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Abstract

This work presents an approach to local spectral analysis of data, which allows the introduction of

prior knowledge into spectral clustering. Our approach is based on propagating graph based diffusions,

formulated using the pairwise similarities within the input dataset. A cluster can be identified by de-

tecting discontinuities in the diffusion initiated in a small subset of samples in the cluster of interest.

We rigorously analyze this property using the Fokker-Planck interpretation of spectral embeddings, and

demonstrate the applicability of our approach by applying it to image segmentation, documents classifi-

cation and dynamic search in visual databases.

1 Introduction

The analysis of high-dimensional datasets is at the heart of contemporary research, as such information

sources are found in a variety of applications, such as web documents search, data mining and multi-spectral

imaging to name a few. First introduced in the context of manifold learning and graph partitioning, spectral

techniques [1, 2, 3, 4, 5, 6, 7] provide an elegant mathematical framework for non-linear embeddings. Given

a setΩ = {x0, . . . , xL} of high dimensional points, such schemes start by applying a positive semi-definite

kernelW to the setΩ. {ψi(x)}, the set of eigenvectors ofW were shown to provide an embedding ofΩ into

a metric space [2]. More accurately, computing theL2 metric‖ψ (xi)− ψ (xj) ‖ in the embedding space is

equivalent to computing a certain metric‖xi, xj‖ in the original spaceΩ. The embedding is then given by

Ψt : x 7−→ (ψ1(x), ψ2(x), . . . , ψL(x))T . (1.1)

The choice of the embedding kernelW determines the type of the distance computed‖xi, xj‖. For instance,

using the Normalized graph Laplacian as a kernel results in computing theDiffusion distancebetween the
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pointsΩ [6, 7]. In particular, as one can use just a subset of the eigenvectors{ψi} in Eq. 1.1, this procedure

yields a low dimensional representation of the setΩ.

In addition, Belkin and Niyogi [2] explain that, in the case of a dataset approximately lying on a subman-

ifold, this choice corresponds to approximating the heat kernel on the submanifold. A different interpretation

to spectral embedding was given by Lafon and Nadler [8], who showed that the spectral eigenvectors identify

asymptotically with the eigenvectors of the Fokker-Planck operator onΩ.

It is custom to use the kernelw (xi, xj)=exp(−‖xi−xj‖2/ε), where‖xi−xj‖ is an application specific

metric that characterizes the local geometry of the setΩ. This corresponds to the notion that the only relevant

information available for high dimensional data analysis is related to local distance measurements, and that

the global structure of a set should be derived by agglomerating locally defined measures.ε > 0 is a scale

parameter defining the extent of the locality of the data points.

The use of spectral embeddings for clustering is related to finding bottlenecks and clusters in graphs

[9, 10]. This was first introduced as a relaxation of the discrete optimization problem of finding an optimal

cut in a graph [11, 12], where the first non-constant eigenfunction is used as a classification function that

partitions the data into two clusters. A random walk view of spectral embeddings was suggested by Meila

and Shi [13], and used to extend the spectral approach to finding multiple clusters using multiple eigenvec-

tors. The analysis in [13] relates to lumpable Markov chains and their piecewise constant eigenvectors. A

generalization to the non-lumpable case was presented by Lafon and Lee in [14].

Such schemes are mostly applied in unsupervised frameworks, where the entire dataset is analyzed

and partitioned to either two [15], or an a-priory given number of clusters [16]. Recently the problem

of bottom-top, biased clustering has received particular attention [17, 18], as it arises naturally in many

practical situations. Consider the problem of finding a particular clusterΩ̂ in a large datasetΩ. Using a

top-bottom approach, such as [15] or [16] requires the analysis of the entire dataset without any assurance

that any of the resulting clusters will correspond toΩ̂. For instance, consider a dataset represented by

a lumpable transition matrix as in [13]. Thus, for a dataset withN clusters{Ci}, one getsN piecewise

constant eigenvectors and the magnitude of the eigenvalueλi corresponds to the cardinality of the sets{Ci}.
Hence, in order to identify theK ′th cluster, one has to take into account at leastK eigenvectors, and for a

largeK, λk might be quite small andCk difficult to detect. In practice, real datasets are rarely represented

by lumpable Markov chains, thus, they lack the piecewise constant eigenvectors, making the detection of

Ck difficult. Moreover, the numerical computation of eigenvectors related to small eigenvalues is difficult
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and might prove to be inaccurate.

A constrained top–bottom approach was presented in [17], where two subsets of a-priori known samples,

Ω+
0 ∈ Ω̂ andΩ−0 /∈ Ω̂ were used to provide constraints on a global, two-way, min-cut partitioning, and the

scheme requires the computation of the eigenvectors of a|Ω| × |Ω| matrix, where|Ω| is the cardinality of

the setΩ.

