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ABSTRACT. Fourier outline shape analysis is a powerful tool for the morphometric study of two-dimensional form in
organisms lacking many biologically homologous landmarks. Several improvements to the method are described
herein; these modi®cations are incorporated into the new computer programs HANGLE, HMATCH and HCURVE. First,
automated tracing of outlines using image capture software, although desirable, results in high frequency pixel `noise'
that can corrupt the Fourier analysis. Program HANGLE eliminates this noise using optional and variable levels of
outline smoothing. Secondly, a widely used Fourier technique, elliptic Fourier analysis (EFA, Kuhl and Giardina
1982), yields coef®cients that are not computationally independent of each other, a condition that hampers and
compromises statistical analysis. In addition, EFA increasingly downweights successively more detailed features of
the outline. Program HANGLE solves both of these problems. Lastly, Fourier methods in general are sensitive to the
placement of the starting position of the digitized trace. This problem is acute when the organisms under study have no
unambiguously de®ned, homologous point on the outline from which to start the trace. Program HANGLE allows the
user to normalize for starting position using various properties of individual outlines. Alternatively, HMATCH takes a
new approach and can be used to normalize using properties of the entire population under study.

KEY WORDS: Fourier shape analysis, morphometric studies, new computer programs, foraminiferal outlines.

I N recent years palaeontologists have been making increasing use of morphometric methods in
taxonomic and evolutionary research. Furthermore, the ready availability of powerful personal computers
means that these morphometric methods are becoming increasingly diverse and sophisticated (for
example, see reviews in Rohlf and Bookstein 1990; Temple 1992; Marcus et al. 1996). Fortunately,
many computer programs to perform these analyses are widely accessible, together with published
accounts of their theoretical underpinnings. Consequently, with relatively little effort, even weakly
numerate palaeontologists are able to take advantage of, and bene®t from, advances in the ®eld of
morphometrics. The potential bene®ts of morphometric analyses are well documented and great: they
can yield independent, objective and repeatable tests of taxonomic, phylogenetic and evolutionary
hypotheses that are based on qualitative studies; they can specify, localize and quantify morphological
change through evolution or ontogeny; and they allow taxonomic separation and evolutionary rates to
be measured. Perhaps most importantly, however, morphometric analyses simply force the palaeobiologist
to view their material from a very different perspective, to step outside the con®nes of their subjective
biases.

One widely used family of morphometric techniques employs the Fourier transform to examine
populations of outline shapes and is the subject of this paper. Fourier shape analysis has been used in
studies of diverse organisms such as miospores (Christopher and Waters 1974), leaves (White et al. 1988;
McLellan and Endler 1998), foraminifera (many papers, e.g. Healy-Williams and Williams 1981; Healy-
Williams 1983, 1984; Belyea and Thunell 1984), ostracodes (Burke et al. 1987; Foster and Kaesler 1988),
bryozoans (Anstey and Delmet 1973), bivalves (Ferson et al. 1985; Crampton 1996; Mehlhop and Cifelli
1997; Innes and Bates 1999; Crampton and Maxwell in press), echinoderms (Waters 1977), trilobites
(Foote 1989; CroÃnier et al. 1998), insect wings (Rohlf and Archie 1984), cambroclaves (Conway Morris
et al. 1997), and vertebrate skeletal elements (O'Higgins and Williams 1987; Renaud et al. 1996).
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Recently, the method has been extended to the analysis of the internal morphology of coccoliths (Garratt
and Swan 1992, 1997).

The relative merits of different morphometric analyses of form have been discussed widely in the
literature and these arguments are not repeated here (e.g. recent reviews in Rohlf and Bookstein 1990;
Temple 1992; MacLeod 1999). Suf®ce it to say that Fourier outline shape analysis is, without doubt, an
extremely powerful tool for the analysis of biological form in taxa lacking many homologous landmarks
(e.g. Crampton 1995, 1996; Conway Morris et al. 1997; Mehlhop and Cifelli 1997). It is worth noting
some recent and exciting developments towards the integration of landmark- and outline-based techni-
ques, advances that hold great promise for a general synthesis of hitherto disparate methodologies
(Bookstein and Green 1993; Bookstein 1995, 1996a, b; MacLeod 1999).

This paper addresses four problems with existing methods of Fourier shape analysis:
1. Fourier methods in general are sensitive to the use of unsmoothed outline data captured using modern
image analysis software. Such data contain a large amount of spurious, high frequency `noise' that can
distort or corrupt the analysis.
2. One particular Fourier technique that has been applied in many recent studies is elliptic Fourier shape
analysis (EFA, Kuhl and Giardina 1982). Although this approach is powerful and has a number of
advantages over other methods (Ferson et al. 1985; Crampton 1995), it yields a relatively large number of
Fourier coef®cients that are not computationally independent of each other and are, in part, redundant.
This redundancy hampers and compromises statistical analysis of the coef®cients.
3. During statistical analysis, EFA assigns undue weight to gross features of the outline and increasingly
downweights progressively ®ner elements of shape. In populations of outlines that vary in fundamental
ways this may not be a problem, but in the case of shapes that differ in detail, discriminatory power may be
lost.
4. Fourier methods in general are rather sensitive to placement of the starting position of the digitized
trace, and thereby orientation of the trace, and this can unduly in¯uence the interpretation of results. This
problem is particularly signi®cant when there is no unambiguously de®ned, biologically homologous point
on the outline from which to start the trace. Previous studies have used properties intrinsic to each outline
to normalize for starting position (Ferson et al. 1985). The method described herein takes a new approach
and allows the user to normalize for starting position and orientation using either properties of individual
outlines, or properties of the entire population under study.

