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Shape-based image retrieval using generic Fourier descriptor
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Abstract

Shape description is one of the key parts of image content description for image retrieval. Most of the existing shape

descriptors are usually either application dependent or non-robust, making them undesirable for generic shape

description. In this paper, a generic Fourier descriptor (GFD) is proposed to overcome the drawbacks of existing shape

representation techniques. The proposed shape descriptor is derived by applying two-dimensional Fourier transform on

a polar-raster sampled shape image. The acquired shape descriptor is application independent and robust. Experimental

results show that the proposed GFD outperforms common contour-based and region-based shape descriptors.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the rapid increase of multimedia
information, there is an urgent need of multimedia
content description so that automatic searching is
possible. The newly emerging multimedia applica-
tion MPEG-7 is to address this issue. In MPEG-7,
shape is one of the key components for describing
digital image along with other features such as
texture and color. Six criteria have been set for
shape description by MPEG-7, they are: good
retrieval accuracy, compact features, general ap-
plication, low computation complexity, robust
retrieval performance and hierarchical representa-
tion [12].

Various shape descriptors exist in the literature,
these descriptors are broadly categorized into two
groups: contour-based shape descriptors and
region-based shape descriptors.
Contour-based shape descriptors include Four-

ier descriptor (FD) [7,21,31,11,32,33], wavelet
descriptors [29,30], curvature scale space [17,16,5]
and shape signatures [6,4]. Since contour-based
shape descriptors exploit only boundary informa-
tion, they cannot capture shape interior content.
Besides, these methods cannot deal with disjoint
shapes where boundary information is not avail-
able. Consequently, they have limited applications.
In region-based techniques, shape descriptors

are derived using all the pixel information within
a shape region. Region-based shape descriptors
can be applied to general applications. Common
region-based methods use moment descriptors to
describe shape [8,26,28,13,27,18]. These include
geometric moments, Legendre moments, Zernike
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moments and pseudo-Zernike moments. It has
been shown in [28] that Zernike moments outper-
forms other moment methods in terms of overall
performance. Recently, several researchers also
use the grid method to describe shape [14,23,3].
The grid-based method attracts interest for its
simplicity in representation and conformance to
intuition; however, its rotation normalization does
consider shape interior content. Other region-
based shape descriptors are also proposed, these
include bounding box descriptor [20] and multi-
layer eigenvector shape descriptor [12]. Most of
the region-based shape descriptors are extracted
from spatial domain, as the result, they are
sensitive to noise and shape variations.
In this paper, we propose a generic Fourier

descriptor (GFD) which can be applied to general
applications. The GFD is extracted from spectral
domain by applying two-dimensional (2-D) Fourier
transform on polar-raster sampled shape image. It
captures shape finer features in both radial and
circular directions. The rest of the paper is organized
as follows. In Section 2, background of related work
and GFD are described in details. In Section 3, we
give detailed experimental results on the proposed
methods and compare GFD with other shape
descriptors. Section 4 concludes the paper.

2. Generic Fourier descriptor

In this section, we describe GFD in details.
First, we give some background information on
related work in Section 2.1. We then introduce two
polar Fourier transforms used to derive GFD in
Section 2.2. The implementation details of GFD
are described in Sections 2.3 and 2.4.

2.1. Related work

2.1.1. One-dimensional Fourier descriptor

One-dimensional Fourier descriptor (FD) has
been successfully applied to many shape represen-
tation applications, especially to character recog-
nition. The nice characteristics of FD, such as
simple derivation, simple normalization, simple
to do matching, robust to noise, perceptually
meaningful, compact and hierarchical coarse to

fine representation, make it a popular shape
descriptor [7,21,31,1,19,22,11,15,9,33]. Generally,
one-dimensional (1-D) FD is obtained through
Fourier transform (FT) on a shape signature
function derived from shape boundary coordinates
fðxðtÞ; yðtÞÞ; t ¼ 0; 1;y;N � 1g: A typical shape
signature function is the centroid distance function
which is given by the distance of the boundary
points from the centroid ðxc; ycÞ of the shape

rðtÞ ¼ ð½xðtÞ � xc�2 þ ½yðtÞ � yc�2Þ
1=2;

t ¼ 0; 1; :::;N � 1;

where

xc ¼
1

N

XN�1

t¼0

xðtÞ; yc ¼
1

N

XN�1

t¼0

yðtÞ:

