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We generalize the notion of B-spline to the thin plate splines and to other d-dimensional 
polyharmonic splines as defined in [Duchon, [3]]; for regular nets, we give the main 
properties of these "B-splines": Fourier transform, decay when II x II --'co, stability, integra- 
tion property, links between B-splines of different orders or of different dimensions and in 
particular link with the polynomial B-splines, approximation using B-splines... We show 
that, in some sense, B-splines may be considered as a regularized form of the Dirac 
distribution. 
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O. Introduction 

In one dimension,  polynomial  B-splines are very useful mainly because they 
are  quasi-interpolants,  i.e. for any set of  data ( jh ,  Yj)j~A (where A is some 
interval of  Z), the funct ion ~ = E~ ~ A y jBi  (where Bi is the B-spline centered at 
jh)  follows the shape of the data  and is quite easily computed.  

In many dimensions,  thin plate splines, and other  d-dimensional  polyhar- 
monic  splines are def ined in [Duchon, [3]]. They  are very useful because the set 
of the data does not  need to be on a regular  grid, and because of their  
minimizing proper ty  (see Section 1.1). 

It seems to be of  interest  to def ine some d-dimensional  polyharmonic splines 
which could enjoy most propert ies  of usual polynomial B-splines. This is the aim 
of the present  paper:  we define some d-dimensional  m-harmonic  splines which 
have few knots (for example 13 knots for thin plate splines), and are a quite 
natural  extension of  usual polynomial B-splines; then we derive some propert ies  
concerning the "B-splines" themselves, such as bell shape, " integrat ion",  Four ier  
transform, or  concerning some link be tween  some "B-splines" of  different  
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order, or of different dimensions of space (for example some link between the 
"thin plate B-spline" and the cubic B-spline); lastly we derive some properties 
concerning "B-spline approximation", i.e. the polyharmonic spline defined by 
o-= gi~z,yjBi, where B~ = B ( .  - j h )  is the "B-spline" centered at jh. 

Of course, work is much easier if the data are on a regular infinite grid; 
actually, quite a lot of work has already been done in that case for interpolation 
and quasi-interpolation, mainly by Madych and Nelson for m-harmonic spline 
interpolation (see [Madych, Nelson, [8]]), by Buhmann for interpolation by radial 
basis function (see [Buhmann, [1]]), and by Jackson for quasi-interpolation by 
radial basis function (see [Jackson, [7]]). Here  we present "polyharmonic B- 
splines" and their properties on a regular infinite grid, (also called "cardinal 
grid"), and, as a consequence, we call them "cardinal B-splines". 

The main idea is to build the B-splines by applying a ruth iterated discrete 
version of the Laplacean operator to the fondamental solution of the ruth 
iterated Laplacean, this has first been done by Nira Dyn and David Levin in 
order to improve the stability of some linear systems (see [Dyn, Levin, [4]]). 
Obviously, this is still valid for scattered data, but is not done here. 

1. Definition and first properties of m-harmonic B-splines 

1.1. NOTATIONS USED THROUGHOUT THE PAPER 

Let d ~ N*; hereafter we will work in I~ d. 
m is an integer such that m > d/2. 
For any x ~ R d, xj. is the j th  component of x, II x 11 is its Euclidean norm. 
For any x ~ Nd and X ~ R d, xX is the Euclidean scalar product of the vectors x 
and X. 
�9 -q~k is the set of polynomials on Nd of total degree ~ k. 
A is the usual Laplace operator: A = Y],d=IO2/aX2. 

S is the Dirac distribution. 
A is some finite set of ff~a such that the zero polynomial is the only one member  
of ._~,,,_1 that vanishes at all the points of A. 
a ~ N a is a multi-integer. We use standard notations for multi-integers: 

a=(cel , . . . ,aa);  [ce[ =aa + . . .  +aa; a!=al!a2!.. .ota!, 

O~, 0'~2 a~a 
and D '~= - -  

(0xl) (axe) 
For any f ~  La(Ra), we denote by f ,  or ( f ) "  its Fourier transform, i.e. 

f (w)  = ( f )  (w) = J ( X )  e -2i~x~' dx.  
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Moreover, we denote by ~'-(u) the Fourier transform of the tempered distribu- 
tion u, or of the tempered distribution associated with the function u. 
Finally, we denote by f �9 g the convolution product of the functions f and g (or 
of the distributions associated to the functions f and g), namely 

( f  * g ) ( x )  = f R J ( t ) g ( x  - t )  dt  

We work on "m-harmonic splines" (also called "Dm-splines '', or ruth order 
splines", as they are defined in [Duchon, [3]], summarised in [Meinguet, [2]], and 
detailed, especially for an infinite number of knots, in [Rabut, [lla]]. For sake of 
completeness, we include their definition and an important property here: 

DEFINITION 
Let m ~ N such that m > d / 2 .  

Among all functions interpolating (a, z~ )~  .4, the m-harmonic spline is the only 
one which minimizes the semi-norm 

I f l m  = fR ID~fl 2 
Ict =m 

m is called the order of the spline. 

PROPERTY 
As proved in [Duchon, [3]], the m-harmonic spline interpolating the points 

(a, Za)~.4 may be written as: 

0"= E ~aUd,m( " - - a )  -[-Prn-l" (1)  
a EA 

where 
- ( h a ) ~  A are real numbers which satisfy Vp ~ ~m-1, Ea~AA~P(a)  = 0, 
- P m - 1  is a polynomial of degree at most m - 1. 
- Vd, m is a solution of the equation Amf = 3; for this reason, these splines are 
called "polyharmonic splines", or "m-harmonic splines" (see [Madych, [8]], 
[Rabut, [lla]] or "ruth order splines". As shown for example in [Schwartz, [16], 
p. 47] Ud, m may be w r i t t e n  l.)d,m(X) ~--- II x II 2m-d[fd,m In II x II +Dd,,,] where, if d 
is odd Cd, m = 0 and Od, m =Ed,,, ,  and, if d is even C,t,m =Ed,,, , and Da,,, , = O, 
with 

E a.m = 
r(a/2) 

2mrra/2(m - 1)! 
m - 1  

I--I ( 2 m - 2 i - d )  
i=0 

i~am - d / 2  
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As a particular case, if d = 1: Oil, m = 1 / 2 ( 2 m -  1)! and we get the usual 
polynomial splines of degree 2m - 1, written in a quite unusual, but equivalent, 
way. If d = 2, m = 2: a2, 2 = 1/8-rr and we get the so-called "thin plate splines", 
first presented in [Harder, [6]]. 

