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The area of texture segmentation has undergone tremendous
growth in recent years. There has been a great deal of activity
both in the refinement of previously known approaches and in
the development of completely new techniques. Although a wide
variety of methodologies have been applied to this problem, there
is a particularly strong concentration in the development of feature-
based approaches and on the search for appropriate texture fea-
tures. In this paper, we present a survey of current texture segmen-
tation and feature extraction methods. Our emphasis is on tech-
niques developed since 1980, particularly those with promise for
unsupervised applications. < 1993 Academic Press, Inc.

1. INTRODUCTION

Texture segmentation has been attempted in numerous
ways. It is often obtained by adopting the independent
subprocesses of texture feature extraction, feature selec-
tion or reduction if the number of features is too large,
followed by a segmentation algorithm. Feature extraction
methods may be categorized, roughly, as feature-based,
model-based, and structural. In feature-based methods,
some characteristic or characteristics of textures are cho-
sen and regions in which these characteristics are rela-
tively constant (or the boundaries between the regions)
are sought. Model-based methods hypothesize underlying
processes for textures and segment using certain parame-
ters of these processes. Since model parameters are used
as texture features, model-based methods could be con-
sidered a subclass of feature-based methods. Finally,
structural methods seek to partition images under the
assumption that the textures in the image have detectable
primitive elements, arranged according to placement
rules.

The main purpose of texture feature extraction is to
map differences in spatial structures, either stochastic or
geometric, into differences in gray value. Segmentation
methods then analyse the feature space in order to extract
homogeneous regions. Segmentation methods are often
classified as region-based, boundary-based, or as a hybrid
of the two. Although membership in one of the above
groups does not exclude membership in another and there
are methods that do not fall neatly into any of these catego-
ries, we will use the above classes to give structure to
the discussion that follows. We note that boundary-based
methods often analyse feature statistics within adjacent
windows, in the same way that region-based methods do.
However, the main difference between these approaches
is that region-based methods seck feature homogeneity,
while boundary-based methods attempt to detect feature
inhomogeneities.

Due to the large amount of activity in this field, to treat
all published techniques would be an extremely difficult
task. As a result, detailed discussion will be limited to
methods with potential for unsupervised texture segmen-
tation. In this way, we hope to complement existing sur-
veys, e.g., [1-5].

2. FEATURE-BASED METHODS

In discussing feature-based texture segmentation meth-
ods, it is convenient to consider separately those methods
that are interesting primarily due to unique features and
those which use unique methods of performing the seg-
mentation. Refining these categories further, many fea-
tures may be considered as derived from operators, from
statistical tests, or from examination of the image in a
transform domain.
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2.1. Methods Using Unique Features

2.1.1.

A first example of the derivation of features using opera-
tors is the set of “‘texture energy measures” formulated
by Laws in [6]. Small (e.g., 5 x 5), center-weighted filter
masks are convolved with the image to be segmented.
Statistics, such as the variance, are computed within a
window about each pixel in the resulting (filtered) images.
The values of the statistics are assigned as features to the
corresponding pixel in the original image. It 1s noted that
Laws’ basic filter functions, with their characteristic oscii-
lations, have a striking similarity to Gabor functions (as
to wavelets, Hermite polynomials, prolate spheroidal
functions, etc.; see Section 5). However, since the filter
masks are relatively small, only the high-frequency con-
tent of textures can be analysed.

In [7], Conners, Trivedi, and Harlow derive texture
operators from the co-occurrence matrices used by the
spatial gray level dependence method {8]. From each ma-
trix, six measures (inertia, cluster shade, cluster promi-
nence, local homogeneity, energy, and entropy) are calcu-
lated for use as features. The classes into which textures
are segmented were selected to correspond to the Defense
Mapping Agency’s Mapping, Charting, and Geodesy tan-
gible features.

A simple operator for fast discrimination between tex-
tured and uniform regions is proposed by Dinstein ef al.
in [9]. The pixel in the output image corresponding to the
center pixel of each K x K window in the original image is
set to the difference between the maximum and minimum
gray level occurring in the window. The value returned
by the operator is high for textured regions and low for
homogeneous ones, allowing discrimination between
these regions. An algorithm for fast application of the
operator is shown. This operator also acts as an edge
detector between uniform regions with different gray
values.

A method similar to that proposed by Laws was intro-
duced by Unser in [10], who examined different transfor-
mations. For example, in a first pass the input image is
convolved with four2 x 2 Hadamard masks. These masks
measure the local average, as well as estimate the local
derivatives in horizontal, vertical, and oblique directions.
In a second pass local statistics, such as the variance, are
gathered.

Another method similar to that of Laws is described
by Wang, Hanson, and Riseman in [11]. Rather than the
“edge-like,” “high-frequency spot-like,” etc., masks used
in [6], a set of simple (vertical, horizontal, diagonal, and
anti-diagonal) masks are applied. A comparative experi-
ment is performed using these simple masks and four high
order masks proposed by Laws. Results as good as, or
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FIG. 1. An example of Granlund’s method: {a) The original image:
(b) The result of the first application of the operator: (c) The result of
the second application of the operator.

better than, those achieved using the Laws masks are
reported.

Finally, an operator-based technique that has been con-
sidered for unsupervised texture segmentation is de-
scribed by Granlund in {i2]. The operator proposed,
called the “general operator,” measures the direction and
magnitude of gray scale change in the operator field. This
is accomplished by applying a set of orientation sensitive
masks to the image and by selecting as the operator output
the magnitude and orientation from the mask with the
largest response. Texture segmentation is achieved by
applying this operator to a previously transformed image.
As shown in the example of Fig. 1, the first application
of the operator yields the direction and magnitude of maxi-
mum change for the image textures, while the second
gives the boundary between texture fields. Wermser and
Lissel [13] have compared Granlund’s method with that
of Abele [14] (a statistical method described in the next
section) and the method of Chen and Pavlidis [15) (co-
occurrence matrices used with a split-and-merge algo-
rithm) for unsupervised texture segmentation. It was
found that good results were obtained most often with
textures having strong differences in direction. Difficulties
were encountered in the presence of noise and when tex-
tures were irregular.

More sophisticated operators have been defined by
Knutsson and Graniund in [16]. These operators, measur-
ing the dominant local orientation or the dominant local
frequency as well as their associated certainties, are based
on combining the outputs of quadrature filter pairs with
polar-separable modulation transfer functions. This con-
cept has been refined by Bigun in [17]. The latter author
obtains a more complete texture description by applying
the dominant local orientation estimation at different fre-
quency scales using a Laplacian pyramid. This anisotropic
information is combined with isotropic information,
which is mediated by the power as estimated in octave
frequency bands.

2.1.2.  Statistically Based Features

One of the first methods used in texture segmentation,
and still a major one, is the spatial gray level dependence
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method. In [8], Haralick, Shanmugam, and Dinstein de-
fine the gray-tone spatial-dependence matrix as follows.
Given an image f(x, y) with a set of N, discrete gray
levels, define the matrix P(i, j, d, 8) such that the (i, j)th
entry is the number of times that

flay) =i
and
S, y2) =,
where
(x3,¥2) = (x,¥,) + (dcos 8,dsin§). n

This yields a matrix of dimension equal to the number of
gray levels in the image, for each distance and orientation
(d, 8). Examples of features extracted from these matrices
are angular second moment
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where R(d, 9) is the number of neighboring resolution cell
pairs. This method has proven quite successful. However,
many of the texture features that are derived using this
method have little correlation with features visible to the
human eye.

In contrast, Tamura, Mori, and Yamawaki made an
attempt at defining a set of visually relevant texture fea-
tures in [18]. This set includes coarseness, contrast, direc-
tionality, line-likeness, regularity, and roughness. Most
of these measures showed a reasonable correspondence
to the results of psychophysical tests, in which human
subjects ranked Brodatz textures with respect to their
impression of these subjective attributes.