An example of centroid distance function of an
apple shape is shown in Fig. 1.
One dimensional FT is then applied on rðtÞ to

obtain the Fourier transformed coefficients

an ¼
1

N

XN�1

t¼0

rðtÞ exp
�j2pnt

N

� �
;

n ¼ 0; 1;y;N � 1:

The magnitudes of the coefficients an ðn ¼
0; 1;y;N � 1Þ normalized by the magnitude of
the first coefficient a0 are used as shape descrip-
tors, called Fourier descriptors. The acquired FDs
are translation, rotation and scale invariant. It has
been shown that shape representation using FD
outperforms many other contour-shape descrip-
tors [11,33]. However, all these methods assume
the knowledge of shape boundary information
which may not be available in general situations.
For example, it is difficult to derive 1-D FD for the
shape in Fig. 2(a), because the contour of the
shape is not available. Furthermore, 1-D FD
cannot capture shape interior content which is
important for shape discrimination. For example,
FD is not able to discriminate the shape in
Fig. 2(b) from the shape in Fig. 2(c). The draw-
backs limit the application of 1-D FD.

2.1.2. Zernike-moments descriptor

The application of Zernike moments on shape
overcomes the aforementioned drawbacks of
1-D FD. Zernike-moment descriptor (ZMD) is
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obtained by using all the pixel information within
a shape region. It does not assume shape boundary
information. ZMD is one of the best shape
descriptors among the existing shape descriptors.
Many researchers report promising result of ZMD
[28,12,33]. It has been tested on MPEG-7 shape
databases and adopted in MPEG-7 as region-based
shape descriptor. An examination into ZMD reveals
that it is essentially a transform-based descriptor
which is derived from two-dimensional transform of
shape on polar space. The theory of ZMD is similar
to FD. However, it is not a fully spectral transform.
In the following, we examine ZMD in details.
The complex Zernike moments are derived from

Zernike polynomials,

Vnmðx; yÞ ¼Vnmðr cos y; r sin yÞ

¼RnmðrÞ expðjmyÞ ð2:1Þ

and

RnmðrÞ

¼
Xðn�jmjÞ=2

s¼0

ð�1Þs
ðn � sÞ!

s!ðnþjmj
2

� sÞ!ðn�jmj
2

� sÞ!
rn�2s;

ð2:2Þ

where r is the radius from ðx; yÞ to the shape
centroid, y is the angle between r and x-axis, n and
m are integers and subject to n � jmj ¼ even;
jmjpn: Zernike polynomials are a complete set
of complex-valued function orthogonal over the
unit disk, i.e., x2 þ y2 ¼ 1: Then the complex
Zernike moments of order n with repetition m

are defined as

Anm ¼
n þ 1

p

X
x

X
y

f ðx; yÞVn

nmðx; yÞ

¼
n þ 1

p

X
r

X
y

f ðr cos y; r sin yÞRnmðrÞ

� expðjmyÞ; rp1; ð2:3Þ

where f ðx; yÞ is a binary shape function, Vnðx; yÞ is
the complex conjugate of V ðx; yÞ: A list of Zernike
moments up to order 10 is given in Table 1 [12].
The magnitudes of the acquired Zernike moments
normalized by the mass of the shape are used as
shape descriptors.
It can be seen from (2.3) that the basis of