R E M A R K :  " O R D E R  O F  A S P L I N E "  

Note that we call "order"  of the spline the value m such that the semi-norm 
I f  I,~ is minimized by the spline. So, if d = 1, the mth  order spline is a 

piecewise polynomial function of degree ~< 2 m -  1 (not, as it is quite often 
used, < m - 1). The reason of this notation is that it is the only one which is 
easily extendable to d-dimensional spaces. By this approach we do not obtain 
polynomial splines of even degree: they do not enjoy the minimizing property, 
and so they are not polyharmonic splines. However, as we will see in Section 6.5, 
this work is extendable to polynomial splines of even degree. 

1.2. D E F I N I T I O N  O F  m - H A R M O N I C  B-SPLINES 

P R E S E N T A T I O N  

In order to define a particular d-dimensional spline function, written in the 
form of eq. (1), which could be considered as a generalisation of the polynomial 
B-splines, let us first have a particular look on the polynomial B-splines: let 62h i 
be the operator defined for any real function f by: 

2 i 
6,2f = f (  �9 + h)  - 2 f  + f ( "  - h )  and 6t2, i =  (6h ) . 

It is well known that h - 2 ( 6 ~ , f ) ( x )  is a discrete approximation of f " ( x ) ,  and, 
from elementary calculus, that -2,,, 2m h 6 h is a discrete approximation of f(2,,o. It 
is known, too, (see for example [Schoenberg, [12] p. 69]) that the ruth order 
polynomial B-spline of step h (degree 2 m -  1) can be written in the form 
B m = h .  h - 2 m ( 6  h2mUa,m)= h1-2m62mOh l,m" So B m is h times the discretization 
(with a step h) of the 2mth  derivative applied to an exact solution of u ~zm) = 8. 

In the same way, we define Ba,,,,, the "d-dimensional m-harmonic B-spline", 
by applying h a times the discretization (with a step h) of Am, applied to oa,,, ,, 
the exact solution of Ainu = 8. 

N O T A T I O N S  

Let ej be the j th  basis vector of R a. 
Let 6 2 be the operator defined for any f from R a into R by h,j 

6 S=f (- + her)  - 2 f  + f ( .  - e j ) .  

-2 a 82 and m=(Ah)m. Let A n be the operator defined by A h = h Y"j=x h,j, Ah 
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DEFINITION 
We call ruth order cardinal B-spline (in d-dimension, and with a step h) the 

function B h defined by d,m 

Bh = heA~13e m" d j "  

As, by definition of re,", A"13e, m ----8, we can write Vd,,, , = A-"8 ,  and so 

Bhe," = heA~ A-m6. (2) 

In the sequel, if there is no possible confusion, we will simply write Be,,, , 
instead of  B h So: d,rn �9 

Be," = hea~A-"6.  (2') 

REMARK 
As it will be confirmed by many properties (see Remark 3), h-aBe,,, = A~A - "6  

is a bounded, continuous function which can be regarded as some regularized 
approximation (in D-"L2(Rd))  of the Dirac distribution 8: since A~' is a 
discretisation of A% the operator A~' can be regarded as "trying" to cancel the 
effect of the operator A - "  (however without cancelling its regularisation effect). 

1.3. FIRST PROPERTIES OF m-HARMONIC B-SPLINES: EXPLICITATION OF Be, m 

THEOREM 1.3 
Let Ad, m = {ah ~ (7/h)d: Io~ [ ~< m} 

(i) There exists some real coefficients h~'" such that, for any x ~ •d, 

Be,m = E 
a ~ A  d,rn 

The coefficients h d'" enjoy the following properties: 

(ii) V f ~  o~-(R e, R), E hd'"f(" - -a)=hd(A"~f)  �9 
a ~ A  d,ra 

(iii) Let k ~ N, p ~ Pk and let q be defined by q = Ea ~ A~.hd'mp( " --a). 
Then if k < 2m, q = O, and if k >~ 2m, q is a polynomia7 in ~k-2m" 

Proof." 
(i) and (ii) follow directly from the definition, (iii) is a particular case of (ii) 

when f = p. �9 

COROLLARY 1.3 
(i) The coefficients ~ad'", defined in Theorem 1.3 enjoy the relations 

VPE'-~2"-I, E Ad 'mp( ' - -a )  = 0 ,  
a E A  d,m 

V p  ~ '-~2m--1, E hda'mP(a) = 0 .  
a E A  d,m 

(ii) Be," is a polyharmonic spline function. 
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Proof." 
(i) is a part icular  case of  T h e o r e m  1.3 (iii), and (ii). comes from (i). and (1), 

which is a characterist ic proper ty  o f  polyharmonic  spline functions. 

