
The evolution of passive remote sensing has wit-
nessed the collection of measurements with
significantly greater spectral breadth and reso-
lution. It has been motivated by a desire to ex-

tract increasingly detailed information about the material
properties of pixels in a scene for both civilian and military
applications. While multispectral sensing has largely suc-
ceeded at classifying whole pixels, further analysis of the
constituent substances that comprise a pixel is limited by a
relatively low number of spectral measurements. The rec-
ognition that pixels of interest are frequently a combina-
tion of numerous disparate components has introduced a
need to quantitatively decompose, or “unmix,” these mix-
tures. Collecting data in hundreds of spectral bands,
hyperspectral sensors have demonstrated the capability of
performing spectral unmixing.

In hyperspectral imagery, mixed pixels are a mixture of
more than one distinct substance, and they exist for one of
two reasons. First, if the spatial resolution of a sensor is
low enough that disparate materials can jointly occupy a
single pixel, the resulting spectral measurement will be
some composite of the individual spectra. This is the case
for remote sensing platforms flying at a high altitude or

performing wide-area surveillance, where low spatial res-
olution is common. Second, mixed pixels can result when
distinct materials are combined into a homogeneous mix-
ture. This circumstance can occur independent of the spa-
tial resolution of the sensor.

Spectral unmixing is the procedure by which the mea-
sured spectrum of a mixed pixel is decomposed into a
collection of constituent spectra, or endmembers, and a
set of corresponding fractions, or abundances, that indi-
cate the proportion of each endmember present in the
pixel. Endmembers normally correspond to familiar
macroscopic objects in the scene, such as water, soil,
metal, vegetation, etc. Broadly speaking, unmixing is a
special case of the generalized inverse problem that esti-
mates parameters describing an object using an obser-
vation(s) of a signal that has interacted with the object
before arriving at the sensor [1]. In the case of
hyperspectral sensing in the reflective regime, and ig-
noring atmospheric effects, the incident signal is elec-
tromagnetic radiation that originates from the sun and
is measured by a sensor after it has been reflected up-
wards by natural and man-made materials on the surface
of the Earth.
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Long before unmixing algorithms were investigated
for remote sensing, the properties of chemical mixtures
were being estimated from the diffuse and specular reflec-
tion of a sample. Reflectance spectroscopy [2] emerged in
the 1920s as a complement to its sibling, transmittance
spectroscopy, and was encouraged in its development by
the introduction of spectrophotometers in the late 1930s
and early 1940s. It soon became an established procedure
for industrial inspection. Radiative transfer theory [3]
was applied to analytic chemistry and reflectance spec-
troscopy to gauge the reflective properties of particle mix-
tures and the physical mechanisms that were in effect.

The essence of remote sensing and reflectance spec-
troscopy merged in the study of earth sciences using re-
motely sensed data for the purpose of
providing synoptic analysis of geophysical
phenomena [4], [5]. Together, techniques for
the physical modeling of terrestrial phenom-
ena and the subtraction of atmospheric effects
permitted passive multispectral and hyper-
spectral radiance observations to be converted
to reflectance values that described the intrin-
sic properties of scenes independent of the ob-
servation conditions. Thereafter, geophysicists
pursued model-based methods to extract
physical information from remotely sensed
data by representing reflectance spectra in
mathematically exploitable language [6], [7].
The result was a way to not only consistently
characterize and discriminate materials on the
Earth’s surface, but also to decompose mix-
tures by spectral features.

The Linear Mixing Model
Analytical models for the mixing of disparate
materials provide the foundation for devel-
oping techniques to recover estimates of the
constituent substance spectra and their pro-
portions from mixed pixels. A complete
model of the mixing process, however, is
more complicated than a simple description
of how surface mixtures interact. Mixing
models can also incorporate the effects of the
three-dimensional topology of objects in a
scene, such as the height of trees, the size and
density of their canopies, and the sensor ob-
servation angle.

The basic premise of mixture modeling is
that within a given scene, the surface is domi-
nated by a small number of distinct materials
that have relatively constant spectral proper-
ties. These distinct substances (e.g., water,
grass, mineral types) are called endmembers,
and the fractions in which they appear in a
mixed pixel are called fractional abundances. If
most of the spectral variability within a scene
is a consequence of endmembers appearing in

varying proportions, it logically follows that some combi-
nation of their spectral properties can model the spectral
variability observed by the remote sensing system.

In Fig. 1(a), the reflecting surface is portrayed as a
checkerboard mixture, and any given package of incident
radiation only interacts with one component (i.e., no
multiple scattering between components). If the total
surface area is considered to be divided proportionally ac-
cording to the fractional abundances of the endmembers,
then the reflected radiation will convey the characteristics
of the associated media with the same proportions. In this
sense, there exists a linear relationship between the frac-
tional abundance of the substances comprising the area
being imaged and the spectra in the reflected radiation.
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� 1. (a) Illustration of linear mixing where incident solar radiation reflects from
surface through a single bounce and surface consists of distinct
endmembers; (b) illustration of nonlinear mixing where incident solar radia-
tion encounters an intimate mixture that induces multiple bounces.