Computing the eigenvectors of a Markov chain corresponds to analyzing its asymptotic, where the eigen-

vectors encode global information over the entire dataset. Thus, in order to analyze and partition only a par-

ticular cluster, we turn our attention to the non-asymptotic regime. Such a scheme was studied by Slonim

and Tishbi in [19], where a Markov random walk is propagated, based on the data similarity matrix, and

initiated by inducing a random distribution vectorP (t0) over all of the samples. At each iterationn they

compute the Mutual Information (MI) betweenP (t0) andP (tn). It was experimentally shown that at the

point of maximal information loss
(
max

t

{
∂MI(P (t0),P (tn))

∂t

})
, a pseudo-stable state ofP (tn) is achieved

and the different clusters can be identified.

A partially labeled set of samples was used by Szummer and Jaakkola in [20] to initiate a random walk

over the dataset. The random walk probabilities were then used to classify the unlabeled data based on a

probabilistic formulation using either an EM or maximal margin classifiers.

A graph theoretic approach to unsupervised data analysis was suggested by Harel and Koren in [21, 22].

They compute the affinity matrix related to the dataset, and row normalize it to form a Markov matrix. A

random walk is then initiated at all of the datapoints, and the probabilities induced by it are used as a set

of features defined on the dataset. A new graph is defined based on the inner similarities of this new set of

features (probabilities). This new graph is then clustered by aClustering by Separationapproach, where a

greedy algorithm iteratively removes edges until the clusters are formed.

In this work we present a bottom-top approach to local spectral analysis (LSA). We aim to cluster a

subset ofΩ denoted̂Ω. For that we utilize an a priori given subset ofΩ̂ denotedΩ0. This setup is illustrated

in Fig. 1, whereΩ is the entire image (Fig. 1a),̂Ω is the cluster we aim to segment (the green overlay in Fig.

1b) andΩ0 is a set of points given within the target cluster (The X mark in Fig. 1b).

By diffusing from the setΩ0, we are able to analyze the datasetΩ in the vicinity of Ω̂. In particular, for

structured datasets such as images, where each sample is connected to a limited number of other samples,

the LSA can be applied on the fly, without having to access the entire dataset at once. For instance, in Fig.

1, when trying to cluster the neck area, there is no need to embed the person’s legs area or even compute
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(a) (b)

Figure 1: An illustration of Local Spectral Analysis (LSA). We aim to cluster the face and neck area of the

woman (the set̂Ω), using a single sample marked by the X in (b) (the setΩ0). We only have to analyze the

data in the vicinity ofΩ̂ and not the entire image (the setΩ). The clustered area is depicted in (b) by the

green overlay.

the corresponding terms of the Markov matrix. In contrast to the previously cited works [19, 20, 21, 22]

our approach is based ondiffusion propagationrather thanprobability propagation. Let M be a Markov

matrix, thenpT
n+1 = (pn)T · M defines a Markov random walk, while we propagate the diffusion values

φn+1 = M · φn, andφn is not a probability. By propagating the diffusions we take advantage of their

discontinuities across cluster boundaries. In general, we are unable to restrict the diffusion propagation just

to Ω̂, and the discontinuities are used to detect∂ Ω̂, the boundary of the cluster of interestΩ̂.

We also show that the proposed scheme can provide reliable partitioning even when the initial dataset

Ω0 contains errornous elements that do not belong toΩ̂. Last, we present an unsupervised approach to

partitioning a dataset intoK clusters using the local analysis and denote it K-LSA. Our rigorous analysis

of the diffusion discontinuities is based on the Fokker-Planck interpretation of spectral embedding [8, 23].

For experimental verification we applied the proposed scheme to image clustering, documents search and

dynamic database search. To summarize, we offer the following contributions:

• The LSA semi-supervised partitioning scheme, based on diffusion propagation, where the diffusion is

propagated from a given set of samples denoted as seeds.

• A computational approach to identifying the boundary of the target cluster, that is able to handle

errornous seeds.

• The K-LSA unsupervised approach to partitioning a dataset intoK clusters based on a local spectral
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analysis.

The paper is organized as follows: we start by introducing the local spectral approach and its rigorous

analysis in Section 2. Experimental results are presented in Section 3, while conclusions and future research

are discussed in Section 4.

2 Local spectral analysis

The local spectral analysis approach (LSA) is based on the observation that one can consider spectral em-

bedding as a similarity propagation process, where similarities are propagated from a set of known samples

Ω0 ∈ Ω̂, denoted asseeds. The common approach to rigorous analysis of spectral data embedding and

partitioning, is by considering the properties of the eigenvectors related to random walks [13, 16] or kernels

[2, 6, 14]. In contrast, the LSA does not require eigenvectors computation, but utilizes a dynamic process

resembling an initial value partial differential equation, based on the locations of the seeds. We formulate

the process as a an initial value Fokker-Planck (FP) problem:

∂φ

∂t
= −∇ · (∇φ + φ∇U (x)) , −∞ < x < ∞, t > 0 (2.1)

φ (x, x0, t) = δ (x− x0) ast → 0, (2.2)

whereφ is the diffusion function,U is the energy potential andx0 is the location of a particle/seed. This

interpretation of spectral embedding was first suggested by Lafon and Nadler [8, 23] and was originally stud-

ied in the context of the numerical analysis of chemical reactions [24, 25]. There, the diffusion represents a

molecule trying to overcome a potential barrier as illustrated in Fig. 2.