1.4. EXAMPLES AND FIGURES 

We give here  some specific examples in o rde r  to illustrate the definit ion and 
to help for the comprehens ion  of  it. 

d = 1: Obviously, Bx,,,, is the usual ruth o rde r  (degree  2 m -  1) polynomial  
B-spline, with equidistant  knots, in one dimension.  

d = 2, m = 2: We call B2, 2 " thin plate B-spline". Only 13 of  the h 2. h~ 2 are  
non-zero; their  values are  given in the following table, where  each h-2,X 2'2 is at " "  - - a  

the place of  the knot  with which it is associated; so for example h 2,2 = 20/h2:  (0,0) 

if 

1 
2 - 8  2 

1 - 8  20 - 8  1 �9 
2 - 8  2 

1 

d = 2, m = 3: The  values of 

1 
3 - 1 2  

3 - 2 4  57 
1 - 1 2  57 - 1 1 2  

3 - 2 4  57 
3 - 1 2  

1 

d = 3, m = 2: The  values of  

a 3 = _+2: A(0,0,+ 2) - -  

2 
a3=___1: 2 - 1 2  

2 
if 

if a 3 = 0: 

, 

, 

the 25 non zero h2A3,~ 2 are the following: 

3 
- 2 4  3 

57 - 12 1. 
- 2 4  3 

3 

the  25 non zero h2A2d 3 are  the following: 

1 
2 - 12 2 

1 - 1 2  42 - 1 2  1. 
2 - 1 2  2 

1 

FIGURES 
Perspective views and contour  lines are p resen ted  in figs. 1, 2, 3 for d = 2, 

and m = 2, 3, 4. As in one dimension,  we can see that  the higher is m, the 
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-2.0 -LO 1.0 7-0 3o0 

Fig. 1. Thin late B-spline. 

flatter is the "B-spline". Unlike the case d = 1, Bd, m is not compactly sup- 
ported, nor Bd,m(X) is non negative for any x ~ R d. 

2. Fourier transform of m-harmonic cardinal B-splines 

In this section, we study the Fourier transform of Bd,m; in one dimension, it is 
known (see for example [Schumaker, [15], p. 139]) that 

,, ( sin rrhto ) 2m 
B l ' m ( ~  = ~ - h t o  " 

We generalize this formula to the function Be, m for d >~ 2, and examine some 
straightforward consequences of the so-obtained Fourier transform of Ba, m. 

i1 B-spline d--'2 m=3 

4~ 

~ . Q ~  ~N888~i. o I . Q ~  ~ r , - . 0  Q ~  *,'~.0 

o 
-4- 

o 

o 

I 
-2 .0  -LO O.O 

/ 

/ 

t.O ~.0 3.0 4.0 

Fig. 2. Triharmonic B-spline. 
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:l, D 

I. 0 
O. 0 

B-spline d---2 m=4  

~ .0 
,].0 

~ 0  

i .0 

0 
ioi 
. 4  

. . . . . .  ~  

-7.0 - i .o 

Fig. 3. Quadriharmonic B-spline. 

/ 

/ 

o e  

1~0 ~0 5 , 0  4 . 0  

T H E O R E M  2 

(i) When II x II --' ~o Bd,m(X ) = d~'( I1 X I I -d -2 ) .  
^ 

(ii) Let Bd, m be the Fourier transform Of Bd, m. 
d m 

y" sin2(-n-hwj) 

9~,~(~o)  = h ~ j= l  
11 "rrhw II 2 

Then 

(4) 

which is, if we denote sin zrho~ the vector whose jth component is sin 7rh~oi, 

~d,m(w) = hd( llsin "rrhw [[ ) 2m 
II ~rho~ II 

(5) 

Proof 
(i) The easiest way to prove (i) is to use the Fourier  transform of Bd, m. But it 

is not obvious to see that the integral d e f i n i n g  Bd,m converges. So we will first 
use St(Be,m), the Fourier  t ransform of  the distribution associated with Bd,m; we 
will prove successively: 

a. Be, m is a "slowly increasing function".  
b. For  any tempered  distribution u, Jr(A~,u)(to) = ( - 4 h - 2 )  m Ilsin rchw II 2m 
~-(u)(oJ). 
c. For  any tempered  distribution u, ~-(zamu)(w) = (--47r2) m II oJ II z'%~-(u)(o~). 
d. c~-(Bd,m)(w) =h  d ( Ilsin ~h to  II/11 rrh~o II) 2" .  
e. The assertion (i). 

a. Since Vd, m is a "slowly increasing function",  this is also true for Bd,m, which 
is a linear combination of  translates of Vd, m. So we can define c~-(Bd, m) as the 
Fourier  t ransform of  the t empered  distribution associated with Bd, m. 
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b. We have: 

~- (a , , , ;~ ) (o ) )  = (e ='''~, + e - ~ " ~  - 2) ~ - ( u )  

= (2 cos 2 r r h o ) , -  2) ,W(u) = ( - 4  sinZrrhcoi),Yr(u), 

SO 

and finally, 

c~z-( A -mu ) = ( - 4  7r2) -m 

d. From b. and c., we get 

and so 

~ - ( A ~ ' u ) ( o ) )  = ( - -  4 h - 2 )  m 

c. Let to---zl-~u; then: 

I ls in ~rho)II  Z m ~ - ( U ) ( O ) ) .  

~-(u)(o))  = ~ - ( A ~ ) =  ~ -  ax--7 = 
j = l  

= --4';"r2 II o., II 2 ~ ( V )  

= - - 4 ~  2 11 o) 112~(  '4 - ' u ) ( o ) ) ,  

d 
y" (2i-n- o) , )2,~(o)  

j = l  

~?.(A-'u)(o) ) = ( -  47r2) -1 I[ o)]1-23r(u)(o)),  

II o) II - 2 m ~ ( u ) -  

5r(Bd,m)(o)) = ha(-4h-2) m llsin 7rho)I] 2 m ( _ 4 ~ 2 )  - m  11 CO II-2m 

=ha( llsin ~rho) ll )2m 
II ~rh~o II " 

e. It is known (see for example [Vo Khac Koan, [17], p. 26] that, any 
t empered  distribution u is decreasing at infinity faster than It x II -k if 
fw' { D~'~-(u)(o)) t do) is finite for any oe ~ N a such that ] a  [ ~< k. By using the 
expans ion  of  sin 7rho) i, we can easily see  tha t  l a ]  ~< d + 1 =* 
fRd I D%c'/-(u)(O))Ido) < co. So B e m(X) = O( II x I I - a - b .  Writing Be,re(x) in the 
equivalent  form ~2 ,~ ;m II x - a II 2m-d[Cd, m In( II x - a I I / I I  x II) + Da,,,,( II x - 

