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Abstract - We describe a method of processing hyperspectral 
images of natural scenes that uses a combination of k-means 
clustering and locally linear embedding (LLE). The primary 
goal is to assist anomaly detection by preserving spectral 
uniqueness among the pixels. In order to reduce redundancy 
among the pixels, adjacent pixels which are spectrally similar 
are grouped using the k-means clustering algorithm. 
Representative pixels from each cluster are chosen and passed 
to the LLE algorithm, where the high dimensional spectral 
vectors are encoded by a low dimensional mapping. Finally, 
monochromatic and tri-chromatic images are constructed from 
the k-means cluster assignments and LLE vector mappings. 
The method generates images where differences in the original 
spectra are reflected in differences in the output vector 
assignments. An additional benefit of mapping to a lower 
dimensional space is reduced data size. When spectral 
irregularities are added to a patch of the hyperspectral images, 
again the method successfully generated color assignments that 
detected the changes in the spectra. 

Keywords - hyperspectral image, locally linear embedding, 
anomaly detection 

I. INTRODUCTION 

Unlike RGB images which are only tri-chromatic, 
hyperspectral images are composed of large numbers of 
color planes, each corresponding to a different wavelength in 
the electromagnetic spectrum. Hyperspectral images 
typically contain anywhere from tens to hundreds of spectral 
bands and can range any segment of the electromagnetic 
spectrum, but usually span at least the visible spectrum from 
infrared to ultraviolet. Increasing the number of spectral 
channels results in a finer spectral resolution, which is useh1 
in discriminating between various materials in a scene, since 
each substance has unique radiance and reflectance spectra. 
Satellite hyperspectral imagery finds many applications 
where accurate identification of compounds and features on 
the earth’s surface is important. Identification of useful 
minerals can lead to efficient mining [4], and understanding 
spectra of farm crops at various stages of growth can lead to 
more efficient water and fertilizer usage [6-71. 

Although hyperspectral imagery provides a wealth of 
information about a scene, a drawback of the increased 
spectral resolution is the large size of the dataset generated 
for each image. The large datasets are cumbersome, impede 
data transmission and make data mining difficult. To 
complicate matters, as imaging technology improves, spatial 
resolution, spectral resolution and bit-depth will only 
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increase, resulting in ever larger image sizes. 
The method proposed here attempts to address the issues 

of anomaly detection and data compression by applying the 
locally linear embedding (LLE) algorithm [ 11 to 
hyperspectral images. Unlike other dimensional scaling 
techniques such as multidimensional scaling (MDS) and 
Isomap [ 5 ]  which depend on measuring pair-wise distances 
among data points to compute embeddings, LLE computes 
embeddings from locally linear fits. LLE is a nonlinear 
algorithm used to reduce the dimensionality of high 
dimensional data while preserving local geometries in a low- 
dimensional representation of the original data. Given a well 
sampled high-dimensional manifold, the algorithm will map 
the data points relative to the manifold and local 
relationships remain. In the case of hyperspectral anomaly 
detection, LLE maps spectra that are similar to low 
dimensional outputs that are similar and maps spectra that 
are dissimilar to low-dimensional outputs that are dissimilar. 
Thus, in principle, materials with unique spectral signatures 
could be distinguished in the image. 

The LLE algorithm consists of three steps [I]. First, a 
predetermined number of neighbors are assigned to each data 
point. Neighbors can be defined by any method, such as 
nearest neighbors by Euclidian distance. Second, weights 
are computed for each point that best characterize local 
geometries. Third, the embeddings are computed from the 
weights to minimize reconstruction error. The result is the 
high dimensional data encoded into a low dimensional space. 

11. METHODOLOGY 

The hyperspectral images used in this study are described 
in [2] and were captured with a hyperspectral camera. The 
camera by itself captured monochromatic images, but 
narrow-band filters used with the camera filtered the 
incoming light before hitting the camera’s CCD. The filters 
were changed for each color channel. The pictures are of 
natural scenes such as landscapes along the English 
countryside as well as close-up pictures of leaves and 
wooded areas. In every scene is a white flag that was used 
for image calibration. Each hyperspectral image consists of 
a series of 3 1 chromatically narrow-band-filtered %bit 
256x256 pixel images ranging spectrally from 400nm to 
700nm. 