φ (x, t), the solution of Eq. 2.1 is then related to the motion of particle in a potential well, initiated at

the locationx1. x1 andx3 correspond to stable states, whereφ (x1) À φ (x3) due to the initiation atx1,

andx2 is an unstable transition state.

Our data analysis approach is based on two steps:

1. Propagating the diffusion valuesφ (xi) from the set of seedsΩ0, x1 in Fig. 2.

2. Identifying the cluster boundary by detecting the discontinuity inφ (xi), and utilizing the fact that

φ (x1) > φ (x3).
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Figure 2: A particle moving in a 1D potential fieldU(x). If the particle’s motion is initiated atx0, its

diffusion will be higher within the potential well surroundingx1. φ, the diffusion function, will be a discon-

tinuous atx2, the boundary of the cluster aroundx1.

More accurately, given the datasetΩ = {x0, ..., xL} and the set of seedsΩ0, we start by forming the

Markov matrixML×L corresponding to the datasetΩ: following the spectral formulation [6, 7], we choose

an application specific metric‖xi, xj‖ and a kernelW and compute the random walk matrixM

m(xi, xj) =
w(xi, xj)∑L

j=1 w(xi, xj)
.

For instance, for images one can use theL2 norm for pixels or the output of directional filters. A typical

choice forW is the Gaussian kernel. Starting with a diffusion vectorφ0 that is zero outsideΩo and one on

Ωo, we propagateφn using Algorithm 1. The thresholding in Step #5 reduces the leakage of diffusion to

very weakly connected samples (T0 = O
(
10−5

)
).

Note that for structured datasets, each samplexi only interacts with a small number of other samples.

For instance, in image segmentation, it is common to restrict the interaction of each pixel to a support of

5 × 5 or 7 × 7 pixels, resulting in a sparse Markov matrixM . Thus, there is no need to compute the entire

matrixM , whose storage might prove prohibitive and the required sub-matrix ofM can be computed on the

fly.

Next we show that cluster boundaries are characterized by discontinuities inφn. For that we consider

the solution of Eq. 2.1 given by Schuss in [25] for a single particle in the potential fieldU(x)

φ (x, t) = ψ0 (x) +
∞∑

n=1

ψn (x) ψn (x0) e−λnt (2.3)
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Algorithm 1 Computing the random walk probabilityφn

1: Let φ0 be the indicator vector that is zero outsideΩo, and 1 onΩo. nmax is a predefined number of time

steps.

2: for n = 1 to nmax do

3: Computeφ̃n = M · φn−1

4: Defineφn by φn(x) = φ̃n(x) if x /∈ Ω0 andφn(x) = 1 otherwise.

5: Threshold the ‘leakage’ diffusions:φn (xi) = 0 ∀xi s.t.φn (xi) < T0.

6: end for

7: Returnφn wheren = nmax.

whereψ0 (x) is the eigenfunction corresponding to the first constant eigenvalueλ0 = 0. Applying the initial

condition in Eq. 2.2 and choosing a timet À 0, Eq. 2.3 is reduced to

φ (x, t) = ψ0 (x) + ψ1 (x)ψ1 (x0) e−λjt. (2.4)

ψ1 (x) was shown by Schuss et. al. [24, 25] to be discontinuous across∂Ω̂, the boundary of̂Ω (the pointx1

in Fig. 2). For instance, consider the setup depicted in Fig. 2 with potentials∆U À ∆U1. This corresponds

to a particle going through quantum states, resulting in a piecewise constantφ (x, t) that is discontinuous at

x2. An equivalent probabilistic result was derived by Meila and Shi [13] for the eigenvectors of matrices

corresponding to lumpable Markov chains. In particular, these piecewise constant eigenvectors are also

discontinuous aroundx2. In general, datasets are not characterized by lumpable Markov matrices, making

the clustering more difficult. Yet, the discontinuities inφ (x, t) remain (while not being as sharp as a picewise

discontinuity) and are useful for clustering.

Moreover, since we initiate the diffusion on the samplesΩ0 ∈ Ω̂, we have thatφ
(
Ω̂

)
> φ

(
Ω− Ω̂

)
.

Our partitioning scheme utilizes both properties, and computes a threshold valueT ∗ such that any sample,

whose diffusion value is larger thanT ∗, is classified as belonging tôΩ. A possible choice forT ∗ is the

diffusion value at the largest discontinuity ofφ, denotedTmax. Yet, for most datasets, the boundary∂Ω̂

has a certain width (in terms ofφ values), thus, we setT ∗ to be larger thanTmax. In terms of Fig. 2, this

corresponds to settingT ∗ = φ (x1) rather thanT ∗ = φ (x2).