~X 
a II - II x II)/11 x - a~l]  (Ca,m and Dd. m a r e  d e f i n e d  in  S e c t i o n  1.1), and w r i t i n g  
the expansion of In(  II x - a I I / I I  x II) (o r ,  if d is odd, of (11 x - a II - II x I I ) / I I  x II) 
in u ,  = (2x - a, a)/II x II 2 = 0 (  II x II -1 ) ,  w e  c a n  s e e  that  Ba,m(X) = 0 (  II x II k) 
for some k ~ 2v. Since Bd.m(X) = O( II x II - a - a ) ,  we have Bd,~(x) = O( II x I I - a - 2 ) .  

hence  

~ (AhU)(o ) )  = - 4 h  -2 sin2~-h%, c~r(u), 
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COROLLARY 2 
(i) Bd,rn is a totally positive function: 

k 
V t l , . . . , t  k ~ R  a, V~, , . . . ,~k ~ C ,  E ~i(jBa,m(ti-ti)>~O" (6) 

i , j=l 

( ii) Stability condition: 
Let I1" II z denote the standard norms on I2(Z a) and on L~(Rd). 
There exist positive constants C~ and C2, depending only on h, d, and m. such 

that, for any y ~ Iz(Zd), 

C111yI[2~< ,, I < C2IIyII2" (7) 
] 2 

(iii) Let m and m' be two integers such that m > d / 2  and m' > d/2. Then: 

Bd,m +m,= Bd, m * Bd,m,. (8) 

Proof 
(i) It is known (see for example [Gelfand, Villenkin, [5]]) that (i) is equivalent 

to Vo~ ~ R d, JBd,m((.O) ~ O. 
(ii) As it is well known (see for example [Cohen, [2]]), (7) is equivalent to 

V t ~  0<CI~< E [ B a , m ( ( ~  �9 (9) 
j ~Z  d 

So, let us prove (9). Now, using periodicity and symmetry, it is sufficient to 
prove (9) for any o~ ~ [ -  1/2h,  1/2h] a. 

First, let us prove 

hEd(2/~-)4m <~ y" IBa,m((to+j)/h)l  2" 
j~ Z d 

for any real number  X + [ - 1 / 2 h ,  1 /2h] ,  we have Isin ~ h x  I / I  rrhxl)2/'rr; 
so for any k ~[1 ,  d], ]sin rrhtok I ~ ( 2 / r r ) l r r h t o  k I, hence  (Ed=l sinETrhtok) >i 
(2/,rr) 2 (Ed l(-rrhtok)2), which is Bd,m(tO) >~hd(2/Tr) 2m. Hence  IBd,m(tO) l 2 >i 
hEd(2/Tr) 4m, and so E i ~ z" l Bd,m((to + j ) /h )  ] >~ h2d(2/Tr) 4m. 

Let us now prove the last inequality in (9): Bd, m is a function which is 
continuous on R d and which enjoys, for j 4= 0 and o~ ~ [ - 1/2h,  1/2h]d:  

I Bd,m(( to +J) /h) l  2 <~ h2dd2m [I "rr(to + j ) I I  -4m ~< h2dd2m~r-4m( II J II - 1 / 2 ) - 4 m  

Now, the series Ej  ~ 7~( II j II - 1 /2)-4 '7  is convergent  as 4m > d (which is true as, 
by defini t ion of m-ha rmon ic  splines, m > d / 2 ) ,  and so, the series 
~j~Z,,ll/3d,~((to + j ) / / h ) I  2 is bounded  by a numerical  convergent series and 
therefore is continuous and bounded .  

We can now conclude that (9) is valid, with C x =h2d(2/Tr) 4m, and C2 = 
B d,m(O) + hEddEm'rr-4my"j ~ z -t0 (ll J II - 1 / 2 )  -am. 
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(iii) is a direct consequence of (4), a s  Bd,m+ m, = (Bd,m+m')  = (Bd,rn" Bd,m') = 
^ ^ 

(Bd, m) * (Bd ,m, )  = Bd,rn * Bd, m, [] 

REMARKS 
a. In one dimension, it is well known that Bl.,,(x) >I O. This /s not true -for 

d >t 2 and must be replaced .by total positivity (property (6)). Note that, in one 
dimension, even degree polynomial splines are not totally positive functions. . .  
but they are not polyharmonic splines, as they do not enjoy the minimizing 
property (section 1.1). 

b. Equation (7) is important as thanks to it, multiresolution analysis and 
wavelet decomposition for polyharmonic splines are possible (see [Micchelli et 
al., [1011). 

3. Integration properties 

In this section, we study some properties of Bd, m involving the integration or 
derivation of Bd.m: they show some strong link between different Ba,,, for 
different values of d or of m. 
For any x ~ R d, we denote x i = ( x l , . . . ,  xi_ 1, x i + l , . . . , x  d) the projection of x 
onto R d-l ,  obtained by removing the j th  component of x. 

THEOREM 3 
Bd,  m enjoys the following properties: 
( i) Integration in one direction: 

fBd ,m(X)  d x i = h B j - , , m ( X i ) .  (lo) 

( ii) Integration over the whole space: 

dx=h . (11) 

(gi) Derivation: for k ~ N, k < m - d /2 ,  we have: 

AkBd,m=A~Bd,.,_k. (12) 
(iv) Convolution with some p ~ ~1: Let p ~ 6~ 1, then, 

dt=hdp. (13) 

(v) Convolution with some Amf: Let f ~ ;#'2m'~(Rd); then for any x E R d, 

f uBd ,m(X- - t )Amf ( t )  d t = h d ( A T f ) ( x ) .  (14) 
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(vi) Convolution with some f ~ ~2(Rd): Let f ~ ~2(Rd),  then for any x ~ R d, 
there exists some C >1 0 such that: 

[ f  h eBd.,(x-t)f(t) dt-f(x) Ch 2. (15) I"gl 

Proof 
(i) From eq. (4), we obviously have 

n d , m ( X l , . . . , X j _ l ,  O, X j + l , . . . , X d ) = h J ~ d _ l , m ( X J ) ,  

i.e. 

faBd,m(X) e 2i=xs'x' dx =h~d_ l , , , (XS ) ,  

and thus 

S.d_l[SBd,ra(X) dxi] e 2i'rrxj'X'/ dxJ='h'Bd_l,m(X'#), 
which means that  f R B e , m ( X ) d x  s and h B e _ l ,  m are  both continuous functions 
from R e-1 into ~ which have same Fourier transform; so they are equal. 
(ii) Obviously, 

fRBd.m(x)  d x =  IlXll--.01im Bern(X), =hd. 