Zernike moments RnmðrÞ expðjmyÞ only reflects
angular frequency in its trigonometric harmonic.
This indicates that the radial spectral features of
the shape are not captured in ZMD. Furthermore,
the repetition of m in each order n of the basis
reduces the number of angular frequencies each
order of Zernike moment (or coefficient) captures.
This indicates that the circular spectral features
captured by ZMD are too coarse if the number of
moments used is not sufficiently large. For
example, the number of angular frequencies
captured by the first 36 Zernike moments is 10.
In other words, if 36 Zernike moments are used as
shape descriptor, then the descriptor only captures
10 circular features. More circular features can be
otherwise captured if there is no repetition in each
order of the basis. To prove this fact, we propose a
variation of ZMD (VZM) in (2.4). The variation is
an extension to Zernike moments in a way by
removing the repetition in each order of Zernike
moment. It is given by

VFðuÞ ¼
X

r

X
y

f ðr cos y; r sin yÞr expðjuyÞ; ð2:4Þ

where r and y have the same meanings as those in
(2.1). Eq. (2.4) has simpler form than (2.3).

Fig. 2. (a) A shape without contour; (b), (c) two shapes with

same contour but with different interior content.

Fig. 1. (a) An apple shape; (b) the contour of (a); (c) centroid distance function of (a).
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However, the same number of transformed coeffi-
cients VFðuÞ capture more circular features than
the same number of Zernike moments Anm do. The
retrieval effectiveness of F ðuÞ will be shown in
Section 3. Similar to Zernike moments, VFðuÞ does
not capture radial features.
To summarize this section, we conclude that the

Zernike polynomials RnmðrÞ only add weight to the
bases. They contribute little to the capturing of
shape features. Furthermore, the polynomials
create a number of repetitions in each order of
the calculated moment. The repetitions are actually
the weighted moments of the previous orders. In
other words, for the number of Zernike moments
calculated in each order, only one is essentially
important, the others are the repetitions of the
moments of the previous orders. The repetitions in
each order can be saved for capturing radial
features. With this idea in mind, we attempt to
use 2-D polar FT (PFT) instead of Zernike
moments. 2-D polar FT allows multiresolution in
both radial and angular directions, and the same
number of FT coefficients can capture more shape
features than ZMD. In the next section, we
introduce PFT that captures both radial and
circular features from formal FT theory.

2.2. Polar Fourier transform

Fourier transform has been widely used for
image processing and analysis. The advantage of
analyzing image in spectral domain over analyzing
shape in spatial domain is that it is easy to

overcome the noise problem which is common to
digital images. Besides, the spectral features of an
image are usually more concise than the features
extracted from spatial domain. One-dimensional
FT has been successfully applied to contour shape
to derive FD as has been mentioned in Section 2.1.
The application of one-dimensional FT on shape
assumes the knowledge of shape boundary in-
formation. There is no reported work on region-
based FD. In this section we introduce generic FD
derived from 2-D PFT.
The continuous and discrete 2-D Fourier trans-

form of a shape image f ðx; yÞ ð0pxoM ;
0pyoNÞ are given by (2.5) and (2.6), respectively.

F ðu; vÞ ¼
Z

x

Z
y

f ðx; yÞ

� exp½�j2pðux þ vyÞ� dx dy; ð2:5Þ

F ðu; vÞ ¼
XM�1

x¼0

XN�1

y¼0

f ðx; yÞ

� exp½�j2pðux=M þ vy=NÞ�: ð2:6Þ

The u and v in (2.6) are the uth and vth spatial
frequency in horizontal and vertical direction,
respectively. 2-D FT can be directly applied to
any shape image without assuming the knowledge
of boundary information. However, direct apply-
ing 2-D FT on a shape image in Cartesian space to
derive FD is not practical because the features
captured by 2-D FT are not rotation invariant.
Rotation invariance of a shape is important
because similar shapes can be under different

Table 1

List of Zernike moments up to order 10

Order Zernike moment of order n with repetition Number of moments in Total number of