These problems are discussed in this order through the paper. The Fourier method described here solves
them and some other, more general, problems whilst retaining the strengths of earlier approaches. The
software to perform these computations, programs HANGLE, HMATCH and HCURVE, are available with and
described in a complementary publication (Crampton and Haines 1996)1. These programs are compiled for
both Macintosh and IBM compatible computers. They require as input a population of digitized, two-
dimensional outlines that can be captured using any standard digitizing or image analysis software. The
programs output a set of Fourier coef®cients suitable for multivariate statistical analysis.

T H E B A S I C M E T H O D

Fourier shape analysis takes an outline contour, described as a polygon of digitized xy-coordinates, and
`decomposes' this into a spectrum of harmonically related trigonometric (i.e. sine and cosine) curves. The
Fourier coef®cients that are produced, two per harmonic, describe the size (`amplitude') and angular offset
relative to the starting position (`phase angle') of each harmonic curve. In this way, and using some
appropriate number of harmonics, it is possible to describe even extremely complex shapes. The present
method employs the `Fast Fourier Transform' (FFT) to compute the harmonic spectrum (e.g. Davis 1986).
The FFT does not work directly with the raw xy-coordinates, as in elliptic Fourier shape analysis (Kuhl and
Giardina 1982), but operates on the tangent angle as a function of arc-length connecting the coordinates.
During processing, outlines are standardized for size using perimeter length. The FFT is performed here
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using the program HANGLE (see Crampton and Haines 1996); computational details are given in the
Appendix.

Given a set of Fourier coef®cients, it is possible to invert the Fourier transform, producing an outline
contour from its independent coef®cients (see Appendix). This property has great utility in morphometric
studies and can be used, for example, to represent graphically particular morphologies and to generate a
suite of synthetic outlines, either average or extreme (e.g. Crampton 1996; see also below). The inverse
Fourier transform is performed here using the program HCURVE (see Crampton and Haines 1996). In
general, only low order Fourier coef®cients are needed to accurately reproduce an outline (Crampton
1995), and in this paper only coef®cients up to the tenth harmonic are used.

Methods described herein have been tested and evaluated using four rather different datasets: a subset of
the Miocene foraminifera outlines of Scott (unpublished data); a subset of the Cretaceous bivalves studied
by Crampton (1996); the Cambrian cambroclaves described by Conway Morris et al. (1997); and a suite of
synthetic outlines describing a graded, `evolutionary' continuum of morphologies. Results and conclu-
sions from all these examples are essentially similar and, in the interests of brevity, the present discussion
is illustrated primarily using just one dataset, the foraminiferal outlines of Scott. These data comprise two
Tortonian (Upper Miocene) foraminifera, Bolivinita compressa Finlay and B. pliobliqua Vella, that are to
be published electronically as part of a study of New Zealand Bolivinita. They were selected here because
they are already well studied and de®ne two a priori taxonomic groups, because they are representative of
a large class of fossil organisms, and because these outlines are rather `nondescript', lacking many clearly
de®ned, unambiguous, biologically homologous landmarks. The outlines were traced automatically from
electronically stored scanning electron micrograph images using image analysis software.

S M O O T H I N G N O R M A L I Z A T I O N S

Increasingly, palaeontologists and biologists are making use of image analysis software to automatically
trace and digitize outlines for use in morphometric studies (e.g. Ferson et al. 1985). Automated outline
capture is rapid, potentially highly accurate, and desirable. A digitized outline is not, however, a
continuous, smooth curve, but proceeds as a series of discrete, straight-line, pixel `steps' parallel to the
x and y-axes of the digitizing grid (Text-®g. 1A). In the case of an automatically and ®nely digitized outline
this results in a considerable amount of high frequency `noise' (Text-®g. 1B) that can distort or corrupt the
Fourier analysis (see below). Hence, if an outline has been ®nely digitized it is necessary to smooth it prior
to computation of the FFT. Smoothing is possible within many image analysis programs or, alternatively,
within program HANGLE.

Smoothing is accomplished here by taking a weighted moving average over three successive coordinate
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sampled xy-coordinates and NFFT is the number of re-sampled points that are used in the FFT (see below).
This helps to ensure that the adjusted outline is smooth between the re-sampled points, which are evenly
spaced with respect to arc-length around the outline. Hence, if NFFT is known, it is possible to calculate the
absolutely minimum satisfactory number of smoothing iterations for any particular outline. In the case of
program HANGLE, NFFT has been set to be equal to 1024. If outline smoothing is selected by the operator, then
the program automatically calculates and performs the minimum desirable number of smoothing iterations
whenever this is more than the number of iterations speci®ed (Crampton and Haines 1996).

There are no hard-and-fast rules regarding the level of smoothing to be used. The degree to which any
outline should be smoothed will vary from study to study and will also depend upon the level of image
magni®cation relative to the digitization grid. If high frequency detail is likely to have some taxonomic
signi®cance, then lower levels of smoothing may be appropriate. Alternatively, in the foraminiferan
example of Text-®gure 1A, relatively high levels of smoothing result in outlines closest to the true
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specimen shape (i.e. > 6 smoothing iterations). This can only be judged by comparison of actual specimens
or high-quality images with their digitized outlines.