(iii) 

AkB d,m = Ak ( hezi~ A - " 6  ) = heA"~ d -rn +k r 

k d m - k  __ k A h ( h  rA h ~4-rn+k~)  ~- -- A h B d , m - k  

(iv) First, let us prove that Vp ~ ~1,  fR~P(t)Bd,m(t) dt = hep(O): 
* if p E ~ 0 ,  it is exactly (ii); 
* if p ( t ) =  ait i for some i ~ [1, d] and a i ~ R:p(t)Bd,m(t)  is then an odd 
function in 4; its integral is null. 
* for any p ~ ~1:  p(t)  = b + ~,d=laiti, and so fa~p(x)Be,m(x) dx  = b =p(0).  
Then we get (iv): 

fR ,p( t )Bd,m( t - -x )  dt = fRf(t + X)Bd, re(t) d x = p ( x ) .  

(v) We have fgcdBd,m(X -- t )Amf( t )d t  = (Be ,  m �9 z i m f ) ( x ) ,  hence we have 

Be, m * (Ar ' f )  = (A"Be,,n) * f =  (hezi'~,8) * f =  h a ' A T ( 6  * f )  = hd'A'~f .  

(vi) Applying (v) to a function g such that A"g = f ,  we obtain (13) by using the 
fact that, for any x ~ R e, there exists C >~ 0 such that [ A~g(x) - -z ing(x ) [  

C h  2 . 
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COROLLARY 3 

There holds, in the sense of  distributions: 

Iim h - a B  e m = 6 .  
h---, 0 

51 

(16) 

Proof 
From theorem 3(vi), for any 4' ~ -~ (-~ is the usual set of infinitely derivable, 

compactly supported functions from R e to R), 

lim (4', h-aBd,m)= 4'(O) = (4', 6) 
h ~ O  

(here ( -, �9 ) denotes the duality product), so we have (16). 

REMARK 3 

B-splines as a regularization of the Dirac distribution 
The properties of h-aBe,,, ' shown in this Section confirm that h-dnd, m can be 

regarded as some regularized approximation (in D-mL2(Rd)) Of the Dirac 
distribution: 

a. Theorem 3(iv) shows that, applied to any polynomial p E ~1,  h-aBd,,, , has 
the same effect than the Dirac distribution has, applied to any function f. 

b. Theorem 3(v) shows that for any f ~ ~'2(Ra), h-aBe m has the same effect 
as the Dirac distribution has, with an error being in Ah 2 il DZf  II. 

c. Corollary 3 shows that the smaller h is, the " n e a r e r "  h-aBa,m is from the 
Dirac distribution (while staying in D-mLz(Re)).  

4. B-spline approximation 

We now use the notation Bha,,,, instead of Be, m, since h appears explicitly in 
the formulae. 

The aim of this section is to show that B h is a "quasi-interpolant", and to d,m 

study the properties of the associated quasi-interpolation. General results about 
quasi-interpolation are established in the more general context of radial basis 
functions in [Jackson, [7]]. 

DEFINITIONS 
(i) Given some vector y ~ R z", y = (yj)jEze such that for any j in Z a, l yjl ~< 

C(1 + II j II) 2-`  (where C and e are some non-negative real valued numbers), let 

ara,hY = E h YjBd,m(" --Jh). (17) 
j ~ Z  a 

am, h y is called "m-harmonic B-spline approximation of the points (jh, yi)j ~ z"", 
or simply "B-spline approximation of y". 
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(ii) For any function f from R d into R, such that, near l[ x II infinite, 
I f ( x )  l -<< # (  II x II 2-, (where e is some non-negative real number), and for any 
bounded open subset of R d, say ~ ,  let 

am,hf= E f(jh)Bhd,m(" - j h )  (18) 
jEZ d 

and 

am,s,af = Y". f ( t )Ba, . ,  ( �9 - t ) .  
t E(zh)dNo 

We now study the properties of the so defined operators a,,,,h and am,hj 2. 

(19) 

THEOREM 4 
(i) For all x in R a, 

Y~ Bad , . , ( x - jh )= 1. 
j ~ Z  d 

As a particular case, 

E 1. 
j~Z d 

( ii) B-spline approximation is reproducing ~1;  that is to say: 

Vp E '~1, am,hP =P" (20) 

(iii) Let k ~ N so that k < m  - d / 2 .  Then Akam,hY is a m-harmonic cardinal 
spline; more precisely: 

ak(am,hY) = a~(am-k,hY). (21) 

(iv) Let [2 be a bounded open subset o f  R d. 
Let ~ ,  = {t ~ E2: It - t'[ <~ e ~ t' ~ [2} for some e > O. 
Let l ~ ~* and f ~ ~t(Rd). 
Suppose all derivatives o f f ,  up to order l, be bounded on R d. Then: 

= (O(h) if l = l  
I l a m ' h f - f l l o ~ h - ' O , O ( h 2 l l n h l )  if l>_.2' (22) 

O(h)  if l = 1  (23) 
I lam,h ,af - - f  I[,O,Gh~0 ~,(h 211n h I) if l/> 2 

Proof 
(i) is a consequence of Poisson's formula: 

V x ~ R  d, Y'. B~,m(X + j h ) ' =  E Bh,m(k/h)  
I E Z  d k E Z  d 

e2i~rk .x/h. 
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Now, if k 4= 0 ,  JBd,m(k/h) = 0 ,  and if k = 0, JBd,m(k/h) e 2i~rk'x/h --- 1. So we get 
(i). 

