation is information
bearing. Thus, from a data analysis standpoint, a more effec-
tive and complete representation of diagnostic spectral re-
sponses is in terms of class-conditional probability density
functions in the N-dimensional vector space.

Class Discrimination

is the most information bearing. To make clearer the
value of this model in discriminating between two
classes, one of the most common ways to predetermine
the separability of two classes of materials is by the use
of a statistical distance measure [2]. As an example, a
commonly used one for this purpose is the Bhat-
tacharyya distance, defined as

B=1Ln i | f(x)g(x)dx

where x is the measured (vector) value of a pixel and f(x)
and g(x) are the class-conditional density functions be-
tween which one wishes to discriminate. The form of this
distance measure in terms of only the first two moments
of these two density functions is
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A 1. (a) A simulated color IR image of an urban area, the Washington, D.C,, mall. This image is made using three bands of the 210
bands collected by the sensor system, one band from the visible green, one from the visible red, and one from the near infrared. Such
displays are referred to as displays in image space. (b) A display of the data of pixels of three materials as a function of wavelength
by spectral band number. The bands in this case are approximately 10 nm wide over the range of 0.4-2.4 um. This type of data dis-

play is referred to as a display in spectral space.
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An advantage of the feature
space representation is that its
dimensionality is easily
expanded, while that of the
image space is not.

where u , andp  are the class mean values and £, andX

are the covariance matrices of the two classes. Note that the
first term on the right measures the portion of the class sep-
aration due to the difference in means, while the second
term measures the separation of the classes due to the
covariances. Thus, to use only a single spectral curve to
model a class (a “spectral signature?”), even if it is the aver-
age of a number of actual spectral responses makes use of
only the separability measured by the first term on the right
of the above equation. Further, even from this partial mod-
eling of the class densities, it is clear that, though two
classes might have the same mean values, making that first
term on the right zero, they may still be quite separable.

Modeling each class in terms of a probability density
function allows one to capture the information about a class
also by the “shape” of the class in feature space, as quantified
by all higher order statistics. Then classification can conve-
niently be implemented via the discriminant function con-
cept. That is, for 7 classes, determine a set of 7 functions
{4, (%), g, (X),..., 4,, (%)} such that g, (x) is larger than all
others whenever x is from class 7. The class density functions
can conveniently serve as the discriminant functions, and the
appropriate classification rule then is

Let o, denote the 7th class.

Decide x ew,iff (i.e., x is in class o, if and only if)

g, (x)2 g, (x)forall j=12,..0m.

In this way, the process of designing the specific classi-
tier is reduced to quantifying the class conditional density
function that applies for each class. All such classifiers are
thus maximum likelihood classifiers, and one may define
a hierarchy of classifiers by making different assumptions
about the relationship among the classes. For example,

Minimum distance to means classifier:

ﬂi<x>:_(x_ui>T(X_ui>

The classes all have unit variance in all features and the
features are all uncorrelated to one another.
Fisher’s Linear Discriminant classifier:

ﬂ,‘(x)=—(x—u,~)TYl (x—-u;)

The classes do not have the same variance in all features,

the features are not necessarily uncorrelated, but all

classes have the same variance and correlation structure.
Quadratic (Gaussian) classifier:

2,0=~(1/2)n[E,]-1/2)(x~p,) T, (x—p,)
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The classes are not assumed to have the same covariance,
each being specified by X .

If the prior probabilities of each class are known, using
them to multiply the class density functions as a part of
the discriminate functions results in algorithms which de-
rive directly from Bayes Rule and are sometimes called
minimum error classifiers, because they result in the theo-
retically minimum overall error. In practice, these are not
often used, because the prior class probabilities are often
not known and/or though they minimize the overall er-
ror, they may do so by reducing the error of large classes
at the expense of less frequently occurring classes.