A method using both statistical and structural features
that has been proposed for unsupervised applications is
described by Abele in [14]. Features for segmentation
are selected from a large set of features associated with
texture primitives (Table 1). Here, texture primitives are
connected subregions with approximately constant inten-
sity. The selection is performed by a space-invariant, non-
linear operation, the purpose of which is to reduce the
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TABLE 1
A Summary of the Feature Set
Used by Abele

No. Name

1 x-Coordinate

2 y-Coordinate

3 Brightness®

4 Directionality”

5 Orientation”

6 x-Regularity*

7 y-Regularity*

8 Area”

9 Roundness*

10 Brightness Backgr.¢
1 Window-size x

12 Window-size y

13 Average Intensity
14 Standard Deviation
IS Contrast

16 Angular sec. mom.

“ Features associated with tex-
ture primitives.

distance between primitives in the same class, while in-
creasing the distance between different classes. The dis-
tance function between primitives Q; and Q, is defined as

l .
b - ,_I; | (fi =ty | +dy ifn;#0 @

where

[ f; are the portions of the feature vectors for Q; and
0, that are primitive related,

i = (s;. AND. s)

n,j =1ty = number of features set o one in s;and s,

d; = the spatial distance between primitives’ gravity
centers,

w I if2,C;(k)>0 forj = 1to# of primitives
S; =

0 if2,Cyk)=<0 andj # i,
C; = (1/dy) - SIGN(t — | fik) — fitk) | ). k =

s; = the complete features switch vector, derived from
s; under additional texture regularity constraints,
t is a threshold, and z is a large but arbitrary number.

Clustering is then performed using the features selected
above. In the comparison performed in [13}, this method
gave the best performance, although it was considered
computationally expensive.
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In [19], Dondes and Rosenfeld propose a pixe! classifi-
cation scheme based on mean gray level (calculated over
a window centered on the pixel of interest) and the varia-
tion of the gray level within this window. This variation
is termed “‘busyness,” and is measured using either the
“minimum total variation” (MTV), or the “‘median abso-
lute difference™ (MAD). Fora 3 x 3 region,

a b ¢
d e f
g h i

the MTV can be calculated as

MTIV=min[ |a—-b| + {b—c]| + |d~e]
tle—f| +lg—h| +|h-i],
fa—d| + |d—g| + | b—¢]
Fle—hl + le—fl 4 1f-il).

The MAD is the median of the absolute difference be-
tween all 12 pairs of horizontally or vertically adjacent
pixels.

De Souza [20] proposes a method for detecting bound-
aries between regions using sliding statistical tests. One-
dimensional profiles are examined using a sliding window.
Five 1ests are considered, the most powerful of which is
able to detect boundaries between textures with the same
variance and average intensity.

A technique to predict the presence of textured re-
gions using a pyramid structure is described by Lee in
[21]. This method is based on the assumption that the
averaging performed in constructing the pyramid will
change a large textured region into a uniform region at
the level in the pyramid where the averaging window is
approximately the size of the texture primitives. The re-
sult of applying this algorithm is an image with connected
textured regions extracted and untextured regions un-
touched.

Lowitz [22] proposes information extracted from local
histograms as features for texture segmentation. In partic-
ular, the module and state of the histograms are suggested.
For the pixel (m, n), centered in a window containing N
pixels, and with r possible gray levels in the image, the
module is

(5)

Iyylm, n) = 2 n_ NI
MHT z=t\/rz,-(1 —n/N)Yy+ N — l/l')/"’

where »; is the number of counts at the /"™ gray level.
The state is the index of the largest count of the local
histogram.

A generalization of the run length concept is described
by Shu et «l. in [23]. The length of a run through the pixel
(i, j) along the direction 8 is defined as the maximum
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number of collinearly connected pixels with maximum
and minimum gray levels differing by less than a specified
threshold. Run lengths in horizontal, vertical, diagonal,
and anti-diagonal (8 = 0°, 90°, 45°, —45°) directions are
used as features for segmentation.

In an attempt to discriminate between textures differing
in high order statistics (greater than two), Sato and Ogata
[24] propose a polynomial image transformation based
on the self-organization method. The transformation is
computed iteratively, with the goal of minimizing the sum
of the variances over the two texture fields to be discrimi-
nated, while constraining the mean of the first field to be
—1 and the mean of the second to be + 1. The resulting
transformation maps an image containing the two textures
into an image with —1 over the first field and +1 over
the second.

2.1.3. Transform Domain Features

An example of a segmentation method using transform
domain features is that proposed by Xu and Fu in [25]).
Scenes are initially segmented by use of multiple thresh-
olds to reduce the number of gray levels in the image (and
hence the dimensions of the co-occurrence matrices found
in the next step). Segmentation is then performed using
co-occurrence matrices and the split-and-merge algo-
rithm, as recommended by Chen and Pavlidis {15]. Fi-
nally, the Walsh transform is used as a measure of coarse-
ness to split regions that were over-merged in the previous
step.

In (26], Jernigan and D’Astous propose entropies, cal-
culated for subimages and over various regions of the
subimage power spectrum, as a set of features. Based on
between-to-within-class scatter, performance comparable
to previous frequency domain features (energy summed
over the same regions used to calculate the entropy) and
to the contrast measure derived from gray level co-occur-
rence matrices are reported. Due to disappointing results
obtained when using these entropy features to segment
natural textures, however, the authors in [27] propose a
set of features derived from the characteristics of power
spectrum peaks and from the shape of the power spec-
trum. Features based on peak characteristics were peak
strength, two-dimensional curvature, area, squared dis-
tance from the origin, and angular location. Frequency
distribution shape features were elongation, spread, and
“circularity” (the area of the distribution compared to the
area of a circle having its radius equal to the major axis
of the distribution). Applied to a set of natural textures,
these features proved superior to summed energy features
and co-occurrence matrix features.

2.1.4. Other Features

As would be expected, there are features used for seg-
mentation that do not fall within the categories above. In
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{28}, Wechsler proposes planar random walks as a vehicle
for texture segmentation. A planar random walk can be
thought of as a particle moving in unit steps, in random
directions. For four-connected pixels, the directions are
up, down, left, and right. Walks are performed from the
center of rectangular windows, distributed over the im-
age. Let S, Sp, Sk, and S, be the observed distributions
of particle absorptions at the top, bottom, right, and left
boundaries of the current region. Then a gradient can be
defined as g(m, «), where

m=\V(Sp~ 8§+ (5, — Sp)° (7
and
_ SA _ SB
a = arc tan S, =S, (8)

By forming a 2D histogram of the values for m and « over
the image, clusters can be identified and labeled, yielding
a segmentation.

A method based on curvilinear integration of gray levels
along scan lines of different orientations is proposed by
Barba and Ronsin in [29]. The scan lines start at the pixel
of interest, and the length of the line required for the
integral to reach a specified value is assigned to the pixel
as a feature. This yields a feature vector of length & for
each pixel, where k is the number of orientations selected.

In [30], Ashjari suggests the use of the singular value
decomposition (SVD) to derive texture features. Win-
dows of 32 x 32 pixels are decomposed to find their
singular values, where for the window array F, F = USV",
and S is the diagonal matrix containing the singular values.
The mean, variance, skewness, and kurtosis of the singu-
lar values for each window are computed and used as
features. Using this method, textures that appear identical
can be discriminated.

As a final instance of a novel texture feature, Kjell and
Dyer [31] recommend the average separations of edges.
Extended edge maps are computed from the image to be
segmented, each with edges of a single orientation labeled
with the average distance to the nearest extended edge
of another selected orientation. This generates a map for
each pair of edge orientations. These maps are then used
in an overlapped pyramid structure to perform the seg-
mentation.

2.2,
2.2.1.

The MITES (model-driven, iterative texture segmenta-
tton) system, proposed by Davis and Mitiche in [32], com-
bines selective feature smoothing with clustering. In su-
pervised mode, statistical texture models supplied by the

Methods Using Unique Segmentation Techniques
Region-Based Methods
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user are utilized in determining pixel classification. Each
pixel is then replaced by an average of the pixels (within
an analysis window centered on the pixel of interest) that
are in the same class as the pixel replaced and that are
contiguous neighbors. The classification and smoothing
steps are repeated until the change in pixel labels becomes
small. In the unsupervised mode, the classification step
is replaced by clustering. Modifications to allow opera-
tions on edge-based (as opposed to pixel-based) texture
features are described.