As noted above, a large amount of high frequency pixel noise, if not eliminated by smoothing, can
`corrupt' any subsequent Fourier decomposition and statistical analysis. This is illustrated in Text-®gure 2,
in which the raw coordinates and four reconstructed contours of a single outline are shown superimposed.
The reconstructed outlines were generated by initial processing in program HANGLE, using different
degrees of smoothing, and subsequent inversion of the Fourier transform using program HCURVE and the
coef®cients for the ®rst 10 harmonics. It is clear that the reconstructed shape of the unsmoothed outline
(i.e. smoothing normalization 0) has been distorted in comparison to the raw coordinates and the smoothed
outlines. This distortion is a result of increased arc-length in regions of high frequency pixel noise, the
magnitude of which is itself determined by the orientation of any particular margin segment with respect to
the digitization grid. Since the FFT operates on the tangent angle as a function of arc-length, any increase
in arc-length that is an artefact of digitization will have a spurious effect upon the FFT by, in effect,
transferring information from low order to high order harmonics. When only low order harmonics are used
during inversion of the FFT, this results in distortion of the reconstructed outline. This problem will affect
most methods of Fourier analysis, although one commonly used method, elliptic Fourier analysis, is
relatively insensitive to pixel noise for reasons outlined below.

The effects of pixel noise upon statistical interpretation of Fourier coef®cients is illustrated in Text-
®gure 3. This diagram shows four principal component analyses (PCAs) of the same dataset, comprising
two a priori groups of foraminifera, and the effects of different degrees of smoothing. All plots separate
the two a priori groups, but the separation is greatly diminished in the data that have not been smoothed.
Similarly, there is some loss of discrimination in data that have been highly smoothed (96 iterations), with
contraction of the ®rst principal component.

C O M M E N T S O N S O M E E A R L I E R F O U R I E R T E C H N I Q U E S

Zahn and Roskies (1972) described a Fourier technique similar to the method used here, although there are
a number of computational differences. Their technique has two major disadvantages. First, it does not
ensure that reconstructed outlines are closed, making meaningful comparisons between outlines impos-
sible. In program HANGLE, on the other hand, closure is determined by the dependence of the ®rst harmonic
on all others (explained in Appendix). Secondly, the Zahn and Roskies method de®nes a relatively large
number of `phase angle Fourier descriptors' that are not computationally independent of each other and
are, in part, redundant. For example, in the case of ten harmonics, they de®ne 45 phase angle descriptors.
Subsequent statistical analyses of such data will be compromised by correlations that result from this
redundancy and are spurious with respect outline shape per se. In addition, this problem hampers statistical
analysis when dealing with small populations, as is commonly the case in palaeontological studies,
because the number of variables (i.e. Fourier coef®cients) must be less than the number of specimens, and
should be substantially less. In contrast to the method of Zahn and Roskies, program HANGLE produces two
coef®cients per harmonic that describe amplitude and phase angle; these coef®cients are computationally
independent (see Appendix).

Another Fourier technique, Elliptic Fourier analysis (EFA, Kuhl and Giardina 1982), has been applied

H A I N E S A N D C R A M P T O N : F O U R I E R S H A P E A N A L Y S I S 769

TEXT-FIG. 1. A, representative digitized outline of the foraminifer Bolivinta pliobliqua, spiral view (from Scott,
unpublished data). This outline has been traced automatically from an electronically stored scanning electron
micrograph image using image analysis software. Enlarged region shows detail of the outline as represented by the
raw xy-coordinates, and following smoothing normalizations of 2, 6 and 96 in program HANGLE (note, for clarity each
line has been offset, see also Text-®g. 2). The value of the smoothing normalization in HANGLE corresponds to the
minimum number of iterations through the smoothing routine in the case of smoothing normalization 2 and increasing
degrees of line smoothing in the other cases (see text for further discussion). B, the same data shown as plots of tangent
angle versus arc-length around the outline contour. It is this function, tangent angle versus arc-length, that the FFT
operates upon. The pixel `noise' of the raw xy-coordinates is very clearly visible in the ®rst plot (smoothing

normalization 0) and is progressively removed through successive smoothing iterations.



widely in morphometry and is a powerful technique (e.g. Ferson et al. 1985; Crampton 1996; Mehlhop and
Cifelli 1997; McLellan and Endler 1998). In particular, it allows the user to normalize for size, location,
starting position and rotation of the outline trace (Kuhl and Giardina 1982; Ferson et al. 1985). As noted in
the introduction, however, the method also has two disadvantages. The ®rst of these is analogous to that
described above: EFA yields four Fourier coef®cients per harmonic that are not computationally
independent of each other, resulting in spurious correlations that will compromise statistical analysis.
This is explained arithmetically in the Appendix.

The second problem with EFA results from the relative downweighting of all harmonics above the ®rst.
[Note that numbering conventions for harmonics vary depending on how the Fourier coef®cients are
derived: the `second harmonic' as used in this paper corresponds primarily to the `®rst harmonic' of EFA
as described by Kuhl and Giardina (1982) and Ferson et al. (1985)]. This is because EFA effectively
divides the kth harmonic by k-1, i.e. HANGLE's second harmonic is divided by 1, the third harmonic is
divided by 2, the fourth harmonic is divided by 3, and so on (explained arithmetically in the Appendix).
This unduly reduces the in¯uence of higher order harmonics in any statistical analysis based on the
variance-covariance matrix. Successive harmonics describe progressively ®ner details of the outline.
Hence, EFA tends to diminish the discriminatory power of outline details, even though such details may
have taxonomic or other biological signi®cance. The problem affects even relatively `large' outline
elements such as `quadrate' features (i.e. HANGLE's fourth harmonic). This is illustrated in Text-®gure 4
showing PCAs of the Scott dataset based on Fourier coef®cients from HANGLE and from EFA. The plots
ordinate variables (i.e. Fourier coef®cients) against the ®rst two principal component axes and identify

770 P A L A E O N T O L O G Y , V O L U M E 4 3

TEXT-FIG. 2. The raw coordinates and four reconstructed outline contours of a single foraminifer, Bolivinita pliobliqua
(the same individual as that shown in Text-®g. 1). The reconstructed outlines were generated by initial processing in
program HANGLE, using different degrees of smoothing, and subsequent inversion of the Fourier transform using
program HCURVE and the ®rst 10 harmonics. Note that the raw coordinates and three of the reconstructed outlines are
largely overlapping (segments of the corresponding original outlines, separated for clarity, are shown in Text-®g. 1A).
The reconstructed outline that has not been smoothed (smoothing normalization 0) is signi®cantly distorted because of
local variations in arc-length that are artefacts of digitization. These variations are the pixel `noise' of Text-®gure 1B.

