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Abstract 
A complete and practical isolated-object recognition 

system has been developed which is very robust with 
respect to scale, position and orientation changes of the 
objects as well as noise and local deformations of shape 
(due to perspective projection, segmentation errors and 
non-rigid material used in some objects). The system 
has been tested on a wide variety of 3-0 objects with 
different shapes and sulface properties. A light-box setup 
is used to obtain silhouette images which are segmented 
to obtain the physical boundaries of the objects which 
are classified as either convex or concave. Convex 
curves are recognized using their four high-scale cwva- 
ture extrema points. Curvature Scale Space Representa- 
tions are computed for concave curves. The CSS 
representation is a multi-scale organization of the natur- 
al, invariant features of a curve. A three-stage, coarse- 
to-frne matching algorithm quickly detects the correct 
object in each case. 

1. Introduction 

Object representation and recognition is one of the 
central problems in computer vision. Normally, a reli- 
able, working vision system must be able to a) 
effectively segment the image and b) recognize objects 
in the image using their representations. This paper 
describes a complete, working vision system which seg- 
ments the image effectively using a light-box setup and 
recognizes isolated objects in the image reliably using 
their curvature scale space (or CSS) representations [4,5]. 
The CSS representation is based on the scale space im- 
!age concept [7,10]. It is an organization of curvature 
zero-crossing points on a contour at multiple scales. 

It is assumed that the recognition system developed 
here may be used for recognition of isolated 3-D objects. 
In particular, it is assumed that objects are placed one at 
t3 time on a light-box in front of a camera (by a robot 
,arm, for example) and that the task is to recognize each 
(object. We believe that this particular task is interesting 
for the following reasons: 

a. Despite the constraints placed on the environment, no 
constraints have been placed on object shapes or 
types. Furthermore, environment constraints are not 
difficult to satisfy in many object recognition tasks 
(such as in industrial settings). 

b. Every 3-D object, when placed on a flat surface and 
viewed by a fixed camera, has a limited number of 
stable positions, each of which can be modeled using 
a 2-D contour. 

c. Even with only one object present on the light-box at 
a time, recognition can become challenging due to ar- 
bitrary shapes of objects, noise, and local deforma- 
tions of shape which can be caused by perspective 
projection, segmentation errors and the non-rigid ma- 
terial used in some objects. 

d. By considering only complete contour matching, we 
have developed a matching algorithm which we be- 
lieve is optimal for that particular task. 

The existing literature on shape representation and 
recognition is quite large. A survey of some recent work 
can be found in [8]. Linear features such as points, lines 
and planes were used in [I] for 3-D object matching. 
Sparse 3-D position and orientation measurements were 
used in the object recognition system described in [2]. A 
Hopfield neural network was used for object recognition 
in [6] .  

Sections 2 through 8 of this paper explain various as- 
pects of the object recognition system that we developed. 
Section 2 explains how the segmentation of an image us- 
ing a light-box system can be accomplished. Section 3 
describes the CSS representation as a multi-scale organi- 
zation of the inherent features of a planar curve. Section 
4 shows how the maxima of a CSS representation can be 
extracted. Section 5 describes a fast CSS matching algo- 
rithm. Section 6 proposes a procedure for estimating the 
transformation parameters. Section 7 shows how the 
image-model curve distance can be computed. Section 8 
describes a procedure for optimizing the transformation 
parameters. Section 9 gives an overall view of the imple- 
mented recognition system. Section 10 presents the 
results anti an evaluation of the system. Section 11 con- 
tains the concluding remarks. 
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2. Image Segmentation 

The use of a light-box setup makes the segmentation 
of the image straightfarward. The Same threshold vdue 
(T = 120, with intensity values in the range: 0-255) was 

and Y,(u ,a) and Y, (U ,a) are defined similarly. The 
CSS image of is defined as the solution to K(U,U) = 0. 
Note the following: 

used to effectively segment all input images including 
those of objects made of colored transparent material 
(tape dispenser and screw driver). The output of the 
thresholding step is a binary image to which a salt-and- 
pepper noise removal procedure was applied. The result- 
ing binary image always had only one connected region 
which corresponded to the object. The bounding contour 
of that region was then recovered (figure 10.2). 