Perhaps the next step up in classifier complexity would
be to use a classifier utilizing third or even higher order
statistics, up to a so-called nonparametric scheme. How-
ever, this quickly reaches a point of diminishing returns,
since, as will be more apparent shortly, a key variable con-
trolling the selection of algorithm complexity is the num-
ber of training samples available by which to define each
of the classes quantitatively in feature space. It is charac-
teristic of the remote sensing situation that the number of
training samples available is always less than might be de-
sirable. Thus, parameter estimation error quickly be-
comes dominant in limiting performance. Other types of
algorithms are possible and in use, including ones which
incorporate both spatial and spectral variations.

The question of what algorithm to use for classification is
a well-studied matter. The quadratic pixel classifier is per-
haps the most common algorithm. For classes with more
complex distributions, something common in multispectral
data, a typical approach is to define several subclasses, each
with a quadratic distribution. So-called nonparametric
schemes and iteratively trained algorithms such as neural
network approaches have been highly studied. They can
usually be made to perform well on individual data sets, but
have the disadvantage of the need for extensive amounts of
computation and larger training sets, both of which do not
fit the practical remote sensing situation as well.

Another factor in deciding what algorithm to use for
classification is the nature of the information being
sought. The algorithms above are most commonly used
where the intention is to make a thematic map of the en-
tire scene, such that each pixel is labeled as to the class of
its contents. In this case the classifier makes a decision as
to which class a pixel should be assigned to after consider-
ing the exhaustive list of possibilities. Another type of sit-
uation might be to search a data set for a specific class of
material. An application of this type might be military tar-
get identification. There are other types of algorithms
that are sometimes used in such cases. Algorithms such as
those based on matched filtering are examples.

The Potential of High-Dimensional Data

Consider the following. A two-channel feature space plot
for the area marked by the dashed rectangle in the
three-channel image space figure is shown in Fig. 2. From
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the image space presentation, which utilizes three of the
12 bands available in this data set, it appears that there are
two fairly distinct classes of ground cover in the rectangu-
lar area, but this is not so apparent from a visual observa-
tion of the two-dimensional feature space presentation.
For these two classes in these two bands, the data appears
to be heavily overlapped, and the two classes do not ap-
pear to be spectrally distinct.

However, an advantage of the feature space representa-
tion 1s that its dimensionality is easily expanded, while that
of the image space is not. If one adds a third dimension to
this feature space or a fourth, one might well be able to visu-
alize that spreading these same data points over the larger
volume of the higher dimensional space would allow for
greater potential separability. Increasing the dimensionality
turther would spread the data over an even greater volume,
thus reducing overlap and enhancing the potential for dis-
crimination, so long as the fundamental assumption that
different materials do have diagnostically different charac-
teristics remains valid. (We note in passing that for
multispectral data of Earth observational scenes, like the
case illustrated above, classes of data in N-dimensional fea-
ture space usually do not occur in distinct clusters. Rather
they occur in a sparse continuum, making the process of
quantitatively specifying to considerable precision the
classes to be discriminated a key to successful data analysis. )

As an extreme illustration of this, consider that one has
10-bit data in 100-dimensional space, a very feasible cir-
cumstance today. The 10-bit data implies 1024 possible
discrete values in each of the 100 dimensions, or that there
are approximately (10%)190 =103% discrete locations in
this feature space. The volume of this space is so great that
even for a data set of 10° pixels, the probability of any two
pixels landing in the same digital cell or even fairly adjacent
cells is vanishingly small. Thus there is no overlap, and in
theory, anything is separable from anything. However,
there are complexities that must be dealt with eftectively in
such a space in order to approach this potential.

High-dimensional vector spaces have been found by
mathematicians to have some rather unusual and
unintuitive characteristics [3]. Consider the following. It
has been shown [4] that the volume of a hypersphere of
radius 7 in 4 dimensions is given by

.1
v, =20

")

2
and that the volume of a hypercube in[—#,7]" is given by
V. ()= volume of a hypercube = (27)".

The fraction of the volume of a hypersphere inscribed
in a hypercube of the same dimension then is

V) m'?
V() d2°7'T(d/2)

fa
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where 4 is the number of dimensions. Fig. 3 shows how
f; decreases as the dimensionality increases.

