
Hyperspectral remote sensing exploits the fact
that all materials reflect, absorb, and emit
electromagnetic energy, at specific wave-
lengths, in distinctive patterns related to

their molecular composition. Hyperspectral imaging
(HSI) sensors in the reflective region of the spectrum
(sometimes referred to as imaging spectrometers) acquire
digital images in many contiguous and very narrow (nom-
inally about 0.010 µm wide) spectral bands that typically
span the visible, near-infrared, and mid-infrared portions
of the spectrum (0.4-2.5 µm). This enables the construc-
tion of an essentially continuous radiance spectrum for ev-
ery pixel in the scene. Thus, HSI data exploitation makes
possible the remote identification of ground materi-
als-of-interest based on their spectral signatures.

Hyperspectral target detection algorithms can be de-
veloped using statistical, physical, or heuristic approaches.

Irrespective of the design approach, however, perfor-
mance evaluation of any detector should be done using
statistical criteria. In this article, we focus on the design
and evaluation of detection algorithms using statistical hy-
pothesis testing techniques. Statistical inference tech-
niques for normal distributions have been widely studied
and used because they are mathematically tractable and
provide good performance in many practical situations.
We therefore focus on detection algorithms that assume
multivariate normal distribution models for HSI data. Al-
though HSI data frequently violate the assumption of
normality used to derive the detectors, these algorithms
work well in many practical applications, their operation
and performance can be understood theoretically, and
they can provide the ground for the development of algo-
rithms for nonnormally distributed HSI data. The theo-
retical development and analysis of detection algorithms
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for arbitrary nonnormal distributions, although highly
desirable, it is not mathematically tractable.

This article is organized as follows. First we introduce
key concepts and issues including the effects of atmo-
spheric propagation upon the data, spectral variability,
mixed pixels, and the distinction between classification
and detection algorithms. Detection algorithms for full
pixel targets are developed in the following section, using
the likelihood ratio approach. Subpixel target detection,
which is more challenging due to background interfer-
ence, is pursued next using both statistical and subspace
models for the description of spectral variability. Finally,
in the concluding section, we provide some results which
illustrate the performance of some detection algorithms
using real HSI data. Furthermore, we illustrate the poten-
tial deviation of HSI data from normality and point to
some distributions that may serve in the development of
algorithms with better or more robust performance.

Introduction
As a result of their fine spectral resolution, HSI sensors
provide a significant amount of information about the
physical and chemical composition of the materials occu-
pying the pixel surface, as well as the characteristics of the
atmosphere between the sensor and the surface during
the data collection.

Atmospheric Compensation
Due to the effects of the illumination source and the at-
mosphere, the “raw” radiance spectra obtained by an HSI
sensor cannot be directly compared to either laboratory
spectra or “raw” spectra collected at other times or places.

To overcome this obstacle, we work with the
reflectance spectrum, which indicates the portion of inci-
dent energy which is reflected as a function of wave-
length. Hence, the properties of the illuminating source
and the effects of the propagating atmosphere are re-
moved, and the shape of the reflectance curve is character-
istic of the materials in the observed pixel. Once the data

have been corrected for the effects of the atmospheric
absorption and scattering, the resulting reflectance spec-
trum for every pixel, can be compared to spectra of
known materials available in “spectral libraries.”

Spectral Variability and Mixed Pixels
The basic task underlying many HSI applications is to
identify different materials based on their reflectance
spectrum. In this respect, the concept of a spectral signa-
ture, which uniquely characterizes any given material, is
highly attractive and widely used. However, spectra ob-
served in the natural world do not exhibit a deterministic
signature. The spectra observed from samples of the same
material will never be identical, even in laboratory experi-
ments, due to variations in the material surface. The
amount of variability is more profound in remote sensing
applications due to variations in atmospheric conditions,
sensor noise, material composition, location, surround-
ing materials, and other factors. To make matters worse,
totally different material types can have very similar spec-
tra. An additional source of spectral variability are calibra-
tion and illumination variations which are not currently
handled by atmospheric correction codes.

Despite these difficulties, practical experience has
shown that many materials of interest can be identified on
the basis of their spectral characteristics. However, the
ambiguity introduced by inherent variability of spectral
signatures has important implications into the exploita-
tion of HSI data for both civilian and military applica-
tions. Despite the intrinsic spectral variability and the
occasional lack of identifiability, the concept of spectral
signature is widely used in remote sensing spectroscopy.
In this article, we assume that different materials are spec-
trally separable and focus on the problems introduced by
the inherent variability of spectral signatures.

Another significant complication arises from the inter-
play between the spatial resolution of the sensor and the
spatial variability present in the ground scene. The sensor
integrates the radiance from all materials within the
ground surface “seen” by the sensor as an image pixel.
Therefore, depending on the spatial resolution of the sen-
sor and the spatial distribution of surface materials within
each ground pixel, the result is a HSI data set comprised
of “pure” and “mixed” pixels. Mixed pixels present an ad-
ditional challenge to HSI data exploitation because their
spectral signatures do not correspond to any single
well-defined material.

Dealing with spectral signature variability and spectral
compositions in mixed pixels are among the most chal-
lenging problems in HSI data exploitation, both theoreti-
cally and practically.

