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Abstract--This paper studies different methods proposed so far for segmentation evaluation. Most methods 
can be classified into three groups: the analytical, the empirical goodness and the empirical discrepancy 
groups. Each group has its own characteristics. After a brief description of each method in every group, some 
comparative discussions about different method groups are first carried out. An experimental comparison for 
some empirical (goodness and discrepancy) methods commonly used is then performed to provide a rank of 
their evaluation abilities. In addition, some special methods are also discussed. This study is helpful for an 
appropriate use of existing evaluation methods and for improving their performance as well as for 
systematically designing new evalution methods. Copyright © 1996 Pattern Recognition Society. Published 
by Elsevier Science Ltd. 
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I. I N T R O D U C T I O N  

Image analysis usually refers to processing of images 
by computer with the goal of finding what objects are 
presented in the image. "~ Image segmentation is one of 
the most critical tasks in automatic image analysis. It 
consists of subdividing an image into its constituent 
parts and extracting these parts of interest (objects). 
A great variety of segmentation algorithms have 
been developed in the last few decades and this 
number continually increases each yearJ 2~ Several 
survey papers for segmenation techniques have been 
presented in the literatureJ 3-m Since none of the 
proposed segmentation algorithms are generally ap- 
plicable to all images and different algorithms are 
not equally suitable for a particular application, 19~ the 
performance evaluation of segmentation algorithms is 
indispensable and thus an important subject in the 
study of segmentation. More generally, performance 
evaluation is critical for all computer vision algorithms 
from research to application, "°> while image seg- 
mentation is an essential and important step of low- 
level vision. 

While development of segmentation algorithms has 
attracted significant attention, relatively fewer efforts 
have been spent on their evaluation, although many 
newly developed algorithms are (most often subjec- 
tively) compared with some particular algorithms with 
few particular images. Moreover, most efforts spent on 
evaluation are just for designing new evaluation 

*This research has been supported under Grants SCE- 
F 1994660 and SCE-TM 199416. 

methods and only very few authors have attempted to 
characterize the different evaluation methods existed J11~ 
The present paper will review different existing methods 
for segmentation evaluation, as well as discuss and com- 
pare their applicability, advantages and limitations. 

Segmentation algorithms can be evaluated analyti- 
cally or empirically, so the evaluation methods can be 
divided into two categories: the analytical methods 
and the empirical methods. The analytical methods 
directly examine and assess the segmentation algo- 
rithms themselves by analysing their principles and 
properties. The empirical methods indirectly judge the 
segmentation alogrithms by applying them to test 
images and measuring the quality of segmentation 
results. Various empirical methods have been pro- 
posed. Most of them can still be classified into two 
types: goodness methods and discrepancy methods. In 
the first category some desirable properties of seg- 
mented images, often established according to human 
intuition, are measured by "goodness" parameters. 
The performances of segmentation algorithms under 
investigation are judged by the values of goodness 
measures. In the second category some references that 
present the ideal or expected segmentation results are 
first found. The actual segmentation results obtained 
by applying a segmentation algorithm, sometimes pre- 
ceded by preprocessing and/or followed by post- 
processing processes, are compared with the references 
by counting their differences. The performances of 
segmentation algorithms under investigation are then 
assessed according to the discrepancy measures. Fol- 
lowing this discussion, three groups of methods can be 
distinguished. 
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Fig. 1. General scheme for segmentation and its evaluation. 

The above classification for evaluation methods can 
be seen more clearly in Fig. 1, where a general scheme 
for segmentation and its evaluation is presented. The 
input image obtained by sensing is first (optionally) 
preprocessed to produce the segmenting image for the 
segmentation (in its strict sense) procedure. The seg- 
mented image can then be (optionally) postprocessed 
to produce the output image. Further processes, such 
as feature extraction and measurement, will be based 
on these output images. In Fig. 1 the part enclosed by 
the rounded square with thin line corresponds to the 
segmentation procedure in its narrow-minded sense, 
while the part enclosed by the rounded square with 
point line corresponds to the segmentation procedure 
in its general form. The black arrows indicate the 
processing directions of segmentation. The access 
points for the three groups of evaluation methods are 
depicted with gray arrows in Fig. 1. Note that there is 
an or condition between both arrows leading to the 
boxes containing "segmented image" and "output im- 
age" both from the "empirical goodness method" and 
"empirical discrepancy method". Moreover, there is an 
and condition between the arrow from "empirical dis- 
crepancy method" to "reference image" and the two 
(or) arrows going to "segmented image" and "output 
image". The analysis methods treat the algorithms 
for segmentation directly. The empirical goodness 
methods judge the segmented image or output image 
so as to indirectly assess the performance of algo- 
rithms. For applying empirical discrepancy methods, 
the reference image is necessary. It can be obtained 
manually or automatically from the input image or 
segmenting image. The empirical discrepancy methods 

compare the segmented image or output image to the 
reference image and use their difference to assess the 
performance of algorithms, 

Each method group has its own particularities so as 
to be distinguished from other groups. Each method 
has also its own characteristics so as to be identified. In 
the following three sections a brief description of the 
methods belonging to the three groups will be pro- 
vided. They are arranged according to the above 
method classification. The justification of the classifi- 
cation of methods into analytical and empirical ones as 
well as the separation of empirical methods into good- 
ness and discrepancy groups will be made clear by the 
comparative discussion of different method groups in 
Section 5. In addition, an experimental comparison of 
several commonly used empirical methods will be 
carried out in Section 6. These representative methods 
are compared according to their ability and behavior 
in evaluating the same series of segmented images. 
A rank among them is then obtained. In Section 
7 several special evaluation methods that do not fall 
clearly into the above three groups and some common 
problems for most existing evaluation methods are 
discussed. Finally, some concluding remarks are given 
in Section 8. 