(ii) is a consequence of [Jackson, [7], p. 63]; here is a direct proof of (20): Any 
P ~ ~q~l can be written as p(x)  = qo + q(x), where q0 ~ R and q is a linear 
function of x (and so q(jh) = q(x) - q ( x - j h ) ) .  Then: 

(am,hP)(X)=(qo+q(x) )  ]~, Bh ,m(x- jh)  - • q ( x - j h ) B h m ( x - j h )  
j E Z  d j E Z  d 

and from (i), we get 

(am,hP)(x) = p ( x )  --  ~., q ( x - J h ) B h , m ( x - j h ) .  
j ~ Z  d 

Now, from Poisson formula, 

-----h 
~_~ q ( x - j h ) B h , m ( x - j h ) = h  -d ~_~ qBd,m(j /h)e  2i~ix/h. 

j ~ Z  d j ~ Z  d 

Setting q(x) d = ~t=xatxt, we get 

"h  
d a l  ~Bd ,  m 

qBd,m---- ~ - 2 i ~ "  aX t ' 
l=1  

hence, by using (4): Vj ~ Z d, "aB h q  d,m(j/h) = 0. Therefore we obtain o'm,h(X) = 0. 
(iii) is a direct consequence of the definition of am,hY and am_k,hy , and of 

Theorem 3(iii). 
(iv) is a direct consequence of some results on quasi-interpolants proved by 

I.J. Jackson [Jackson, [7], p. 91 and p. 104]. 

REMARKS 
(i) Theorem 4 shows that B h is a "quasi-interpolant", as: d,m 

a. If data (jh, yj)i~zd lie in a plan (i.e. 3p  ~ ~q~l: Vj ~ 7/d, yj =p(jh)), then 
am, hy reproduces this plan. 

b. For any f E  ~x(Rd), all first derivatives of f being bounded, ][ a,,,,hf-- 
f ][ = h--,----"~ 0, and so a,.,,,h f is some polyharmonic spline approximating f ;  conse- 

quently, am, h y is some polyharmonic spline aproximating the data (jh, yi)j ~ z". 
(ii) It is of interest to note that thanks to the decay of Bh,,(x) when 

II x ]] ~ % it is only necessary, for numerical purposes, to compute a finite 
number of terms of the infinite summation defining am, h y. In practical applica- 
tions, especially for thin plate B-spline approximation, the number of terms 
needed to be numerically evaluated i squ i t e  low: computing (am,hY)(X) needs 
about 25 terms for each x if we require an error less than 10 -3, about 49 terms 
for an error less than 10 - 4  (these values are given for thin plate splines and for 
y such that [I Y II ~ ~ 1). 
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5. Consequences on interpolation 

Given y ~ R z", a spline function o- is interpolating y if o- interpolates the 
points (jh, yi)j~z,,  i.e. if Vj ~ Z a, cr(jh) =Yi" 

Results about such an interpolation are established in the more general 
context of radial basis functions in [Buhmann, [1]], and for polyharmonic splines 
in [Madych, [8]]. The aim of this section is to add some results concerning the 
Fourier Transform of the further defined Lagrangean polyharmonic spline and 
to write any interpolatng spline in terms of translates of B h functions. d,m 

5.1. NOTATIONS 

We first need the following result, in [Buhmann, [8]]: 
There exists one and only one m-harmonic spline, which we will denote by 

L h such that d,m , 

a. Zhd,m(O)=l, W E T - d - - { O } , Z h d , m ( j h ) = O  I �9 (23) 

b. Zhd,m(X) decays exponentially when II x II - - '  oo ] 

The so-defined L h is called "Lagrangean m-harmonic cardinal spline". d,m 

We denote b the vector defined by: Vj ~ 7/a, b i =Bham(jh), and by �9 the vector 
defined by: �9 = 1, �9 = 0 if j ~ 7/a - {0}. la(Za) is the set of vectors u such that 
Ej ~ z. [u~.[ is finite. 
For any u E P(Z d) and any v ~/1(Zd), we denote by u * v the convolution of u 
and v: 

( u ,  v)k = Z u;vk_j. 
j E Z  a 

For any u E 11(7/a), we denote by z~ the function defined by (o9 ~ Ra): 

a(, , )  = E u; e 
j ~ Z  a 

5.2. FOURIER TRANSFORM OF Ld, m 

THEOREM 5.2 
^h Let Lh,m^ be defined above by (23), Ld, m 

Let b and b be defined as above. Then: 
(i) 

^h ^ 
r^h B d ' m  haBha,m 
1..d, m = ~ = 

E 
j E Z  d 

the Fourier transform h of La,m. 

(24) 
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(ii) ~[tO ~ ~d Lh, m(OJ) >/ Oo As a consequence, Lh d,m is a totally positive func- 
tion. 

^h (iii) Ld,m(O) = h a, and so fR~L~,m(X) dr = h a. 
(iv) As a particular case when d = 1: 

~h,m(tO) = ( sin ~hto )2" h 
�9 m , 

7rhto Bl,m(O ) + 2 Y] B,,,~(jh) cos(2"rroJjh) 
j = l  

which is, for cubic splines: 

~],2(oJ) = ( sin ,rrhto )4 h 
~rhto 1 - (2/3)  sin2rrhto 

and, for quh~tic splines: 

^ (sin 7rhoJ ) 6 h 
Lh'3(r~ = -rrhto " 1 - sin2"rrhro + (2/15) sin%rh~ " 

Proof 
(i) In [Madych, [8]], it is proved that every m-harmonic cardinal spline tr 

satisfies the relation 

tr= E f(jh)Lh,m(" - j h ) .  
j ~ Z  a 

Applying that Theorem to B h d,m~ w e  get: 

Bh = E Bh,m(jh)Lhd,m( " - j h )  d,m 
j ~ Z  d 

So: 

and 

^h B ,m = E B ,m(jh) h ,m = 
j ~ Z  d 

SO 

The 

Lhd,m E Bh,.,(J h) e2i=/h" 
j ~ Z  d 

^ h  ^ ^ 
Zd ,m = B h m / b .  