Note that lim, ,_ f, =0, which implies that the vol-
ume of the hypercube is increasingly concentrated in the
corners as 4 increases. Notice also that the dimensionality
does not need to be very high, less than ten and certainly
less than 100, for this effect to be significant.

These and other such characteristics have two impor-
tant consequences for high dimensional data. The first
one is that
A High-dimensional space is mostly empty, which implies
that multivariate data in R” is usually in a lower dimen-
sional structure. As a consequence, for any given analysis
task, high-dimensional data can be projected to a lower di-
mensional subspace without losing significant information
in terms of separability among the different statistical
classes. However, the specific subspace will surely be dif-
terent for each different data set and analysis task.

A second consequence of the foregoing, is that
A Normally distributed data will have a tendency to con-
centrate in the tails; similarly, uniformly distributed data
will be more likely to be collected in the corners, making

Image Space Using Channels 7, 9, and 11
of a 12-Channel Data Set

Biplot of Channels 11 versus 9
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A 2. Two agricultural species in (a) three-dimensional image
space and (b) two-dimensional feature space.
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Sensor systems must be built
with a large number of spectral
bands, so that they will provide
suitable data for a broad
spectrum of tasks and
circumstances.

density estimation more difficult. Local neighborhoods
are almost surely empty, producing the effect of losing
detailed density estimation.

It turns out that this difficulty in density estimation is
one of the chief challenges facing the data analyst. Due to
the large number of parameters of the scene and its obser-
vation, one must expect to have to train a classifier for
each new data set that is to be analyzed. The labeling of
training samples and accumulation of the information by
which to do so nearly always means that there will be a
paucity of training samples with which to model each of
the class density functions. Thus, one must determine the
parameters of a high dimensional density function with a
relatively small number of samples.

In a very general context, Hughes was able to demon-
strate the impact of this problem on a theoretical basis
some years ago [5]. One of his results is displayed in Fig.
4, which shows the mean recognition accuracy averaged
over the ensemble of possible classifiers, versus the mea-
surement complexity. Here, measurement complexity is
related to the number of discrete cells in the feature space,
and therefore the number of spectral bands and the bit
precision in each. The parameter, 2, of the individual
graphs of the figure is the number of training samples
available to define the classes.

It is seen that the expected accuracy starts at 50% for
this two-class case, i.e., chance performance. For the case
of an infinite number of training samples, the curve pro-
ceeds upward to the right as measurement complexity in-

creases, rapidly at first but then more slowly, becoming as-
ymptotic to its final value. However, for any finite number
of training samples, the result has a maximum value. This is
because there will then be estimation error in determining
the values of the parameters of the classifier, and for a given
number of training samples, the greater the measurement
complexity the greater the estimation error and the poorer
the performance. This may be the explanation for less com-
plex classifiers sometimes outperforming more complex
ones. The maximum value of each curve does increase with
increasing numbers of training samples, and in this case,
occurs at a higher measurement complexity. Thus on aver-
age, to achieve higher accuracy will require increased num-
bers of features and/or an increase in SNR reflected in the
number of bits or discrete values per feature. Thus the
number of spectral features and the SNR are interrelated
with the number of training samples available per class.

Feature Extraction

The combined implication of this is that a larger number
of spectral bands may potentially make the discrimination
between more detailed classes possible, but to do so will
require an increasingly precise specification of the classes
desired, sort of the inverse of the computer user’s mantra,
“garbage in, garbage out.” Sensor systems must be built
with a large number of spectral bands, so that they will
provide suitable data for a broad spectrum of tasks and
circumstances. The realization pointed out above, that
high-dimensional spaces are mostly empty and a subspace
will contain the significant structure for a given classifica-
tion problem, points to the value of having a means for
finding the most appropriate subspace as soon as the spe-
cific classes have been quantified. Algorithms for accom-
plishing this are referred to as feature extraction
algorithms. Two examples are discriminate analysis [6]
and decision boundary [7] feature extraction.
Discriminate analysis feature extraction (DAFE) is
based on the following concept. In seeking the optimal
subspace, the primary axis of this transformation should
be oriented such that the classes have the maximum sepa-
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A 4. Mean recognition accuracy versus measurement complexity
for the finite training case.
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ration between their means on this new axis, while at the
same time they should appear as small as possible in their
individual spreads. If the former is characterized by o ,,
the distance between the means, and the latter in terms of
6, ando ,,, , the spread of the classes about their means,
then it is desired to find new axes such that