Hence, it is called the linear mixing model (LMM).
When M endmembers exist, each having L, and it is ex-
pressed as

x s w Sa w

i 1

M

= + = +
=
∑a i i

where x is the L ×1received pixel spectrum vector,S is the
L M× matrix whose columns are the L ×1 endmembers,
s i i M, =1,..., , a is the M ×1 fractional abundance vector
whose entries are a i Mi , , , ,=1K and w is the L ×1 addi-
tive observation noise vector. When N pixels are consid-
ered, block notation is utilized, such that X SA W= + ,
X x x= ⋅⋅⋅[ ( ) ( )]1 N , A a a= ⋅⋅⋅[ ( ) ( )]1 N , andW w= ⋅⋅⋅[ ( )1
w( )]N .

The LMM is subject to two constraints on the entries
of a. To be physically meaningful, the nonnegativity con-
dition requires all abundances to be nonnegative such
that a i Mi ≥ =0 1, , ,K . Second, as a way of accounting for
the entire composition of a mixed pixel, the full additivity
condition requires a ii

M =
=∑ 1
1

.

Linear versus Nonlinear Mixing
It has been documented that the reflectance spectrum of a
mixture is a systematic combination of the component
reflectance spectra in the mixture [8]. The systematics are
basically linear if endmembers in a pixel appear in spa-
tially segregated patterns, analogous to the squares on a
checkerboard, as depicted in Fig. 1(a) [9]. In this case the
scattering and absorption of incident electromagnetic ra-
diation for any region on the surface is dominated by a
single component on the surface, and thus the spectrum
of a mixed pixel is a linear combination of the endmember
spectra weighted by the fractional area coverage of each
endmember in the pixel.

If, however, the components of interest are in an inti-
mate association (the endmember materials are mixed on
spatial scales smaller than the path length of photons in
the mixture), as illustrated in Fig. 1(b), like sand grains of
different composition in a beach deposit, light typically
interacts with more than one component as it is multiply
scattered, and the mixing systematics between these dif-
ferent components are nonlinear. Such nonlinear effects
have been recognized for many years [8] in spectra of par-
ticulate mineral mixtures and are an area of active research
for vegetation and canopy studies [10]. A variety of
methods have been developed to treat these situations, in-
cluding distinct, rigorous models for particulate surfaces
[5], [11] and plant canopies [12]-[14]. This photometric
model for particulate surfaces has been shown to be a
powerful and useful model for nonlinear spectral mixing
[5], [11]. The validity of this model for linearizing the
mixture systematics has been demonstrated in laboratory
studies of directional-hemispherical reflectance [15],
[16] and bidirectional reflectance [17], [18] and shown
to be accurate to approximately 5% absolute abundance.
The technique has also been successfully applied to imag-
ing spectrometer data for desert soils in Utah [19].

The question of whether linear or nonlinear processes
dominate the spectral signatures of mixed pixels is still an
unresolved issue. It likely depends on a number of factors
and conditions of the scene. The linear approach has been
demonstrated in numerous applications to be a useful
technique for interpreting the variability in remote sens-
ing data and a powerful means for converting spectral in-
formation into data products that can be related to the
physical abundance of materials on the surface. Neverthe-
less, it is only strictly valid for the situation where the
endmembers are arranged in discrete, segregated patches
on the surface. This condition is almost never met in na-
ture, and many constituents of interest for earth science
investigations exist in soils, or at smaller scales, in inti-
mate association with one another.

The effects of nonlinear mixing on reflectance spectra
can be quite dramatic, as illustrated in Fig. 2. This is a
two-dimensional plot (reflectance at 600 nm plotted
against the reflectance at 900 nm) of a data cloud gener-
ated using a five-endmember mixing scenario. In Fig.
2(a), the 40 mixture points that constitute the cloud were
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� 2. (a) Linear mixing for two bands; (b) nonlinear mixing for
two bands.



calculated using a linear mixing model and prescribed
fractions. Along the lines joining the endmembers (e.g.,
line A-C), the mixtures possess 25% increments of the
associated pair of endmembers. Visually, one recognizes
this as a linear problem. The mixture points are spread
along the lines joining the endmembers in this reflectance
space at intervals inversely proportional to their fractions.
Thus the point half way along a given line (e.g., line A-C)
represents a mixture of 50:50 of the endmembers at the
vertices of the line. The systematics are very different in
Fig. 2(b) where the same five endmembers and the 40
mixture points are shown, but here the mixture spectra
were calculated using the nonlinear mixing model of
Mustard and Pieters [18] adapted from Hapke [11]. The
nonlinear effects are clearly indicated by the curvilinear
segments joining endmembers (e.g., A-C, A-D). In addi-
tion, the entire data cloud is shifted to the left against the
segment C-D and towards the low albedo endmember
(D). What drives this shift is the fact that during multirate
scattering, low albedo materials absorb photons more
readily than high albedo materials and thus lower the
overall reflectance of a mixture disproportionately to
their abundance in that mixture.