2. A N A L Y T I C A L  M E T H O D S  

The analytical methods directly treat the segmenta- 
tion algorithms themselves by considering the prin- 
ciples, requirements, utilities, complexity, etc., of 
algorithms. Using the analytical methods to evaluate 
segmentation algorithms avoids the concrete imple- 
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mentation of these algorithms and the results could be 
exempted from the influence caused by the arrange- 
ment of evaluation experiments as the empirical 
methods do. However, not all properties of segmenta- 
tion algorithms can be obtained by analytical studies. 
The difficulty, up to now, is the lack of general theory 
for image segmentation. ~12) Although some initial at- 
tempts in the direction of a unified theory about 
segmentation were reported, for example, in the rela- 
tion of image models and segmentation, ~13~ no formal 
solution has been found yet. Until now, the analytical 
methods work only with some particular models or 
desirable properties of algorithms. 

One analytical method has been proposed by 
Liedtke et al/~ *) They presented an evaluation study of 
several algorithms by taking into account the type and 
amount of a priori knowledge that has been incorpor- 
ated into different segmentation algorithms. Such 
knowledge for certain segmentation algorithms is 
ready to be analysed, which is mainly determined by 
the nature of the algorithms. However, such knowl- 
edge is usually heuristic information and different 
types of a priori knowledge are hardly comparable. 
The information provided by this method is then 
rough and qualitative. On the other side, not only "the 
amount of relevant a priori knowledge that can be 
incorporated into the segmentation algorithm is deci- 
sive for the reliability of the segmentation 
methods", "4) but it is also very important for the 
performance of the algorithm how such a priori knowl- 
edge has been incorporated into the algorithm." 5) 

The analytical methods can in certain cases provide 
quantitative information about segmentation algo- 
rithms. Abdou and Pratt "6) analysed the performance 
of several edge detectors with a detection probability 
ratio in a statistical design procedure. Let T be the 
edge decision threshold, Pc the probability of correct 
detection and PI  the probability of false detection: 

oc 

Pc = S p(tledge)dt (1) 
T 

oc 

P I = ~ P(tln°-edge) dt (2) 
T 

the plot of Pc versus PI  in terms of T can provide 
a performance index of detectors. Such an index 
should be useful for evaluating the segmentation algo- 
rithms based on edge detection [for example, see refer- 
ence (9)]. In contrast to the a priori knowledge 
discussed above, this index can be precisely defined 
and calculated for simple edge detectors3 ~61 

Other properties of segmentation algorithms that 
can be obtained by analysis include the processing 
strategy, processing complexity and efficiency, and 
segmentation resolution of algorithm. 1~7'am These 
properties could be helpful for selecting suitable algo- 
rithms in particular applications. For example, the 
processing strategy of segmentation algorithms can be 
parallel, sequential, iterative or mixed. The parallel 
algorithms are suitable for fast implementation. How- 

ever, for images that are severely contaminated by 
noise, the performance of parallel algorithms is often 
poorer than that of sequential methods. ~19) 

3. E M P I R I C A L  G O O D N E S S  M E T H O D S  

The methods in this group evaluate the performance 
of algorithms by judging the quality of segmented 
images. To carry out this work certain quality 
measures should be defined. Most measures are estab- 
lished according to human intuition about what condi- 
tions should be satisfied by an "ideal" segmentation 
(for example, a pretty picture). In other words, the 
quality of segmented images is assessed by some 
"goodness" measures. These methods characterize dif- 
ferent segmentation algorithms by simply computing 
the goodness measures based on the segmented image 
without the a priori knowledge of the correct segmen- 
tation. {1°~ The application of these evaluation methods 
exempts the requirement for references, so that they 
can be used for on-Jine evaluation. Different types of 
goodness measures have been proposed. 

3.1. Goodness based on intra-region uniformity 

Weszka and Rosenfeld proposed a threshold evalu- 
ation method that uses a busyness measure as the 
criterion to judge thresholded images, t21~ To apply the 
busyness measure they assume that the images are 
composed of objects and background of compact 
shapes and not strongly textured. Under these as- 
sumptions, the thresholded images should look 
smooth rather than busy. In practice, they compute the 
amount of busyness for a thresholded image by using 
the gray-level co-occurrence matrix of the image. ~z2~ 
That is, those entries of the co-occurrence matrix 
representing the percentage of object-background ad- 
jacencies are summarized. The lower the busyness, the 
smoother the thresholded images and the better the 
segmentation result. In consequence, the better the 
segmentation results, the higher the performance of 
applied algorithms. 

Similar to Weszka and Rosenfeld, Nazif and Levine 
also believe that an adequate segmentation should 
produce images having higher intra-region uniformity, 
which is related to the similarity of property about 
region elementJ TM The uniformity of a feature over 
a region can be computed on the basis of the variance 
of that feature evaluated at every pixel belonging to 
that region. 12°1 In partictdar, for a gray-level image 
f ( x ,  y), let R i be ith segmented region, A i be the area of 
R i, then the gray-level uniformity measure (GU) of 
f ( x ,  y) is: 

G U = ~  2 f ( x , y ) - - ~  ~ f ( y )  (3) 
• ( x , y ) e R i  . " ( x , y ) e R i  

A normalized uniformity measure (NU) has been 
proposed by Sahoo et al.: ~8~ 

N U  = 1 - GU/C, (4) 
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where C is a normalization factor. Generally, other 
features can also be used. 