More accurately, letN(T ) = |φn > T | be the number of samples with diffusion values larger thanT ,

then in order to identify the discontinuityTmax, we utilize the observation thatN(T ) is a monotonically

decreasing function ofT . Tmax is then given byTmax = arg max
eT

∣∣∣∂N(eT )
∂T

∣∣∣ and we setT ∗ to be the first
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saddle point of
∣∣∣∂N(T )

∂T

∣∣∣, such thatT ∗ > Tmax. This procedure is summarized in Algorithm 2.

Algorithm 2 Computing the thresholdT ∗ and the clustering of̂Ω
1: Apply Algorithm 1 and computeφn.

2: ComputeN(T ) = |φn (xi) > T | for T ∈ [0, 1] , and

Tmax = arg max
eT

∣∣∣∣∣
∂N(T̃ )

∂T

∣∣∣∣∣ .

3: SetT ∗ to be the first saddle point of
∣∣∣∂N(T )

∂T

∣∣∣ such thatT ∗ > Tmax.

4: Cluster the data by:xi ∈ Ω̂, ∀xi s.t.φn (xi) > T ∗.

2.1 Outlier seed detection via Random sampling

In some applications the set of initial seedsΩo might prove to be errornous, as it may contain a subset of

falsesamplesΩf
o , such thatΩo = Ωf

o ∪ Ωt
o, Ωf

o /∈ Ω̂ andΩt
o ∈ Ω̂. Algorithm 1 can not identify these seeds,

as their diffusion values are set a-priory to 1.0. Thus, a sample can be analyzed only if it is not used as a

seed. Hence, we propose to chooseB random subsets ofΩo, denoted
{
Ωb

0

}
, and propagate from them using

Algorithm 1. Let the corresponding set of diffusions be
{
φb

n

}B

b=1
. We average

{
φb

n

}
overb, where for each

sample we exclude the instances where it was used as a seed. This corresponds to analyzing the seeds using

only secondary evidence. This is summarized in Algorithm 3.

2.2 K-LSA clustering

In this section we describe an unsupervised clustering scheme that partitions the input dataset into a given

number ofK clusters. This scheme is based on the LSA and denoted as K-LSA. The K-LSA partitions

the data by applying the LSA classifierK times, usingK sets of seeds
{
Ω1

o,Ω
2
o, . . . , Ω

K
o

}
. Each of the

sets
{
Ωk

o

}
is propagated separately using Algorithm 1. Then we determine the classification of each sample

by maximizing its diffusion value. This is summarized in Algorithm 4.

3 Applications and Experimental results

In this section we apply the proposed LSA and K-LSA schemes to the analysis of different data sources. In

Section 3.1 we present image segmentation results using different cues and exemplify the LSA’s ability to
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Algorithm 3 Random sampling
1: Given the set of seedsΩo, the random sampling ratior and the number of random iterationsB.

2: for b = 1 to B do

3: Choose a random setΩb
0 ⊂ Ωo made ofr · |Ωo| elements and define the functionQb (x) such that

Qb (x) =





1 x ∈ Ωb
0

0 otherwise

4: Apply Algorithm 1 usingΩb
0 as seeds and denote the resultφb

n.

5: end for

6: Return the weighted average

φn (x) =

∑
b=1..B

φb
n(x)Qb(x)

∑
b=1..B

Qb(x)
.

Algorithm 4 K − LSA partitioning

1: GivenK sets of seeds
{
Ω1

o, Ω
2
o, . . . , Ω

K
o

}
.

2: Apply Algorithm 1 separately for
{
Ω1

o, Ω
2
o, . . . ,Ω

K
o

}
, and denoteφk

n as the result of propagatingΩk
0.

3: The corresponding clusterCk for a samplexi is given by

k = arg max
ek

{
φ
ek
n (xi)

}
.

handle errornous seeds. Images are structured data sources, where each sample (pixel) is related to limited,

a-priory known number of pixels. We consider non-structured data in Section 3.2, where we apply the LSA

and K-LSA to documents classification. This is also an example of a directed graph that is handled by

the LSA and K-LSA without making any adjustments. Last, we present a dynamic, example based search

algorithm in Section 3.3, for the retrieval of images from databases.

3.1 Image segmentation

We start by presenting a series of segmentations of the image given in Fig. 3, where we used the YUV color

space as a feature space and the Gaussian as a kernel. The distance metric is computed within a7× 7 image

patch centered around each pixel. This results in a block-diagonal distance and affinity matrices. We also

show that the maxima and corresponding saddle points of
∣∣∣∂N(T )

∂T

∣∣∣ are useful for partitioning, as suggested

in Section 2 and Algorithm 1.
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Figure 3: The image used for the segmentations using the YUV color space.