There are some important implications of these dif-
ferences for spectral mixture analysis. If a linear mixing
model is used on data where the systematics are nonlin-
ear, the calculated fractions will be significantly in error.
In tests of linear versus nonlinear mixing on laboratory
data, the fractions calculated may be in error by as much
as 30% absolute [40]. In addition, the linear model can
cause considerable ambiguity and false fractions when
used on nonlinear mixtures. Absorption bands and con-
tinua in nonlinear mixtures cannot be adequately fit with
a linear model. However, the least square approach,
typically used in the LMM, will minimize fitting errors
using any of the endmembers in the equation. Thus,
endmembers not present in a mixture will be calculated to
be present simply to minimize the error. In Fig. 3, the
abundances used to prepare the mixtures are shown on a
ternary diagram together with calculated abundances us-
ing a linear and nonlinear mixture model. The linear
model fractions in Fig. 3(a) are significantly in error, and
for the enstatite-anorthite mixture, a component of oliv-
ine is predicted which is not in the actual mixtures. It is ev-
ident, however, that the nonlinear model in Fig. 3(b)
accurately predicts the modal abundances of the mixtures
from the reflectance spectra.

To illustrate the importance of using the proper
model in an actual application, we refer to a recent study
[20] that investigated geologic boundaries on the Moon
that contrast ancient highland rocks adjacent to younger
volcanic plains. Since the emplacement of the plains,
there has been a steady bombardment of the surface by
meteoroids resulting in impact craters and a redistribu-
tion of material. A central question has been to what ex-
tent this process has affected compositional boundaries.
Mustard et al. [20] examined a well-preserved com-

positional boundary between highland rocks and the
volcanic plains using images acquired by the Clementine
spacecraft [21]. A multispectral camera acquired images
in five spectral bands between 400 nm and 1000 nm
with a spatial resolution that averaged between 120 and
150 meters/pixel. They compared results obtained from
a linear mixture model with those from a nonlinear mix-
ture model. In Fig. 4, the linear model returned a some-
what puzzling result. There was an asymmetric
transport of volcanic material to the highlands (more
volcanic materials to the highlands than highlands to the
plains). Since the impact process is random in space and
time, there is no reason to expect this type of asymmetry.
The nonlinear model, however, indicated that the
compositional boundary was perfectly symmetric, with
equal amounts of highland to the plains as volcanics to
the highlands. This symmetric distribution of material
was readily modeled by diffusion equations and could be
related back to the physics of the impact process. Conse-
quently, the nonlinear results provided important con-
straints on the nature of this process. If the linear results
had been used, however, there would have been an un-
fortunate need to dream up ad hoc processes to explain
the result.
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� 3. Comparison of abundance estimates for (a) linear mixing
mode and (b) nonlinear mixing model.



Despite the obvious advantages of using a nonlinear
approach for intimate mixtures, this has not been widely
applied to remotely acquired data of particulate surfaces.
There are several reasons for this. It is generally thought
that the detailed scattering properties of all endmembers
and surfaces are required to perform the photometric cal-
culations. However, if we assume that most surfaces are
Lambertian (i.e., scatter light equally in all directions),
then the calculations are much more tractable. The
Lambertian approximation is generally appropriate for
particulate (e.g., soil) surfaces viewed from nadir for inci-
dence angles up to 40°. The recovery of mixture parame-
ters from reflectance requires knowledge of the angular
orientation of the endmembers and the observation plat-
form. Spacecraft and aircraft pointing information and
digital elevation models could be used to generate this in-
formation routinely. The most important obstacle to im-
plementing nonlinear models is that the particle size,
composition, and alteration state of the endmembers are
very important controlling parameters of the solutions.
Nevertheless, through careful consideration of the nature
of the remote data, and as spectral libraries become more
well endowed with data, many of the obstacles will be sur-
mounted.

Algorithms for Linear Unmixing
Algorithms for unmixing that are discussed in the re-
mainder of this article are focused on exploiting the LMM
because it is the most frequently used model for repre-
senting the synthesis of mixed pixels from distinct
endmembers. It is not difficult to see that the determina-
tion of the endmembers and the estimation of the abun-
dances can be considered two separate problems. As a
matter of fact, an examination of the literature reveals that
many abundance estimators operate on the premise that
the endmembers are already known, while others first
seek endmembers, and yet others derive both quantities
at the same time.

Whether the task is estimation of endmembers or
abundances, significant attention has been focused on
the computational burdens of hyperspectral processing
induced by the high dimensionality of the data. As a pre-
emptive step, some unmixing algorithms reduce the di-
mension of the data to sharply curtail the required
computation. Not surprisingly, the familiar trade-off for
less burdensome computation is decreased accuracy in-
curred by discarding information. We can then decom-
pose the complete, end-to-end unmixing problem as a
sequence of three consecutive procedures that are illus-
trated in Fig. 5 [22].
� Dimension reduction: Reduce the dimension of the data
in the scene. This step is optional and is only invoked by
some algorithms to reduce the computational load of
subsequent steps.
� Endmember determination: Estimate the set of distinct
spectra (endmembers) that constitute the mixed pixels in
the scene.
� Inversion: Estimate the fractional abundances of each
mixed pixel from its spectrum and the endmember spectra.