The intra-region uniformity, as a desired property of 
segmented images, can also be measured by the higher- 
order local entropy based on information theory. 1241 
Pal and Pal proposed a thresholding method that 
maximizes the second-order local entropy of the object 
and background regions, t24~ This entropy H 2, for an 
assumed threshold T, is computed by: 

T T 

H2(T) = -- Z Z pijlnpij, 
i = 0 j = 0  

where p~j is the probability of occurrence of the pair 
(i, j) within the object/background. This entropy is also 
used by Pal and Bhandari t25~ as a measure of the 
region homogeneity in segmented images for the per- 
formance evaluation of segmentation results. 

3.2. Goodness based on inter-region contrast 

Except for intra-region uniformity, Levine and 
Nazif also believe that an adequate segmentation 
should in addition produce images having higher con- 
trast across adjacent regions, t2°~ In a simple case that 
a gray-level image f(x, y) consists of the object with 
average gray-level fo and the background with aver- 
age gray-level fb, a gray-level contrast measure (GC) 
can be computed by: 

GC IL -fbl 
fo+fb" 

Note that the similar idea has been already used by 
O t s u  {26) for evaluating the "goodness" of threshold 
values in the development of a histogram based thresh- 
old selection algorithm. By maximizing the between 
region variance, a threshold value producing the high- 
est region separability can be obtained. 

4. E M P I R I C A L  D I S C R E P A N C Y  M E T H O D S  

In practical segmentation applications, some errors 
in the segmented image can be tolerated. On the other 
side, if the segmenting image is complex and the algo- 
rithm used is fully automatic, the error is inevitable, t271 
The disparity between an actually segmented image 
and a correctly/ideally segmented image (reference 
image) that is the best expected result can be used to 
assess the performance of algorithms. Both (actually 
segmented and reference) images are obtained from the 

(5) same input image. The reference image is sometimes 
called gold standard [e.g. reference (27)]. In cases that 
the test images are synthetic images, the reference 
images can be simply obtained from image generation 
procedure, ~2s) while in cases that the test images are 
real images, manually (with the help of visual inspec- 
tion) segmented images are often used as references. 
The methods in this group take into account the 
difference (measured by various discrepancy par- 
ameters) between the actually segmented and reference 
images, i.e. these methods try to determine how far the 
actually segmented image is from the reference image. 
A higher value of the discrepancy measure would 
imply a bigger error in the actually segmented image 
relative to the reference image and this indicates the 
lower performance of applied segmentation algo- 
rithms. 

In image encoding, the disparity between the orig- 
inal image and the decoded image has often been used 
to objectively assess the performance of coding algo- 

(6) rithms. A commonly used discrepancy measure is the 
mean-square signal-to-noise ratio [see, e.g. reference 
(29)]. However, in contrast to image encoding, image 
segmentation is a process that changes the image 
unit. {x°J In other words, image encoding is an image 
processing process, while image segmentation is an 
image analysis process, in which the input and output 
are different matters. So many other discrepancy 
measures have been proposed and used. 

3.3. Goodness based on region shape 

Not only the gray level, but also the form of a seg- 
mented region can be taken into account to design 
goodness measures for satisfying the human intuition 
on an "ideal" segmentation. Sahoo et al. ts~ proposed 
a shape measure (SM) for evaluating several threshold 
selection algorithms, which is defined as: 

SM= 1 { ~ Sgn[f(x,y) 
(x,y) 

- fNtx.y~]g(x,y)Sgn[f(x,y)-- r] ). (71 

where fN{~.y~ is the average gray value of the neighbor- 
hood N(x, y) of a pixel located at (x, y) with gray level 
f(x,y) and gradient value g(x, y), T is the threshold 
value selected for segmentation, C is a normalization 
factor and Sgn(.) is the unit step function. 

4.1. Discrepancy based on the number of 
mis-segmented pixels 

Considering image segmentation as a pixel classifi- 
cation process, the percentage of pixel mis-classified is 
the discrepancy measure that comes most readily to 
mindJ a°> Suppose an image consist of N pixel classes, 
a confusion matrix C of dimension N can be construc- 
ted, where each entry C~j represents the number of class 
j pixels classified as class i by the segmentation algo- 
rithms. Two error types can thus be computed for each 
pixel class k, which can both be used to describe the 
class-by-class performance of these algorithmsJ a°~ The 
multi-class Type I error is defined as: 

i=1  i=1  

where the numerator represents the number of pixels 
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of class k not classified as k and the denominator is the 
total number of pixels of class k. 

The multi-class Type II error is defined as: 

i ~ l  

Cij - Cik , (9) 
i j = l  i = t  

where the numerator represents the number of pixels 
of other classes called class k. The denominator is the 
total number of pixels of other classes. In equations (8) 
and (9), each pixel class is weighted equally. 

Weszka and Rosenfeld ~2 ~ used a similar approach 
to measure the difference between an "ideal" (correct) 
image and a threshokted image. Under the assumption 
that the image consists of objects and background each 
having a specified distribution of gray level, they com- 
pute, for any given threshold value, the probability of 
misclassifying an object pixel as background, or vide 
versa. This probability in turn provides an index of 
segmentation results, which can be used for evaluating 
threshold selection algorithms. In their work, such 
a probability is minimized in the process of selecting an 
appropriate threshold. 