3. The curvature scale space representation 

A CSS representation is a multi-scale organization of 
the invariant geometric features (curvature zero-crossing 
points and/or extrema) of a planar curve (here, only cur- 
vature zero-crossings were used). The CSS representa- 
tion of a planar curve r represents that curve uniquely 
modulo scaling and a rigid motion [3]. To compute it, r 
is first parametrized by the arc length parameter U: 

It is assumed that the input curve is initially represented 
by a polygon with possibly many vertices. Therefore 
only the coordinates of the vertices of the polygon need 
be given. If all the distances between adjacent vertices of 
the polygon are equal, then an arc length parametrization 
of the curve is already available. Otherwise, that polygon 
is sampled to obtain a new list of points such that all the 
distances between points adjacent on the list are equal on 
the original polygon. An evolved version r, of r can 
thenbecomputed. r, is defined by: 

where 

) = (x (U 1. Y (U 1). 

ra = (x(u,o). Y ( U . O ) )  

X(U.6) =x(u)@ g(u.0) 
Y ( U , O )  = Y@)@ g(u,o) 

where 0 is the convolution operator and g (U ,a) denotes 
a Gaussian of width o. The process of generating 
evolved versions of r as o increases from 0 to 00 is re- 
ferred to as the evolution of r. The CSS representation 
contains curvature zero-crossings or extrema extracted 
from evolved versions of the input curve. In order to find 
such points, we need to compute curvature accurately 
and directly on an evolved version r, of a planar curve. 
It can be shown [5] that curvature K on ra is given by: 

a. 

b. 

c. 

- 
The CSS image is stored as a binary image in which 
each row corresponds to a specific value of a and 
each column corresponds to a specific value of U. 

A brute force computation of a CSS image will, in 
general, require the evaluation of a large number of 
convolutions which can slow the system down. The 
method used here was to pack the zero-crossings in 
the CSS image: at each scale during computation, 
curvature is computed only in a small neighborhood 
of each location where a zero-crossing was detected 
at the previous scale. This is possible since for a 
small change in a, the change in location of any cur- 
vature zero-crossing point on the curve is also small. 

For all values of o larger than a o,, evolved curves 
ro will be simple and convex. Hence computation 
can stop as soon as a, is reached or as soon as no 
more curvature zero-crossings are detected on r,. 

4. Extracting maxima of CSS contours 

As described in the next section, the features of the 
CSS image used for matching are the maxima of the 
CSS contours. These maxima are not readily available 
and must be extracted from the CSS image. As seen in 
figures 10.3(b) and 10.4(b), a CSS contour is usually 
connected everywhere except in a neighborhood of its 
maximum. Near the maximum of a CSS contour, the 
slope is very close to zero. As a result, even with fine 
sampling of the input curve and the Q parameter, it is 
unlikely that CSS contours will be closed at their maxi- 
ma. (Furthermore, very fine sampling will result in a 
large CSS image and computational cost.) So the actual 
maximum of a CSS contour usually falls in the gap at 
the top of that contour and it is assumed that each con- 
tour consists of two disconnected segments. The top 
point of each segment is located and the peak is con- 
sidered to be the midpoint of the line segment connect- 
ing the top points. 

5. Curvature scale space matching 

The basic idea behind the CSS matching algorithm is 
to obtain a coarse-level match using the structural 
features of the input curves. Such a match can be found 
quickly and reliably since at the high levels of CSS im- 
ages, there are relatively few features to be matched. 
The actual features used for matching are the maxima of 
the curvature zero-crossing contours since they am the 
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most significant points of those contours: the CSS coor- 
dinates of a maximum convey information on both the 
llwation and the scale of the corresponding contour 
whereas the body of the contour is, in general, similar in 
shape to those of other contours. Furthermore, the maxi- 
ma are isolated point features and therefore solving the 
feature correspondence problem is relatively simple. This 
is specially true at the high scales of the CSS image 
where the maxima are sparse. 