Classification and Target Detection
There are two major applications that rely upon the abil-
ity to separate materials based on their spectral signa-
tures: classification and target detection.
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The main objective of background classification is to
automatically assign all pixels in an HSI data cube into
land cover classes or themes, which has led to the term
thematic mapping. The user has the task to up-front de-
termine the number and type of classes as well as to quan-
titatively characterize these classes using spectral libraries
or training data and ground truth information. Practical
experience has shown that the design of a good classifier
requires a sufficient amount of training data for each
background class. Clearly, for background classification,
the natural criterion of performance is the minimization
of the probability of missclassification errors.

In target detection applications, the main objective is
to search the pixels of an HSI data cube for the presence of
a specific material (target). Conceptually, at least at a the-
oretical level, target detection can be viewed as a binary
hypothesis testing problem, where each pixel is assigned a
target or nontarget label. However, there are some funda-
mental practical differences that have a great impact upon
the development and evaluation of practical algorithms
for detection versus classification applications. In surveil-
lance applications, the size of the objects (targets) we are
searching for constitutes a very small fraction of the total
search area. Therefore, the target class will be either
empty or sparsely populated. On the other hand, the gen-
eral “no-target” class includes almost all pixels in the cube
and is the union of the different specific background
classes. We shall use the term “background” to refer to all
nontarget pixels of a scene. Usually, targets are man-made
objects with spectra that differ from the spectra of natural
background pixels.

The sparseness of the target class implies that there are
not sufficient data to train a statistical classifier or statisti-
cally evaluate the performance of a target detector. On the
other hand, the heavy population of the background
class, in conjunction with the emptiness of the target
class, allows the use of the “unclassified” HSI cube to sta-
tistically characterize the background. In detection appli-

cations, where the target probability is very small,
minimization of the error probability is not a good crite-
rion of performance, because it can be minimized by clas-
sifying every pixel as background. For this reason, we
typically seek to maximize the probability of detection
while keeping the probability of false alarm under a cer-
tain predefined value (Neyman-Pearson criterion [1]).

The amount of a priori information about the spectral
signature of the target depends on the requirements of the
specific application. A priori information about spectral
signatures is available in libraries as reflectance spectra.
Therefore, to look for targets with known spectral signa-
tures, the data must first be converted into reflectance, a
procedure that may lead to spectral distortions since it gen-
erally depends upon assumptions and measurements
about atmospheric conditions. If we have no a priori infor-
mation about the target or we wish to work with radiance,
the most reasonable approach is to look for pixels whose
spectral content is “significantly” different from the spec-
tral content of the local background. The detection of pix-
els whose spectral signatures differ from those of the
background is known in hyperspectral literature as anom-
aly detection and is discussed in a companion article.

Design and Evaluation of Target Detectors
Most HSI data processing techniques start with the idea
that an observed spectrum can be considered as a vector in
a multidimensional space, where the number of dimen-
sions equals the number of spectral bands, L. Taking into
consideration spectral variability and receiver noise, the
observations provided by the sensor can be modeled, for
the purpose of theoretical analysis, as random vectors
with specific probability distributions. Given an observed
spectrum, x, the likelihood ratio (LR) is given by the ratio
of the conditional probability density functions

Λ( )
( | )
( | )

x
x
x

=�
p
p

signal present
signalabsent

.
(1)

If Λ( )x is larger than the threshold η, the “signal pres-
ent” hypothesis is accepted. Basically, the LR test accepts
as “true” the most “likely” hypothesis.

A practical question of paramount importance to a de-
tection algorithm user is where to set the threshold to
keep the number of detection errors (target misses and
false alarms) small. Indeed, there is always a compromise
between choosing a low threshold to increase the proba-
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bility of (target) detection PD and a high threshold to
keep the probability of false alarm PFA low. For any given
detector, the trade-off between PD and PFA is described by
the receiver operating characteristic (ROC) curves,
which plot PD ( )η versus PFA ( )η as a function of threshold
−∞ < < ∞η . Clearly, any systematic procedure to deter-
mine ROC curves or the threshold requires specifying the
distribution of the observed spectra x under each of the
two hypotheses.

In most practical situations, the conditional probabil-
ity densities in (1) depend on some unknown target and
background parameters (composite hypotheses). There-
fore, the ROC curves of any detector depend on the un-
known parameters. In this case, it is almost impossible to
find a detector whose ROC curves remain an upper
bound for the whole range of the unknown parameters
(uniformly most powerful (UMP) detector).

An intuitively appealing and widely used approach, in
the case of unknown density parameters, is to replace the
unknown parameters in the LR (1) with their maximum
likelihood estimates. In general, there are no optimality
properties associated with the resulting generalized LR
(GLR), Λ G ( )x . In practice, however, the GLR leads to
detectors that seem to work well in several applications.

Practical target detection systems should function au-
tomatically, that is, without operator intervention. This
requires an automatic strategy to set a “proper” detection
threshold. A high false alarm rate wastes processing and
reporting resources and may result to system overload-
ing. Therefore it is critical to keep the false alarm rate con-
stant at a desirable level by using a constant false alarm
rate (CFAR) processor. The task of a CFAR algorithm is
to provide detection thresholds that are relatively im-
mune to noise and background variation and allow target
detection with a constant false alarm rate.

Framework for Detection Algorithm Taxonomy
The key factors that determine the taxonomy of
hyperspectral target detection algorithms are: the type of
models used for spectral (target or background) variabil-
ity, the composition of the pixel under test (pure or
mixed), and the model used to describe mixed pixels.