ðnÞ m ðAnmÞ each order n moments up to order 10

0 A0;0 1

1 A1;1 1

2 A2;0; A2;2 2

3 A3;1; A3;3 2

4 A4;0; A4;2; A4;4 3

5 A5;1; A5;3; A5;5 3 36

6 A6;0; A6;2; A6;4; A6;6 4

7 A7;1; A7;3; A7;5; A7;7 4

8 A8;0; A8;2; A8;4; A8;6; A8;8 5

9 A9;1; A9;3; A9;5; A9;7; A9;9 5

10 A10;0; A10;2; A10;4; A10;6; A10;8; A10;10 6
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orientations. For example, the two patterns
(shapes) in Fig. 3(a) and (b) are similar patterns
(shapes); however, their Fourier spectra distribu-
tions (Fig. 3(c) and (d)) on frequency plane are
different. The difference of feature distributions
makes it impractical to match the two patterns,
especially online.
Therefore, we consider shape image in polar

space and applying PFT on shape image. The PFT
produces rotation-invariant data particularly well
suited for accurate extraction of orientation
features. In the following, we study and describe
two PFTs. The study is necessary, because
theoretically sound method may not readily
applicable for implementation.
To derive PFT, both the data f ðx; yÞ and the

spectra F ðu; vÞ are put into polar space, that is, let

x ¼ r cos y; y ¼ r sin y;

u ¼ r cos c; v ¼ r sinc:
ð2:7Þ

ðr; yÞ is the polar coordinates in image plane and
ðr;cÞ is the polar coordinates in frequency plane.
The definition of ðr; yÞ and ðr;cÞ is the same as that
in (2.1). The differentials of x and y are

dx ¼ cos y dr � r sin y dy;

dy ¼ sin y dr þ r sin y dy:
ð2:8Þ

The Jacobian of (2.8) is r: By replacing (2.7) and
(2.8) into (2.5) we have the PFT1,

PF1ðr;cÞ ¼
Z

r

Z
y

rf ðr; yÞ

� exp½�j2prr sinðyþ cÞ� dr dy: ð2:9Þ

The discrete PFT1 is then obtained as

PF1ðrl ;cmÞ ¼
X

p

X
i

f ðrp; yiÞrp

� exp½�j2prprl sinðyi þ cmÞ�; ð2:10Þ

where rp ¼ p=R; yi ¼ ið2p=TÞ ð0pioTÞ; rl ¼ l

ð0ploRÞ and cm ¼ myi: R and T are the
resolution of radial frequency and angular fre-
quency, respectively. The acquired polar Fourier
coefficients F ðr;cÞ are used to derive normalized
FD for shape representation.
PFT1 is the direct result from the polar trans-

form of (2.5). However, due to the presence of cm

within sin function sinðyi þ cmÞ; the physical
meaning of cm is not the mth angular frequency.
The features captured by the PFT1 lose physical
meaning in circular direction. To overcome the
problem, a modified polar FT (PFT2) is derived by
treating the polar image in polar space as a normal
two-dimensional rectangular image in Cartesian
space. Fig. 4 demonstrate the rectangular polar
images. Fig. 4(a) is the original shape image in
polar space, Fig. 4(b) is the rectangular polar
image plotted into Cartesian space. Fig. 4(c) is a
binary trade mark image, (d) is the polar-raster
sampled image plotted in Cartesian space.
The polar image of Fig. 4(b) is the normal

rectangular image. Therefore, if we apply 2-D FT
on this rectangular image, the polar FT has the
similar form to the normal 2-D discrete FT of (2.6)
in Cartesian space. Consequently, the modified
polar FT is obtained as

PF2ðr;fÞ ¼
X

r

X
i

f ðr; yiÞ

� exp �j2p
r

R
rþ

2pi
T

f
� �� �

; ð2:11Þ

where 0proR and yi ¼ ið2p=TÞ ð0pioTÞ;
0proR; 0pfoT : R and T are the radial and
angular resolutions. f ðx; yÞ is a binary function in
shape application. PFT2 has a simpler form than
ZMD and PFT1. There is no need to constrain the
shape into a unit circle (the constraint requires