See text for further explanation.



those variables that contribute most discriminatory power to each axis. In the ®rst plot, based on HANGLE,
all harmonics contribute substantially to both principal components. This indicates that even the high
order harmonics have some discriminatory power and, potentially, some taxonomic utility. In the
second plot based on EFA, however, the ®rst principal component is dominated by the ®rst harmonic
and only the second to ®fth harmonics contribute any signi®cant variance to either axis. The remaining
variables cluster around the origin and have little in¯uence on the analysis. The same is true even when
the ®rst harmonic is eliminated from the PCA, as shown in Text-®gure 4C: again the analysis is
dominated by the same few low order harmonics. This demonstrates that the statistical analysis based
on EFA downweights or effectively ignores medium to high frequency information from the outlines,
information that does have discriminatory power. It is worth noting that the downweighting of
higher order harmonics in EFA makes it relatively insensitive to the pixel noise discussed in the previous
section.
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TEXT-FIG. 3. Four principal component analyses of a dataset comprising 24 specimens of the foraminifera Bolivinita
compressa (specimens 1±15, normal text) and B. pliobliqua (specimens 16±24, bold italic text). The dashed line
separates the two a priori groups (classi®cation and data from Scott, unpublished data). In each plot the x-axis
corresponds to the ®rst principal component and the y-axis corresponds to the second principal component. Principal
component values are shown using the same isotropic scale on all plots. In all four analyses, outlines were processed
using starting normalization 0 followed by matching and principal components were computed using the variance-
covariance matrix. Whereas all plots separate the two groups of specimens, this separation is greatly diminished in the
data that have not been smoothed (smoothing normalization 0). With varying numbers of smoothing iterations the
distribution of specimens in morphospace is stable, although there is contraction of the ®rst principal component and a

corresponding loss of resolution following high numbers of smoothings (96).



S T A R T I N G N O R M A L I Z A T I O N S

As noted in the introduction, the starting position of a digitized trace, and thereby its orientation, has a
marked in¯uence on the Fourier transform. Small variations in starting position can unduly affect
interpretation of Fourier coef®cients. Although it is desirable to digitize outlines in a standard manner,
beginning at a homologous landmark and using a consistent orientation, in many studies this is dif®cult to
achieve with adequate precision. For example, in a study of Mesozoic bivalves, Crampton (1995, 1996)
found that the only available landmark, the umbo, is too broadly rounded to allow precise identi®cation of
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TEXT-FIG. 4. The ®rst two principal component axes based on the Scott dataset (see caption to Text-®g. 3) and 10
harmonics. The plots ordinate the variables (i.e. the Fourier coef®cients) against the principal component axes and
identify those variables that contribute most discriminatory power to each axis. Each variable is numbered according to
its harmonic. All analyses utilise the variance-covariance matrix. A, analysis based on HANGLE, with smoothing
normalization 2 and starting normalization 0 followed by matching. There are two coef®cients per harmonic, denoted a
and b. Note that the ®rst harmonic has no signi®cance here and is not output by HANGLE (see Appendix). All harmonics
contribute substantially to the analysis and have some discriminatory power. B, analysis based on EFA, normalized for
location, size, starting position and rotation. There are four coef®cients per harmonic, denoted a±d. Note that
normalization results in loss of coef®cients 1a±1c. The ®rst principal component is dominated by the ®rst harmonic
(variable 1d) and only the second to ®fth harmonics contribute signi®cantly, though comparatively weakly, to either
axis (variables 2b, 3a±c, 4c±d, 5c). C, analysis as for B, with the ®rst harmonic eliminated. Again, the analysis is
dominated by low order harmonics, compared to the analysis based on coef®cients from HANGLE. Differences between
the analyses based on HANGLE and EFA are a consequence of the progressive downweighting of harmonics relative to

the ®rst in EFA. See text for further discussion.



a homologous landmark. Similarly, in a study of enigmatic Cambrian cambroclaves, Conway Morris et al.
(1997) were unable to exactly identify homologous orientations or starting positions for the traces.

Previous studies have addressed this problem by using features intrinsic to each outline to normalize for
starting position and orientation. In particular, Kuhl and Giardina (1982) and Ferson et al. (1985) described
normalizations that are based on alignment of the second harmonic, or best-®tting ellipse. Although this
approach is appropriate in some instances, in other cases it does not result in close alignment of outlines or
starting positions (Text-®gure 5).

In the present study, normalization for starting position and orientation of outlines is approached in two
ways (further details are given in the Appendix):
1. Program HANGLE will normalize using properties of designated harmonics of individual outlines
(Crampton and Haines 1996). For example, normalization based on the second harmonic will align
outlines using their best-®tting ellipses, as described above; normalization based on the third harmonic will
align using `triangular' features of the outlines; normalization based on the fourth harmonic will align
using `quadrate' features of the outlines; and so on. For these normalizations to work, it is important that
the starting positions of traces, as digitized, correspond approximately to some biological landmark.
2. Alternatively, it is possible to normalize for starting position and orientation using properties of the
entire population of outlines under study, here termed `matching'. This is achieved here using program
HMATCH (see Crampton and Haines 1996). This program adjusts the starting positions of the entire
population of outlines under study such that reconstructed outlines are as closely aligned as possible in
terms of their tangent angle curves (i.e. the curves shown in Text-®g. 1B).