second equation is then obtained directly by Poisson's formula: 

= E Bh,m(J h) e-ai~jh'=h-d E ~'d,,~tt" - j / h ) .  
j ~ Z  a j ~ Z  a 

(ii), (iii) are simple consequences of (i). 
(iv) is a consequence of (i) and of the expression of ~h (5). ~"" d,m 

[] 
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REMARK 
From (i) with (5), we find 

h d h d 
"h 

Ld ,  m = = ( ,, ( ,,,, 
IIh ~ - j l l  1 + j~z" j~z"-{o} I1" ---J'/~h II 

This expression is taken by Buhmann  and Madych as the definit ion of L h d , m  �9 

5.3. EXPRESSION OF A SPLINE IN TERMS OF TRANSLATES OF Bd, m 

Let us remind the following result, due to Madych: for any s of polynomial 
growth (i.e. there  exist some real constants c and a such that I st[ ~< c(1 + I J[ ~), 
there  exist one an only one m-harmonic  spline of polynomial growth (i.e. there  
exist some real constants c and a such that  o-(x) ~< c(1 + II x II) ~) interpolating 
s, it has a unique representat ion in terms of translates of L~,,,,, namely 

o " =  ) ' .  s j t h d , m ( ' - - j h ) .  (25)  
j E Z  a 

The aim of this section is to write o- in terms of  translates of B h functions, if d , m  
S E l l (7/d) .  

THEOREM 5.3 

Let  s ~ l l ( Z d ) .  Let  tr be the m-harmonic spline interpolating s, defined as 
above. Then: 

(i) There exists a unique vector c such that 

cr= E c ~ B h , m ( ' - J h )  �9 (26) 
j ~ Z  d 

Furthermore, we have, for  any j in 77 d: 

e(o)) 
cj = fro, l / h l e f f ~ )  ezi~yh" do). (27) 

(ii) Let  a be the vector defined by ( j  ~ Zd): 

1 
= f[0 - x - - - ~ e  2i~rjhe~ do) .  (28)  

at ,1/h]db(w) 

Then: 

L h = Y'. a B h t .  a,m j a , m t - j h ) .  (29) 
j E Z  d 

Furthermore, 

c = a * s, (30) 

s = c * b, (31) 

e = a * b. (32) 
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/ ' roof 
(i) First, let us prove the unicity of c: suppose tr is writ ten as in (26), and let 

us then prove (27): 
F rom (26), we get 

e 2brjht~ h [ Oj ~ 
~ ( ( ' 0 )  ~- E Cj d,mk ] 

j E Z  d 

^h ^ = ( 3 3 )  

and, from (25), 

e -2iTrjh~os [03~ s; J 
j ~ Z  a 

= Lh m(W),~(to). (34) 

Comparing (33) and (34), we get, using (24): 

3(,o) 
d(to) = b(to) ' (35) 

and so (27). 
Now, to prove (26), we can go backwards: f rom (27) we have (35), and from (35), 
(34) and (24), we get (31), and so (26). 

(ii) (28) and (29) are (27) and (26) for s = e. 
Let us prove (30): from (25) and (29), we get 

0 "= E d S J ( E d a k n h , m ( ' - k h - j h )  ) 
j~Z k~Z 

IEZ d j E Z  d 

(30) is then a consequence  of the unicity of the decomposi t ion of o- in terms of 
translates of B h 

d~ wI  ~ 

(31) is a direct consequence of (26): 

sk=cr (kh )=  ~_, cyBh,m(kh-jh)  = Y] Cjbk_j. 
j E Z  '! j ~ Z  a 

(32) is (31) when  s = e. 

REMARKS 
a. (32) shows that a may be obtained by deconvolution of the vector E by the 

vector b; numerically this is quite easily done by using Fast Four ier  Transform. 
b. (26) and (29) give the expression of L h and of the spline tr interpolating d,m 

some vector s ~/l(Rd) in terms of translates of  B h Since B h is easily d,rn" d,m 
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computable, these formulae enable us to compute Z h and tr. Furthermore, d, ra 
thanks to the decay of B h , , ( x - j h )  when II x - jh  II--' it is numerically 
sufficient to compute only a finite number of terms of the sums (26) or (29). 

6. Conclusion 

We have defined functions Bd, m which can be regarded as an extension, to all 
polyharmonic splines, of the usual polynomial B-spline in one dimension. Let us 
summarize some of the main properties of these Bd, m. 

6.1. PROPERTIES WHICH ARE NOT SATISFIED BY Bd, m IF d >t 2 

Some properties satisfied by polynomial B-splines are not satisfied by poly- 
harmonic B-splines if d >/2; such are: 
a. Positivity: The relation Vx ~ R d, Ba,m(X) >1 O, which is true if d = 1, is false 
if d/> 2. It is a quite important property for its consequences (the most 
important consequence is that the B-spline approximation of some data is, in 
one dimension, within the convex hull of these data). However, we can notice 
that the negative part of the function is never very important (for example, 
numerically we have (B2,2(x) )>-0 ,04) ;  furthermore since the interpolating 
cardinal spline is not a positive function, we can think that positivity is not 
essential. Moreover, in [Rabut, [llc]], it is shown that other interesting polyhar- 
monic spline functions may be regarded as B-splines too, and are not positive 
funct ions. . .  

However Bd, m is a totally positive function (Theorem 2(ii)), as is ,L hd,m (Theo- 
rem 5a(ii)). It seems to us that total positivity is the intrinsic property of 
polyharmonic B-splines (note that even degree polynomial B-splines are not 
totally posit ive. . ,  neither are they polyharmonic splines). 
b. Compact support: Polynomial B-splines are compactly suppor ted . . ,  and 
polyharmonic B-splines are not if d >/2. Let us notice that polyharmonic splines 
are linear combination of Vd,m(X-jh),  therefore it is impossible to obtain a 
non-zero compact-supported spline (when d >~ 2) and there is no possibility to 
extend the property of compact support to dimension d >~ 2. Nevertheless, we 
must notice that the value of Bd,rn(x) , even for quite small II x II is very low (B2, 2 
(3, 0 ) = 0 . 0 0 3 ,  B2, 2 (4, 0 ) = - 0 . 0 0 0 6  for example), and that Bdm(X)= 
~'(1/II x II -d-2);  so Bd, m can be called "numerically compactly supported func- 
tion", and as we saw in Section 4, a series as E~ez,YjBd,m(ih) needs only a few 
terms to be computed. 