Fig. 3. (a) A pattern; (b) pattern (a) rotated by 901; (c) Fourier spectra of (a); (d) Fourier spectra of (b).
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a extra scale normalization in spatial domain) as
required in the implementation of ZMD (because
Zernike moment is defined in a unit circle).
Moreover, the physical meaning of r and f is
similar to u and v in (2.6). The r and f are simply
the number of radial frequencies selected and
the number of angular frequencies selected. The
determination of r and f is physically achievable,
because shape features are usually captured by the
few low frequencies.
Fig. 5(a,b) shows the polar images of the two

patterns in Fig. 3(a) and (b) and their polar
Fourier spectra are shown in (c) and (d). It can
be observed from Fig. 5 that rotation of pattern in
Cartesian space results in circularly shift in polar
space. The circular shift does not change the
spectra distribution on polar space. This is
demonstrated in Fig. 5(c) and (d). The polar
Fourier spectra is more concentrated around the
origin of the polar space. This is particularly well
suited for shape representation, because for
efficient shape representation, the number of

spectra features selected to describe the shape
should not be large. Since f ðx; yÞ is a real function,
the spectra is circular symmetric, only one quarter
of the spectra features are needed to describe the
shape. The acquired polar Fourier coefficients
F ðr;fÞ are used to derive normalized FD for
shape representation.

2.3. Derivation of generic FD

In this section, the derivation of FD using the
above-described VZM and PFT is given in details.
The VZM and the two polar FTs: PFT1 and PFT2
are all implemented in the experiments to derive
FD in the purpose to determine which is the most
appropriate for shape retrieval.
Given a shape image I ¼ ff ðx; yÞ; 0pxoM ;

0pyoNg: To apply VZM and PFT, the shape
image is converted from Cartesian space to polar
space Ip ¼ ff ðr; yÞ; 0proR; 0pyo2pg; R is the
maximum radius of the shape. The origin of
the polar space is set to be the centroid of the

Fig. 4. (a) An original shape image in polar space; (b) the polar image of (a) plotted into Cartesian space; (c) a trade mark shape image;

(d) the polar image of (c) plotted into Cartesian space.

Fig. 5. (a,b) Polar images of the two patterns in Fig. 3(a) and (b); (c) Fourier spectra of (a); (d) Fourier spectra of (b).
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shape, so that the shape is translation invariant.
The centroid ðxc; ycÞ is given by

xc ¼
1

M

XN�1

x¼0

x; yc ¼
1

N

XM�1

y¼0

y ð2:12Þ

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xcÞ

2 þ ðy � ycÞ
2

q
;

y ¼ arctan
y � yc

x � xc
:

ð2:13Þ

The VZM and PFTs are applied on Ip: The
acquired coefficients of the three transform are
translation invariant due to the use of centroid as
polar space origin. Rotation invariance is achieved
by ignoring the phase information in the coeffi-
cients and only retaining the magnitudes of the
coefficients. To achieve scale invariance, the first
magnitude value is normalized by the area of the
circle (area) in which the polar image resides or the
mass of the shape (mass), and all the other
magnitude values are normalized by the magni-
tude of the first coefficient. The translation,
rotation and scale normalized PFT coefficients
are used as the shape descriptors. To summarize,
the shape descriptor derived from VZM and the
FD derived from PFT1 and PFT2 are VZMD,
FD1 and FD2, respectively, they are shown as
follows:

VZMD ¼
jVFð0Þj
mass

;
jVFð1Þj
jVFð0Þj

;y;
jVFðnÞj
jVFð0Þj

	 

;

FD1 ¼
jPF1ð0; 0Þj
mass

;
jPF1ð0; 1Þj
jPF1ð0; 0Þj

;y;
jPF1ð0; nÞj
jPF1ð0; 0Þj

;y;

	
jPF1ðm; 0Þj
jPF1ð0; 0Þj

;y;
jPF1ðm; nÞj
jPF1ð0; 0Þj



;

FD2 ¼
jPF2ð0; 0Þj

area
;
jPF2ð0; 1Þj
jPF2ð0; 0Þj

;y;
jPF2ð0; nÞj
jPF2ð0; 0Þj

;y;

	
jPF2ðm; 0Þj
jPF2ð0; 0Þj

;y;
jPF2ðm; nÞj
jPF2ð0; 0Þj



;

where m is the maximum number of the radial
frequencies selected and n is the maximum number
of angular frequencies selected. m and n can be
adjusted to achieve hierarchical coarse to fine
representation requirement.