Figure 4 shows the results of applying the proposed scheme using a varying number of iterations and

a scale factor ofε = 5. The thresholdT ∗ is detected using Algorithm 2 (see Figs. 4a and 4c) and the

segments are then identified by displaying the pixels for whichφn > T ∗. Note that the saddle points of∣∣∣∂N(T )
∂T

∣∣∣ correspond to the same image segments depicted in Figs. 4b and 4d.The outcome of changing the
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(a) 2000 Iterations (b) T=0.04
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(c) 4000 Iterations (d) T=0.04

Figure 4: LSA segmentation results for different numbers of iterations. The results in (a) and (b) correspond

to using 2000 steps, while those in (c) and (d) correspond to 4000. Note that for both cases we achieve

similar segmentation results.

scale factorε on the solution is studied in Fig. 5. We see that for bothε = 10 andε = 20, we get similar

clustering results. Note that due to increasing the scale factor fromε = 5 (as it was used in Fig. 4), we can

no longer distinguish between fine details of the face.
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(c) ε = 20 (d) T=0.13

Figure 5: LSA segmentation results for varying values of the scale factorε. (a) and (b) correspond toε = 10,

while (c) and (d) correspond toε = 20. For both settings we achieve similar clustering results.

Next, we studied the sensitivity of the LSA to errornous seeds. This issue is essential in many real-world

applications such as protein data analysis. We start by showing that the resulting classification is robust to a

small number of errornous seeds. Then we apply the random sampling procedure described in Section 2.1 to

identify the erroneous seeds. The experimental setup is depicted in Fig. 6, where we have four seeds, three

of which are placed on the face (the first cluster), and the fourth one is in the neck area (the second cluster).

Figures 6a-6b show that the neck area is indeed a different segment than the face area. We aim to show that

using the LSA, we will still be able to cluster the face area.For that we applied random sampling (Algorithm

3). The results given in Table 1 show that the point on the neck has a significantly lower diffusion value.

Point A B C D

φn (x) 0.3992 0.5957 0.5352 0.1750

Table 1: Random sampling probabilities for the setup given in Fig. 6. The points correspond to the points

in Fig. 6 sorted according to a descending order of height. A is the highest point in Fig. 6 (forehead) and D

is the lowest (neck area).

We also applied the LSA to image segmentation using other cues. Figures 7a-7d show image segmenta-

tions using the RGB color space, while in Figs. 7e-7g we used the variance of5× 5 image patches around

each pixel as a cue. In all cases we usedε = 10 and 500 iterations.
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(e) T=0.21 (f) T=0.48

Figure 6: LSA clustering with errornous seeds. We aim to cluster the face as in Fig. 5. The image is

clustered using 4 seeds. The outlier seed is located on the woman’s neck and results in the segmentation

shown in (b) and (c). Using the other 3 seeds (shown in (e)), we get the segmentations shown in (e). By

lowering the threshold both clusters are unified as in (f).
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Figure 7: LSA based image segmentation using the RGB color space and patch variance as feature spaces.

The seeds are marked by the X sign. Figures (a)-(d) show the RGB based clustering, and the clustered

segments are depicted by the green overlay. Figures (e)-(g) show the clustering of a texture image, the

corresponding
∣∣∣∂N(T )

∂T

∣∣∣ and the clustering results, respectively.
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3.2 Textual data: example based search

Documents search is a common application in machine learning and in this section we direct our attention

to example based article search. We applied the LSA to derive two document search schemes: in the first,

the user specifies a query by pointing out a few sample documents in the category of interest, and we aim

to identify the remaining documents in the category. The second, aims to partition the entire corpus of

documents using the unsupervised K-LSA scheme presented in Section 2.2. This allows us to compare our

approach to previous results that dealt with unsupervised partitioning.

We utilized standard text corpuses with known clusters. For each corpus we computed the Mutual infor-

mation (MI) document-term matrix suggested in [26]. LetR be a document-term matrix, wherer (d,w) is

the number of instances of a wordw in the documentd. The MI doc-term matrix is computed by:

1. Normalize the corpus size by computingr̃ (d,w) = r (d,w) /
∑

d,w

r (d,w) .

2. ComputeEw (d) =
∑
w

r̃ (d,w) andEd (w) =
∑

d

r̃ (d, w) .

3. The Mutual information document-term matrix is given byr̂ (d,w) = log
( er(d,w)

Ew(d)Ed(w)

)
.

Given r̂ (d,w), we retained the 7 nearest neighbors (NN) for each document. Although this results in

an asymmetric doc-term matrix, both the LSA and K-LSA were applied as is. In general, applying a NN

search allows to handle situations, where the samples within a cluster are not well differentiated from the

ones outside of it. The analysis in Section 2 is irrelevant here, as it is based on a symmetric energy function

U , and we reserve the analysis of the asymmetric case for future work (Please note the discussion in Section

4).