The k-means algorithm was used to pre-process the 
images. The image was segmented into clusters and a 
representative pixel was chosen from the center of each 
cluster. Using k-means to segment the image had two 
advantages. First, we were able to indirectly add a threshold 
for pixel similarity. By varying the number of clusters, the 
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Fig.] - A  sample hyperspectral image converted to RGB. 

algorithm controls the similarity among clustered pixels. 
Increasing the number of bins makes the clustering more 
discriminating and decreasing the number of bins increases 
the tolerance for dissimilar pixels. The second advantage 
was that by grouping several similar pixels, we reduced the 
number of vectors sent to the next stage. We found that the 
LLE algorithm required more computer resources than the 
clustering algorithm, so reducing the load on the LLE 
algorithm was advantageous. By reducing the size of the 
vector list, we improved the efficiency of the overall 
algorithm and decreased the demand on computer resources. 
These in turn allowed us to process larger images and 
improve the output image resolution. 

Next, the LLE algorithm was used to reduce the 
dimensionality of the spectra. The dimensionality of the 
output was a free parameter. We chose to reduce the spectra 
to both one dimension as well as three dimensions. The one 
dimensional output was simplest and would show obvious 
image features in grayscale. The three-dimensional output 
spectra provided a larger color-space and it could also be 
easily displayed using by arbitrarily assigning each of the 
output channels to RGB. 

Finally, the image was reconstructed from the k-means 
cluster map and the LLE pixel vector mapping. We obtained 
final images by combining k-means cluster-to-pixel 
mappings and the spectra-to-short vector mappings. The end 
result was an image where the spectrum from each pixel in 
the hyperspectral image was mapped to a unique low- 
dimensional vector in the output image and the variation in 
spectra was reflected the differences in the output color. 

Although the original images were images that were 
256x256 pixels, the maximum output resolution achieved on 
an Athlon l2OOMHz PC with 512MB of RAM was 128x128 
pixels. The lower resolution was due to computer memory 
limitations. In order to compensate for this handicap, the 
original images were sampled. This sampled image was 
used for the analysis. 

Fig2 - Results from applying the proposed method on the hyperspectral 
image shown in Fig. 1. a) One dimensional monochromatic output and b) 
three dimensional tri-chromatic output. 

For comparison, both the original and modified 
hyperspectral images were also analyzed using principle 
component analysis (PCA). It has been shown [3] that PCA 
often associates important features in lower order 
eigenvalues. We compared the results of PCA and LLE and 
found strengths and weakness of each. 

111. RESULTS 

Fig. 1 shows an example of one of the hyperspectral 
images. The RGB image was extracted by multiplying all 
3 1 channels together with each retina1 spectral absorption 
curve. The image is of a small wooded area. The 
background consists of mostly trees, shrubs and various 
other wild plants. In the foreground is the white flag that 
was used for image calibration. It is supported by a short 
post. 

Fig. 2 shows the result of applying the proposed method 
on the hyperspectral image from Fig. 1. In the a) the one 
dimensional output, different shades of gray correspond to 
not only variation in intensity, but also local variation in 
pixel spectra. In b) the three dimensional output, the colors 
correspond to different spectra. For example, the white flag 
appears as a relatively uniform color. In addition, the 
vegetation appears as predominantly one color and the tree 
bark appears as yet another color. 

In Fig. 3, the hyperspectral image was decomposed using 
principle component analysis (PCA) for comparison. The 
first image appears to contain most of the image detail, 
which makes sense since the first score should display the 
most variation. Most of the detail lies in the background, 
where the shrubs and vegetation seem to stand out. The 
second and third basis images contain some features, but 
with much less detail than the first basis image. The second 
basis image shows twigs, bark and other tree debris, mostly 
in the lower right corner. In the third basis image, the 
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Fig.3 - Basis images derived from the original hyperspectral image using 
principle component analysis. 