In [33], Lumia et al. propose a method using the facet
model. The image of interest is first segmented using the
facet model, yielding an image with each pixel assigned
a region number. The regions are then numbered sequen-
tially, and a region adjacency graph (RAG) is formed. For
each region, a list of properties (features) are derived,
including measures of region size, region shape, and gray
level statistics within the region. Based on these features,
the features of adjacent regions, and the features of tex-
tures from known images (acquired during a training
phase), the regions are assigned texture categories.

Pietikdinen and Rosenfeld [34] propose a technique
based on pyramid node linking. The pyramid structure is
formed by producing images of decreasing resolution,
with the high resolution image at the top of the pyramid.
By linking regions (nodes) of one level with the most
similar regions in neighboring levels, images can be seg-
mented. This may be done either “top-down,” in which
case blocks judged homogeneous are linked to all of their
subblocks, or “bottom-up,” where subblocks similar to
the parent block are linked to that block. A combination
of these methods, with bottom-up linking used only on
subblocks not merged in the top-down pass, was found
most effective.

In [35, 36], Raafat and Wong describe a method directed
by a resolution dependent texture information measure
(I-measure). Since a region containing a boundary be-
tween textures contains more information than one that
does not, an initial segmentation can be found by grouping
blocks with low I-measure values. From these core re-
gions, region growing takes places using a texture distance
measure. Boundaries are then refined by breaking bound-
ary blocks into four subblocks and merging each subblock
with the region at the minimum texture distance.

A segmentation method based on a generalization of
Hachimura-Kuwahara (H-K) edge preserving smoothing
is proposed by Verbeek and de Jong [37]. An initial classi-
fication for each pixel is performed using overlapping win-
dows. Each pixel is assigned the (known) texture whose
feature vector is closest to that calculated over the pixels’
window. Next, for each pixel, the four windows contain-
ing the pixel at one corner are examined. For each of
these windows, the distance to the nearest known texture
is calculated, and the closest class is assigned to the
window. The pixel of interest is then assigned the texture
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class of the window with the minimum distance (the win-
dow that was the closest match tothe texture class assigned
to it). In this way, a smoothing in feature space occurs,
while preserving the boundaries between textures.

A modification of the split-and-merge algorithm is pro-
posed by Doherty, Bjorklund, and Nogain (38]. The image
to be segmented is first processed using the conventional
split-and-merge, with mean gray scale value as the unifor-
mity test. This is followed by a second merge pass, in
which a predicate based on second-order statistics and
relaxed mean gray scale uniformity is used. The result of
this second pass is the elimination of overly split regions.

A final example of a region-based method is the diffu-
sion region growing technique proposed by Reed, Wech-
sler, and Werman, in [39]. The region growing process
proceeds as a modified random walk, where the probabil-
ity of moving in a particular direction (and adding the
pixel which is encountered to the region being grown) is
determined by the similarity of the current and adjacent
pixel characteristics. This method is able to grow several
separate (but similar) regions simultaneously and is well
suited to parallel implementation.

2.2.2. Boundary-Based Methods

An extension of the common edge detector techniques
to the detection of texture boundaries is proposed by
Grinaker in [40]. Instead of applying the edge detector
(in this case the gradient) to the image itself, it is applied
to a set of features derived from the image. This results
in a set of “feature gradients,” all of which may not be of
the same discriminating capability or resolution. A feature
gradient function (FGF) is defined as a sum of weighted,
resolution-consistent feature gradients. Weights are as-
signed according to discriminating ability. Resolution is
made consistent either by averaging high resolution fea-
tures to be consistent with lower resolution features, re-
jecting lower resolution features, or estimating higher res-
olution versions of low resolution features.

A boundary-based method suggested for unsupervised
texture segmentation is described by Wermser in [41]. A
set of four masks, each with two subregions, are con-
volved with a set of features. The result is a set of eight
new features for each of the original features. As shown
in Fig. 2, the window subregions are vertically, anti-diago-
nally, horizontally, and diagonally opposed, respectively.
By comparing the features from opposing subregions in
each mask, a dissimilarity measure, s, is determined. The
amount, a, of the texture gradient TG{qa, d) is defined as

a=max(s,);n=1,...,4 ()
The gradient direction is encoded as the number, n, of

the mask yielding the maximum s,. The best method for
determining the dissimilarity measure was found to be the
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FIG. 2. Masks for texture gradient determination (from Wermser).

ratio of inter- and intra-class distance. Experiments are
shown in which the segmentation is achieved by thresh-
olding the amount of texture gradient and applying line
thinning to the detected boundary.

2.2.3. Hybrid Methods

1n {42], Nazif and Levine describe a rule-based expert
system combining both region and boundary information.
Experiments comparing this system with the histogram
splitting method of Ohlander [43] and the split-and-merge
algorithm of Tanimoto and Pavlidis (44] are shown. Quali-
tatively, the segmentations achieved using the expert sys-
tem compare very favorably to the other methods. A
quantitative method of comparison is suggested by these
authors in [45). A comment on [42]} regarding the imple-
mentation of the split-and-merge and the associated per-
formance implications is made by Pavlidis in [46].

Finally, Spann and Wilson [47] propose a method,
based on the quad-tree, that operates first on regions,
then on the boundaries between regions. Quad-tree
smoothing is performed, motivated by the fact that the
variance of additive white Gaussian noise is reduced by
a factor of two for each successive level of the tree. A
level in the tree is then selected by the user(e.g., the level
in the tree with the best signal to noise ratio). Clustering is
performed at this level, yielding an initial segmentation.
Class membership certainty is examined for each block,
under the assumption that blocks containing boundaries
will have a large measure of uncertainty. The boundary
regions are refined by successive applications of smooth-
ing, classification, and identification of boundary elements
as the tree is traversed to its lowest (pixel) level.

3. MODEL-BASED METHODS

In this section we discuss two types of model-based
methods, representative of the current state of the art in
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this kind of system. A more complete survey of image
models and a discussion of model-based segmentation is
given by Kashyap in [48].

3.1. Fractal Models

Fractal functions have received a great deal of attention
in recent years. Briefly, a fractal is a set for which the
Hausdorff-Besicovich dimension (referred to as the frac-
tal dimension) is strictly larger than the topological di-
mension.

Pentland [49] has found a high degree of correlation
between fractal dimension and human estimates of
roughness. Because of this correlation and the natural
appearance of fractal-generated textures, Pentland has
proposed fractal functions as texture models, and the frac-
tal dimension as a feature for texture segmentation. The
method used consists of four steps. First, the fractal di-
mension of each 8 x 8 block of pixels is estimated. Next,
a histogram of the fractal dimensions is formed. This histo-
gram is then broken at the “valleys™ between modes.
Finally, the image ts segmented into regions belonging
to each mode. The fractal dimension was estimated by
examining the one-dimensional power spectrum along
several directions and by averaging the results. That is,
since the power spectrum P(f) of a fractal Brownian func-
tion (the assumed texture model) is proportional to f =%~/
and the fractal dimensionis D = T + (I — H) (where T
is the topological dimension), estimating the slope of the
log power spectrum leads to an estimate of D.The segmen-
tations produced by this method, applied to full gray-
scale images, are relatively good. They have the added
advantage that they are largely invariant to scaling of the
image (since the fractal dimension of a Brownian function
is scale invariant).

Rather than computing the slope of the (local) log power
spectrum, alternative strategies can be followed to mea-
sure the fractal dimension. Medioni and Yasumoto [50]
adopted a method which s based on gathering second-
order difference or dipole statistics within a moving win-
dow, utilizing two distance vectors with different lengths.

Another alternative, explored by Peleg et al. in [51]. is
provided by the ‘“blanket” method. Applying Mandel-
brot's solution for the so-called “coastline of Britain prob-
lem™ to the three-dimensional case, the image is covered
by two surfaces, one above and one below, both with a
specified distance ¢ to the gray values. The surface area
equals the volume between the two surfaces divided by
2e. This is done for various distances ¢.