For each corpus we use the LSA to cluster each of its a-priori known document categories, using a

varying number of seeds. For a given classification, its accuracy is measured in terms of the area of the

ROC curve [27]. We choose a set of thresholds{Ti}, uniformly spread over the interval[0..1] , and for each

threshold positively identify the samples for whichφn > Ti as belonging to the cluster of interest. Using

the reference categorization, we identify the true and false positives and compute the area under the ROC

curve. It is well known [27] that a random classifier would yield an area of 0.5, while an optimal classifier

yields an area of 1.0.

To asses the accuracy of the unsupervised K-LSA classification, and compare it to the comprehensive

clustering results given in [28], we adopt the Normalized Mutual Information (NMI) measure [29], as a
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distance measure between the K-LSA and the reference partitionings:

NMI =

∑

h,l

nh,l log
(

n·nh,l

nhnl

)

√∑

h

nh log
(

nh
n

) ∑

l

nl log
(

nl
n

) . (3.1)

nh is the number of documents in classh, nl the number of documents in clusterl andnh,l is the number

of documents in classh as well as in clusterl. The denominator term normalizes this measure to lie in the

range [0,1], making it invariant to the size of the analyzed set. The NMI value is 1.0 when the clustering

results perfectly match the external category labels and close to zero for a random classification.

We start with theScience Newscorpus. This is a heterogeneous corpus of text documents obtained from

the Science News web site. This corpus consists of 1047 documents in eight classes. We run Algorithm

1 using different numbers of seeds, ranging from 1 to 10. For each number of seeds, we repeated the

simulations 1000 times and report the averages and standard deviations of the ROC area. These results are

shown in Table 2 and we see that the ROC areas are close to 1.0 for all article categories except for theLife

Sciences.

Documents No. docs No. Seeds

classes 1 3 5 7 9

Anthropology 54 0.81± 0.13 0.90± 0.04 0.92± 0.03 0.92± 0.01 0.93± 0.01

Astronomy 121 0.91± 0.16 0.98± 0.01 0.98± 0.01 0.98± 0.01 0.99± 0.01

Behavioral Sciences 72 0.84± 0.14 0.92± 0.03 0.93± 0.01 0.94± 0.01 0.94± 0.01

Earth Sciences 137 0.73± 0.16 0.86± 0.06 0.88± 0.05 0.90± 0.03 0.91± 0.03

Life Sciences 205 0.64± 0.09 0.69± 0.08 0.73± 0.06 0.74± 0.05 0.76± 0.05

Math & CS 60 0.91± 0.10 0.95± 0.02 0.96± 0.01 0.96± 0.01 0.97± 0.01

Medicine 280 0.85± 0.14 0.91± 0.04 0.92± 0.02 0.92± 0.01 0.92± 0.01

Physics 118 0.81± 0.13 0.85± 0.08 0.88± 0.05 0.90± 0.03 0.90± 0.03

Table 2: LSA Classification results for theScience Newscorpus. The results are given in terms of the

averages and standard deviations of the area of the ROC curves (over 1000 simulations), as a function of the

number of seeds used.

The ROC curve was also used to asses the clustering scheme in Algorithm 2, and the use of the saddle
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point of
∣∣∣∂N(T )

∂T

∣∣∣ as the clustering threshold. This is exemplified in Fig. 8, where we applied the clustering

scheme to theAnthropology(54 articles) andAstronomy(121 articles) categories within theScience News

corpus. For each of them we present the results of a single diffusion run using 10 randomly chosen seeds.

Figures 8a and 8c depict
∣∣∣∂N(T )

∂T

∣∣∣ for theAnthropologyandAstronomycategories, respectively. We identify

T ∗ as the first saddle point following the maximum of
∣∣∣∂N(T )

∂T

∣∣∣, and present the corresponding ROC curves

in Figs. 8b and 8d, where each point on these curves corresponds to a particular choice of a thresholdT ∗.

The ‘sweet spot’ on a ROC curve is located as close as possible to its upper-left corner, where ideally, one

achieves 100% true positives and 0% false positives. Turning our attention to Figs. 8b and 8d we see that in

both cases, the chosen thresholdT ∗ is closed to the optimal choice.
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Figure 8: The classification accuracy of the Local spectral analysis scheme. (a) and (b) depict the function∣∣∣∂N(T )
∂T

∣∣∣ and the ROC curve corresponding to a single run of the LSA, using 10 seeds extracted from the

Anthropologycategory of theScience newscorpus. The saddle point is detected atT ∗ = 0.15 and the

corresponding True Positives and False Positives are overlayed on the ROC curve in (b). This choice ofT ∗

is close to the optimal choice in the upper-left corner of the ROC curve. Similar results are shown for the

Astronomycategory in (c) and (d), for whichT ∗ = 0.13.

In order to compare the K-LSA results to former schemes, we used the set of corpuses provided in
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Zhong’s work [28] and available as doc-term matrices in Matlab format1. In [28], Zhong provides the

unsupervised classification results of 14 state-of-the-art schemes that we used for comparison.