There are two widely used ways to describe spectral
variability. The geometric approach restricts the spec-

trum vector to vary in an M-dimensional subspace of the
data space ( )M L< . The observed spectrum is described
by

x s Sa= =
=
∑a k
k

M

k
1

.
(2)

The vectors s k or equivalently the matrix S, which define
the variability subspace, can be a) unique spectral
signatures determined from spectral libraries or the data
or b) vectors obtained with statistical techniques (for ex-
ample, the eigenvectors of the data correlation matrix).
Clearly, the variability increases as M increases from one
to L. The statistical approach requires a probability distri-
bution model for the description of the spectral variabil-
ity. Usually, first- and second-order moments (mean
vector and covariance matrix) are employed under a
multivariate normal distribution assumption. Clearly,
variability is related to the spread of the distribution, and
the highest variability is obtained for a uniform distribu-
tion over the data space.

For full pixel targets, there is no significant interaction
between target and background other than secondary il-
lumination, shading, etc. Hence, the spectrum, x, ob-
served by the sensor is produced either by the target
spectrum s t or the background spectrum s b . In both
cases, the observed spectrum is corrupted by additive sen-
sor noise w.

For subpixel targets, both the spectrum of the target
and the spectrum or spectra of the background contribute
to the observed mixed pixel spectrum. There are two
widely used models for modeling subpixel targets.

The most widely used spectral mixing model is the lin-
ear mixing model [1] (LMM), which assumes that the
observed pixel spectrum is generated by a linear combina-
tion of a small number of unique constituent determinis-
tic spectral signatures known as “endmembers.” The
mathematical formulation of the LMM is given by

x s w Sa w= + = +
=
∑a k
k

M

k
1 (3)

where s s s1 2, , ,K M , are the M endmember spectra,
which must be linearly independent, a a a M1 2, , ,K are
the corresponding abundances, and w is an additive noise
vector. Endmembers may be obtained from spectral li-
braries, in-scene spectra, or using geometrical techniques.
We point out that the enforcement of positivity (a k ≥0)
and additivity (a a a M1 2 1+ + + =L ) constraints makes
the LMM a replacement model.

If the endmember spectra are randomly and independ-
ently drawn from multivariate normal distributions, we
have the stochastic mixing model [3], [4].

The choice of a pixel composition assumption (pure or
mixed pixel), the selection of a model to account for spec-
tral variability (subspace or probability distribution), and
the selection of a mixing procedure leads to different
types of target detection algorithms. The detection prob-
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lem is typically formulated as a binary hypothesis test
with two competing hypotheses: background only (H 0 )
or target and background (H1 ). Since the two hypotheses
contain unknown parameters (for example, covariance
matrix of the background) that have to be estimated from
the data, the detector has to be adaptive, and it is usually
designed using the generalized likelihood ratio test
(GLRT) approach [1].

Most detection algorithms for full pixel and subpixel
targets have been obtained by describing spectral variabil-
ity using the multivariate normal distribution or a
subspace model. Mixed pixels are usually modeled using
the LMM. A target detection algorithm based on the sto-
chastic mixing model, known as finite target matched fil-
ter, is discussed in [3] and [4].

Finally, we note that in several practical applications,
we do not have adequate a priori information about the
desired target. In such cases, it is possible to design algo-
rithms that look for spectra which deviate from the local
background (anomaly detection). The type of the statisti-
cal model used for the background leads to different
anomaly detection algorithms. Use of a multivariate nor-
mal distribution model leads to the RX algorithm [5], [6]
which is often used for anomaly detection. Recently, a
new algorithm [7] has been developed, which fuses the
local statistics used by the RX algorithm and the cluster-
ing statistics obtained using stochastic expectation maxi-
mization (SEM) to improve detection performance.
More details about anomaly detection algorithms can be
found in [8].

Detection Algorithms for Full-Pixel Targets
In this section, we assume that target pixels are com-
pletely filled by the material-of-interest, that is, we focus
attention on full-pixel or resolved targets. In this case, the
detection process is complicated by the spectral
variabilities of the target and background classes. We can
think of the totality of target spectra as constituting a tar-
get class and those from the background as being the
background class. Let R be the entire L-dimensional
space in which the point of L-band spectrum x falls. To
make a decision, we should divide the region R into two
regions, R t and R b , by some optimum method. A pixel is
assigned to the target class if its spectrum x falls in region
R t or to the background class if x falls in R t . We shall pic-
torially illustrate the various concepts and algorithms us-
ing a hypothetical sensor with two spectral bands. Due to
the geometrical framework, however, the results and
their interpretation hold for spectra produced by HSI
sensors with a much larger number of bands. This process
is illustrated in Fig. 1 for L =2 bands. Clearly, meaningful
decision making is possible if the observed target spectra
differ to some extent from the observed background spec-
tra. Usually, the two classes overlap and even the best de-
tector will result in misclassification errors. In general, the
decision boundary will be a curve corresponding to a

nonlinear detector. We can also make a decision by
processing the spectrum vector xby a system which calcu-
lates a scalar y D= ( )x and then comparing y to a scalar
threshold. Usually, the function D( )x is obtained using
the LR or GLR approaches. This system, which can be
linear or nonlinear, is known as a two-class classifier,
discriminant function, statistic, filter, or detector. We
shall interchangeably use the terms filter or detector since
they are widely used in the engineering literature. We dis-
cuss two approaches. First, we shall use the LR to obtain
detectors without any structural constraints, that is, de-
tectors with arbitrary decision surfaces in R L . Second, we
focus on the design of detectors with hyperplane decision
surfaces. These linear detectors project the data onto a
line specified by their coefficient vector with the objective
of increasing class separation.