Recently, a discrepancy measure based on the 
same principal has been defined. It is termed the 
probability of error (PE). For a two-class problem PE 
can be calculated by: 13~) 

PE = P(O) x P(BIO) + P(B) × P(OIB), (10) 

where P(BIO) is the probability of error in classifying 
objects as background, P(OJB) is the probability of 
error in classifying background as objects, P(O) and 
P(B) are a priori probabilities of objects and back- 
ground in images. For multi-class problem, a general 
definition of PE can be found in reference (32). 

The idea of computing discrepancy based on the 
number of error pixels is also reflected in some edge- 
detection evaluation schemes.' For  example, a maxi- 
mum likelihood estimate of the fraction of correctly 
detected edges has been used by Fram and Deutsch. 1331 
Such a measure could be readily extended to measure 
what fractions of the segmented object pixels were 
actually object pixels so as to be applied for segmenta- 
tion evaluation. 

4.2. Discrepancy based on the position of 
mis-segmented pixels 

The discrepancy measures based only on the num- 
ber of mis-segmented pixels do not take into account 
the spatial information of these pixels. It is thus poss- 
ible that image segmented differently can have the 
same discrepancy measure values if these measures 
only count the number of mis-segmented pixels. To 
address this problem, some discrepancy measures 
based on pixel position error have been proposed. 

One way is to use the distance between the mis- 
segmented pixel and the nearest pixel that actually 

belongs to the mis-segmented class. Let N be the 
number of mis-segmented pixels for the whole image 
and d(i) be a distance metric from the ith mis- 
segmented pixel and the nearest pixel that actually 
is of the mis-classified class; a discrepancy measure 
(D) based on this distance is defined by Yasnoff et al. 
as:(3o) 

N 

O = Z d2ti), l11) 
i = 1  

In equation (11), each distance is squared. This 
measure is further normalized (ND), to exempt the 
influence of image size and to give it a suitable value 
range by: ta°) 

NO = 1 O0 × K / A ,  (12) 

where A is the total number of pixels in the image (i.e. 
a measure of area). 

In the evaluation of edge detectors a commonly used 
discrepancy measure is the mean-square distance fig- 
ure of merit (FOM) proposed by Pratt: t34~ 

FOM = - -  (13) 
N 1 ÷ p × d2(i) ' 

i = 1  

where N =max(Ni,  Na) and N i and N a denote the 
number of ideal and actual by detected edge pixels, 
respectively, d(i) denotes the distance between the ith 
detected edge pixel and its correct position and p is 
a scaling parameter. This measure has been shown 
insensitive to correlation in false alarms and missed 
edges, t35) Strasters and Gerbrands used FOM for 
evaluating segmentation results with N denoting the 
number of pixel in image and d(i) denoting the distance 
between the ith pixel and its correct class, t361 In addi- 
tion, they defined a modified version of FOM named 
FOM e to expand the FOM value range in the near 
perfect segmentation: 

1 
FOM~= ~ l + p x d 2 ( i )  if N~> 0 

i=i (14) 
if N e = 0 ,  

where Ne denotes the number of mis-segmented 
pixels. 

4.3. Discrepancy based on the number of objects 
in the image 

For perfect segmentation a necessary condition is 
that an equal number of objects of each class among 
a reference image and a segmented image should be 
met. A substantial disagreement of the object number 
indicates a large discrepancy between the reference 
and segmented images. Yasnoff and Bacus 137~ pro- 
posed to compute the object-count-agreement (OCA) 
based on probability theory. Let R i be the number of 
objects of class i in the reference image and Si be the 
number of objects of class i in the segmented image, 
they use the probability Foc A that the two numbers R~ 
and S i represent samples from the same distribution 
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for measuring the OCA: 

1 (15) FocA = J M 2 . . . . .  

Z 2 / F(M/2) 

In equation (15), M = N - 1 denotes the number of 
degrees of freedom, F(.) denotes the Gamma function 
and L can be computed by: 

L= ~ S i -  Ri (16) 
i=1 P × RI' 

where N is the number of object classes and p is 
a correlation parameter. 

On the basis of the similar idea, another weighting 
scheme called fragmentation (FRAG) is defined as :  t36) 

1 
F. R A G -  (17) 

1 + p  x ITs-  asl q' 

where T s is the true object number in the reference 
image and A s is the actual object number in the 
segmented image, p and q are scaling parameters. 

4.4. Discrepancy based on the feature values of 
segmented objects 

Image analysis is concerned with the extraction of 
information from an image, an image in yields data 
out. (3a) Here the data are the measurement values of 
object features obtained from segmented images. One 
fundamental question in image analysis is whether 
a measurement made on the objects from segmented 
images is as accurate as one made on the original 
images. According to this measure, a segmented image 
has the highest quality if the object features extracied 
from it precisely match the features in the original. In 
practice, an image has high quality if the decision made 
on it is unchanged from that made on the original 
image. 139) The ultimate goal of image segmentation in 
the context of image analysis is to obtain measure- 
ments of object features.( TM The accuracy of these 
measurements obtained from the segmented image 
with respect to the reference image provides useful 
discrepancy measures. This accuracy can be termed 
"ultimate measurement accuracy" (UMA) to reflect 
the ultimate goal of segmentation. The UMA is feature 
dependent and so can be denoted as UMA:.  Let R: 
denote the feature value obtained from the reference 
image and S/denote the feature value measured from 
the segmented image, the absolute UMA:(A UMA:)  
and relative UMA:(R UMA:)  are defined as: TM 

A U M A :  = [Ry - Syl 

R U M A  - IR: - S:[ x 100%. 
R: 

factor, normalized mean absolute curvature, perimeter 
and sphericity of objects34°) Among them, the area of 
objects is more suitable than others to appraise the 
quality of differently segmented images. (2'4°) 

4.5. Discrepancy based on miscellaneous quantities 

There are other discrepancy measures that can de- 
scribe the difference between the reference image and 
the segmented image. The discrepancy measure pro- 
posed by Levine and Nazit ~.1) is a 2-D (two-dimen- 
sional) distance measure based on two components. 
One is an under merging error measure and another is 
an over merging error measure. The former compo- 
nent is proportional to the amount by which the 
regions in the segmented image overlap the regions in 
the reference image. The latter component signifies the 
amount by which the segmented regions partition the 
reference regions. 