Fig.4 - Modified hyperspectral image. a) All color channels are displayed. 
Irregularities were added to the third and fourth channels. b) The 
hyperspectral image averaged to a single grayscale image. 

background is almost completely flat, yet the flag stands out 
prominently. Images beyond the third basis image are fairly 
flat and contain few if any recognizable features. Almost all 
of the variation in the hyperspectral image can be accounted 
for in the first three factors. 

Fig. 4 shows a modified version of the hyperspectral 
image where a spectral irregularity was added to a region of 
the image near the top-left comer. Both a) the individual 
color channels of the hyperspectral image as well as b) a 
grayscale representation of the hyperspectral image, where 
all color channels were simply averaged together. In the 
third channel, the intensity was doubled and in the fourth 
channel, the intensity was set to zero. All other channels 
were left unchanged. Due to the nature of the spectral 
anomaly, the modification is virtually undetectable in the 
grayscale image. When the color channels are averaged, the 
spectral changes cancel out and the irregularity in the image 
becomes unnoticeable. 

Fig. 5 shows the output of the k-means/LLE algorithm 
using the modified hyperspectral image. The distortion is 
clearly visible in both a) monochromatic and b) tri-chromatic 
output. In the monochromatic image, the anomaly appears 
as a lightened square. In the tri-chromatic output, the square 
is bright purple in the midst of a green and purple 
background. Still visible are all the same features visible in 
Fig. 2. 

The modified hyperspectral image was analyzed using 
PCA and the resulting basis images are shown in Fig. 6.  The 
results are similar to the results from the previous PCA, 
except the spectral anomaly is noticeable in the fifth and 
sixth basis images. In order to capture the features of the 
spectral anomaly, at least five basis images must be 
analyzed. In contrast, LLE was capable of showing the 

anomaly in only one channel. The ability to discriminate 
among spectra only improved when using three channels. 

IV. CONCLUSION 

The method successfully generated images where 
differences in the original spectra were reflected in 
differences in the output vector assignments. The k- 
means/LLE algorithm efficiently grouped similar materials 
in the scene. 

An additional benefit of mapping to a lower dimensional 
space was reduced data size. The images processed using 
LLE were several times small than the output images from 
PCA. Although PCA carries most of the important features 
in the first few basis images, there is no guarantee in which 
basis image a hidden feature will appear. The LLE 
algorithm generates images of known dimensionality, so the 
task of analyzing the output is more straightforward. 

When spectral irregularities were added to a patch of the 
hyperspectral images, the method successfully generated 
color assignments that reflected differences in the spectra. 
The PCA was also capable of distinguishing the anomaly, 
but required searching higher basis images. 

Although there are several benefits of using the LLE 
algorithm for this application, there are several 
disadvantages as well. First, several free parameters must be 
set, meaning that prior knowledge must be known about a 
scene. Parameters such as number of k-means clusters and 
number of LLE neighbors require information about image 
composition. Another parameter, output dimensionality, also 
requires knowledge of image composition. In order to 
effectively map the spectra to lower dimensional vectors, one 
must know the dimensionality of the data. Mapping to too 

31 8 



Fig.5 -The results from applying 
hyperspectral image shown in Fig 

: the proposed method On the modified 
. 4. a) One dimensional monochromatic 

Fig.6 - Basis images derived from the original hyperspectral image using 
principle component analysis, 

output and b) three dimensional trj-chromatic output. 

many dimensions is wasteful, but mapping to too few 
dimensions will limit the output vector space. 

A second problem is that of computing power. Although 
the images can be processed to an acceptable resolution, the 
memory requirements to solve the LLE weight functions are 
quite large. Although computing power increases over time, 
it is currently a limiting factor for processing higher 
resolution images. 

A third consideration is the requirement for the LLE 
algorithm that the input be a well sampled manifold. 
Although images in a scene are likely to have spectra that 
vary from one spectrum to the next over a gradient, this 
cannot be guaranteed. If the image is composed of many 
disjoint objects and the resolution is low, the LLE algorithm 
may have difficulty mapping the spectra to proper outputs. 

Despite these shortcomings, LLE offers promise for 
processing hyperspectral images. LLE represents a 
principled method for reducing the dimensionality of 
multidimensional images, while preserving the spatio- 
spectral relationships among the pixels. 
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