I between — class variance

o

». average within — class variance

is maximized, where 67, is the average of 6, ando},, .
In matrix form the within-class scatter matrixX ,, and the
between-class scatter matrix X , may be defined as

X, = ZP(wi )X, (within class scatter matrix)

Z, :ZP(wi)(“i - M,)(, —M,)" (between class scat-

ter matrix)

M, =3 PO,

Here p;,X,, and P(o;) are the mean vector, the
covariance matrix, and the prior probability of class o,
respectively. The criterion for optimization may be de-
fined as

VA =W<Z£VZB)'

New feature vectors are selected to maximize the criterion.

Decision boundary feature extraction (DBFE) is based
directly upon the decision boundary in feature space and
the training samples that define it. Discriminately informa-
tive features have a component that is normal to the deci-
sion boundary at least at one point, while discriminately
redundant features are orthogonal to a vector normal to
the decision boundary at every point on the boundary.
Based upon this, a decision boundary feature matrix
(DBEM) may be defined to extract discriminately infor-
mative and discriminately redundant features from the de-
cision boundary. The rank of the DBEM is the smallest
dimension where the same classification accuracy can be
obtained as from the original feature space, and the
eigenfunctions of the DBFM corresponding to nonzero
eigenvalues are the necessary features to achieve the same
accuracy as in the original feature space. The calculation
process uses the training samples themselves, rather than
statistics from them, to determine the location of the deci-
sion boundary, and then from that, the DBEM. The details
are contained in the referenced work.

A Data Analysis Paradigm

The major question that the analyst must deal with is how
to choose and train a suitable sequence of algorithms by
which to accomplish the desired analysis, given the cir-
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High-dimensional vector
spaces have been found by
mathematicians to have some
rather unusual and unintuitive
characteristics.

cumstances found in the remote sensing situation. The
problem of optimally training a classifier comes down to
how completely and precisely one models the data set and
the specific classes one wishes to discriminate between.
The classification process ordinarily involves assigning
each pixel to one of a list of classes. Thus one must set up
an exhaustive list of classes, so that there is a logical class
to which to assign each pixel of the data set, even though
one may be interested in only one or a small number of
classes in the scene. The rule for establishing the list of
classes then is that the classes must be:

A Of'informational value. The list must contain all of the
classes of interest to the information consumer.

A Exhaustive. In addition to those desired by the user, it
must contain enough additional classes so that there is a
logical class to which to assign each pixel in the data set.

A Scparable. The classes must be separable in terms of
available spectral features.

Further, each class must be modeled to adequate com-
pleteness and precision. As pointed out earlier, one must
specify not only the mean response of a given class, but also
how the response for that class varies about its mean, since
this variation is often quite diagnostic of the class.
Modeling the class response in terms of a multidimen-
sional probability density function is perhaps the most ef-
tective way of doing this. However, as the measurement
complexity, defined by the number of features and the bit
precision of the data reflecting S/N, increases, this be-
comes more daunting. There will usually only be a limited
number of samples that can be made available for defining
a class density function model. The number of training
samples needed varies greatly with the specific situation. A
number many times as large as the number of features is
highly desirable, although there are algorithms becoming
available to mitigate this condition to some extent.

In addition, the analyst has the further challenge that
the samples used for training the classifier must be truly
representative of the class intended. If one wishes to de-
fine a class to be called “corn” in an agricultural problem,
how thick must be the stand of corn in a pixel for it to be
desired to call the pixel corn, how much weeds should be
allowed, what range of varieties (include popcorn?) what
range of planting dates and thus maturity level, and many
other variables must be considered. Clearly the process is
not in any sense “automatic” as it must reflect the specific
requirements of the user.