Likelihood Ratio Detectors
Since statistical decision procedures, based on normal prob-
ability models, are simple and often lead to good perfor-
mance, we shall model the target and background spectra as
multivariate normal vectors. A random vector x follows a
multivariate normal distribution with mean vector
µ =� E{ }x and covariance matrix �= − −� E T{( )( ) }x xµ µ ,
denoted by x~ ( , )N µ � , if its probability density function
is given by

p e
L

T

( )
( ) | |/ /

( ) ( )
x =

− − −−1
2 2 1 2

1
2

1

π
µ µ

�

�x x

(4)

where| |� represents the determinant of matrix �.
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Consider the detection problem specified by the fol-
lowing hypotheses:

H N
H N

0

1

: ~ ( , )
: ~ ( , )

x
x

µ
µ

b b

t t

Targetabsent
Target presen

�

� t (5)

where the target and background classes follow
multivariate normal distributions with different mean
vectors and covariance matrices. Since the probability
densities are completely specified under each hypothesis,
we can design a Neyman-Pearson detector. Indeed, com-
puting the natural logarithm of the LR (1) leads to the
quadratic detector

y D

T T

=

= − − − −− −

( )

( ) ( ) ( ) ( )

x

x x x x -1
2

1
2

1 1µ µ µ µb b b t t t� �
(6)

which compares the Mahalanobis distances of the ob-
served spectrum from the centers of the two classes. The
required threshold η is determined from

P p y H dyFA = =
∞

∫ ( | )0η
α

(7)

where α is the desired probability of false alarm. As a re-
sult of the quadratic mapping, the distribution of the ran-
dom variable y (detector output) is not normal, which
makes the performance evaluation of the detector diffi-
cult.

If the target and background classes have the same
covariance matrix, that is, � � �t b= =� , the quadratic
terms in (5) disappear, and the likelihood ratio detector
(5) becomes

y D T= = − −( ) ( )x xµ µt b � 1 . (8)

In this, highly unlikely case for HSI data, we have a linear
detector

y = c xT
k

k

L

k=
=

∑c x
1 (9)

which is specified by the coefficient vector

c = −−� 1 ( )µ µt b . (10)

The output y is now normally distributed because it is a
linear combination of normal random variables. This re-
sult simplifies the evaluation of the detector and the com-
putation of detection thresholds using (7).

This detector, which is known as Fisher’s linear
discriminant [15], is widely used in pattern recognition
applications. We shall use the term matched filter (MF),
which is more widely used in the communications and
signal processing literature. There, the matched filter
(10) is usually derived by maximizing the cost function

J
E y H E y H

y H

T

T
( )

[ { | } { | }]
{ | }

[ ( )]
c

c
c c

=
−

=
−� 1 0

2

0

2

var
t bµ µ

� (11)

which measures the distance between the means of two
normal distributions in units of the common variance.
The maximum, which is obtained by substituting (10)
into (11), is

J T
max ( ) ( )= = − −−∆2 1� µ µ µ µt b t b�

(12)

which is the Mahalanobis squared distance [10] between
the means of the target and background distributions.

The performance of the matched filter is determined
by its direction, which specifies the line where the input
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data vectors are projected to obtain the detection statis-
tics. Therefore, any filter of the form

cMF t b= −−κ µ µ� 1 ( ) (13)

whereκ is a normalization constant, will provide the same
performance. It can be shown that the filter (13) with
κ =1 2/ ∆ minimizes the output variance c cT � subject to
the linear constraint cT µ t =1. In the context of array pro-
cessing, this processor is known as minimum variance
beamformer [11]. A similar detector, termed the con-
strained energy minimization (CEM) algorithm [12],
can be obtained by minimizing the total energy of the fil-
ter output under the same constraint.

Adaptive Matched Filters
The matched filter detector (13) requires the mean vector
and the common covariance matrix of the target and
background distributions. Furthermore, the resulting de-
tector is optimum (in the Bayes or Neyman-Pearson
sense) only when the target and background classes fol-
low multivariate normal distributions with the same
covariance matrix, an unlikely situation for real-world
HSI data. In practical applications, these quantities are
unavailable and have to be estimated from the available
data. Under the assumption of low-probability targets,
we can use the available data x( )n , n N=1 2, , ,K , to deter-
mine the maximum likelihood estimates

$ ( ) $µ µ=
=

∑1
1N

n
n

N

x � b
(14)

[ ][ ]$ ( ) $ ( ) $ $� �= − −
=

∑1
1N

n n
n

N
Tx xµ µ � b

(15)

of the mean vector and covariance matrix of the back-
ground. Unfortunately, there is usually not sufficient
training data to determine the mean and covariance of the
target. Typically, we use a target spectral signature s t
from a library or the mean of a small number of known
target pixels observed under the same conditions. The re-
sulting adaptive matched filter (AMF) is given by

y
T

T
=

−

−

s x

s s

$

$

�

�

b

b

1

1
(16)

where usually the data cube mean is removed from the
target and test pixel spectra.

If we know the “true” covariance matrix �b , the out-
put y under the “target absent” hypothesis, is distributed
as y N y T~ ( ,( ) )o bs s�− −1 1 , where y E yo = { }. When the re-
quired means and covariances are estimated from the
data, the resulting estimates are random quantities. If we
treat them as constant, we can determine the
class-conditional distribution of the detector output as in
the known statistics case. However, the correct approach

is to treat the estimated means and covariances as random
and determine the unconditional distribution of y D= ( )x .
Unfortunately, the derivation of unconditional distribu-
tions is a very difficult problem, even under the most sim-
plified assumptions. An extremely complicated
expression for Fisher’s linear discriminant has been ob-
tained by Sitgreaves [13].