Related to the fractal dimension are space-filling curves,
also referred to as self-similar or Hilbert curves. Nguyen
and Quinqueton applied Peano scanning within a moving
window in [52], measuring the fractal dimension on the
Peano scan. A possible advantage of utilizing a Peano
scan (within a window) instead of a normal horizontal or
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vertical raster scan is that the local neighborhood is better
preserved. However, it is more difficult, if not impossible,
to obtain specific anisotropic texture information.

It should be noted, as observed by Peleg et al. in [51],
that textures in general are not fractals and at best can
be considered so over only a limited range of scales. This
being the case, it remains to be shown that textures can
be discriminated based on fractal dimension, in the gen-
eral case.

3.2. Stochastic Models and
Decision-Theoretic Techniques

The application of stochastic methods to image model-
ing is an important and rapidly growing area. This is re-
flected in increasing application of these techniques to
texture segmentation. In (53], Khotanzad and Bouarfa
describe a parallel algorithm for segmentation using simul-
taneous autoregressive (SAR) random field models and
multidimensional cluster analysis. Texture features are
extracted by fitting two of these models to the image data
in overlapping windows, resulting in six feature values
per window. The sample mean and variance are used
as additional features. The resulting feature vectors are
histogrammed (in an eight-dimensional space) and local
cluster peaks are detected. The validity of these peaks
are tested by mapping the features back into the spatial
domain and by evaluating their spatial spread. Clusters
which map to pixel groupings which are not compact are
considered invalid and are either merged with neighboring
clusters or labeled as “noisy.” The final clusters are as-
signed labels, mapped to the spatial domain, and noise
cleaned to produce the final segmentation.

Khotanzad and Chen [54] describe an edge-based tech-
nique based on features derived from SAR random fields.
The image of interest is partioned using overlapping win-
dows, and the least squares estimates of the SAR model
parameters are found for each window. Edges are en-
hanced in each of the resulting feature images via the
Sobel operator. The enhanced images are then combined
via a measure of “textural change,” thresholded, and noise
cleaned to produce an initial edge map. Because the SAR
random field parameters are found over overlapping win-
dows, the detected edges are as wide as the spacing be-
tween windows. To reduce this effect, the edges are then
thinned to their “skeletons.” 1t should be noted that the
accuracy of the edges is determined by the window spac-
ing, even though the edges are thinned to one pixel. As
a result, significant deviation from the true texture bound-
ary may result when the window spacing is large.

An alternative to heuristic segmentation approaches is
to consider decision-theoretic methods, e.g., maximum
likelihood (ML) or maximum a posteriori probability
(MAP) estimation. These are often applied to the parame-
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ters of stochastic texture models. We will briefly discuss
a few region-based and boundary-based methods.

In [55], Huang proposes a two-state Markov model,
applied to 1D profiles of the image of interest, to detect
texture edges characterized by changes in first-order sta-
tistics. Each state is a texture, and the image gray values
are modeled as the probabilistic outputs at the states. An
iterative algorithm for computing the maximum-likelihood
estimates of the state transition probabilities and output
distributions is described, from which the state distribu-
tion at each pixel can be computed. An edge between
textures is indicated by a step change in this distribution.
Huang and Gong combine hidden Markov modeling with
the Laws {6] texture energy measures in [S6, 57]. In [56],
the energy measures are used to classify the textures in
the image before segmenting using the hidden Markov
model. In [57], the segmentation is performed directly on
the images resulting from the application of the energy
measures.

A Gaussian random field model was incorporated into
a split-and-merge algorithm by Bevington and Mersereau
in [58]. Assuming Gaussian white noise distributions char-
acterized by their mean and covariance, the image is first
split using a maximum-likelihood boundary detection.
Neighboring regions are then merged on the basis of a
ranked statistical distance measure (e.g., Bhattacharyya)
until a prescribed number of regions is obtained.

Stochastic image models based on the Gibbs distribu-
tion [59] are of great current interest. In [60], Derin and
Elliot propose a hierarchical image model based on this
distribution and use it for texture segmentation. They
state the definition of the Gibbs distribution as follows.
Consider the region L, shown in Fig. 3.

DEFINITION 1. A collection of subsets

n= {nlj.(lvj)e Ls T),JQL}

is a neighborhood system if and only if for each 5, (the
neighborhood of pixel (i, j))

1. (i, j) & 7, and
2.if tk, 1) € n;;, then (i, j) € ny, for any (G, j) € L.

(N1, 1) (N1, N2)
L
(1, 1) (1. Ny
FIG. 3. The region of interest, L, in the definition of the Gibbs
distribution.

REED AND DU BUF

DEFINITION 2. A cligue, ¢, for the array L and neigh-
borhood system 7, is a subset of L, where

1. ¢ consists of a single pixel, or
2.for (i, j) # (k, 1), (i, j) € c and (L, !) € ¢ implies that
(0 J) €

DEeFINITION 3. A random field X = "{X} defined on
L has Gibbs’ distribution or (equivalently) is a Gibbs ran-
dom field with respect to the neighborhood system 7 if
and only if its joint distribution has the form

PX=x)= %e‘“"",

where

Ulx) = >, V.(x),

el

C = the collection of all cliques of (L, 5),

V.(x) = the potential associated with the clique ¢,

Z=2 e VW, (10)

The hierarchical model proposed by Derin and Elliot
has two levels. The high level Gibbs distribution models
the regions in the image. The low level distributions model
the textural properties of each region. Using this model,
images are segmented based on the Gibbs distribution
parameters via a dynamic programming method and MAP
criterion. It should be noted that this segmentation
method is currently applicable only to noise-free textured
images consisting of known textures and with known high
level Gibbs distribution parameters. An estimation proce-
dure for the distribution parameters of textures is de-
scribed, but it is only applicable to isolated samples of
textures.

Kashyap and Eom (61, 62] examined the long correla-
tion model for detecting texture boundaries. This model
is inspired by fractional Gaussian noise, assuming that
the correlation decreases with the lag £ as k°. Parameter
estimation is performed on horizontal and vertical strips
in the input image, and boundaries are detected using
again a maximum-likelihood method. Small isolated
boundary segments are removed by a boundary tracking
procedure, and the remaining horizontal and vertical
boundaries are combined in one output image.

The importance of the window size over which textures
are examined was demonstrated by Chellappa and Chat-
terjee [63], who compared supervised texture classifica-
tion on the basis of the Gaussian Markov random field
(GMRF) model. Not unexpectedly, misclassification in-
creases for smaller window sizes. Another supervised
segmentation study was performed by Simchony and
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Chellappa [64]. MAP estimation was applied to the param-
eters of the GMRF model, comparing stochastic relax-
ation and the ICM (deterministic iterated conditional
mode) method as introduced by Besag [65]. The stochastic
relaxation method appeared to give better results.

Application of the GMRF model to unsupervised tex-
ture segmentation is examined by Manjunath and Chel-
lappa [66]. An initial segmentation is produced by dividing
the image into nonoverlapping regions, estimating the
GMRF parameters over these regions, then merging re-
gions via clustering based on the normalized Euclidean
distance between their parameter vectors. The parame-
ters are then recomputed over the merged regions, and a
finer segmentation is produced using pixel-based segmen-
tation. Two approaches are examined for this final seg-
mentation: approximation to the MAP estimate of the
region labels and a method which minimizes misclassifica-
tionerror. Similarresults are achieved for either approach.

Two algorithms for segmentation based on two-dimen-
sional noncausal Markov random fields (MRFs) are dis-
cussed by Cohen and Cooper in [67]. The underlying im-
age model is hierarchical, with separate MRF models for
region structure and for the textures within the regions.
The first algorithm uses a pyramid-like approach, assumes
no a priori information about the true region structure, and
seeks a maximum likelihood segmentation. The second is
a relaxation algorithm, which seeks the MAP segmenta-
tion. In both cases, it is assumed that the textures in the
image are from a fixed set of known textures.