The choice of which starting normalization to use will vary from study to study, depending on the
presence/absence of a well-constrained landmark in all specimens, the morphological disparity of the
dataset, the general form of the outlines, and the presence/absence of well-de®ned and consistent axes of
symmetry in all outlines. In most studies some experimentation may be necessary to decide upon the most
satisfactory approach to normalization.

The effects of different starting normalizations are illustrated in Text-®gures 5±7. In Text-®gure 5, eight
randomly chosen foraminifera from the Scott dataset are shown in their original orientation and re-aligned
using different starting normalizations. During image capture, these specimens were positioned with the
outer wall of the penultimate chamber parallel to the base of the scanning electron microscope display. If
the wall was convex, a tangent through the turning point was made parallel with the reference. Left-coiled
specimens were mirrored. During digitization, a starting point for the trace was selected at the left end of
the wall, a location of sharp curvature and commonly the site of a peripheral keel (G. H. Scott, Institute of
Geological and Nuclear Sciences, pers. comm. 1998). Following subsequent processing in HANGLE and
HMATCH, visual examination suggests that alignment using the best-®tting ellipse (starting normalization
2) is relatively poor, whereas alignments by matching and by using the fourth harmonic (starting
normalization 4) are relatively tightly constrained, similar, and satisfactory. Alternatively, an objective
measure of the `goodness' of alignment is given by the sum of eigenvalues derived from a PCA:
eigenvalues will be minimised for the best-aligned outlines. The sums of eigenvalues for each alignment
are reported in the caption to Text-®gure 5 and con®rm that alignments by matching and using the fourth
harmonic are indeed the most satisfactory. Use of the fourth harmonic succeeds here because of the
essentially quadrate shape of these foraminifera. PCAs corresponding to these four alignments are shown
in Text-®g. 7.

Trials using other datasets have indicated that matching is a consistently robust approach to normal-
ization for starting position. This is illustrated in Text-®gure 6 using a subset of the outlines of Cretaceous
bivalves described in Crampton (1996). During digitization, these outlines were orientated with their
hingelines parallel and traces were initiated at the umbones. As with the Scott example given above,
starting normalization based on the best-®tting ellipse (starting normalization 2) results in a relatively poor
alignment of outlines, whereas normalization by matching yields a comparatively good alignment.
Because many of these bivalves display a very crudely six-faceted shape, normalization using the sixth
harmonic (starting normalization 6) also results in a reasonable alignment of outlines.

PCAs based on the Scott data demonstrate the impact of starting position normalizations (Text-®g. 7).
The analysis of outlines that have not been re-aligned (starting normalization 0) displays a high degree of
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overlap between the two groups and could be misleading in any taxonomic or evolutionary study. PCAs
based on re-aligned specimens, on the other hand, all separate clearly the a priori groups. The two analyses
based on matching and on starting normalization 4 are very similar; the analysis based on starting
normalization 2 relates to these as a re¯ection about the line y�ÿ x (i.e. the two principal component axes
are interchanged), but otherwise indicates similar relationships between specimens. The reason for this
difference is that many of the outlines have relatively small second harmonics; consequently, normal-
ization based on the second is a poor choice. (In this case, however, the relatively small second harmonic
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TEXT-FIG. 5. Outlines of eight randomly chosen foraminifera from the Scott dataset (see text), showing effects of
different starting normalizations. During digitization these eight specimens were oriented by eye with their bottom
right-hand margins aligned, and the trace was initiated at the bottom corner. The specimens were then aligned using
program HMATCH (matching) and starting normalizations 2 and 4 in program HANGLE. `Goodness' of alignment
can be gauged visually or by summing the eigenvalues derived from PCA, the lowest eigenvalues corresponding to
the best alignments. The sums of eigenvalues, based on PCA for the full dataset and each of the given alignments,
are: A, 2´64 ´ 10ÿ 2; B, 2´13 ´ 10ÿ 2; C, 3.62 ´ 10ÿ 2; D, 2.18 ´ 10ÿ 2. Starting normalization 2, which aligns on the
best-®tting ellipse, results in a conspicuously poor match between specimens. Alignments using matching and
starting normalization 4 are relatively tightly constrained and yield similar, satisfactory results. Starting normal-
ization 4 employs quadrate features of the outline and succeeds here because of the basically quadrate shapes of

these foraminifera.



appears to correlate well with other differences between the two populations, therefore a satisfactory
separation is obtained). Consideration of Text-®gure 5, discussed above, also suggests that analyses based
on matching or on starting normalization 4 are to be preferred. Irrespective of this, the general
correspondence between the three PCAs based on re-aligned specimens implies that the groupings and
morphospace distributions are `real' and robust.