The distribution p yy ( ), when we use the sample
covariance matrix $�b , has been determined by Richmond
in [14]. It depends upon the number L of spectral bands
and the number N b of pixels used to estimate the
covariance matrix of the background. The background
pixels are assumed to come from a multivariate normal
distribution x~ ( , )N µ b b� . Fig. 2 shows p yy ( ) for
L =144 spectral bands for various values of N b . We see
that, as the number of pixels used to estimate the
covariance matrix of the background increases, the distri-
bution approaches the normal distribution curve (see
[15] for more details). This is expected because as
N b → ∞, the sample covariance matrix $�b → �b , the true
covariance matrix of the background.

A simple algorithm for target detection is the spectral
angle mapper (SAM) [60] given by

D
T

T TSAM ( )
( ) (/ /

x s x
s s x x)

=�
1 2 1 2

.
(17)

Clearly, SAM is the cosine of the angle between the test
and target spectra and is always between zero and one be-
cause all spectra vectors have positive components. We
note that SAM is usually defined in the remote sensing
community as the angle between two vectors, instead of
the cosine of the angle. SAM will provide adequate per-
formance only for full pixel targets having well separated
distributions with small dispersions. There are not any
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optimality properties associated with the SAM algo-
rithm, even for normally distributed classes.

Detection Algorithms for Subpixel Targets
By definition, subpixel targets occupy only part of the
pixel area. The remaining part is filled with one or more
materials, which will be collectively referred to as back-
ground. In this section, we discuss the detection of com-
pact and isolated subpixel size objects characterized by a
known spectral signature with or without variability. As a
result of this area mixing, the observed spectral signature
can be modeled reasonably well as a linear combination of
the target and background spectra. Furthermore, there is
always an additive amount of noise from various sources
(sensor, atmosphere, etc).

The choice of the mathematical model used to describe
the variability of target and background spectra (subspace
versus statistical) leads to different families of subpixel
target detection algorithms. The variability of the target
spectral signature is always described using a subspace
modelSa. If the columns of S are endmembers, the vector
a provides their abundances and should satisfy the con-
straints of the linear mixing model. Otherwise, a simply
determines the position of a target in the column space of
S. The variability of the background can be described us-
ing either a subspace model (structured background) or a
statistical distribution (unstructured background).

Therefore, the type of the background model drives
the development of subpixel detection algorithms.

Unstructured Background Models
Unstructured background models assume that the addi-
tive noise has been included in the background b, which in
turn is modeled by a multivariate normal distribution
with mean zero and covariance matrix �b , that is

b~ ( , )N 0 � (for simplicity, we drop the subscript b from
this point forward). The competing hypotheses are

H
H

0

1

: ,
: ,

x b
x Sa b

=
= +

Targetabsent
Target present. (18)

Hence, x~ ( , )N 0 � under H 0 and x Sa~ ( , )N � under
H1 . In addition, we assume that we have access to a set of
training background pixels x( )n , n N=1 2, , ,K , which are
independently and identically distributed (IID). The test
pixel x and the training pixels are assumed statistically in-
dependent L-dimensional random vectors, where L is the
number of spectral bands. Since x( )~ ( , )n N 0 � , we can
use these pixels to obtain the maximum likelihood esti-
mate of the covariance matrix. Since HSI data have a
non-zero mean, we usually remove the estimated mean to
comply with this model.

Using the generalized likelihood ratio approach, Kelly
[17], [18] obtained the following detector:
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x S S S S x

x x
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+
>
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−
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�

1 1 1 1

1

1

0

η

(19)

where $� is the MLE of the covariance matrix (15). Al-
though there is no optimality test associated with the
GLR approach [1], it leads to the design of useful, practi-
cal detectors. The threshold parameter ηK determines
both the probability of detection, PD , and the probability
of false alarm, PFA .

The matrix S contains the available a priori variability
information about the target. This information decreases
as we increase the number of columns P (dimensionality
of the target subspace) of S and becomes minimum when
P L= . In this case, we simply know that we are looking for
deterministic targets that lie in the data subspace. Since
the matrix S has full rank and therefore is invertible, (19)
leads to the following detector:

D
H

H

T
A A( ) $x x x= >

<
−� 1

1

0

η

(20)

which was derived by Kelly [19] using the approach dis-
cussed here and by Reed and Yu [5] using a multivariate
analysis of variance formulation. Basically, DA ( )x esti-
mates the Mahalanobis distance of the test pixel from the
mean of the background, which is zero for demeaned
data. Algorithm (20), which has the CFAR property, is
used extensively for anomaly detection in multispectra
and hyperspectral data [8].

A key assumption in the derivation of (19) was that the
covariance matrix of the background is the same under
the two hypotheses. However, for subpixel targets the
amount of background covered area is different under the
two hypotheses. Therefore, it is more appropriate to use
the following hypotheses:

36 IEEE SIGNAL PROCESSING MAGAZINE JANUARY 2002

8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR (dB)

Neyman Pearson
Clairvoyant
Adaptive

P = 1,3,5,7,9
(left to right)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

L Q P= 150 Bands, = 5, = 10FA
6−

� 8. Probability of detection as a function of SINR, illustrating the
effect of target subspace dimensionality, for structured back-
ground detectors.