In the following sections, we examine each stage of the
end-to-end unmixing problem separately and consider
various approaches. We also demonstrate typical results
using a coastal scene imaged by the HYDICE
(HYperspectral Digital Imagery Collection Experiment)
sensor in Fig. 6. The sensor collected 210 bands of data
between 400 and 2500 nm for 400 lines, each having 320
samples. The data was converted from radiance measure-
ments to reflectance values by ATREM [23]. The spatial
resolution of the pixels is1 1m m× . Because of several dif-
ferent water vapor absorption intervals, some bands have
been discarded, and, consequently, 144 bands have been
retained for processing. Subsequent plots of spectra re-
tain gaps in the position of band wavelengths where val-
ues have been discarded due to poor SNR in the intervals
having water vapor absorption.

Dimension Reduction
As mentioned earlier, dimension reduction, by itself, is not
a necessary step for unmixing, but because these tech-
niques often expedite subsequent processing, it is natural
to retain dimension reduction as a stage of unmixing. We
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have intentionally differentiated between dimension re-
duction algorithms and compression algorithms to high-
light an important distinction. Dimension reduction
algorithms do not reduce the dimension of data with the
goal of reconstructing an approximation to the original
signal. Instead, they seek a minimal representation of the
signal that sufficiently retains the requisite information for
successful unmixing in the lower dimension. Dimension
reduction algorithms are designed to minimize errors in
the procedures performed in the lower dimension.

Principal Component Analysis
Principal component analysis (PCA) identifies orthogo-
nal axes for dimension reduction by performing an
eigendecomposition of the sample covariance matrix of
the data

( )( )$ ( ) $ ( ) $Γ x x x
T

n

N

N
n n== − −

=
∑1

1

x xµ µ

where $µ x is the mean vector of the pixel set. The resulting
eigendecomposition can be expressed as $Γ Σx

TU= U ,
where U is a unitary matrix of eigenvectors andΣ is a diag-
onal matrix of eigenvalues.

The magnitude of the eigenvalues indicates the power
residing in the data along the component of the data par-
allel to the associated eigenvector. Hence, the effective
dimensionality of the data can be estimated by counting
the number of nonzero eigenvalues. Premultiplication by
a subset of the rows in UT moves x to a new system of
decorrelated variables oriented along the eigenvectors in
U and results in a lower-dimensional multivariate ran-
dom vector that still conveys most of the energy in the
original, higher-dimensional system.

As an example of the properties belonging to a typical
scene of hyperspectral data, we use data from the coastal
scene in Fig. 6. The cumulative normalized eigenvalues
for the scene are plotted in Fig. 7, indicating that four
eigenvalues are sufficient to account for over 99% of the
total energy in the scene. It is worth noting that PCA pos-
sesses optimal properties for retaining the energy in ran-
dom signals, but in no way guarantees that the resulting
transformation will preserve the information that aids in
detecting low probability objects.

Maximum Noise Fraction/Noise Adjusted PCA
PCA works independently of any estimates of the noise,
statistical or otherwise, in the signal model and, conse-
quently, does not construct its eigenvectors in ways that
optimize a signal-to-noise criterion. Two options for di-
mension reduction that are known by different names,
but are mathematically equivalent, include statistical
models for the noise in their construction of a signal
transform. Maximum noise fraction (MNF) [24] or noise
adjusted principle components (NAPC) [25] requires
covariance information about the sources of additive

noise in addition to the covariance of the data. If the esti-
mated noise covariance is given by $Γw and the estimated
received signal covariance is $Γ x , the component of x that
possesses the maximum fraction of noise, v, maximizes

v v

v v

T
w

T
x

$

$

Γ

Γ
.

The axes that define v are the left-hand eigenvectors of
$ $Γ Γw x

1 , and, unlike the axes for PCA, are not necessarily or-
thogonal. They do, however, identify and order the com-
ponents of the received signal possessing the maximum
SNR.
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Nonstatistical Methods
The computational complexity associated with applying
statistical techniques is often considered an obstacle to
real-time implementations. In contrast, algorithms for di-
mension reduction have been developed that avoid algor-
ithmically expensive operations and are therefore suitable
for simple and efficient hardware implementations.

Exemplar Selection
A nonstatistical technique for reducing the dimension of
hyperspectral data appears as part of the Naval Research
Laboratory’s ORASIS [26] (Optical Real-time Adaptive
Spectral Identification System), which is a series of

hyperspectral processing modules. Before submitting the
data to modules that estimate endmembers, the dimen-
sion of the hyperspectral data is reduced significantly by
the exemplar selector module (ESM). When a new pixel is
collected from the scene by the sensor, its spectrum is
compared to pixels in the existing set of exemplars. If its
distance—the usual measure of distance is the angle be-
tween two spectra (see “Metrics for Hyperspectral
Data”)—from each of the exemplars (the first pixel in a
scene automatically becomes the first exemplar) exceeds a
prescreen threshold, it is added to the collection. If it is
not sufficiently different, the exemplar set remains un-
changed. At periodic intervals, the salient selection mod-
ule (SSM) then orthogonalizes the current set of
exemplars using a modified Gram-Schmidt process and,
based on an acceptable representation error, retains a sub-
set of the orthogonal vectors to transform the data to a
lower dimension.