So, the general shape of these functions does extend in a quite appropriate 
way the shape of polynomial B-splines. 
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6.2. PROPERTIES SATISFIED BY Bd, m 

a. Their definition (Section 1.2) is very close to the definition of polynomial 
B-splines. 

b. They are "bell-shaped" functions. . ,  but actually this is a direct conse- 
quence of total positivity. 

c. As they are reproducing 9 1  and "Bell-shaped", they are quasi-interpolant 
functions: the spline function am,hY = Ej~zuyjBdm(" - j h )  follows the shape of 
the data (jh,  yj)j~R~, and, if V j ~ Z  d, y j = f ( j h ) i  then am,hY--ff~ f .  So, it is 

quite natural to u s e  B h in a similar way as we usually use polynomial �9 d,m 
B-splines. 

d. Fourier transform and convolution relation Bd, m +m' = Bd,m * Bd,m' are quite 
simple and pretty extensions of the Fourier transform and of the convolution 
relation of the polynomial B-splines. 

e. The property linking up Bd, m to B d_ 1,,,,, and, as a consequence of it, Ba, m 
to BI,m, is another illustration of the very close intrinsic link between Bd, m and 
BI,,, ,. Furthermore derivation property linking Bd, m to Bd,m_ k is a pretty 
extension of the same relation in one dimension. 

f. Last but not least: cardinal splines can be written in terms of translates of 
Bd,m, and, for sufficiently decreasing data, the coefficients of the interpolating 
spline are explicitly known (Theorem 5b). 

6.3. B-SPLINES AS REGULARISATION OF THE DIRAC DISTRIBUTION 

As shown in the remark of Section 3, B-splines can be regarded as some 
regularization, in D - m L  2, of the Dirac distribution, multiplied by some dimen- 
sional coefficient. 

6.4. PROPOSITION OF TERMINOLOGY 

According to the terminology used by Schoenberg about interpolation or 
approximation for equidistant data, and by Madych about splines, we propose: 

a. To call "ruth order polyharmonic splines", or "m-harmonic splines" all 
splines minimising [ f l m  under some discrete interpolation condition, as they 
are m-harmonic functions of R d - A ,  where A is a discrete subset of R a. 

b. To add the qualifier "cardinal" when all the knots are in (Zh) a (even if h 
is not equal to 1 and even if only a finite number of knots have corresponding 
non-zero coefficients). 

c. To add the letter "B" to the splines defined as some regularisation of the 
Dirac distribution. 

d. Since the ones defined in the present paper are obtained by the most 
elementary discretization of the Laplacean operator (and since other discretiza- 
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tions give other spline functions which warrant attention too, as shown in 
[Rabut, [llc]]), we propose to add the word "elementary" to them. 

So we propose, as we used in this paper, to call the functions Bd, m "elemen- 
tary m-harmonic cardinal B-splines", or shortly when no confusion is possible, 
"elementary B-splines", or even "B-splines". 

6.5. EXTENSIONS 

First, let us mention that Nira Dyn and David Levin were the first ones to 
apply a discretization of bilaplacian to the function f (x )  = II x II 2 In II x II 2 They 
did so to improve the condition number of the linear system to be solved in 
order to interpolate some data ([Dyn, [4]]); but as they took no care of the 
coefficient E2, 2 = 1/8~- (see Section 1.1) most of the properties shown here 
were not satisfied. 

In one dimension, for even degree polynomial splines, all the work is directly 
extendable, when using (rhf)(x)  = f ( x  + h/2)  - f ( x  - h/2) ;  B-spline of degree 
2k is then MZk+l(x)= h(h-lt3hD-1)2k+18 where D is the derivation operator. 
As it is known, the Fourier transform is then 

,, ( sin rrhw ) 2k+1 ' 
M2k+l(w) = -~h---w 

which is not positive, and so M 2k+1 is not a totally positive function. All other 
properties are valid. 

m-harmonic splines are also defined for non-integer values of rn > d /2  (by 
using Sobolev spaces, and Fourier Transform, see [Duchon, [3]], or [Rabut, 
[11a]]). In that situation too, it is possible to define "B-splines"; we do it directly 
by its Fourier transform 

B h ~ ,=hd([]sin~rhw[[) 2m 
d'mt~O) II ~rh~o II ' 

and main properties remain valid (however these functions B h do not seem d,m 
numerically interesting, as long to evaluate); for more details, see [Rabut, [11a], 
w 

It is possible to define B-splines in the same way for other geometrical grids, 
such as for example hexagonal grids. It is also possible to define B-splines in the 
same way for scattered data, and most of the properties seem to be fulfilled in 
that case; but we have not yet succeeded in proving them. However, we still 
hope to prove properties similar to the ones available for non regular data in 
one dimension. 

In [Rabut, [11c]], we use other discretizations of zl m to get other m-harmonic 
B-splines, which have some specific properties (such as, for example the associ- 
ated B-spline approximation is reproducing ~ k  for k ~< 2m - 1); by the way this 
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conf i rms  t h a t  B-spl ines m a y  be  r e g a r d e d  as some approx ima t ion  of  the  Di rac  
d is t r ibut ion.  

A t  last, let  us  m e n t i o n  tha t  it is possible  to c o m p u t e  B-spline approximat ion ,  
or  spl ine in te rpo la t ion ,  of  d a t a  on  a cardinal  grid by subdivision techniques .  
T h a t  is quickly p r e s e n t e d  in [Micchell i  e t  al. [10]]. 
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