Not only the spatial information, but also the gray- 
level information can be used to describe the difference 
between the segmented image and the reference image. 
Strasters and Gerbrands (361 defined a figure of certain- 
ty (FOC) for taking into account this information. Let 
f~ be the gray level of the ith pixel in the reference image 
and gi be the representative gray level of a region 
comprising the ith pixel in the segmented image (note 
that both images are taken as masks here to extract f i  
and Yl from the image to be segmented), the FOC is 
defined as: 

1 s 1 
FOC = - -  ~ ,  (20) 

N i=_ l x p x l f i - 9 1 1  q' 

where N denotes the total number of pixels in the 
image and p and q are scaling parameters. 

If we consider both the segmented image and the 
reference image as probability distributions, the differ- 
ence between them would be reflected by their diver- 
gence. Suppose that the segmented image has 
N regions and p'~ represents the a posterior probability 
of a pixel to be in the ith region, while p': is that i~a the 
reference image, Pal and Bhandari 12s) proposed to use 
the symmetric divergence (SD): 

N r 

rr SD= ~ (p'~-p,)ln p~,, (21) 
i= 1 Pi 

as a measure of performance for the segmentation 
algorithms. 

5. COMPARISON OF METHOD GROUPS 

(18) The three method groups for segmentation evalu- 
ation described in the above sections have their own 

(19) characteristics. In the following, their advantages and 
limitations are discussed. 

Both A UMA:  and R UMA:  can represent a number 
of discrepancy measures when different object features 
are used. The features can be densitometric, static or 
geometric features. Some examples of geometric fea- 
tures are the area, bending energy, eccentricity, form 

5.1. Generality for evaluation 

One desirable property of an evaluation method is 
its generality to be applied for studying various prop- 
erties of different segmentation algorithms. To apply 
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analytical methods some formal rnodels of an image 
should be first defined. The behavior of the algorithm 
on such an image can then be analysed (mathemat- 
ically) in terms of the parameters of the image and the 
algorithm. ~4z~ Certain properties of segmentation al- 
gorithms can be easily obtained just by analysis, such 
as the processing strategy of algorithms and the resol- 
ution of segmentation results. ~18) However, some other 
properties cannot be precisely analysed since no for- 
mal model exists. For example, there is no quantitative 
measure for a priori knowledge about images that can 
be incorporated into segmentation algorithms, 114) so 
various types of knowledge are hardly to be compared. 
In addition, there are methods that can only be appli- 
cable to certain segmentation algorithms. For in- 
stance, the method based on detection probability 
ratio is merely suitable for studying simple edge de- 
tectors ~ ~ 6~ 

Empirical methods, as described in Sections 3 and 4, 
are mainly used to study the correctness of segmenta- 
tion algorithms by taking into account the accuracy of 
segmentation results. One reason is that other proper- 
ties of algorithms, such as computation cost, have been 
partially overcome by the progress of technology. 
Another reason is that the accuracy of segmentation is 
often the primary concern in real applications and is 
difficult to be studied by analytical methods. From the 
point of view that only one property is studied, the 
empirical methods can be thought of as somewhat 
limited. However, most of them can be considered as 
relatively general, because they can evaluate different 
types of segmentation algorithms. The studies pres- 
ented in references (9, 23, 43, 44) are some examples in 
which quite different types of algorithms are treated. In 
most empirical studies, only the images to segment and 
segmented are needed and no matter which type of 
algorithms is used. A few exceptions are the methods 
based on busyness ~2~) and shape measure. 18) Since the 
threshold value is necessary for calculating these 
measures other types of algorithms can not be evalu- 
ated. 

5.2. Qualitative versus quantitative and subjective 
versus objective 

Two more desirable properties of an evaluation 
method are the abilities to evaluate segmentation algo- 
rithms in a quantitative way and on an objective basis. 
Quantitative study can provide precise results reflect- 
ing the exactness of evaluation3 z) Objective study will 
exempt the influence of human factor and provide 
consistency and no bias results33s~ Generally, analyti- 
cal methods are more ready to apply, but they often 
provide only qualitative properties of algorithms. Em- 
pirical methods are normally quantitative as the values 
of quality measures can be numerically computed. 
Among them, goodness methods based on subjective 
measures of image quality are less suitable for an 
objective evaluation of segmented algorithms. Dis- 
crepancy methods can be both objective (the gold 

standard available yields objective results ~27)) and 
quantitative. 

5.3. Complexity for evaluation 

The complexities for applying the above three 
groups of methods in segmentation evaluation in- 
crease progressively. Applying empirical methods for 
evaluation is usually more complicated than just algo- 
rithm analysis, because the algorithms are necessary to 
be concretely implemented and some extra efforts are 
needed to segment test images and to 6alculate the 
values of quality measure parameters. The computa- 
tional cost of different empirical methods is first deter- 
mined by the quality measures they used. For example, 
the object count agreement can be easily obtained, 
while the uniformity measure and shape measure need 
much more computation. 