H
H

0

1

: ,
: ,

x b
x Sa b

=
= +

Targetabsent
Target presentσ (21)

which implies that x~ ( , )N 0 � under H 0 and
x Sa~ ( , )N σ 2 � under H1 . In other words, the back-
ground has the same covariance structure but different
variance. This variance is directly related to the fill factor
of the target, that is, the percentage of the pixel area occu-
pied by the target object. The GLR approach leads to the
following adaptive coherence/cosine estimator (ACE)
detector [20], [21]
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(22)

which can be obtained from (19) by removing the num-
ber N of background training pixels from the denomina-
tor.

If we use the adaptive whitening transformation
~ $x x=��

1
2 , where $ $ $ /� � �=� 1

2 1 2 is the square-root decomposi-
tion of the estimated covariance matrix, the ACE can be
expressed as

D
T T T

T

T

TACE ( )
~ ~(~ ~) ~ ~
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x S S S S x

x x
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(23)

where ~ $ /S S= −� � 1 2 and P S S S S
S
~

~(~ ~) ~= −� T T1 is the orthogo-
nal projection operator onto the column space of ~S .
Since P P

S S
~ ~
2 = , we can write (22) as

DACE ( )
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~
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x

P x

x
S= =

2

2
2 θ

(24)

which shows that DACE ( )x is equal to the cosine of the an-
gle between the test pixel and the target subspace into the
whitened coordinate space. This is illustrated in Fig. 3.

Using the whitening transformation, the anomaly de-
tector (19) can be expressed as D T

A ( ) ~ ~x x x= which is the
Euclidean distance of the test pixel from the background
mean in the whitened space (see Fig. 4). We note that, in
the absence of a target direction, the detector uses the dis-
tance from the center of the background distribution.

For targets without variability, we have P =1 and the
target subspace S is specified by the direction of a single
vector s. Then, the formulas for the previous GLR detec-
tors are simplified to
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(25)

where ( , )ψ ψ1 2 1= =N for the Kelly detector and
( , )ψ ψ1 20 1= = for the ACE algorithms. Kelly’s algorithm
was derived for real-valued signals and was applied to
multispectral target detection in [6]. The one-dimen-

sional version of ACE has been derived in [22], [23].
Finally, we note that, if ( , )ψ ψ1 2 0= =N , we obtain the
adaptive matched filter (AMF) detector [24], [25].

Determining the distribution of the various GLRT de-
tectors is an elaborate process [17], [19], [5], [26], [21].
It turns out that the distribution of the different detector
outputs involves a noncentral F-distribution. The
noncentrality parameter is the theoretical signal-to-inter-
ference plus noise ratio (SINR)

SINR o = −( ) ( )Sa SaT � 1 . (26)

The performance of all GLRT detectors depends only on
the dimensional integer numbers L, P, N and the opti-
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mum SINR o parameter. Under the H 0 hypothesis (tar-
get absent) SINR o =0, the output distribution becomes
central , and the probability of false alarm depends only
on the parameters L, P, N. Therefore, all GLRT detectors
discussed in this section have the CFAR property. For a
remote sensing system with high SNR, the detection per-
formance depends on the fraction of the target occupying
a pixel because this determines the SINR. Fig. 5 illus-
trates the effects of target dimensionality on detection
performance for Kelly’s GLRT detector. We see that as P
increases (that is as a priori information about the target
decreases), detection performance deteriorates. The
worst performance is obtained when P L= , which corre-
sponds to the anomaly detector (20). Fig. 6 illustrates
performance as a function of the number of training pix-
els. Clearly, performance improves as N increases, that is
as the estimate of the interference covariance matrix be-
comes more accurate. In both figures, we have included
the curve indicating the performance of the optimum
matched filter [1] (known target in noise with known
covariance matrix) for comparison.

Structured Background Models
When the background variability is modeled using a
subspace model, the target detection problem involves
choosing between the following competing hypotheses
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x Sa Ba w
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= + + =

b

t b

Targetabsent0 σ
Za w,+ Target present (27)

where S ( )L P× has to be specified by the user, B ( )L Q×
has to be determined from spectral libraries or the data,
Z S B=

�

[ ], and a a aT T T T=� [ ]t b . Use of the GLR approach
leads to the following detection statistics:
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where PB
⊥ and PZ

⊥ are projection matrices defined by
P I A A A AA

T T⊥ −= − ( ) 1 with A B= and A Z= , respec-
tively. This is illustrated in Fig. 7, where P xB

⊥ is the per-
pendicular TB from the test pixel to the background
subspace and P xZ

⊥ is the perpendicular TC from the test
pixel to the target and background subspace. The detector
computes the square of the tangent of angle φ; however,
cos2 φ can be also used as a detection statistics.

In the statistical literature DASD ( )x is denoted by F( )x
and is known as the F-test. This decision statistic was first
developed in the context of the linear statistical modeling
[27]. In signal processing, it is known [1], [28] as the
adaptive subspace detector (ASD). The random variable
TASD ( )x is distributed as

T L P Q
P

FP L P QASD oSINR( ) ~ ( ),x − −
− −

(29)
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where FP L P Q, ( )− − SINR o is the noncentral F distribution
with P numerator degrees of freedom, L P Q− − denomi-
nator degrees of freedom, and the noncentrality parame-
ter: the SINR

SINR o
t=

⊥
�

P SaB

w

2

2σ (30)

which depends on the unknown variance σ w
2 . Notice that

σ w
2 is not required for the computation of the detection

statistics. The threshold ηASD is specified by the required
probability of false alarm

P FP L P QFA ASD= − − −1 0, ( , )η (31)

because SINR o =0 under H 0 . Since the distribution of
TASD ( )x under H 0 is known, we can set the threshold
ηASD to attain CFAR operation. The probability of detec-
tion

P FP L P QD o ASDSINR= − − −1 , ( , )η (32)

depends on the unknowns a t andσ w
2 ; therefore, it cannot

be maximized to obtain an optimum Neyman-Pearson
detector.