So the task of the matching algorithm is to find the 
correct correspondence between two sets of maxima: one 
from each CSS image. The allowed transformation from 
cine set to the other is mere horizontal translation (since 
ad1 contours have the Same number of sampled points). 
The translation parameter is computed when the first im- 
alge curve CSS maximum is mapped to the first model 
curve CSS maximum and then used to map each of the 
remaining image curve CSS maxima to the model curve 
CSS. The corresponding model curve CSS maximum for 
each mapped image curve CSS maximum should then be 
the closest model curve CSS maximum (and the associat- 
ed cost is the Euclidean distance between them). Many 
candidates may have to be considered since the 
c:orrespondence between the first pair of maxima can be 
made in possibly many ways. This matching problem is 
solved using a best-first matching strategy [9] which will 
gradually expand a number of candidate matches in 
parallel (always selecting the best partial match) until the 
lowest-cost complete match is found. 

ti. Estimating the transformation parameters 

Once the best match of two CSS representations has 
teen determined, it is possible to compute an initial ap- 
proximation for the transformation parameters since the 
c:orrespondence between arc length values on the two 
curves is known. It is assumed that the transformation to 
ta solved for consists of uniform scaling, rotation and 
translation in x and y . Let 

t e  a set of q points on the model curve and let 

t e  the set of corresponding points on the image curve. 
The parameters of the following transformation: 

(6.1) 
x .  I = a t  + b y j  + c 
y, = - b t j  + a y j  + d  

must be solved for. A Least-Squares Estimation method 
is used to estimate values of a ,  6 ,  c and d .  Let the dis- 
similarity measure $2 which measures the difference 
tetween the model curve and the transformed curve be 

X = ( X j  J j  

a = g .  . 1 

dlefined by: 11 n=C(x, -x i”>2+(y1 - y p  
j=1 

where (x;,y;) is a point on the model curve correspond- 
ing to transformed image curve point (x j .y j ) .  Using 
equation (6.1) to eliminate xi and y j  yields: 

11 
Q = x ( a  ti +b yj +c - x 2 2  + (-b ej + a  yj +d - y g  2 . 

a i ”  

j =I 
k t  P = (a ,b ,c , d )  be the vector defined by the transfor- 
mation parameters. The solution of 

is the least-squares estimate of those parameters. Com- 
pute an / aa and set it to zero: 

Repeat -for the other transformation parameters. The 
result is a linear system of four equations in four unk- 
nowns which is solved to obtain the least-squares esti- 
mate of a,  6 ,  c and d .  

7. Measuring image-model curve distances 

Once an estimate of the transformation parameters is 
available, it is possible to map the image curve to the 
space of the model curve. It is then useful to measure the 
image-model curve distance for two reasons: 
a. As described in section 9, sometimes the image curve 

is mapped to different model curves in order to deter- 
mine which model curve is closest to the image 
curve. This is accomplished by measuring image- 
model curve distances. 

b. The computation of the image-model curve distance is 
essential to transformation parameter optimization as 
described in section 8. 

To compute the image-model curve distance, the fol- 
lowing procedure is carried out for each vertex of the 
image curve: the closest vertex vi of the model curve is 
located. Vertex vi and its two neighboring vertices vi-1 
and vi+l are then used to locate the closest point of the 
model curve. The distance to that point is then comput- 
ed. The image-model curve distance is the sum of the in- 
dividual distances. 

8. Optimizing the transformation parameters 

The least-squares estimate of the transformation 
parameters computed in section 6 is, in general, not the 
optimal estimate. This is because the image-model point 
correspondences computed from the CSS match are not 
precise due to noise and local shape distortions. 
Nevertheless, it is possible to optimize those parameters 
using the following procedure: 
a. Compute the least-squares estimate of the parameters 

using the technique described in section 6 and use it 
to map the image curve to the model curve. 
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b. Compute the image-model curve distance and deter- 
mine a new set of corresponding points on the model 
curve as described in section 7. 

c. If the difference between the last value of the image- 
model curve distance and its previous value is less 
than E > 0, then STOP, otherwise, go to step a. 