A very useful aid to the interpretation of PCAs is illustrated in Text-®gure 8. Given any set of principal
component axes, it is possible to generate a series of wholly synthetic, model shapes corresponding to the
mean shape and to arbitrarily chosen positions along each axis, measured in units of standard deviations.
Some of these shapes will approximate real outlines, others will represent ®ctional or extreme
morphologies that do not occur in the natural population. All of the shapes represent `pure' shapes for
each speci®ed point in the given morphospace, free from any other sources of variation or random `noise'.
Clearly, such a plot can be used to interpret the multivariate morphospace de®ned by the principal
component axes, and can assist in the identi®cation of trends and patterns in the data. In this way,
morphometric data are presented within a geometric framework that can be related to previous qualitative
studies, an important requirement of any morphometric study (MacLeod 1999). The synthetic shapes were
generated in the following way. First, Fourier coef®cients of the `mean shape', positioned at the centre of
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TEXT-FIG. 6. Outlines of seven randomly chosen bivalves from the dataset of Crampton (1996), showing the effects of
different starting normalizations. During digitization these specimens were oriented by eye with their hingelines
parallel and the traces were initiated at the umbones. As with Text-®gure 5, starting normalization based on the best-
®tting ellipse (starting normalization 2) results in a relatively poor alignment of outlines, whereas normalization
by matching yields a comparatively good alignment. Because many of these bivalves display a very crudely six-
faceted shape, normalization using the sixth harmonic (starting normalization 6) also yields a reasonable alignment of
outlines. Sums of eigenvalues, based on the full dataset and each of the given alignments, are: A, 7´37 ´ 10ÿ 3;

B, 6´55 ´ 10ÿ 3; C, 1´34 ´ 10ÿ 2; D, 7´93 ´ 10ÿ 3 (see explanation in text and in caption to Text-®gure 5).
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TEXT-FIG. 7. Four principal component analyses of 24 foraminifera from the Scott dataset (see caption to Text-®g. 3),
illustrating the effects of different starting normalizations. The dashed line separates two a priori groups (classi®cation
from Scott, unpublished data). In each plot the x-axis corresponds to the ®rst principal component and the y-axis
corresponds to the second principal component. Principal component values are shown using the same isotropic scale
on all plots. All four analyses utilise smoothing normalization 2 and were computed using the variance-covariance
matrix. The analysis based on the original orientation of outlines (starting normalization 0) is poor, with a high degree
of overlap between the two groups and comparatively few of the differences between specimens resolved in the ®rst
two principal components. Analyses based on re-aligned specimens, on the other hand, all yield reasonable results with
clear separations between groups. As predicted by Text-®gure 5, the two analyses based on matching and on starting
normalization 4 are very similar. The analysis based on starting normalization 2 relates to these as a re¯ection about the
line y�ÿ x (i.e. with the ®rst two principal components transposed) and in other respects suggests a similar
distribution of specimens in morphospace. The very large variance of the ®rst principal component for starting

normalization 2 is a consequence of the mismatch of the outlines illustrated in Text-®gure 4.



the plot, were derived by averaging the coef®cients from all sample outlines. To generate a suite of closely
spaced xy-coordinates around the mean shape, these averaged Fourier coef®cients were simply processed
using the inverse Fourier transform program HCURVE. Fourier coef®cients for the remaining synthetic
shapes follow from a useful property of the eigenvectors determined from PCA. These eigenvectors, for
each of the principal component axes, correspond to units of standard deviation; principal component
loadings on each of the axes correspond effectively to Fourier coef®cients in principal component space.
The Fourier coef®cients of the synthetic shapes, therefore, were derived by the appropriate simple vector
additions and subtractions of the eigenvectors to/from the Fourier coef®cients of the mean shape. For
example, coef®cients for the shape at position (2, ÿ 1) are equal to the vector sum: (mean coef®cients) �
(2 ´ ®rst eigenvector) ± (second eigenvector). Each of the resulting sets of Fourier coef®cients was
inverted using program HCURVE to create the synthetic outlines shown.

S U M M A R Y

1. Fourier shape analysis of digitized outlines is a powerful tool for the morphometric study of organisms
lacking many homologous landmarks.
2. Automated digitization of specimen outlines, using image analysis software, is potentially rapid,
accurate and expedient. Outlines captured in this way, however, typically include spurious high frequency
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TEXT-FIG. 8. The ®rst two principal component axes based the Scott dataset (see caption to Text-®g. 3), using smoothing
normalization 2 and starting normalization 0 followed by matching (compare with Text-®g. 7, upper right hand plot).
Ordinated against these axes are a series of wholly synthetic, model outline shapes corresponding to the positions of
unit standard deviation steps along each of the two axes. These shapes facilitate easy interpretation of morphospace

distributions of the real data. Generation of the synthetic shapes is explained in the text.



`noise' that can corrupt subsequent Fourier analysis and compromise statistical interpretation. Program
HANGLE solves this problem by optionally smoothing an outline to the minimum appropriate level using a
weighted moving average of the original coordinate points. In addition, it allows the user to specify greater
levels of smoothing if so desired.
3. Some other Fourier techniques yield relatively high numbers of Fourier coef®cients that are not
computationally independent of each other. This condition hampers and compromises statistical analysis.
In addition, one widely-used technique, elliptic Fourier analysis (EFA, Kuhl and Giardina 1982)
increasingly downweights successively higher order harmonics. This reduces or suppresses altogether
the discriminatory power of outline details even though such details may have some biological
signi®cance. Program HANGLE solves these problems and produces two, computationally independent
coef®cients per harmonic. The program employs the `Fast Fourier Transform' and operates upon the
tangent angle as a function of arc-length around a spline curve ®tted to the (optionally) smoothed outline.
4. Fourier methods in general are sensitive to placement of the starting position of the digitized trace and
this can severely compromise the statistical interpretation of data. This problem is particularly acute when
the organisms under study have no unambiguously de®ned, homologous point on the outline from which to
start the trace. Previous studies have used properties intrinsic to each outline to normalize for starting
position. This approach works when the outlines under study have a well-developed, consistent and
biologically homologous shape component that is described by one of the Fourier harmonics. Program
HANGLE allows the user to normalize in this way, using any harmonic shape component. Program HMATCH

takes a different approach and normalizes using properties of the entire population under study, rotating
each one to minimise differences between their tangent angle curves. Tests with a variety of data suggest
that `matching' is consistently a robust approach to normalization for starting position.
5. Program HCURVE inverts the Fourier transform, producing a tangent angle curve and an outline for any
set of Fourier coef®cients. This can be used to create synthetic outline shapes that are a great aid in the
interpretation of multivariate statistical data (e.g. Text-®g. 8).
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A P P E N D I X