The challenging problem of extracting model parame-
ters in an unsupervised manner is addressed by Silverman
and Cooper in [68]. Smooth regions of an image are mod-
eled as polynomials with additive white noise, while tex-
tured regions are modeled as colored Gaussian Markov
random fields with polynomial mean values. These models
are first fit to the image data in nonoverlapping subblocks
of the image. The subblocks are then merged, based on
maximum likelihood or a more general Bayesian criterion.
In the experiments shown, the resulting parameters are
passed to the hierarchical algorithm described in [67],
producing very accurate segmentations for some very dif-
ficult images.

A two-step segmentation procedure was applied in the
supervised case by Fan and Cohen [69] and in the unsuper-
vised case by Cohen and Fan [70]. In the first step, rela-
tively large disjoint windows in an image are examined
for homogeneity or heterogeneity, using the MRF model
in combination with the ML, method. The homogeneous
windows are then combined on the basis of the statistics
computed, which yields a coarse segmentation. In the
second step the pixels in the windows judged to contain
two or more texture classes are classified by means of a
minimum distance criterion which maximizes the likeli-
hood. This supervised classification results in a fine seg-
mentation.
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A similar technique, but incorporating a boundary-
based method, was applied by Cohen et al. [71]. First,
large homogeneous regions are detected by means of a
pseudo-likelihood ratio test, resulting again in a coarse
region-based segmentation. This is followed by a fine
boundary detection by means of ML edge location estima-
tion, thereby employing the class statistics established in
the first step.

The results obtained by most of these methods, the
boundary precision in particular, are quite good and
underline the potential of decision-theoretic approaches
for unsupervised image segmentation, but further tests
with test images containing small regions and a more com-
plex region geometry are required.

4. STRUCTURAL METHODS

Structural texture analysis and segmentation methods
assume that textures are composed of well-defined texture
elements. Since many textures violate this assumption,
structural methods are of limited utility. Nevertheless,
many of these approaches are interesting. In this section,
we will discuss three such methods.

Jayaramamurthy [72] examines regular textures via the
spatial-frequency domain. Given a texture primitive
h(x, y) and placement rule c(x, y), the texture ¢(x, y) can
be defined as

t(x,y) = h{x, y) = c(x, y),
where

C(x'y) = 26(1' T X ¥ —yn)’ (ll)
and x,, and y, are the coordinates of impulse functions (the
centers of the texture primitives located in the associated
regions of the images). In the spatial-frequency domain

T(u,v) =Hu,v) - Clu,v), (12)

so that

C(u,v) = T(u,v) H(u,v)™". (13)
Thus, given a description of a texture primitive h(x, y),
we can derive a deconvolution filter H(«, v)~'. Applying
this filter to an image containing the texture of interest
results in an array of impulses in the region of the image
containing that texture. Each impulse is the center of a
texture primitive.

In [73], Matsuyama, Saburi, and Nagao extract texture
elements from a regular texture by region growing. To do
this, it is assumed that a texture element is composed
of connected pixels with similar gray levels. They then
calculate the vectors between the elements. After estimat-
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ing the locations of missing elements (by closely examin-
ing locations that the vectors predict as potential sites),
the set of vectors is trimmed of redundancy to produce
a relatively compact description of the placement of the
elements. Segmentation is accomplished by moving tem-
plates of each texture element around the boundaries of
their respective regions, as defined by the placement de-
scription.

Finally, Toriwaki, Yashima, and Yokoi {74] describe
the adjacency of texture elements by extending the con-
cepts of Voronoi neighbor, Gabriel neighbor, and relative
neighbor (originally defined only for isolated points in
continuous space) to connected components in a digitized
image. Texture regions are extracted from binary images,
for which the modified digital Voronoi diagram has been
found, by thresholding the mean and variance of tile fea-
tures (such as area). Texture boundaries are detected by
thresholding the average edge length at each node in the
image adjacency graph, under the assumption that edge
lengths will be tonger at the boundaries.

5. SPATIAL/SPATIAL-FREQUENCY TECHNIQUES

So far, we have considered texture segmentation meth-
ods as being either feature-based, model-based, or struc-
tural in nature. Approaches used in texture segmentation
can also be grouped loosely into those based on statistical
methods and those using spatial-frequency or spatial/spa-
tial-frequency methods.

A number of statistical methods have been described
in the previous sections. Spatial-frequency or spatial/spa-
tial-frequency techniques described above include the op-
erator-based and transform domain feature-based meth-
ods. Statistical methods have in the past proven superior
to frequency domain techniques |75, 76]. This is due to the
lack of locality in these early frequency analysis methods.
Joint spatial/spatial-frequency techniques are inherently
local in nature, and have characteristics that compare
favorably with those of the statistical methods.

Joint spatial/spatial-frequency (s/sf) methods are based
on image representations that indicate the frequency con-
tent in localized regions in the spatial domain. As such
these methods overcome the shortcomings of the tradi-
tional Fourier-based techniques. Such methods are able
to achieve high resolution in both the spatial and spatial-
frequency domains and are consistent with recent theories
on human vision. Specifically, there is a large and growing
body of theory postulating local frequency analysis in the
human visual system. It ranges in complexity from three
or four frequency selective channels proposed by Crick,
Marr, and Poggio [77] to a continuous spectrum of fre-
quency analyzers. Such analyzers could be implemented
through the use of 2D Gabor functions [78] and/or
Gaussian-smoothed sectors [79]. Support for a spatial-
frequency interpretation of human vision in predicting
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object recognition has been reported by Ginsburg {80].
Beck et al. [81] have shown correlation between the ability
of humans to segment tripartite textured images and the
outputs of a bank of 2D Gabor filters applied to the images.
The Wigner distribution (WD) is a s/sf representation
which was first introduced (in its 1D form) in quantum
mechanics, to characterize the positions and momenta of
particles. The 2D pseudo-Wigner distribution (PWD), a
discrete approximation of the continuous WD, is

Ny-1 Ny

PW(m,n,p,gq)=4 Z Z hy, n, (k1)
A= ‘1\"2*1 = *'1\"1*1 -
My M, -1
x> > Cu, () fm+r+kn+s+l)
re Myt 1 y= M+ :

Xf* (,n + r = [\vy n+s - [)()*,illﬂkn:“l’*]nlqe“Ql (14)

wherep =0, 21, ..., (N, —D,g=0,=1,...,
* (N, - 1),P=2N, - 1,0 = 2N, — 1, mand n are
integers, and the functions /iy, v, (&, [) and gy, n, (r, 5)
are window functions. The 2D PWD was first used for
texture segmentation by Reed and Wechsler [82]. Their
technique was refined and extended to consider percep-
tual (Gestalt) grouping effects in [83]. This aspect was
further examined in {84]. It was found that in addition to
being useful for texture segmentation, object groupings
consistent with preattentive grouping as observed in hu-
mans could be obtained using the PWD.

A key issue in comparing joint spatial/spatial-frequency
representations, especially for use in segmentation, is the
resolution that can be attained (simultaneously) in the two
domains. The WD has the highest joint resolution of any
suchrepresentation. Although real-valued, it also encodes
phase information. Because the WD and PWD are bilin-
ear, however, troublesome crossterms may occur for
complex textures. Furthermore, as is typical for s/sf rep-
resentations, the PWD yields a set of potential texture
features of very large dimensionality. Selecting between
these features is difficult, in general. The approach taken
in [82-84] was 1o determine the high energy frequency
components in the PWD of the image to be segmented
and to select a small set of these components (“frequency
planes”) as features. For complex images, this approach
may not be suitable.

Turner showed that the Gabor power spectrum captures
important information for a wide variety of textures [85].
Because he could not show all filter results, he decided
to sum the filter responses over different filter subsets.
This solution, which is based on prior texture information,
connects to one of the basic problems related to the use
of Gabor filter sets: their dimensionality. If small changes
in texture frequency and orientation have to be captured,
the number of filters required will be large. Research effort
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therefore seems to concentrate on methods which com-
bine or code the filter results. We will mention a few
approaches.