Endmember Determination
In this section, we address one of the two primary tasks of
unmixing, endmember determination. The objective of
these algorithms is to determine the constituent spectra
that occupy the columns of S in the LMM. We consider
this important procedure from two vantage points. The
first is the empirical estimation of endmembers from a
scene. This approach is concerned with the characteristics
of endmembers encountered when they are estimated
empirically through observation and physical intuition. It
provides a context for what automated endmember esti-
mation should strive to achieve, namely that endmembers
should first possess the basic properties of realistic spec-
tra. Second, we discuss the various approaches developed
for automated endmember determination techniques. In
contrast to empirical methods, automated algorithms
may employ statistics to capture variability, but their ana-
lytical determination may result in endmember estimates
that satisfy some optimality criterion, but are physically
unrealistic.

Interactive Endmember Determination
The key to linear unmixing is to define a set of spectral
endmembers that are representative of physical compo-
nents on the surface and that encompass the spectral vari-
ability inherent in a given scene. To ensure the uniqueness
of a solution to the LMM, the set of endmembers must be
linearly independent. Along with the additivity constraint
imposed on a, each spectral band provides a linear con-
straint, such that the theoretical limit to the number of
endmembers in a scene is equal to the number of spectral
channels plus one. However, the number of endmembers
that may be practically identified and used is far fewer,
typically ranging from three to seven, depending on the
number of channels and the spectral variability of the
scene components. Channel-to-channel variance in spec-
tral data sets is highly correlated, thus some of the spectral
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� 6. Coastal scene imaged by HYDICE sensor.
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information is redundant. In addition, materials of differ-
ent physical composition may exhibit similar spectral
properties over a given wavelength range or have spectral
properties that can be mathematically defined by linear
combinations of other components. Such materials
would therefore not be resolved. Strategies to overcome
these limitations, such as multiple endmember models,
have been discussed [27].

A practical way to approach the definition of
endmembers is to apply a field-based framework. Given a
scene to unmix, one might recognize classes of materials
such as soil, vegetation, rock types, etc., and begin by se-
lecting one endmember from each class (provided that
the spectral range and resolution are sufficient to resolve
them) and subsequently build complexity into the model
as is warranted by further analyses. This is illustrated con-
ceptually in Fig. 8, where we consider a scene sampled at
the spectral and spatial resolution of the Landsat The-
matic Mapper that consists of three basic components:
vegetation, a rock unit represented by gabbro, and shade.
The reflectance values for six bands are plotted in Fig.

8(a). The shade endmember is one of the more
interesting and novel features of spectral mixture analysis.
Natural surfaces are never uniformly illuminated, and
variations are caused by topographic slope changes which
result in both shading and shadow that vary with the sea-
sons and the diurnal cycle, as well as shadows at subpixel
scales caused by small-scale topography, trees, shrubs,
and boulders. The shade endmember mixes with the
other endmembers in the scene in proportion to the
amount of this variation in illumination and may be con-
sidered as a neutral multiplicative scaling factor.

The first stage in a mixture analysis is to define a suite
of image endmembers (selected from the image data). An
image endmember (IE) is obtained by locating a pixel in
the scene with the maximum abundance of the physical
endmember it will represent. This is illustrated in Fig.
8(b) where the IE are represented by the open circles.
They may be selected using algorithms [27], [31], [32] or
based on criteria such as field knowledge or other analysis
methods (e.g., ratios, PCA). For a typical scene, it is un-
likely that a single pixel or group of pixels can be selected
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Metrics for Hyperspectral Processing

Aquick survey of the algorithms currently used for spec-
tral unmixing reveals a mix of approaches that borrow

liberally from well-known traditional approaches but also in-
tegrate newer, more physical interpretations. While some
techniques have demonstrated significant success, it is still
unclear exactly what combination of physical and mathemat-
ical modeling can optimally extract information from
hyperspectral signals.

At the core of algorithms are distance metrics that define
the notion of similarity between two signals. The compari-
son of two hyperspectral signals can be performed in many
ways, but two complementary measures based on the Eu-
clidean formulation have been commonly employed. For
two spectra, x and y, the spectral angle mapper (SAM) mea-
sures the angle, θ, between them

θ θ π( )x,y x,y
x y

= < >







 ≤ ≤arccos

2 2

0
2

.

The Euclidean minimum distance (EMD) is the
two-norm of (x y)− and calculates the length,∆, of the short-
est path between two vectors

∆( )x,y x y= −
2
.

Both metrics have found applicability for different rea-
sons. SAM is invariant to the multiplication of x and y by
constants and, consequently, is invariant to unknown multi-
plicative scalings of spectra that may arise due to differences
in illumination and angular orientation. Likewise, EMD is
the foundation for least squares analysis, which has a strong
historical legacy and is frequently used for unmixing.

No single metric is useful in all circumstances, but the
fundamental issue confronting the selection of a distance

metric is determining a physically meaningful way of quanti-
fying the similarity between two hyperspectral signals. From
a physical viewpoint, SAM and EMD give no indication of
similarities in physical or material properties, instead provid-
ing a single scalar metric to characterize the similarity of two
vectors. Yet, they provide the foundation for most algo-
rithms in the hyperspectral community.

Hyperspectral data possesses two notable properties that
should be taken into account when contemplating metrics.
First, hyperspectral signals are vectors with nonnegative en-
tries. Second, although a pixel spectrum may be represented
in vector form, its entries are not equal from a radiometric
viewpoint. In fact, widths of bands are nonuniform and, un-
less the data has been appropriately normalized, equal values
from bands having unequal widths indicate different radio-
metric quantities. Hyperspectral measurements, in short, are
radiance measurements organized in a vector, but there is
much more information to be exploited than just the vector
entries alone.