Program HANGLE

The digitized outline of a fossil consists of a set of discrete points (xi, yi) that de®ne a closed curve. The initial
speci®cation of the closest curve is completed by constructing a continuous function (x(s), y(s)) through these points
using a spline technique that is designed to be convenient for performing Fourier analysis on the associated tangent
angle v(s) with respect to the arc-length s. These functions are related:

dx

ds
� cos v�s�;

dy

ds
� sin v�s�;

and the tangent to the curve is given by

dy

dx
� tan v�s�:

Thus, once v(s) is known, x(s) and y(s) can be determined by integration. The condition that the curve is closed
requires that �L

0

dx

ds
ds �

�L

0
cos v�s�ds � 0

and �L

0

dy

ds
ds �

�L

0
sin v�s� � 0

where L is the total arc-length around the curve. That is, after integrating around the entire curve one gets back to the
starting point. When it comes to performing the Fourier analysis on v(s), it is seen that these two constraints determine
the values of one pair of Fourier coef®cients in terms of the other coef®cients. Otherwise, there is no other inherent
constraint on the Fourier coef®cients of v(s).

[In contrast, half the corresponding Fourier coef®cients of x(s) and y(s) are redundant in the elliptic Fourier shape
analysis technique (EFA) of Kuhl and Giardina (1982). Knowledge of any one of the following three functions is
equivalent to knowing the other two functions for the cases we are dealing with, which involve smooth curves with
continuous derivatives of the tangent angles:

v�s�;
dx

ds
� cos v�s�;

dy

ds
� sin v�s�:

The HANGLE coef®cients can be determined from v(s) and, conversely, v(s) can be determined from the HANGLE

coef®cients. Similarly, the EFA coef®cients for x(s) can be determined from dx
ds

, and dx
ds

can be determined from the EFA
coef®cients for x(s). In the same manner, the EFA coef®cients for y(s) can be determined from dy

ds
, and dy

ds
can be

determined from the EFA coef®cients for y(s). Therefore, any one of the three sets of coef®cients

HANGLE, EFA for x(s), EFA for y(s)
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is suf®cient to calculate the other two sets. In particular, the EFA set for x(s) can be used to calculate the EFA set for
y(s), and vice-versa. This means that the EFA coef®cients are not independent and precisely half the full set (i.e. the set
for both x(s) and y(s)) are redundant.]

Circles are, of course, the most nondescript form of closed curve, for which

v�s� � v�0� �
2p

L
s:

The spline technique preserves circle-like characteristics as much as possible. At each of the points (xi, yi) the tangent
angle vi is determined by initially ®tting a circular arc through that point and the two adjoining points, (xiÿ1, yiÿ1) and
(xi+1, yi+1). Then, between each pair of neighbouring points, (xi, yi) and (xi+1, yi+1), the ®nal function v(s) is constructed
using the quadratic expansion

v�s� � vi�1 ÿ t� � vi�1t �
1

2
Di�1 ÿ t�t

in terms of

t �
s ÿ si

si�1 ÿ si

:

There are two unknowns in this, si�1 ÿ si and Di, which are determined from the relationships

xi�1 ÿ xi �

�si�1

si

cos v�s�ds � �si�1 ÿ si�

�1

0
cos v�t�dt:

yi�1 ÿ yi �

�si�1

si

sin v�s�ds � �si�1 ÿ si�

�1

0
sin v�t�dt:

If the coef®cient Di of the nonlinear term in v(t) is zero, then the arc segment between (xi, yi) and (xi� 1, yi� 1) is
circular. This will occur only if the four points (xiÿ 1, yiÿ 1), (xi, yi), (xi� 1, yi� 1) and (xi� 2, yi� 2) lie on the same
circular arc.

In practice, any digitized outline contains digitization `noise' and in general it is necessary to smooth this out before
constructing the function v(s). The smoothing method is explained in the body of the paper.

The ®nal step in HANGLE is to perform the Fourier analysis of v(s). First, the arc-length s is normalized to be between
0 and 2p, by dividing by the total length L determined in constructing v(s) and multiplying by 2p. In terms of the
normalized arc-length, the Fourier expansion of v(s) is taken to be of the form

v�s� � s �
X¥

k�0

Ak cos�k�s ÿ sk��

in which Ak and sk are the amplitude and phase terms for the kth harmonic. Apart from the linear term s at the start of
the expansion, this is a standard Fourier series. The linear term is there so that v(s) de®nes a loop. For a circle, all the
harmonics are zero, except possibly the 0th harmonic term A0, which is an arbitrary rotation of the contour as a whole.
In HANGLE and the other two programs the 0th harmonic A0 is removed so that there is a common reference orientation
for all specimens.

Of the remaining harmonics, the ®rst is uniquely determined for any value of A1 not much larger than 1 by the
requirement that the loop be closed. The following two mathematical results illustrate in particular how small values of
A1 depend on the amplitudes of the other harmonics:

(i) if Ak� 0 for all k $ 2, except at most one such k, then A1� 0;

(ii) if S¥
k�2 Ak� 0(e), then A1� 0(e2).