We consider the NG17-19 dataset that is a subset of the NG20 corpus of newsgroups messages. The

NG17-19 contains messages from each of the three categories on different aspects of politics. These cate-

gories are expected to be difficult to separate and the set consists of 2,998 documents in a 15,810 dimensional

vector space. The K-LSA results are shown in Fig. 9, and are comparable to the best scheme in [28] (the

CLUTO algorithm). Note that, at most, we have only used 30 (1%) of the 2998 articles as seeds. For the

LSA, we report the ROC areas as a function of the number of seeds in Table 3. For these simulations, we

randomly sampled each set of seeds a 1000 times and present the average and standard deviation of the ROC

areas.
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Figure 9: K-LSA unsupervised clustering results for the NG17-19 corpus (2998 documents). We show

the Normalized Mutual Information (NMI) between the K-LSA and reference partitionings. The K-LSA

outperforms the best result in [28] (0.46) using 1% of the documents as seeds.

Finally, in order to further asses the performance of the K-LSA, we utilized thetr11, tr23, tr41 and

tr45 datasets. These are derived from the TREC collections (http://trec.nist.gov) and we followed the same

experimental setup as before. For each set we compute the NMI for varying numbers of seeds and compare

it to the best classification given in [28]. We present these results in Table 4. In all of the articles categories,

the K-LSA achieved comparable accuracy to the best unsupervised scheme, using5%−10% of the samples

as seeds.
1http://www.cse.fau.edu/~zhong/software/index.htm.
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Number of seeds

C |C| 1 3 5 7 9

“17” 1000 0.64± 0.13 0.84± 0.09 0.88± 0.06 0.90± 0.03 0.91± 0.03

“18” 999 0.62± 0.11 0.78± 0.11 0.87± 0.07 0.88± 0.06 0.91± 0.04

“19” 999 0.60± 0.10 0.71± 0.10 0.77± 0.08 0.79± 0.07 0.81± 0.07

Table 3: LSA classification results for the NG17-19 corpus. The LSA was used to separately cluster each

of the document categories. We present the average ROC curve areas (over a 1000 simulations) and the

corresponding standard deviations.|C| is the number of documents in each category.

Number of seeds

C C# |C| Best of [28] 1 3 5 7 9

tr11 9 46 0.68 0.35± 0.06 0.46± 0.05 0.52± 0.04 0.57± 0.03 0.61± 0.03

tr23 6 34 0.43 0.33± 0.06 0.45± 0.06 0.52± 0.06 0.58± 0.06 0.64± 0.06

tr41 10 88 0.67 0.51± 0.04 0.60± 0.04 0.64± 0.03 0.68± 0.03 0.70± 0.03

tr45 10 69 0.5 0.46± 0.05 0.53± 0.04 0.58± 0.03 0.62± 0.03 0.66± 0.03

Table 4: K-LSA Partitioning accuracy results, measured in terms of the Normalized Mutual Information

(NMI), for the tr11, tr23, tr41 andtr45 article corpuses.C# is the number of categories in each corpus

C, and|C| is the average number of documents in each category.
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3.3 Dynamic Visual Search

Dynamic search refers to a scheme that searches for the members of a particular sub-cluster within a larger

cluster, while agglomerating information over time. The work by Avraham and Lindenbaum [30, 31]

presents and analyzes such a framework for image search and retrieval from databases. The external in-

formation source is denoted as theOracleand it provides a binary answer to the query whether a particular

samplexi belongs to the cluster̂Ω or not. Given a databaseΩ of images, we aim to extract all the samples

related to a particular cluster̂Ω ⊂ Ω, while minimizing the number of calls to the Oracle.

In practice, the Oracle may correspond to a user searching for a particular image within a database

and providing yes/no instructions to the image retrieval software. Such an approach overcomes the need to

define a formal language for image retrieval and allows the user to query by the equivalent of the intuitive

statement: ‘give me an image similar to this one’.

Avraham and Lindenbaum propose a linear estimation search algorithm, denoted VSLE (Visual Search

by Linear Estimation), which utilizes cross-image similarity measures and propagates the binary vector of

the probabilities of a certain samplexi to belong toΩ̂. The search terminates when all of the elements inΩ̂

are verified by the Oracle.

We applied the LSA scheme to the dynamic search task, and similarly to [30], conclude that the search

process should be divided into two parts:

1. Searching for the first element inΩ̂ : This is a data rejection task, where given a samplexi ∈ C̃ and

C̃ 6= Ω̂, we aim to identify all the other samples iñC using the LSA, without having to use the Oracle

for that. Then we choose the next sample to be verified by the Oracle, to be as far as possible from

the setC̃. By that, we utilize the manifold structure of the clustersC̃i whereΩ =
⋃

i

C̃i + Ω̂. This

scheme is summarized in Algorithm 5.