The obvious question becomes “What should the notion
of distance in hyperspectral processing convey?” One an-
swer, as confusing as it sounds, is that it should convey what-
ever the application demands of it. The crux of hyperspectral
processing is in mapping mathematical structures and
operators to the physical processes that give rise to the radi-
ance arriving at the sensor through the intervening atmo-
sphere. The debate between linear and nonlinear mixing
models is indicative of the fact that the technique for
unmixing—and, hence, the choice of metric—should reflect
the physics of the mixing process. It may be impossible to de-
sign the perfect metric for every physical circumstance, but
the opportunity, and motivation, to close the loop between
the mathematical and physical world certainly exists in
hyperspectral processing.



that will provide a pure component (the pixel is com-
posed of 100% of the endmember), though there will
likely exist some pixels that are nearly pure. Conceptually,
the image endmembers are those that best bound the data
cloud as shown in Fig. 8(b).

The fractions calculated for each of the data points
(filled circles) in Fig. 8 correspond to the relative distance
from the IE points, subject to the full additivity con-
straint. Since the image endmembers are themselves most
likely mixtures of other materials, there may exist frac-

tions in the results that will be greater than one or less
than zero, although the sum of the fractions will still equal
one. Data points that fall within the lines joining the IEs
have positive fractions, while those that fall outside the
lines have negative fractions of the IE opposite this line.
For example, the pixels that plot outside (to the right) of
the line joining the image endmembers gabbro and vege-
tation will have negative shade fractions. Thus, negative
fractions, or fractions that are greater than 1.0 do not nec-
essarily indicate an error in the method of the application.

The results using image endmembers provide a
first-order perspective on the mixing relationships, and if
the endmembers are relatively pure, then the estimated
abundances will be similar to the actual abundances.
However, it is often desirable to use library or reference
endmembers to provide a better link to spectral libraries
and therefore ground-truth. Moreover, using a standard
set of reference endmembers is useful when abundance
estimates are to be used in multitemporal studies or across
scenes that were acquired under different illumination
conditions or times of years. This is illustrated in Fig. 8(c)
where it can be seen that the reference endmembers now
fully bound the variability of the image data. In this exam-
ple, there would be no negative abundances, or abun-
dances greater than 1.0.

Automated Endmember Determination
In interactive endmember determination, image
endmember selection is achieved through an educated
trial-and-error approach. An analyst has some knowledge
of the field site or data set, and a set of objectives for con-
ducting the analysis. In many situations, however, an au-
tomated method of determining these essential
components is desired. For example, results should be re-
peatable, and the fraction images should describe realistic
physical variables or components in the scene. Several
techniques have been developed to estimate endmembers
that do not require specific assumptions on the probabil-
istic densities of the data.

Nonparametric Methods
Clustering algorithms have been adapted to infer esti-
mates of S by identifying natural partitions in data that
exemplify distinct statistical behavior [28]. They can be
useful when the only information available is a set of
mixed pixel spectra, X, from a scene. Several variations on
traditional clustering algorithms, such as K-means clus-
tering, have attempted to incorporate the LMM into the
problem formulation, such that the resulting centroids
serve as estimates of endmembers. Similarly, as an exten-
sion of classification algorithms that assign the class label
of the nearest centroid to pixels, abundance estimates that
implicitly observe the nonnegativity and full additivity
conditions are derived from the relative proximity of a
pixel to each centroid [29].
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Parametric Methods
Parametric algorithms have added the additional as-
sumption of Gaussianity to the endmember determina-
tion problem, but at the same time have attempted to
incorporate a strong physical intuition into purely sta-
tistical methods. The characteristics of linear mixing
have been extended to a stochastic mixing model (SMM)
where mixed pixels in a scene are modeled as combina-
tions of fundamental, or hard, endmembers. The funda-
mental endmembers are identified from the data and
modeled as Gaussian distributions. These techniques re-
semble the analysis of Gaussian mixtures, with maxi-
mum likelihood (ML) estimates of the class parameters
corresponding to each hard endmember derived
iteratively using the expectation maximization (EM) al-
gorithm [30].

Another parametric approach attempts to
incorporate a priori physical information
into a statistical framework. In modified
spectral mixture analysis (MSMA) [31], the
endmembers and abundances are assumed to
be deterministic and unknown. The simulta-
neous recovery of ML estimates for bothSand
a results in a nonlinear formulation that em-
ploys an iterative, damped least squares tech-
nique. Most importantly, the iterations begin
with initial guesses for S and a, where a priori
knowledge about endmembers and abun-
dances may be inserted, and their confidence
can be qualified by an accompanying
covariance. Successive estimates of MSMA
minimize the error in the fit and constraints
on the values of abundances and endmembers
are enforced between iterations.

Geometric Endmember Determination
Interactive methods rely primarily upon phys-
ical intuition and human supervision to derive
endmembers, whereas statistical methods are
repeatable, statistically optimal, and auto-
mated. Both approaches have advantages and
disadvantages. In contrast, geometric ap-
proaches [32], [33] exploit the strong paral-
lelism between the LMM and the theory of
convex sets. The fundamental assumption of
geometric endmember determination is that
endmembers are pure substances in a scene
whose spectra reside at the extremities of the
volume occupied by the data, and, conse-
quently, all mixed pixels that occupy the inte-
rior of the volume are linear mixtures of
endmembers.