Jain and Farrokhnia [86] used even-symmetric Gabor
filters, i.e., the real part only, which often results in char-
acteristically striped responses. These responses are input
to a sigmoidal nonlinearity, and the average absolute devi-
ation from the mean in a moving window is computed to
measure the local energy. Filter selection is based on
ranking the integrated power in the frequency bands, ana-
lysing the global power spectrum, and taking the filter
subset for which the summed power is a given fraction
of the total power (95%). Starting with an initial set of 20
filters, 11 to 13 filters were required to segment simple
Brodatz patch images. In the case of a mosaic of 16 tex-
tures, all 20 filters, supplemented by pixel coordinate in-
formation, were required to achieve acceptable results.

Bovik, Clark, and Geisler [87] adopted a simple peak
finding scheme applied to the global power spectrum in
order to select the filters. Feature selection was based on
taking the maximum filter response at any position in the
image. They used only two filters, which is justified by
the extreme simplicity of their test images (containing
only two textures).

A recent development is the computation of higher-
order Gabor features. Considering the local Gabor power
spectrum as a two-dimensional array in log-polar fre-
quency coordinates, du Buf [88] applied a least-squares
approximation using a separable Gaussian with only five
free parameters, thereby reducing the number of features
from 30 to five. The resulting parameters describe the
shape of the local power spectrum and are interpretable
in terms of visually relevant texture attributes (like fine/
coarse, isotropic/anisotropic). Another way to describe
the shape of the local power spectrum is to use central
moments. Real and complex moments are compared by
Bigun and du Buf in (89, 90]. Real moments provide a
*blind” mathematical description, but complex moments
are shown to provide measures of the n-fold symmetry;
i.e., they enable a discrimination between linear, rectan-
gular, and hexagonal geometric structures at different fre-
quency scales.

A fundamental problem of these higher-order Gabor
features is the fact that elongated regions are often de-
tected on texture boundaries if a region-based segmenta-
tion algorithm is applied (Spann and Wilson’s [47] quad-
tree method has been applied in the two studies above).
This effect is due to the sensitivity of some parameters
to the mixture of two power spectra at a boundary. This
effect can be circumvented by a boundary-based approach
in Gabor space. A simple polar-complex boundary detec-
tor, the local spectral dissimilarity estimate, was defined
by du Buf in [91]. The magnitude of this estimate gives
the probability of a nearby boundary, while the argument
gives the direction in which this boundary can be found.
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Subsequent thresholding and region growing gave good
results if the textures were characterized by distinct peaks
in the local power spectrum, even if the textures changed
gradually.

All techniques described above are based exclusively
on the Gabor power spectrum. For highly structured tex-
tures, the phase spectrum carries important information
as well. The extraction of useful local phase information
is hampered by the classical two-dimensional phase un-
wrapping problem. This can be circumvented by comput-
ing the phase gradient [87]. Other techniques, explored
in [92, 93] are based on global or local phase demodula-
tion, as well as the direct use of the discontinuities and
isolated zero points in a phase image. Unfortunately, it
has been shown that bandpass noise, and a small amount
of jitter of texture’s structural elements in particular, leads
to a drastic reduction in the quality of local phase features.

6. CONCLUDING REMARKS

In this paper, we have briefly examined a number of
recent texture segmentation techniques, with a primary
focus on those which have potential for unsupervised
applications. Even with this relatively restricted empha-
sis, however, there is a vast body of literature to be consid-
ered. There are many different techniques in existence,
and each year many new or improved approaches are
reported. To further complicate the situation, these meth-
ods may have distinct application areas; e.g., some model-
based methods are suitable only for stochastic textures.
Other methods, such as those based on the use of certain
transforms or filter banks, may have promise for ad-
dressing both stochastic and structural textures.

A rigorous quantitative comparison of these various
methods presents a demanding and time consuming task.
Among the few existing papers which attempt such com-
parisons (although of a somewhat more limited breadth)
are [76, 6, 94-96]. A fundamental question which must be
addressed is how to compare performance quantitatively.
Typical evaluation criteria may be based on either direct
feature statistics (some measure of class separation) or
on boundary accuracy after segmentation. It was shown
in [96], for example, that the Bhattacharya distance is
not a suitable measure for this application, due to the
nonlinear behavior of the segmentation process. A
weighted combination of boundary accuracy and the num-
ber of true regions identified may be useful. However, this
approach is complicated by the complex region geometry
encountered in most images.

Once a technique for quantitative comparison is deter-
mined, extensive tests are required. Ideally, a standard set
of test images should be used, possibly including synihetic
textures, Brodatz (natural) textures, and textures from
aerial and satellite imagery, with varying geometrical re-
gion complexity. A comprehensive quantitative analysis
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of this scope, despite its undeniable value, has yet to be
undertaken.

3

13,

16.

18.

REFERENCES

. R. M. Haralick, Statistical and structural approaches to texture,
Proc. IEEE 67, 1979, 786-804.

. L. S. Davis, Image texture analysis techniques—A survey, in Digi-
tal Image Processing (J. C. Simon and R. M. Haralick, Eds.), pp.
189--201, Reidel, Dordrecht, 1981.

. L. Van Gool, P. Dewaele, and A. Oosterlinck, Texture analysis anno
1983, Comput. Vision Graphics Image Process. 29, 1985, 336-357.

. R. M. Haralick, Image segmentation survey. in Fundamentals in
Computer Vision (O. D. Faugeras, Ed.), pp. 209-224, Cambridge
Univ. Press, Cambridge, 1983.

. R. M. Haralick and L. M. Shapiro, Image segmentation techniques,
Comput. Vision Graphics Image Process. 29, 1985, 100-132.

. K. I. Laws, Textured Image Segmentation, Technical Report
USCIPI Report 940, Dept. of Elec. Eng.. Image Processing Institute,
Univ. of Southern California, Los Angeles, January 1980.

. R. W. Conners, M. M. Trivedi, and C. A. Harlow, Segmentation

of a high-resolution urban scene using texture operators, Comput.
Vision Graphics Image Process. 25, 1984, 273-310.

. R. M. Haralick, K. Shanmugam, and }. Dinstein, Textural features

for image classification, IEEE Trans. Systems Man Cybernet. 3(1),
1973, 610-621.

. L. Dinstein, A. C. Fong, L.. M. Ni, and K. Y. Wong, Fast discrimina-
tion between homogeneous and textured regions, in Proceedings,
7th International Conference on Pattern Recognition, Montreal,
Canada, July 30-August 2, 1984, pp. 361-363.

. M. Unser, Local linear transforms for texture measurements, Signal

Process. 11, 1986, 61-79.

. R. Wang, A. R. Hanson, and E. M. Riseman, Texture analysis based

on local standard deviation of intensity, /IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Miami
Beach, Florida, June 2226, 1986, pp. 482-488.

. G. H. Granlund, Description of texture using the general operator

approach, in Proceedings, 5th International Conference on Pattern

Recognition, Miami Beach, Florida, December 1-4, 1980, pp.

776~779.

D. Wermser and N. Lissel, Comparison of algorithms for unsuper-

vised segmentation of images by the use of texture information, in

Proceedings of the 2nd European Signal Processing Conference,

Erlangen, West Germany, September 12-16, 1983, pp. 287-290.

. L. W. Abele, Feature selection by space invariant comparison with
applications to the segmentation of textured pictures, in Proceedings
of the 5th International Conference on Pattern Recognition, Miami
Beach, Florida, December 1-4, 1980, pp. 535-539.

. P. C. Chen and T. Pavlidis, Segmentation by texture using a co-
occurence matrix and a split-and-merge algorithm, Comput. Graph-
ics Image Process. 10, 1979, 172~182.

H. Knutsson and G. H. Granlund. Texture analysis using two-
dimensional quadrature filters, in IEEE Workshop CAPAIDM, Pas-
adena, CA, 1983, pp. 206-213.

. J. Bigun, Frequency and orientation selective texture measures
using linear symmetry and Laplacian pyramid, in Proceedings Vi-
sual Communications and Image Processing, Lausanne, Switzer-
land, October 2-4, 1990, pp. 1319-1331.