Data flow through a system to a final analysis generally
requires the application of a sequence of algorithms. Fig. 5
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Data flow through a system to a
final analysis generally requires
the application of a sequence of
algorithms.

outlines such a sequence. The numbered paragraphs refer
to the numbered boxes in the diagram.

1) Multispectral data consists of data gathered in more
than one spectral band. There is no accepted definition for
where the boundary is between data termed multispectral
and hyperspectral. It is well established that the geometry of
vector spaces changes continually as the dimensionality of
the space increases, and indeed that it is materially different
from the familiar three-dimensional geometry by the time
dimensionality reaches seven to ten. Further, it usually re-
quires a dimensionality of the order of ten or more to satis-
tactorily accomplish many practical analysis tasks. Thus it
will be assumed that the data to be analyzed contains at least
ten and perhaps as many as several hundred spectral bands.

2) Again assuming that the data were gathered in a larger
number of bands than is necessary or desirable for the partic-
ular analysis at hand, an important early step is to form the
teature subset that is to be used in the analysis. This should be
done in a situation-specific way, that is, using the description
of the specific classes desired. Thus, a feature extraction algo-
rithm such as those described above is applied at this point.

3) Given box 2, there may still remain the decision as
to how many of the generated features to utilize. The
choice here and that in box 4 will depend to some extent
upon the individual classes and the precision with which
they have been modeled.

4) There remains, then, the application of the specific
classification algorithm to be used. Again, the choice of
algorithm depends upon the class model precision and
the level of detail of the classes.

5) As has been detailed above, the labeling of adequate
sets of training samples is a key step, perhaps the most im-
portant step of the entire process.

6) Having labeled a set of samples for each class that
are assumed to be truly representative of an exhaustive list
of classes that includes the desired classes, the task here is
to use those samples to define as precise an N-dimen-
sional model of the classes in the feature space as possible.
Except in very simple cases where a single point in feature
space is adequate, this will nearly always consist of model-
ing the entire distribution of each class. This may involve
use of an iterative scheme, or it may simply consist of
computing first- and second-order statistics. However
classes may require modeling in terms of more than one
mode, with the training samples divided between the var-
ious modes. There are also additional algorithms that can
further assist in mitigating the small training sample
problem [8].

7) Box 7 suggests one option for labeling training pix-
els being an attempt to adjust all or a part of the data for
the various observational variables that were present, de-
pending on the precise conditions of the scene and the
sensor system at the time each pixel measurement was
made. If one could do this adequately, this would make
possible the use of some additional sources of reference
data on which to base the labeling, as indicated on the dia-
gram. The adjustment of the data for all of these variables
is a very complex task and is problematic. It often cannot
be done with as much precision as needed. Because of
this, the overall scheme above is designed to not necessar-
ily require calibrated data that has been so adjusted.

Rather, one would only need to do so

High-Dimensional
1 Data

1y

to the extent necessary to label an ad-
equate set of training samples. Of
course, if one has available informa-
tion such as that indicated by one of

Feature
3 Selection 2

Class Conditional
, Feature Extraction

Classifier/Analyzer

the direct methods, the need for this
added complexity can be avoided.

1t

]

il

Determine Quantitative
Class Descriptions

6
Observations { T
from the Ground > Label Training Data
Observations > Samples Adjustment
of the Ground 2 7 :

<«4— Spectroscopy

<4— Pregathered

Calibration, Adjustment for
the Atmosphere, the Solar Curve,
Goniometric Effects, etc.