In our system, it was possible to compute the optimal 
parameters with less than 1% error using at most 10 
iterations of the procedure described above. 

9. A silhouette-based recognition system 

It is now possible to give an overall description of the 
system designed and implemented for silhouette-based 
object recognition through the CSS representation. The 
system was designed so that both convex and concave 
curves can be recognized. It can be divided into an ofl- 
line and an on-line component, The off-line part is com- 
pleted first and is itself divided into two stages: model 
acquisition and computing model representations. Note 
that a resolution of 200 sampled points was used for all 
model and image contours. 

a. Model Acquisition: One contour must be obtained for 
each stable position of each model object. Model 
contours are rescaled so that they all just fit inside 
the same square. 

b. Computing Model Representations: If a model con- 
tour is concave, its CSS representation is computed 
as described in section 3. The aspect ratio (ratio of 
the number of rows to the number of columns) of 
that CSS image is also computed. The maxima I U ~  of 
the CSS contours are located (section 4). The final 
representation for the model contour is simply the 
CSS coordinates of each Mk. If a model contour is 
convex, that contour is smoothed until only 4 curva- 
ture extrema remain on the contour. The arc length 
coordinates of those 4 extrema are then recorded. The 
ratio of the Euclidean distance between the curvature 
maxima to the distance between the curvature minima 
is also computed for each convex contour. 

The on-line part of the system can be divided into 
several stages as following: 
a. The input image is first segmented using the procedure 

described in section 2 to obtain a contour from the 
image. The contour is smoothed slightly to remove 
noise and normalized to fit in a square of size one 
with its lower left comer at the origin. Curvature is 
then computed at each point along the contour. If 
curvature is nearly constant, the system concludes 
that the contour is circular and stops. Otherwise, if 
curvature is positive everywhere or very close to zero 
but possibly negative (this situation can be caused by 

noise on a convex contour), the system concludes that 
the input contour is convex and follows steps g 
through j. Otherwise, the input contour is considered 
to be concave and steps b through f are followed. 

b. The CSS representation of image curve is computed. 
c. The maxima of image curve CSS contours are located. 
d. The aspect ratio of the image curve CSS is computed. 

Any model curve CSS image whose aspect ratio is 
close (see section 10) is accepted for step e. 

e. CSS matching is applied to the surviving models. 
f. The best (see section 10) matches in step e are select- 

ed for verification. For each selected model curve, 
image curve transformation parameters are computed 
using their best CSS match (section 6) and used to 
map the image curve to that model. The image-model 
curve distance is then computed (section 7). The 
model curve with the lowest image-model curve dis- 
tance is chosen as the best matching model. Transfor- 
mation parameter optimization is then used to find 
the best fit of the image curve to the chosen model. 
In situations where there is little difference between 
some model curves, parameter optimization can be 
integrated into the recognition process. 

g. The input convex contour is smoothed until only 4 
curvature extrema remain on the contour. 

h. The ratio of the Euclidean distance between the curva- 
ture maxima on the contour to the distance between 
the curvature minima on the contour is computed. 
Any convex model curve whose corresponding ratio 
is close (see section 10) is accepted for step i. 

i. The first curvature maximum on the image curve can 
map ta either of the two curvature maxima on each 
of the surviving model curves. A set of image curve 
transformation parameters is computed for each case 
and applied to the image curve. The image-model 
curve distance is computed in each case. 

j. The model curve with the lowest image-model curve 
distance is chosen as the best matching model. 
Parameter optimization is then used to find the best 
fit of the image curve to the chosen model. 