H. Tamura, S. Mori, and T. Yamawaki, Texture features corre-
sponding to visual perception, IEEE Trans. Systems Man Cybernet.
8, 1978, 460--473.

19.

30.

33,

34,

3s.

36.

REED AND DU BUF

P. A. Dondes and A. Rosenfeld, Pixel classification based on gray
level and local “busyness," IEEE Trans. Pattern Anal. Mach. Intell.
4(1), 1982, 79-84.

. P. de Souza, Edge detection using sliding statistical tests, Comput.

Vision Graphics Image Process. 23, 1983, 1-14.

. H. Y. Lee, Extraction of textured regions in aerial imagery, in /mage

Understanding, Proceedings, Workshop, Arlington, VA, June 23,
1983 (L.. S. Baumann, Ed.), pp. 298-303, Science Appl.. McLean,
VA, 1983.

. G. E. Lowitz, Cana local histogram really map texture information?,

Pattern Recognit. 16(2), 1983, 141-147.

. D.B.C. Shu, Y. N. Sun, C. C. Li, and J. F. Mancuso, Run length

based image segmentation schemes, in Proceedings, IEEE Com-
puter Society Conference on Computer Vision und Pattern Recogni-
tion, Washington, DC, June 19-23, 1983, pp. 154-156.

. M. Sato and M. Ogata, Texture analysis by the self-organization

method, in Proceedings, 7th International Conference on Pattern
Recognition, Montreal, Canada, Julv 30-August 2, 1984, pp.
1213-1215.

. G. Y. Xu and K. S. Fu, Natural scene segmentation based on

multiple threshold and texture measurement, in Proceedings, 7th
International Conference on Patiern Recognition, Montreal, Can-
ada, July 30-August 2, 1984, pp. 1111-1113.

. M. E. Jernigan and F. D'Astous, Entropy-based texture analysis

in the spatial frequency domain, IEEE Trans. Pattern Anal. Mach.
Intell. 6(2), 1984, 237-243.

. F. D'Astous and M. E. Jernigan, Texture discrimination based on

detailed measures of the power spectrum, in Proceedings, 7th Inter-
national Conference on Pattern Recognition, Montreal, Canada,
July 30-Augusr 2, 1984, pp. 83-86.

. H. Wechsler, Taxonomy and segmentation of textured images, in

Proceedings, 5th International Conference on Puttern Recognition,
Miami Beach, Floridu, December 1-4, 1980, pp. 532-534.

. D. Barba and J. Ronsin, New method in texture analysis in the

context of image segmentation, in Proceedings, 2nd European Sig-
nal Processing Conference, Erlungen, West Germany, September
12-16, 1983, pp. 283-286.

B. Ashjari, Computer detection and identification of a visually indis-
cernable texture mixture, in Proceedings, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San
Francisco, CA, June 19-23, 1985, pp. 172-174.

. B. P. Kjell and C. R. Dyer, Segmentation of textured images. in

Proceedings, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Miami Beach, Florida, June 22-26,
1986, pp. 476-481.

. L. S. Davis and A. Mitiche, Mites: A model-driven, iterative texture

segmentation algorithm, Comput. Graphics Image Process. 19,
1982, 95-110.

R. Lumia, R. M. Haralick, O. Zuniga, L. Shapiro, T. C. Pong,
and F. P. Wang, Texture analysis of aerial photographs, Pattern
Recognit. 16(1), 1983, 39-46.

M. Pietikainen and A. Rosenfeld, Image segmentation by texture
using pyramid node linking, IEEE Trans. Systems Man Cybernet.
11(12), 1981, 822-825.

H. M. Raafat and A. K. C. Wong, Texture information directed
algorithm for biological image segmentation and classification, in
Proceedings, International Conference on Cybernetics and Society,
Cambridge, Massachusetts, October 8-10, 1980, pp. 1003-1008.
H. M. Raafat and A. K. C. Wong, Texture-based image segmenta-
tion, in Proceedings, IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Miami Beach, Florida, June
22-26, 1986, pp. 469-475.



38.

39.

40.

41.

44,

45.

46.

47.

48.

49.

tn
[}

54.

57

TEXTURE SEGMENTATION AND FEATURE EXTRACTION

. P. W. Verbeek and D. J. de Jong, Edge preserving texture analysis,
in Proceedings, 7th International Conference on Pattern Recogni-
tion, Montreal, Canada, July 30-August 2, 1984, pp. 1030~1032.
M. F. Doherty, C. M. Bjorklund. and M. T. Noga. Split-merge-
merge: An enhanced segmentation capability, in Proceedings, IEFE
Computer Society Conference on Computer Vision and Pattern
Recognition, Miami Beach, Florida, June 22-26, 1986, pp. 325-330.
T. R. Reed, H. Wechsler, and M. Werman, Texture segmentation
using a diffusion region growing technique, Pattern Recognit. 23(9),
1990, 953-960.

S. Grinaker, Edge based segmentation and texture separation, in

Proceedings, 5th International Conference on Pattern Recognition,

Miami Beach, Florida, December 1-4, 1980, pp. 554-557.

D. Wermser, Unsupervised segmentation by use of a texture gradi-

ent, in Proceedings, 7th International Conference on Pattern Recog-

nition, Montreal, Canada, July 30-August 2, 1984, pp. 1114—1116.

. A. M. Nazif and M. D. Levine. Low level image segmentation: An
expert system, [EEE Trans. Pattern Anal. Mach. Intell. 6(5), 1984,
555-577.

. R. Ohlander, Analysis of Natural Scenes, Ph.D. thesis, Carne-

gie—Mellon University, Pittsburgh, PA, April 1975.

S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture

processing, Comput. Graphics Image Process. 4, 1975, 104-119,

M. D. Levine and A. M. Nazif, Dynamic measurement of computer

generated image segmentations, JEEE Trans. Puttern Anal. Mach.

Intell. 7(2) 1985, 155-164.

T. Pavlidis, Comments on “low level segmentation: an expert sys-

tem,” IEEFE Trans. Pattern Anal. Mach. Intell. 8(5), 1986, 675-676.

M. Spann and R. Wilson, A quad-tree approach to image segmenta-

tion which combines statistical and spatial information, Pattern

Recognit. 18(3/4), 1985, 257-269.

R. L. Kashyap, Image models, in Handbook of Pattern Recognition

and Image Processing (T. Y. Young and K. S. Fu, Ed.) Chap. 12,

pp. 281-310, Academic Press, New York, 1986.

A. P. Pentland, Fractal-based description of natural scenes, IEEE

Trans. Pattern Anal. Mach. Intell. 6(6), 1984, 661-674.

. G. G. Medioni and Y. Yasumoto. A note on using the fractal dimen-
sion for segmentation, in IEEE Computer Vision Workshop, Annap-
olis, MD, 1984, pp. 25-30.

. S. Peleg, J. Naor, R. Hartley, and D. Avnir, Multiple resolution
texture analysis and classification, JEEE Trans. Puattern Anal.
Mach. Intell. 6, 1984, 518523

. P. T. Nguyen and J. Quinqueton, Space filling curves and texture
analysis, in Proceedings, 6th Int. Conf. on Pattern Recognition,
Munich, Germany, 1982, pp. 282-285.

. A. Khotanzad and A. Bouarfa, A parallel, non-parametric, non-

iterative clustering algorithm with application to image segmenta-

tion. in Proceedings, 22nd Asilomar Conference on Signals, Sys-
tems, and Computers, IEEE Computer Society, Pacific Grove, CA,

October 31-November 2, 1988 (R. R. Chen, Ed.), pp. 305-309.

A. Khotanzad and J. Chen, Unsupervised segmentation of textured

images by edge detection in muitidimensional features, JEEE Trans.

Pattern Anal. Mach. Intell. 11(4). 1989, 414-421.

. N. K. Huang, Markov model for image segmentation, in Proceed-
ings, 22nd Allerton Conference on Communication, Control, and
Computing, Montecello, IL, October 3-5, 1984, pp. 775-781.