2. Identifying Ω̂ given a sample in it: Given a single elementxi ∈ Ω̂, we aim to propagate the similarity

to all of the other elements within̂Ω and verify each of them using the Oracle. Hence, in each step we

propagate the information from the set of verified samples{xi} ∈ Ω̂ to the rest of the elements in̂Ω.

The next sample is then given byxi such thati = arg max
ei

φn

(
xei

)
. This is summarized in Algorithm

6.

The LSA based retrieval scheme was tested by averaging 1000 repetitions of Algorithms 5 and 6. For that

we utilized the same distance matrices as the ones used in [30] (Courtesy of Tamar Avraham and Michael

19



Algorithm 5 Finding the first element in̂Ω
1: Given the setΩ compute the corresponding random walk matrixM .

2: Randomly choose a samplex0 ∈ Ω and initiate the setE = x0.

3: while E ∩ Ω̂ = ∅ do

4: Apply Algorithm 1 usingE as the set of seeds.

5: Choose the samplexi such thati = arg min
ei

φn

(
xei

)
. xi is the sample farthest away from the setE.

6: Ask the Oracle ifxi ∈ Ω̂, if so go to Step#8, otherwise addxi to E.

7: end while

8: Returnxi ∈ Ω̂.

Algorithm 6 Identifying Ω̂ given its first element
1: Given the setΩ compute the corresponding random walk matrixM .

2: Form the setE = x0 wherex0 ∈ Ω̂.

3: while E 6= Ω̂ do

4: Apply Algorithm 1 usingC̃ as the set of seeds.

5: Choose the samplexi such thati = arg max
ei

φn

(
xei

)
. xi is the sample closest to the setE.

6: Ask the Oracle ifxi ∈ Ω̂, if so add it toE.

7: end while

8: Return the set̂Ω = E.

Lindenbaum). Table 5 summarizes the experimental results for four different visual databases. Compared

to the textual search described in Section 3.2, the sets are significantly smaller and are ofO (10). The

best results are achieved for thecars and facesdatabases where the total improvement is 33% and 50%,

respectively. For theelephantsandparasolsdatabases the VSLE prevailed. We attribute that to the small

size of these databases, 24 and 40 elements, respectively, and conclude that the LSA is better suited for large

datasets, where the manifold structure comes into play.

4 Conclusions and Future Work

In this work we presented a computational approach to local spectral data analysis. Our approach propagates

local information, based on a given set of samples, denoted as seeds. We showed that by choosing a set of

seeds from a particular cluster, we are able to derive a clustering scheme, that detects the discontinuities in
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Database Initial choice Search Overall

Ω |Ω| |C| Random VSLE LSA VSLE LSA VSLE LSA

cars 100 10 10 6.69 3.74± 4.03 26.18 17.44± 1.09 32.87 21.18± 3.93

elephants 24 4 6 2.95 2.74±1.72 3.59 4.48± 1.00 6.54 7.63±1.02

faces 146 7 20.85 17.43 14.25±6.41 45.57 20.44± 1.69 63 34.63± 5.1

parasols 30 6 5 2.33 2.94± 1.02 5 5.50± 0.50 7.33 7.9± 1.02

Table 5: Dynamic visual retrieval results. For each databaseΩ, we present the average number and standard

deviation (over a 1000 simulations) of Oracle calls, needed to positively identify all of the items in it.|Ω| is

the number of objects in each database, and|C| is the number of the categories of objects in each database

Ω. Therandomcolumn refers to the number of oracle calls needed when the samples are randomly picked.

the diffusion function. We effectively applied the proposed scheme to data sources such as images, document

corpuses and visual databases. We analyzed our approach based on the Fokker-Planck interpretation of

spectral embedding.

In future, we intend to extend our work on Content based image retrieval (CBIR). This field has recently

gained much attention and we aim to process larger image datasets. In addition, following [30], we allowed

no classification errors, and thus each target sample had to be positively identified by the Oracle. This led

to the nearest neighbor sampling strategy in Step #5 of Algorithm 6. A different strategy might lead to

classification errors, but might also significantly reduce the number of Oracle calls.

We also intend to analyze directed/asymmetric graphs/networks. Although we presented promising ex-

perimental results for the document mining task using such graphs, and these appear naturally in application

fields such as communication and biological networks, the Fokker-Planck based analysis is inapplicable to

them. Our approach would be to introduce a pressure term into the Fokker-Planck equation in Eq. 2.1 to

break down its symmetry.

As an image segmentation scheme, the LSA is purely data driven and does not incorporate image domain

geometric properties such as curvature. Those were found beneficial in prior region growing schemes such

as [32] and [33]. Incorporating such information would require temporal analysis of the evolution of the

diffusionφn. A related task is to derive a narrow-band like formulation of the LSA. The narrow-band is an

efficient approach to computing approximate solutions of the heat equation [32], where at each time step,

the solution is computed within a narrow region around the wave front of the heat equation’s solution. If
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applicable for the LSA, such an approach might enable us to better analyze large and massive datasets.
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