There are a number of additional
kinds of processing that can be done to
treat various circumstances that arise in
practical problems. For example, hav-
ing labeled a small set of samples of a
presumably exhaustive list of classes,
one cannot be sure that the labeled
samples are indeed typical of all of the
occurrences of classes in the entire
scene, since no information about the
quantitative nature of those other oc-
currences has been available. In short,

Imaging

Spectra

Direct Method

Indirect Method

the classifier may not be able to gener-
alize well from the training samples to

A 5. A schematic diagram of the hyperspectral data analysis process.
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An example scheme to mitigate this problem, which
might be applied in box 6, is to use a systematic sampling
of nontraining samples, in conjunction with the training
samples, to modify or “enhance” the class statistics [9].
Since this process in effect increases the number of train-
ing samples in the process, it can also mitigate the Hughes
phenomenon, i.e., the estimation error problem due to
having too few training samples. Assume there are J
classes in the feature space denoted by §, ...,S . Each class
can have several Gaussian components. Let 7 denote the
total number of the Gaussian components. Writez €S to
indicate that component i belongs to class . The proba-
bility density function of the feature can then be written as
a mixture of 7 Gaussian components where the set of
components can be partitioned into 7 classes:

£e10)= Y0 £,(+0)

where

O =(1;5Z;)s 0= (0050, sl el 5 XX, )

From each class S, N . training samples are assumed to
be available. Denote these samples by z,, where 7=1,..., ]
indicates the class of origin and k=1,...,.N i is the index of
each particular sample. The training samples here are
known to come from a particular class without any refer-
ence to the exact component within that class. In addition
to the training samples, N unlabeled samples denoted by
x,, k=1,...,N, are also assumed to be available from the
mixture. The log likelihood to be maximized for obtaining
the ML estimates can be written in the following form:

L)=. log f(x,/9)

+

J Nj
=1

1
log zazfz (2,10 |
k=1 2 o lES]'

tESj

The first term in the above log likelihood function is
the likelihood of the unlabeled samples with respect to the
mixture density, and the second term indicates the likeli-
hood of the training samples with respect to their corre-
sponding classes of origin. The EM equations for
obtaining the ML estimates are the following:
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The equations are applied iteratively with respect to
the training and unlabeled samples where “c” and “+” re-
ter to the current and next values of the respective param-
cters, i €S;,and P (|.)and P/ (|.) are the current values of
the posterior probabilities:

P (dx,)= :
T fler)
. o; f; (20, 25)
Pi(lz,)= * .
D00 f (7 ln 25)

tESj

Thus as the iteration proceeds, successively revised val-
ues for the mean, covariance, and weighting coefficient of
each component of each class are arrived at which steadily
approach the values for a maximum of the expected likeli-
hood value for the mixture density. The result can be class
statistics that better model the entire data set, better clas-
sifier generalization, and a reduction of the estimation er-
ror of class statistics in the face of high dimensionality.

An Example Analysis

We conclude with one specific example. Fig. 6 shows an
image space representation, using three bands to simulate
a color IR photograph of an airborne hyperspectral data
set over the Washington, D.C., mall. The data set was col-
lected with an airborne sensor system delivering approxi-
mately 3 m pixels containing 210 spectral bands from the
0.4 to 2.4 um region of the visible and infrared spectrum.
This data set contains 1208 scan lines with 307 pixels in
each scan line. It totals approximately 150 Mbytes. The
analysis was done on an inexpensive personal computer.
Thus, though by some standards, this is “a lot of data, call-
ing for a powerful computer,” this is not the case as will be
seen. The specific steps for this analysis are briefly de-
scribed as follows.

A 1) Display Image. The first step is to present a view of
the data set in an image space so that the analyst can select
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A 6. A simulated color infrared image of the Washington, D.C,
mall.

and mark training samples, examples of each class desired
in the final thematic map. A simulated color infrared pho-
tograph form is often convenient for this purpose; to do
so, bands 60, 27, and 17 are used for the red, green, and
blue colors, respectively. The result is shown in Fig. 6.
Note that this particular data has not yet been adjusted for
geometric distortion that arose due to air turbulence af-
fecting the aircraft stability during data collection. Since
the analysis is done on a pixel-by-pixel basis, this has no
cffect on the analysis process at this point. Rectification
or geometric adjustments may be made either before or
after spectral analysis so long as such adjustments do not
affect the radiometric values of the pixels.