For a given scene, if there is sufficient mix-
ing of endmembers to populate the extreme
planes of the volume, then estimates of
endmember spectra may be derived from the
vertices of the multifaceted simplex that most

tightly encloses the data and has the same number of
endmembers as vertices. The procedure that performs
this optimization is known as shrinkwrapping [32]. Be-
cause hyperspectral data has a high number of dimen-
sions, shrinkwrapping is never performed on the original
spectra, but is instead performed on a lower-dimensional
representation. Techniques such as MNF and PCA are of-
ten utilized to identify the axes for this dimension reduc-
tion. Moreover, since shrinkwrapping only requires
knowledge of the pixels on the perimeter of the volume, a
convex hull operation is performed on the data after di-
mension reduction and before shrinkwrapping.

Fig. 9(a) plots the significant endmember reflectance
spectra derived from the scene in Fig. 6 using a geometric
analysis that employs shrinkwrapping. For comparison,
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sample spectra from visibly distinct materials in the same
scene are plotted in Fig. 9(b). Endmembers 1, 2, 4, and 5
bear a strong resemblance in their overall shape to the wa-
ter, tree, soil, and road spectra in Fig. 9(b). Endmember
3, by virtue of being mostly negative, is a noise
endmember.

The magnitudes of Endmembers 1, 2, 4, and 5 differ
significantly from the spectra in Fig. 9(b) for two reasons.
First, there is a considerable amount of variability in the
spectra from the same object. Adjacent pixels made from
the same material may be illuminated differently due to
shadowing, or angular orientation and, as a consequence,
the reflectance spectra possess the same shape, but are
scaled differently. Second, the shrinkwrapping algorithm
must enclose all pixels, meaning that its vertices must be
positioned such that the simplex captures every pixel in
the scene. Endmember variability or outliers may force a
vertex to reside at a point beyond the nominal position of
the endmember in order to enclose every point. This ef-
fect is evident in Fig. 9(a) where the individual reflectance
values sometimes exceed one or become negative, which
is physically impossible.

While the geometric model for linear unmixing does
seem appropriate, it also has limitations. In contrast to
the statistical dimension reduction algorithms that cap-
ture general trends in data, but can also overlook impor-
tant, low- probability events, shrinkwrapping is
susceptible to outliers and artifacts that may adversely
change the shape of the simplex and hence, the estimate of
the endmembers. Reconciling the results of geometric
techniques with statistical approaches may remedy or
mitigate this problem.

Inversion
In the previous section, we discussed
endmember determination and dis-
covered that it is often interrelated
with estimating the abundance vec-
tor, a, in the LMM. A key aspect of
inversion is the incorporation of the
dual physical constraints that a must
obey, full additivity and non-
negativity. Quite often, the basis for
arriving at estimates is a distance met-
ric that is minimized. As previously
discussed, methods for estimating
endmembers based on the SVD, as
well as many of the statistical meth-
ods minimize some quantity related
to squared-error. The same charac-
teristic holds true for a significant
majority of inversion algorithms.

Least Squares Methods
The class of inversion algorithms
based on minimizing squared-error
start from the simplest form of least

squares inversion and increase in complexity as further as-
sumptions and parametric structure are imposed on the
problem. Variations of the least squares concept have
been adopted to reflect the unique circumstances associ-
ated with hyperspectral data.

Unconstrained Least Squares
Starting with the LMM, and the assumption of no addi-
tive noise, the unconstrained least squares solution for a is
$ ( )a S S S xU T T= −1 [34]. This unconstrained estimate for a
minimizes| $ |x S− a U 2 . This form requires no estimate of
the additive noise and exists when there are more bands
than endmembers (a reasonable assumption for
hyperspectral sensing), and whenShas full column rank.

Full Additivity
The unconstrained solution can be refined by constrain-
ing $a to fulfill the full additivity condition. This has the ef-
fect of restricting the least squares solution to lie on the
hyperplane given by a ii

M =
=∑ 1
1

.
The solution for a general least squares estimate having

linear constraints given by Za = b, is obtained using
Lagrange multipliers and is given by [35]

( ) ( )$ $ ( ) $a a S S Z Z S S Z Z bF U T T T T Ua= − 





−− − −
1 1 1

.

The full additivity constraint is enforced when Z is a
1× M row vector having all ones and b =1. Closer exami-
nation of $a F reveals that the solution enforcing full
additivity consists of the unconstrained least squares solu-
tion, $a U , with an additive correction term that depends
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on the matrix of endmembers, S, and the error incurred
by $a U in satisfying the full additivity constraint.

Nonnegativity
The complementary constraint, nonnegativity, is not as
easy to address in closed form as full additivity. Mini-
mizing |x Sa− |2 while maintaining a i Mi ≥ =0 1, , , ,K

falls in the domain of quadratic programming with linear
inequalities as constraints. An alternative that has been
employed in practice is the nonnegative least squares
(NNLS) algorithm [36]. The approach here is to
iteratively estimate a, and at every iteration, find a least
squares solution for just those coefficients of a that are
negative using only the associated columns of S. In con-
trast to $a U , $a NN is a constrained solution that minimizes,
| |x S a− POS

2 , where S SPOS = for those columns of SPOS
where the associated entry of $a 0NN > , and the zero vector
appears in columns where $a 0NN = .