In non-mathematical terms, the second of these results states that whenever the other harmonics are small, which is
usually true for simple-shaped contours, the ®rst harmonic will be very much smaller that the largest of the other
harmonics. Since the ®rst harmonic can be reconstructed from the others, using the requirement that the curve be
closed, it is not output by HANGLE.

Rather than Ak and sk, for k $ 2 HANGLE outputs the real and imaginary parts, ak and bk, of the complex-valued
Fourier coef®cients

ak � ibk �
1

2
Ak cos ksk ÿ

i

2
Ak sin ksk �

1

2
Ak eÿiksk :
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Associated with ak � ibk there is the coef®cient of the corresponding negative harmonic in the complex Fourier
expansion of v(s)

ak ÿ ibk �
1

2
Ak e�iksk :

Combined together with their Fourier exponents, these give

�ak � ibk�e
iks

� �ak ÿ ibk�e
ÿiks

�
1

2
Ak�e

�ik�sÿsk� � eÿik�sÿsk��

� Ak cos�k�s ÿ sk��

which is the value of the kth harmonic in the real Fourier expansion. The complex coef®cient ak� ibk is the
term actually calculated in the FFT of v(s). Ak and sk can be determined from ak and bk using the inverse
relationships

Ak � 2

���������������
a2

k � b2
k

q
; ksk � ÿtanÿ1

�
bk

ak

�
:

To illustrate how the Fourier expansion of the tangent angle v(s) is related to the corresponding elliptic Fourier
expansion of the position functions x(s) and y(s) (Kuhl and Giardina 1982) we will make two simpli®cations. First, we
assume that only one of the amplitude terms Ak is non-zero, so that apart from the linear term s, the expansion of v(s) is
a single harmonic:

v�s� � s � Ak cos�k�s ÿ sk��:

From the mathematical result above, we know that A1 is zero and that k is greater than or equal to 2. Next, we will
assume that Ak is small, which means that to ®rst order in Ak we can write

dx

ds
� cos v�s� � cos�s� ÿ sin�s�Ak cos�k�s ÿ sk��

� cos�s� ÿ
1

2
Akfsin��k � 1�s ÿ ksk� ÿ sin��k ÿ 1�s ÿ ksk�g;

dy

ds
� sin v�s� � sin�s� � cos�s�Ak cos�k�s ÿ sk��

� sin�s� �
1

2
Akfcos��k � 1�s ÿ ksk� � cos��k ÿ 1�s ÿ ksk�g;

Integrating these expressions with respect to the arc-length s (and requiring that the average values of x and y around
the outline are zero) gives

x�s� � sin�s� �
1

2
Ak

�
1

�k � 1�
cos��k � 1�s ÿ ksk� ÿ

1

�k ÿ 1�
cos��k ÿ 1�s ÿ ksk�

�
y�s� � ÿcos�s� �

1

2
Ak

�
1

�k � 1�
sin��k � 1�s ÿ ksk� �

1

�k ÿ 1�
sin��k ÿ 1�s ÿ ksk�

�
:

Thus, we see that x(s) and y(s) both consist of, in general, three harmonics, the ®rst, (kÿ 1)th and (k� 1)th, with
amplitudes 1, Ak

2�kÿ1�
and ak

2�k�1�
respectively. In the special, elliptic case, k� 2, the ®rst and (kÿ 1)th combine to form a

single ®rst harmonic. Consequently, from a single harmonic in the expansion of v(s) there are either 4 or 6 separate
harmonics in the expansions of x(s) and y(s), 4 of which have amplitudes determined by the value of Ak. Whenever, as
in general, there are multiple harmonics in the expansion of v(s), the level of redundancy reduces from being four-fold
to generally being two-fold. This occurs because the second and fourth harmonics, for example, in the expansion of
v(s) both contribute to the third harmonic in the expansions of x(s) and y(s), rather than to completely separate
harmonics.

HMATCH and HCURVE

The output from HANGLE is usually speci®ed to be a restricted number of harmonics: in the examples presented here we
have used up to the tenth harmonic. Program HCURVE takes any such set of Fourier coef®cients and reconstructs not
only the tangent angle function v(s), but also the position functions x(s) and y(s) which de®ne the outline contour. This
is done by ®rst using the inverse FFT and determining the values of the two parts of the ®rst harmonic in the expansion
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of v(s) such that the outline is a closed curve. Then the arbitrary (x, y) origin for the outline is speci®ed so that the
average values of x(s) and y(s) are both zero. The resulting outline has a normalized arc-length of 2p, and the minimum
and maximum values of x(s) and y(s) typically are about 6 1.

HMATCH is an intermediate program designed to adjust the outputs from HANGLE for any given set of outlines, prior
to multivariate statistical analysis of the Fourier coef®cients. When comparing the functions v(s) and the associated
Fourier coef®cients for a variety of outlines, the starting point at which the arc-length s is set to zero for each outline is
critical. In HANGLE itself, two options are available. The starting point of the original digitization can be selected as the
starting point, which is appropriate if this represents a homologous landmark for all outlines. Alternatively, the starting
point can be based on a particular dominant harmonic, say the kth. In this case, the starting points are chosen such that
the differences between the complex Fourier coef®cients ak � ibk (see program HANGLE above) for the different
outlines are minimised for the chosen harmonic. Much the same is done in program HMATCH, except that the sums of
the squares of all differences between the outlines are collectively minimised for all harmonics output by HANGLE. This
has the effect of minimising the total variance between the outlines and removing spurious differences due to poorly
selected starting points. This can be very important during subsequent multivariate statistical analysis (see body of
text).
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