A 2) Define Classes. Use the image display of the data to
mark training samples for each desired class. The classes
of informational value desired in this case are “Roofs,”
“Road,” “Grass,” “Trees,” “Trail,” “Water,” and
“Shadow.” The class Shadow is not necessarily desired by
the user, but is an example of the need to satisty the re-
quirement for the class list to be exhaustive, since areas in
the scene in deep shadow are spectrally substantially dif-
ferent from the other areas.

The significant challenge for this analysis task stems
from the fact that though the user would like to discrimi-
nate between the classes “Roof” and “Road,” the materi-
als used in some roofs are very similar to that used in
roads, a mixture of gravel and asphalt. Further, there are
many different types of roofs. Thus, one must carefully
train for a number of subclasses of Roof, so that all of the
various spectral subclasses for Roof and to a lesser extent
tfor Road are represented properly in the training data.
In this case six subclasses of Roof were defined to ac-
count for the difference in spectral response of the vari-
ous types of roof. After classification, the subclasses
were combined for display of the results. The number of
samples for each class/subclass varied in this case from a
tew 10s to several hundred.

A 3) Feature Extraction. After designating an initial set of
training areas, a feature extraction algorithm is applied to
determine a feature subspace that is optimal for discrimi-
nating between the specific classes defined. The algorithm
used here was discriminate analysis feature extraction
(DAFE). The result is a linear combination of the original
210 bands to form 210 new features that automatically oc-
cur in descending order of their value for producing an ef-
fective discrimination. From the DAFE output, it is seen
that the first nine of these features will be adequate for suc-
cesstully discriminating between the classes.

A 4) Reformatting. The new features defined above are
used to create a nine-band data set consisting of the first
nine of the new features, thus reducing the di-
mensionality of the data set from 210 to nine.

A 5) Initial Classification. Having defined the classes and
the features, next an initial classification is carried out. An
algorithm called ECHO (extraction and classification of
homogeneous objects [10], [11]) was used here. This al-
gorithm is a spectral/spatial quadratic maximum likeli-
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hood classifier that first segments the scene into spectrally
homogeneous objects. It then classifies the objects on a
quadratic maximum likelihood basis.

A 0) Finalize Tragning. An inspection of the initial classi-
fication result indicates that some improvement in the
training of the set of classes is called for. To do so, two ad-
ditional training fields were selected and added to the
training set.

A 7) Final Classification. The data were again classified us-
ing the new training set. The result is shown in Fig. 7.
Rather than a continuous tone color image, this figure is a
thematic map in which each pixel is displayed in a specific
color, one of the seven colors in the legend indicating the
class that to which the pixel was assigned.

The entire analysis process took less than three minutes
of disk read and processing time on an inexpensive PC
and about half an hour of analyst time. This example and
additional information can be found in [12]. The exam-
ple application analysis was done on a PC-based software
system called MultiSpec, which is available at http://dy-
namo.ecn.purdue.edu/~biehl/MultiSpec/. This site also
has pointers to substantial additional amounts of techni-
cal details, including downloadable complete copies of
some of the documents referred to.

So far as Earth observational multispectral sensing is
concerned, the field is primarily limited by the avail-
ability of data. However, assuming this limitation will
some day be mitigated sufficiently, the next layer of
limiting factors will be the satisfactory means for data
analysis. The process outlined here is, at best, a first
step. Clearly, the designing of such an analysis proce-
dure is a signal processing engineering problem rather
than an Earth science problem; however, the signal
processing engineer must keep in mind that the analysis
process will no doubt need to be carried out by an indi-
vidual with a background in the technology user disci-
plines rather than those of the technology producer
disciplines. The procedure described above works well,
but it is probably much too complicated to be adopted
by many users. The designing of a suitable data analysis
process is still ahead and is an engineering task in the
true sense of the word.

In the mean time, multispectral data processing is find-
ing increasingly broad applications that extend will be-
yond aerospace remote sensing. These methods are being
increasingly explored in application areas such as medical
diagnostics, manufacturing, materials processing, and
many others.
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A 7. A thematic map presentation of the analysis result.
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