For targets without variability, that is, when P =1, it
can be shown that the ML estimate of the abundance a t
of the target signature vector s is given by

( )$ ~ , ( )a N a
T

B
T

B
w

T
Bt t=

⊥

⊥
⊥ −s P x

s P s
s P sσ 2 1 .

(33)

Clearly, detection algorithms based on $a t cannot have the
CFAR property because σ w

2 is unknown. Also, since the
distribution under H1 depends on a t and σ w

2 , which are
both unavailable, the probability of detection cannot be
maximized to attain Neyman-Pearson optimality.
Clearly, the theoretically predicted Gaussian distribution
of the target abundance conflicts with the physical con-
straint 0 1≤ ≤$a t .

A widely used detection algorithm is the orthogonal
subspace projector (OSP) [29]

T T
BOSP ( )x s P x= ⊥ . (34)

However, it is better to use the normalized statistic (32)
because it can be interpreted as the abundance estimate
for the desired target. The resulting algorithm is not
CFAR because the abundance of the target and the vari-
ance of the sensor noise are unknown. The operation
e P xb = ⊥

B removes from x the part which belongs to the
background B. The decision is based on the correlation
y T= s eb between the residual “target plus noise” and the
target template s, which is proportional to the angle be-
tween those two vectors.

To get some insight into the performance of the
GLRT detector we consider a background with Q =10
end members. The number of bands is L =150 and the

probability of false alarm is fixed at PFA = −10 5 . The di-
mension of the target subspace is varied from P =1 to
P =10. Fig. 8 shows plots of the probability of detection
as a function of the SINR for fixed values of PFA , Q, P,
and L. The family of curves, which is parameterized with
respect to P, shows that performance deteriorates as the
dimensionality of the target subspace increases (that is as
the a priori information about the target decreases) as is
expected.

Practical Detector Performance Evaluation
The implementation of hyperspectral target detection al-
gorithms in a real-world environment involves confron-
tation with many “practical details” and challenges that
result from the violation of the theoretical assumptions
used for the derivation of the various algorithms.
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Dealing with spectral signature
variability and spectral
compositions in mixed pixels are
among the most challenging
problems in HSI data
exploitation.



The key assumptions used for the detectors using the
covariance matrix of the background are:
� The background is homogeneous and can be modeled
by a multivariate normal distribution;
� The background spectrum interfering with the test
pixel spectrum has the same covariance matrix with the
background training pixels;
� The test and training pixels are independent;
� The target and background spectra interact in an addi-
tive manner (additive instead of replacement model).

The key assumptions used for the detectors using the
background subspace model are:
� The spectrum of every pixel can be adequately modeled
by the LMM;
� The modeling error has uncorrelated components with
the same variance;
� The distribution of the modeling error is multivariate
normal;
� The background subspace B is perfectly known;
� The target subspace template S is known.

To illustrate various issues regarding the discussed al-
gorithms, we shall use the Forest Radiance I data (see Fig.
9) collected with the HYDICE sensor. We have selected
the three areas outlined in Fig. 9 to investigate three dif-
ferent types of background: grass (G), trees (T), and

mixed grass-road (GR). The first two scenes are relatively
homogeneous, whereas the third scene consists of a non-
homogeneous background including different types of
grass and roads. Also considered were classes resulting
from a supervised classification process performed to iso-
late spectrally similar (not necessarily spatially adjacent)
pixels. Data from classes selected from this analysis were
labelled using a number after the class label, for example
“grass2.”

Regarding targets, we have chosen a multipixel vehicle
target. The mean value of the set is used as the target tem-
plate s required for the implementation of each detection
algorithm.

The performance evaluation of detection algorithms in
practice is challenging due to the limitations imposed by
the limited amount of target data. As a result the estab-
lishment of accurate ROC curves is quite difficult. We
shall compare the various algorithms in terms of their
ability to operate in CFAR mode and the enhancement of
the separation between targets and background they pro-
vide. Sensor and environmental noise do not seem to be
significant factors. The CFAR property depends on the
capability to accurately model the detection statistics D( )x
of the background pixels for a given algorithm. The en-
hancement of target visibility will be illustrated visually
by plotting the detection statistics for every pixel in the
scene.

Another complicating factor is that, in the case of real
data, we can identify pure or mixed pixels with only a cer-
tain level of confidence. Therefore, it is useful to label the
pixels in the vicinity of a target as full, mixed, shadow, and
guard pixels and distinguish among such pixels when we
compare different detectors. Taking into consideration
that the number of such pixels much smaller than the
number of background pixels, a useful way to represent
the output of any target detector is shown in Fig. 10. The
key idea is to represent the background response by its
histogram and the response of the various “target” pixels
by stems indicating the magnitude of the detector’s out-
put and the type of the pixel.