. N. K. Huang and X. Gong, Textured image recognition using the
hidden Markov model. in Proceedings of the International Confer-
ence on Acoustics, Speech and Signal Processing-88, New York,
NY, April 11-14, 1988, pp. 1128-1131.

. X. Gong and N. K. Huang, Texture segmentation using iterative

8.

61.

63.

64.

66.

67.

68.

69.

70.

71.

72.

371

estimate of energy states, in Proceedings, 9th International Confer-
ence on Pattern Recognition, Rome, Italy, November 14-17, 1988,
pp. 51-55.

J. E. Bevington and R. M. Mersereau, A random field model based
algorithm for textured image segmentation, in Proceedings, 3rd
European Signal Processing Conference, The Hague, The Nether-
lands, September 2-5, 1986, pp. 909-912.

. §. Geman and D. Geman, Stochastic relaxation, Gibbs distribu-

tions, and Bayesian restoration of images, IEEE Trans. Pattern
Anal. Mach. Intell. 6(6), 1984, 721-741.

. H. Derin and H. Elliot, Modeling and segmentation of noisy and

textured images using Gibbs random fields, /EEE Trans. Patiern
Anal. Mach. Intell. 9(1), 1987, 39-55.

R. L. Kashyap and K. Eom, Texture boundary detection based
on long correlation model, in Proceedings, 23rd Allerton Conf. on
Communication, Control, and Computing, Monticello, Hlinois, Oc-
tober 24, 1985, pp. 314-323,

. R. L. Kashyap and K. B. Eom, Texture boundary detection based

on the long correlation model, IEEE Truns. Pattern Anal. Mach.
Intell. 11, 1989, 58-67.

R. Chellappa and S. Chatterjee. Classification of textures using
Gaussian Markov random fields, /EEE Trans. Acoust. Speech Sig-
nal Process. 33(4), 1985, 959-963.

T. Simchony and R. Chellappa, Stochastic and deterministic algo-
rithms for MAP texture segmentation, in Proceedings, IEEE Int.
Conf. on Acoustics, Speech, and Signul Processing, New York,
NY, April 11-14, 1988, pp. 1120-1123.

. J. Besag, On the statistical analysis of dirty pictures, J. R. Statist.

Soc. B 48, 1986, 259-302.

B. S. Manjunath and R. Chellappa, Unsupervised texture segmenta-
tion using Markov random field models. IEEE Trans. Pattern Anal.
Muach. Intell. 13(5), 1991, 478-482.

F. S. Cohen and D. B. Cooper, Simple parallel hierarchical and
relaxation algorithms for segmenting noncausal Markovian random
fields, IEEE Trans. Pattern Anal. Mach. Intell. 92), 1987, 195-219,

J. Silverman and D. Cooper, Bayesian clustering for unsupervised
estimation of surfaces and texture models, IEEE Trans. Puttern
Anal. Mach. Intell. 10(4), 1988, 482-495,

Z.Fanand F. S. Cohen, Textured image segmentation as a multiple
hypothesis test, JEEE Trans. Circuits Systems 35(6), 1988, 691-702.
F.S. Cohenand Z. Fan, Maximum likelihood unsupervised textured
image segmentation, Computer Vision Graphics Image Process.
Graph. Models Image Process. 54(3), 1992, 239-251.

F. Cohen, Y. Liu, and Z. Fan, Detection and localization of edges
in textured images modeled by gaussian markov random fields, in
13th GRETSI Symposium on Signal and Image Processing, Juans
les Pins, France, September 16-20, 1991, pp. 1161-1164.

S. N. Jayaramamurthy, Texture discrimination using digital decon-
volution filters, in Proceedings. Sth International Conference on
Pattern Recognition, Miami Beach, Florida, December 1-4, 1980,
pp. 1184-1186.

. T. Matsuyama, K. Saburi, and M. Nagao. A structural analyzer for

regularly arranged textures, Comput. Graphics Image Process. 18,
1982, 259-278.

. J. Toriwaki, Y. Yashima, and S. Yokoi. Adjacency graphs on a

digitized figure set and their applications to texture analysis, in
Proceedings, 7th International Conference on Pattern Recognition,
Montreal, Canada, July 30-August 2, 1984, pp. 1216-1218.

5. R. W. Connors and C. A. Harlow, A theoretical comparison of

texture algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 2(3),
1980, 204-222.



372

76.

77.

78.

79.

80.

81.

83.

84.

86.

REED AND DU BUF

J. S. Weszka, C. R. Dyer, and A. Rosenfeld, A comparison study
of texture measures for terrain classification, IEEE Trans. Systems
Man Cybernet. 6(4), 1976, 269-286.

F. H. C. Crick, D. C. Marr, and T. Poggio, An Information Pro-
cessing Approach to Understanding the Visual Cortex, A. 1. Memo
557, MIT, April 1980.

J. G. Daugman, Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual
cortical filters, J. Opt. Soc. Am. A 2(7), 1985, 1160-1169.

A. B. Watson, The cortex transform: Rapid computation of simu-
lated neural images, Comput. Vision Graphics Image Process. 39,
1987, 311-327.

A. P. Ginsburg, Specifying relevant spatial information for image
evaluation and display design: An explanation of how we see certain
objects, Proc. SID 21(3), 1980, 219-227.

J. Beck, A. Sutter, and R. lvry, Spatial frequency channels and
perceptual grouping in texture segregation, Comput. Vision Graph-
ics Image Process. 37, 1987, 299-325.

. T. R. Reed and H. Wechsler, Tracking of non-stationarities for

texture fields, Signal Process. 14(1), 1988, 95-102.

T. R. Reed and H. Wechsler, Segmentation of textured images and
Gestalt organization using spatial/spatial-frequency representa-
tions, IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 1990, 1-12.
T. R. Reed and H. Wechsler, Spatial/spatial-frequency representa-

tions for image segmentation and grouping, Inage Vision Compul.
9(3), 1991, 175-193.

. M. R. Turner, Texture discrimination by Gabor functions, Biol.

Cybernet. 58, 1986, 71-82.
A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation
using Gabor filters, Puttern Recognit. 24(12). 1991, 1167-1186.

87.

88.

89.

90.

91.

92.

93.

94.

96.

A. C. Bovik, M. Clark, and W. S. Geisler, Multichannel texture
analysis using localized spatial filters., IEEE Trans. Pattern Anal.
Mach. Intell. 12, 1990, 55-73.
J. M. H. du Buf, Abstract processes in texture discrimination, Spa-
tial Vision 6(3), 1992, 221-242.

J. Bigun and J. M. H. du Buf, Texture segmentation by real and
complex moments of the Gabor power spectrum, in Progress in
Image Analysis and Processing 1l (V. Cantoni et al., Eds.), pp.
191-198, World Scientific, Singapore, 1992.

J. Bigun and J. M. H. du Buf, N-folded symmetries by complex
moments in Gabor space and their application to texture segmenta-
tion, IEEE Trans. Pattern Anal. Mach. Intell., in press.

J. M. H. du Buf, Towards unsupervised texture segmentation using
Gabor spectral decomposition, in Progress in Image Analysis and
Processing (V. Cantoni, L. P. Cordella, S. Levialdi, and G. Sanniti
di Baja, Ed.), pp. 65-72, World Scientific, Singapore. 1990.

J. M. H. du Buf, Gabor phase in texture discrimination. Signal
Process. 21, 1990, 221-240.

J. M. H. du Buf and P. Heitkamper, Texture features based on
Gabor phase, Signal Process. 23, 1991, 227-244.

C. H. Chen, On the statistical image segmentation techniques, in
Proceedings, IEEE Computer Society Conference on Pattern Rec-
ognition and Image Processing, Dallas, Texas, August 3-5, 1981,
pp. 262-266.

5. M. Pietikainen, lmmage Texture Analysis and Segmentation, Ph.D.

thesis, University of Oulu, Finland, 1982.

J. M. H. du Buf. M. Kardan, and M. Spann, Texture feature perfor-
mance for image segmentation, Pattern Recognit. 23(3/4), 1990,
291-309.