In Fig. 10, four fraction abundance planes depict the
fractional abundance values derived using the NNLS al-
gorithm for Endmembers 1, 2, 4, and 5. The fraction
planes exhibit large values where the corresponding
endmember occupies large fractions of pixels and small
values elsewhere. As expected, Endmember 1 exposes the
mixed nature of the ocean water, where regions closer to
shore are illuminated more prominently than waters that
are farther from shore. Part of this can be accounted for
by the fact that pixel spectra from the ocean water show a
large degree of variability in magnitude, while retaining
the same basic shape (see Endmember 1 in Fig. 9(a)).
Also, the additional reflectance from the ocean floor con-
tributes to the greater magnitudes in shallow water.

Fig. 11 shows, however, that despite constraining the
abundance values to be nonnegative, they rarely sum to
one. The optimization designed to assign abundances
for each endmember to every pixel in the scene succeeds
at obtaining purely nonnegative values, however, it is
unable to assure that they always sum to one. Generally,
the results in Fig. 10 demonstrate that simple inversion
algorithms based on familiar concepts in signal process-
ing are capable of exposing similarities to multiple
endmembers, but more sophistication and physical rea-
soning is necessary to arrive at confident estimates on a
pixel-by-pixel basis.

Minimum Variance Methods
In the previous examples of least squares inversion algo-
rithms, the common objective has been to estimate abun-
dances that minimize the squared-error between the
actual spectrum and the approximated spectrum. The sta-
tistical analogue of least squares estimation minimizes
the variance of the estimator. Under the assumption
that the additive noise vector, w, in the LMM is a
zero-mean random process and has a covariance,Γw , the
minimum variance estimate of the abundances, $a V , is
$a V =( )S S S xT

w
T

wΓ Γ− − −1 1 1 . Because this unbiased estimator

is the best linear unbiased estimator (BLUE), it is called
the minimum variance unbiased estimator (MVUE).
Further, if w is Gaussian, in addition to the aforemen-
tioned properties, it achieves the Cramer-Rao lower
bound for unbiased estimators [37].

Variable Endmember Methods
Finally, it is important to recognize a class of algorithms
that inverts individual pixels using different sets of
endmembers. A central precept of these techniques is that
the number of endmembers required to unmix an entire
scene can be considerably greater than the number pres-
ent in any individual pixel, and each pixel in a scene may
utilize a different subset of endmembers. To cull a library
of endmembers, a criterion for model fitness must work
to restrict the number of endmembers employed to invert
an individual pixel. One method performs unconstrained
least squares inversion, discards those endmembers yield-
ing negative values, and then performs the inversion
again minus the discarded endmember, repeating the en-
tire process until all endmembers still present have
nonnegative abundance values. To enforce the additivity
condition, the sum of abundances is then normalized to
one [38]. A second method works in the opposite direc-
tion by first finding the best pair of endmembers and then
incrementally adding additional endmembers so long as
certain measures of model fitness are met [39].
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Discussion
While many techniques for unmixing have been intro-
duced and have shown promise in experiments, precise
verification of algorithm results with real data has been
elusive. The primary reason has been the lack of ground
truth. Unlike other applications, accurately gauging the
performance of unmixing algorithms requires a detailed
knowledge of the components comprising each pixel in a
scene. For this reason, endmember determination has
been the primary focus of experiments with hyperspectral
scene data, rather than inversion. Further experiments
will surely continue to investigate unmixing in greater
depth.

Summary
Spectral unmixing using hyperspectral data represents a
significant step in the evolution of remote decomposi-
tional analysis that began with multispectral sensing. It is
a consequence of collecting data in greater and greater
quantities and the desire to extract more detailed infor-
mation about the material composition of surfaces. Lin-
ear mixing is the key assumption that has permitted
well-known algorithms to be adapted to the unmixing
problem. In fact, the resemblance of the linear mixing
model to system models in other areas has permitted a
significant legacy of algorithms from a wide range of ap-
plications to be adapted to unmixing. However, it is still
unclear whether the assumption of linearity is sufficient
to model the mixing process in every application of inter-
est. It is clear, however, that the applicability of models
and techniques is highly dependent on the variety of cir-
cumstances and factors that give rise to mixed pixels.

The outputs of spectral unmixing, endmember, and
abundance estimates are important for identifying the
material composition of mixtures. Unmixing is a close
relative to another important problem in hyperspectral
processing, the subpixel target detection problem.
Mixtures, however, are not limited to simple terrestrial
components. Unmixing has also been applied to the
analysis of mixed gases in the longwave infrared
(5,000-14,000 nm). Ever-growing spectral libraries
that reduce the dependence on in situ determinations
of endmembers have aided these efforts. Nevertheless,
the pursuit of increasingly accurate and precise knowl-
edge from remote sensors puts spectral unmixing on
the forefront of future remote sensing missions and re-
search endeavors.
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