To illustrate these points, we investigate the perfor-
mance of the ACE and OSP detectors, by assessing their
capacity to enhance the “visibility” of the desired target
and to accurately model the background statistics.
Roughly speaking, a target becomes more visible to the
detector when the background-target separation in-
creases. For the estimate of the background subspace B
for the OSP detector, we used the first Q =10 significant
eigenvectors of the estimated correlation matrix of the
background pixels (the “known” target pixels were ex-
cluded). These eigenvectors capture more than 99% of
the data cube energy in each case. Since the estimated
covariance matrix is low rank, its inverse can be approxi-
mated by �− −1 �( )I U UQ Q

T , where U Q contains the Q
dominant eigenvectors. Since the columns of U Q are
orthonormal, P I U UU Q Q

T
Q

⊥ = − is the orthogonal
subspace projector onto the compliment of the back-
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ground subspace spanned by the columns of B or U Q
[30].

The bar charts in Fig. 11 provide the range of the de-
tection statistic of the target and the maximum value of
the background detection statistics for various back-
grounds. The target-background separation or overlap is
the quantity used to evaluate target visibility enhance-
ment. For example, it can be seen that the ACE detector
performs better than the OSP algorithm for the six data
sets shown.

The expected probability distribution of the detection
statistics under the “target absent” hypothesis can be
compared to the actual statistics using a quantile-quantile
(Q-Q) plot. A Q-Q plot shows the relationship between
the quantiles of the expected distribution and the actual
data. An agreement between the two is illustrated by a
straight line. The Q-Q plots in Fig. 12 illustrate the com-
parison between the experimental detection statistics to
the theoretically predicted ones for the matched filter al-
gorithms. The actual statistics for two different back-
grounds is compared to the normal distribution. A

straight line shown that the postulated model provides a
good fit and therefore can be used to estimate the thresh-
old for CFAR operation.

The previous results dealt with full-pixel or resolved
targets. To evaluate detection performance for subpixel
targets, we have simulated subpixel targets using formula
(3). Subpixel targets were simulated by adding a ran-
domly chosen target pixel from the target pixel set to each
of the background pixels at a constant fraction. The re-
sults shown in Fig. 13, show target-background separa-
bility as a function of the target fill factor a for the ACE
and OSP detectors. Clearly, target visibility improves
with the size of the target. A more detailed comparison of
a large set of detection algorithms is provided in [31]. It
has been shown that taking into consideration target vari-
ability using a subspace model can increase detection per-
formance [32].

When the spectral observation vector x is distributed
as N( , )µ � , its Mahalanobis distance follows a chi-squared
distribution with L degrees of freedom. By removing the
mean, we obtain the anomaly detector (19). However,
for nonnormal data the distribution of Mahalanobis dis-
tance is not chi-squared. Fig. 14 shows the probability of
false alarm for the three sets shown in Fig. 9 as well as
eight blocks obtained by partitioning this data cube into a
four by two matrix. The figure also shows theoretical pre-
dictions based on a chi-squared and a mixture of two
F-distributions. Evidently, the F-mixture provides a good
description for the body and the tails of the underlying
distribution. We note that if the data follow an elliptical
multivariate t distribution, the Mahalanobis distance fol-
lows a univariate F distribution [33]. The multivariate
normal and t distributions is a special case of the family of
elliptically contoured distributions [33] specified by the
distribution f g T( ) | | {( ) ( )}/x x x= − −− −� �1 2 1µ µ . The
form of function g( ) leads to distributions with heavier
or lighter tails than the normal.

The heavy tails in the univariate distribution of the
Mahalanobis distance imply heavy tails in the multivariate
distribution of the data. Therefore, heavy tails may appear
not only in the quadratic Mahalanobis distance, but in
other linear and quadratic statistics employed in several
widely used [34], [31] target detection techniques.

The family of symmetric α-stable (SαS) distributions
provides a good model for data with impulsive behavior.
They are characterized by a parameterα (characteristic ex-
ponent) that takes values in the range 0 2< ≤α . The value
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The performance evaluation of
detection algorithms in practice
is challenging due to the
limitations imposed by the
limited amount of target data.



α =1 leads to the Cauchy distribution and the value α =2
to the Gaussian. The stable distributions result from the
central limit theorem if we remove the finite variance con-
straint. The only stable distribution with finite sec-
ond-order moments is the normal distribution. Since
α-stable distributions follow from the central limit theo-
rem they are invariant under linear transformations. Since
there is no closed-form expression for their probability
density function, SαS random variables are specified
[11], [35], [36] by their characteristic function (that is,
the Fourier transform of the PDF)

( )Φ( ) exp | |ξ µξ σξ α= −j (35)

whereα is the characteristic exponent,σ is a scale parame-
ter, and µ is a location parameter. The heaviness of the
tails increases asα increases from 1 (Cauchy) to 2 (Gaussi-
an). The estimation of the parameters of a stable distribu-
tion from data is challenging due to the presence of
“spikes.” The published compilation [36] provides a
comprehensive review of statistical techniques for stable
distributions from a practical perspective. The estimation
method used in this article [37] is based on the use of the
characteristic function.

Fig. 15 shows the probability of false alarm when the
matched filter detector (16) is used for different scenes as
well as superimposed theoretical curves obtained using
the family of SαS distributions for various values of α. It
can be seen that the tails of the empirical PFA curves can be
modeled by the heavier tails of the stable distribution.

Conclusions
This article provided a tutorial review and state-
of-the-art of target detection algorithms for hyperspectral
imaging applications. The main obstacles in the develop-
ment of effective detection algorithms are the inherent
variability target and background spectra. The use of
adaptive algorithms deals quite effectively with the prob-
lem of unknown background; however, the lack of suffi-
cient target data makes the development and estimation of
target variability models challenging. Hyperspectral target
detection is a multidisciplinary problem that should draw
upon different scientific and engineering areas.
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