Among empirical methods, goodness methods are 
less complicated for applying than discrepancy 
methods and they can be used for on-line evalu- 
ation/ 2°) One particular requirement associated with 
the application of discrepancy methods is the reference 
image. Many studies use real images as test images and 
manually segment them to obtain the references [for 
example, see reference (31)]. The process greatly in- 
creases the complexity of applying discrepancy 
methods. In addition, since only real images from 
particular task domains were used in these studies, the 
evaluation results may be not appropriate for other 
applications. One possible and effective alternation is 
to use synthetic images] 1°1 The two problems asso- 
ciated with real images, as discussed above, can be 
overcome by using well-designed synthetic images 
Other advantages of synthetic images include that they 
can be easily controlled and they can be reproduced by 
all users. 12'28) 

5.4. Consideration of segmentation applications 

The effective use of domain-dependent knowledge in 
computer vision can help to make different processes 
reliable and efficient [see, for example, reference (45)]. 
To effectively evaluate segmentation algorithms, the 
consideration of segmentation applications in which 
algorithms are applied is also important. 

The above three method groups are different in the 
extent to which they explicitly consider the applica- 
tions for which the segmentation algorithms are used. 
At one extreme are the analytical studies that do not 
consider the nature and goal of application. The evalu- 
ation results depend only on the analysis of algorithms 
themselves. The empirical goodness methods in which 
some desirable properties of segmented images are 
quantified by goodness measures begin to address the 
application issue as the choice of which goodness 
measure should be used is related to the application 
goal. The empirical discrepancy methods, which take 
both the reference and segmented images into con- 
sideration, attempt to capture the application through 
the discrepancy measures. The need to have a reference 
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forces the evaluation to be connected to the actual 
applications. 127) 

6. COMPARISON OF SOME EMPIRICAL METHODS 

In empirical studies the segmentation algorithm is 
applied to test images and statistics of its performance 
are gathered with the help of some measurements from 
segmentation results. Most empirical evaluation 
methods are developed independently and no com- 
parison of performance or behavior with other 
methods has been made. Since a number of methods 
have been proposed, as described in the above sections, 
their comparison becomes important and necessary. 

The performance of different empirical methods can 
be compared according to their behavior in judging 
the same sequences of segmented image. This sequence 
of images can be obtained by thresholding an image 
with a number cff ordered threshold values: 21 As we 
know, the quality of thresholded images would be 
better if an appropriate threshold value is used and the 
quality of thresholded images would be worse if the 
selected threshold values are too high or too low. In 
other words, if the threshold value increases or de- 
creases in one direction, the probability of erroneously 
classifying the background pixels as object pixels goes 
down, but the probability of erroneously classifying 
the object pixels as background pixels goes up, or vice 
versa. Since different evaluation methods use different 
measures to assess this quality, they will behave differ- 
ently for the same sequence of images. By comparing 
the behavior of different methods in such a case, the 
performance of different methods can be revealed and 
ranked. 

On the basis of this idea, a comparative study of 
different empirical methods has been carried out. The 
five methods studied (and the measures they based on) 
are the following: 

(1) G-GU: goodness based on gray-level uniform- 
ity [see equation (3) in Subsection 3.1]; 

(2) G-GC: goodness based on gray-level contrast 
[see equation (6) in Subsection 3.2]; 

(3) D-PE: discrepancy based on probability of er- 
ror [see equation (10) in Subsection 4.1]; 

(4) D-ND: discrepancy based on normalized dis- 
tance [see equation (12) in Subsection 4.2]; 

(5) D-AA: discrepancy based on absolute UMA:  
with area as the feature [see equation (18) in Subsec- 
tion 4.4]. 

These five methods belong to five different method 
subgroups. They are considered for the comparative 
study mainly because the measures these methods 
based on are quite general for use and so are compar- 
able. The methods in other subgroups and the 
measures they based on are less general. For  example, 
the method based on shape measure defined in equa- 
tion (7) of Subsection 3.3 can only count the local 
smoothness of region boundary and cannot even dis- 
tinguish a circle from a square. 12~ On the other side, the 
measure based on the number of objects in the image is 
only meaningful when the segmentation results are 
quite poor. In near perfect segmentation, the number 
of objects in the reference image and segmented image 
are often the same and the discrimination power of this 
measure will be lost. 

The whole experiment can be divided into several 
steps: define test images, segment test images, apply 
evaluation methods, measure quality parameters and 
compare evaluation results. It is arranged similar to 
the study of object features in the context of image 
segmentation evaluation: 11) A similar process has also 
been discussed by Haralick ~101 for characterizing com- 
puter vision algorithms. 

Test images are synthetically generated with the 
system described in reference (28). Since our main 
concern is to compare different evaluation methods 
with the same segmented images so some simple im- 
ages are synthesized. They are 256 x 256 with 256 gray 
levels. The objects are centered discs of various sizes 
with gray level 144. The background is homogeneous 
with gray level 112. These images are then added by 
independent zero-mean Gaussian noise with various 
standard deviations. To cope with the random nature 
of noise, for each standard deviation five noise samples 
are generated independently and added separately to 
noise free images in this study. Five test images thus 
generated form a test group. Figure 2 gives an example. 