10. Results and discussion 

The recognition system described in section 9 was im- 
plemented in C and ran on a SiliconGraphics IRIS 
4D/85GT workstation. It was tested using a total of 22 
model curves and 19 images. One circular model contour 
(a spray can lid) and two convex model contours (a cal- 
culator and a glue stick) were used. All other model con- 
tours (a bottle, a paper clip, a fork, a kzy, a monkey 
wrench (two sides), a panda, two connector cases, a 
screw driver, a pair of scissors, a spoon, a tape 
dispenser, a vase, two wrenches (two sides each) and a 
wire curter) were concave. A number of the model con- 
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tours used to test the system are shown in figure 10.1. 
Due to the light-box setup used, thresholding was suc- 

cessful in properly segmenting each input image and re- 
covering the bounding contours (figure 10.2). 

Each one of the 19 input objects was recognized 
correctly by the system in less than 2 seconds (this in- 
cludes time for computation of image curve CSS 
representation). In most cases, CSS matching was 
sufficient to correctly recognize the input object When 
ambiguities remained after CSS matching (for example, 
when two or more objects had the same coarse-level 
shape structure), curve distance computation successfully 
rtxolved those ambiguities. 

We believe the matching program is fast because it 
has been designed specifically for the task of matching 
closed curves using maxima of CSS contours. These 
maxima (excluding the ones corresponding to very small 
CSS contours) are usually small in number (from 2 to 6 
for the input curves) but have a high multi-scale discrim- 
inative power. As a result, we believe they are the ideal 
feature points for the matching task considered here. 
Furthermore, our coarse-to-fine matching technique 
nnakes efficient use of recognition power: models pass 
through recognirion filters which become increasingly 
fine until the best-matching model is selected. 

We drastically changed the thresholds used in the tests 
which act as filters between the various stages of the sys- 
tem (see steps d. f and h in section 9). In one test, those 
filters were effectively removed. It was verified that there 
were no effects on the output of the system; the filters 
exist only for efficiency reasons. The system was very 
robust in each case despite the presence of noise and lo- 
cal deformations of shape due to: 
ai. Perspective projection of actual 3-D objects with con- 

b. Segmentation errors near smooth physical boundaries. 
c.  Non-rigid material (such as cloth or soft plastic) used 

in some input objects. 
It was also discovered that a single model can be used 

to represent a class of similar looking objects. For exam- 
ple, the model screw driver was slightly different from 
the screw driver used as input to the system. 

The following are some examples of the matches 
found by the system. In each case, the image curve 
(drawn using a thin line) has been mapped to the model 
curve (drawn using a thick line). Figure 10.3 shows the 
Panda matched to its model. Note that the Panda was 
made of cloth and therefore did not have a very rigid 
shape. Figure 10.4 shows the vase matched to the model 
vase. The local mismatch that can be observed is due to 
the fact that the model curve corresponds to an orthogo- 
nal projection of the vase whereas the image curve 
comesponds to its perspective projection. 

siderable depth (such as the vase). 

€3 

Figure 10.1. A number of model contours 

a. Two images taken using the light-box 

b. Contours recovered from images in (a) 

Figure 10.2 
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a. Panda match before transformation parameter 
optlmlzatlon (left) and after (rlght) 

b. CSS of Image (left) and model curves (rlght). 
CSS orlglns are marked on contours In (a). 

Figure 10.3 

n 
a. Vase match before transformation parameter 

optlmlzatlon (left) and after (rlght) 

b. CSS of Image (left) and model curves (rlght). 
CSS orlglns are marked on contours In (a). 

Figure 10.4 

11. Conclusions 

This paper described a complete and practical 
isolated-object recognition system which used a light-box 
setup to obtain silhouette images of objects and recover 
their bounding contours. Those boundaries were 
classified as either convex or concave. Convex curves 
were recognized using their four high-scale curvature ex- 
mma points. CSS representations were computed for 
concave curves. A three-stage, coarse-to-fine matching 
algorithm (consisting of the CSS aspect ratio test, CSS 
matching and image-model curve distance computation) 
was used to find the correct model for each concave im- 
age curve. Transformation parameter optimization was 
then used to find the best fit. The system was tested on a 
variety of 3-D objects with different shapes and surface 
properties. It was found to be very robust with respect to 
position, orientation and scale changes of the objects as 
well as noise and local shape distortions. 
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