Test images are segmented by thresholding them as 
described above. A sequence of 14 threshold values 
labelled from 1-4 are taken to segment each group of 
images. The five evaluation methods are then applied 
to the segmented images. The values of corresponding 

Fig. 2. A group of test images. 
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Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

G-GC 0.989 0.994 0.997 0.997 0.998 0.999 0.999 0.999 0.999 1.000 0.999 0.998 0.997 0.995 
G-GU 1.000 0.897 0.858 0.846 0.821 0.808 0.804 0.800 0.800 0.800 0.808 0.825 0.854 0.906 
D-ND 0.705 0.538 0.454 0.415 0.362 0.292 0.260 0.238 0.290 0.382 0.466 0.583 0.719 1.000 
D-PE 0.578 0.340 0.242 0.202 0.154 0.100 0.079 0.066 0.099 0.170 0.254 0.395 0.573 1.000 
D-AA 0.526 0.340 0.241 0.203 0.149 0.092 0.042 0.017 0.077 0.161 0.252 0.395 0.573 1.000 
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Fig. 3. Plot of the comparison results listed in Table 1. 
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measures are obtained by averaging the results of five 
measurements over each group. In Table 1 comparison 
results of the five methods for one experiment are 
presented as examples. The labels correspond to the 
sequence of segmented images. In other words each 
column in Table 1 indicates a different threshold ap- 
plied to a group of images. The measure values have 
been normalized to the range [0, 1] for easy compari- 
son. In Fig. 3 the curves corresponding to different 
measure values listed in Table 1 are plotted. These 
curves can be analysed by comparing their forms. 
Firstly, as the worst segmentation results give the value 
one for all measures, the valley values that correspond 
to the best segmentation results determine the margin 
between the two extremes. The deeper the valley, the 
larger the dynamic range of measures for assessing the 
best and worst segmentation results. Comparing the 
depth of valleys, these methods can be ranked in the 
order D-AA, D-PE, D-ND, G-GU, G-GC. Note that 
G-GC curve is almost unity for all segmented images 
(can be seen more clearly from Table 1), so that differ- 
ent segmentation results can hardly be distinguished in 
such a case. 

Second, for evaluation purposes a good method 
should be capable of detecting very small variations in 
segmented images. The sharper the curves, the higher 
the measure's discrimination capability to distinguish 
small segmentation degradation. The ranking of these 
five methods according to this point is the same as 
above. Looking more closely, though D-AA and D-PE 
curves are parallel or even overlapped for most cases in 
Fig. 3, the form of the D-AA curve is much sharper 
than that of D-PE curve near the valley. This means 

that D-AA has more power than D-PE to distinguish 
those slightly different and near-best segmentation 
results, which is more interesting in practice/~61 It is 
clear that D-AA should not be confused with D-PE as 
made by Beghdadi et al. ~47~ On the other side, the 
flatness of G-GC and G-GU curves around valley 
show that the methods based on goodness measures 
such as GC and GU should be less appropriate in 
segmentation evaluation. 

The effectiveness of evaluation methods is largely 
determined by their employed image quality measures. 
From this comparative study, it becomes evident that 
the evaluation methods using discrepancy measures 
such as that based on the feature values of segmented 
objects and that based on the number of mis-seg- 
mented pixels should be more powerful than the evalu- 
ation methods using other measures. Moreover, as the 
methods compared in this study are representative of 
various methods subgroups, it seems that the empirical 
discrepancy method surpass the empirical goodness 
methods in evaluation. 

7. FURTHER DISCUSSIONS 

7.1. Special evaluation methods 

There are also few particular evaluation methods 
that do not fall clearly in any one of the above three 
groups. The following is a critical review of them. 

(1) For a general segmentation procedure, pre- 
processing and postprocessing are often needed (see 
Fig. 1). In practical applications, based on an auto- 
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matically segmented image that is not perfect, some 
manually editing operations are often needed to bring 
the results to a certain level satisfying the desired 
quality. ~zT~ The amount of such operations or the cost 
to do these operations can also provide an index of 
how the segmented image deviates from the desired 
quality. This index has been used by Graaf et al. t27"48) 

to validate segmentation results and to judge the per- 
formance of algorithms. Since the desired quality level 
of a segmentation is determined by the particular 
processing task, such a method makes a task-directed 
evaluation and depends on the tools available for 
image editing. ~48~ M ore generally, one tries to estimate 
the requirement for pre- and/or post-processing to 
obtain satisfactory segmentation results from the raw 
images. 118) In a sense, it is not the segmentation algo- 
rithms but the pre- and/or post-processing algorithms 
are studied. 

(2) In image analysis the size of a region is obtained 
by counting the number of pixels belonging to this 
region. ~38~ The mis-segmented pixels modify the size of 
regions in segmented images. This size change can 
easily be observed by human eyes. Instead of defining 
numerical discrepancy measures MacAulay and Palcic 
proposed a qualitative evaluation method. ~49) In their 
study for comparing four simple thresholding algo- 
rithms, a segmentation is determined to be acceptable 
if the area of segmented objects matches within a mar- 
gin of 5% to. the area of visually detected object. If 
a large number of images are processed, a statistic 
study of the results can help to compare the perform- 
ance of the tested algorithms. This method is quite 
similar to the methods described in Subsection 4.1, 
except that the discrepancy is qualitatively and vis- 
ually measured. Most subjective comparison studies 
are based on similar principles. 

(3) To select an appropriate threshold value for 
segmentation Brink ~5°~ proposed a thresholding tech- 
nique that uses a gray-level correlation measure. An 
optimum threshold is selected by maximizing the cor- 
relation between the original image and the threshol- 
ded bilevel image. The value of correlation measure 
provides an index about the dissimilarity between 
these two images. This measure has been used in the 
evaluation of thresholding algorithms by Pal and 
Bhandari. ~25) In contrast to discrepancy methods de- 
scribed in Section 4, this method takes the image to 
segment directly as the "reference" image. Although 
this correlation measure is seemed different in appear- 
ance than other measures, it has been proved ~51) that 
the square of the correlation coefficient used in Brink's 
method is just the class separability quotient used by 
Otsu (26~in the "goodness" measure for threshold selec- 
tion. This method should thus have a behavior similar 
to that based on inter-region contrast. 

(4) Taking the image to segment as the reference is 
also followed by Beghdadi et al. ~47~ They proposed to 
use a measure termed the blurring effect for segmenta- 
tion comparison. A noise-free synthetic image is gener- 
ated and is then blurred with a Gat]ssian filter. The 

authors unusually set the blurred boundary pixels as 
object pixels and thus curiously take enlarged objects 
as references. The blurring effect is measured by the 
location difference between the detected boundary and 
the reference boundary. Such a use of synthetic images 
loses their advantages in evaluation. In addition, the 
noisy effect, a very important and common degrada- 
tion factor influencing the performance of algorithms, 
cannot be studied by such a method. 

(5) Different from all the above methods, Bryant 
and Bouldin ~52) proposed another interesting evalua- 
tion procedure based on relative grading for edge 
detectors. The principle may be extended for evaluat- 
ing segmentation algorithms. No precise quality 
measure or criterion is defined in this procedure. It 
consists of comparing the output of an algorithm to the 
consensus results of other algorithms. In other words, 
it compares the output of a number of algorithms and 
rates each algorithm by how often it agrees with the 
consensus of the others. This can be considered as an 
interesting idea, but it is unconscious to errors made by 
all algorithms and may even penalize a good algorithm 
that does not produce errors made by a majority of 
bad algorithms. ~2°) 

7.2. Common problems for most existing methods 

There are still two main problems associated with 
most of existing evaluation methods. 

(1) Each evaluation method determines the per- 
formance of algorithms according to certain criteria. If 
the same criterion used for segmentation is also used 
for evaluation then some biased results will be pro- 
duced. Iz) For example, the second-order local entropy 
that was maximized for selecting threshold values in 
the new algorithm proposed by Pal and Pal Iz4) and 
was also computed for comparing the performance of 
this algorithm with that of other algorithms by Pal and 
Bhandari. 125~ It is expected that the new algorithm 
should produce quite high entropy values. In many 
applications, images are modeled as a mosaic of re- 
gions of uniform intensity corrupted by additive Gaus- 
sian white noise [e.g. reference (53)]. Therefore, the 
region homogeneity is a commonly used criterion for 
designing various segmentation algorithms [e.g. Otsu 
algorithmt26)]. The method using the goodness measure 
based on uniformity takes the same criterion for evalu- 
ation. When this criterion is used to compare a number 
of thresholding algorithms) 8) it is not surprising that 
the Otsu t26) algorithm ranks at the first place. When 
other criteria were used, however, the ranking order 
becomes completely different. 18) 

(2) To strengthen certain aspects in the quality 
measures, some scaling/weighting parameters are of- 
ten used. For  example, the parameter p in F O M  [see 
equation (13)] provides a relative penalty between 
smeared edges and isolated but offset edges, ~34J while 
the parameters p and q in FOC [see equation (20)] 
determine the contribution of the large deviation rela- 
tive to a small deviation/36) There exists no suitable 
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guideline or rule for choosing these parameters. In 
practice, they are often selected on the basis of human 
intuition or judgment.  This makes an expected objec- 
tive evaluation to be unpleasantly influenced by sub- 
jective factors. 

8. CONCEUDING REMARKS 

In this paper most methods proposed for segmenta- 
tion evaluation and comparison so far are reviewed. 
A method classification scheme is introduced. Com- 
parative studies for different method groups and for 
different methods are also carried out, both analyti- 
cally and experimentally. Segmentation evaluation is 
indispensable for improving the performance of exist- 
ing segmentation algorithms and for developing new 
powerful segmentation algorithms. This study at- 
tempts to stimulate the work in this direction. To make 
segmentation get off trial-and-error status further stu- 
dies and more efforts for segmentation evaluation are 
needed. 

From this study some results concerning the per- 
formance of different evaluation methods are ob- 
tained. As there is currently no general segmentation 
theory, the empirical methods are more suitable and 
useful than the analytical methods for performance 
evaluation of segmentation algorithms. Among em- 
pirical methods, the discrepancy methods are better 
for objectively assessing segmentation algorithms 
than the goodness methods, although the former is 
somewhat complex in application than the latter 
due to the requirement for reference. According-to 
the experimental comparison made in this paper, 
the method D-AA is more powerful for evaluation 
than other methods. More general studies are still 
carrying on. 

Each method studied in this paper has advantages 
and limitations. From an application point of view, 
those that belong to different groups are more com- 
plementary than competitive. Besides, the perform- 
ance of segmentation algorithms is influenced by many 
factors, so only one evaluation method would be not 
enough to judge all properties of an algorithm and 
different mehods should be cooperated. One early 
work of this type is made by Yasnoff et al., ~s*) who 
combined two error measures they proposed, namely 
pixel spatial distribution and pixel class proportion, 
~3o) into one generalized measure. Later they incorpor- 
ated another component,  the object count agreement 
~3~) together. Other evaluation studies using several 
measures can be found in references (23, 25, 36, 43, 44). 
Generally, for a complete evaluation and comparison 
of segmentation techniques, a set of performance 
measures should be necessary. ~9' ~s) How to form such 
a set will be a promising research subject in segmenta- 
tion evaluation. 
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