For efficient shape description, only a small
number of the acquired descriptors are selected for
shape representation. The selected descriptors
form a feature vector which is used for indexing
the shape. For two shapes represented by their
Fourier descriptors, the similarity between the two
shapes is measured by the Euclidean distance
between the two feature vectors of the shapes.
Therefore, the online matching is efficient and
simple.

2.4. Implementation of GFD

The implementation of GFD can be summar-
ized into four steps, translation normalization,
polar Fourier transform, rotation normalization
and scale normalization. The algorithm of deriving
GFD using PFT2 is given in Fig. 6. The algo-
rithms of deriving VZMD and GFD using PFT1
are similar, with only difference in the basis
calculation of polar Fourier transform step and
scaling normalization step.

3. Test of retrieval effectiveness

In order to test retrieval effectiveness of the
proposed methods, three sets of experiments
are conducted. The first experiment is to compare
the three proposed methods to determine which is
the most suitable for shape retrieval. The other
two experiments are to compare the proposed
GFD with contour FD and MPEG-7 shape
descriptors.

3.1. Comparison of VZMD, FD1 and FD2

To test the retrieval effectiveness of the VZMD
and the two FDs derived from PFT1 and PFT2, a
Java-based indexing and retrieval framework is
implemented. The framework runs on Windows
platform of a Pentium III-866 PC. The retrieval
effectiveness of the VZMD and the two types of
FD described in Section 2.4 is tested on the region-
based shape database of MPEG-7. MPEG-7
region shape database consists of 3621 shapes of
mainly trademarks. 651 shapes from 31 classes
of shapes are selected as queries. The 31 classes of
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1. Input binary shape image data f (x, y);

2. Get centroid of the shape (xc, yc); 

3. Set the centroid as the origion;  /* translation normalization */

4. Get the maximum radius of the shape image (maxRad); 

5. Polar Fourier transform

For radial frequency (rad) from zero to maximum radial frequency (m) 

    For angular frequency (ang) from zero to maximum angular frequency (n) 

        For x from zero to width of the shape image 

     For y from zero to height of the shape image 

    { 

radius = square root[(x-maxRad)2 + (y-maxRad)2];  

theta = arctan2[(y-maxRad)/(x-maxRad)];  /* theta falls within [–� , +� ] */

    if(theta<0) theta += 2�; /* extend theta to [0, 2�] */

FR[rad][ang] += f(x,y)×cos[2�×rad×(radius/maxRad) + ang×theta]; /* real part of spectra */

                         FI[rad][ang] = f(x,y) ×sin[2�×rad×(radius/maxRad) + ang×theta]; /* imaginary part of spectra */

    } 

6. Calculate FD 

For rad from zero to m

    For ang from zero to n

   { 

        /* rotation and scale normalization */

 If (rad=0 & ang=0) 

FD[0] = square root[(FR2[0][0] + FR2[0][0])/(�×maxRad2)]; 

Else 

FD[rad×n+ang] = square root[(FR2[rad][ang] + FI2[rad][ang])/ FD[0]]; 

   } 

7. Output feature vector FD. 

Fig. 6. Procedure of computing GFD from PFT2.
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shapes reflect general variations (rotation, scaling
and perspective transform) of shapes. Each class
has 21 members generated through scaling, rota-
tion and perspective transformation. Since the IDs
of all the similar shapes to each query in the classes
are known, the retrieval is done automatically.
However, the retrieval system is also put online to
test real-time retrieval. For online retrieval, the
indexed data and the shape databases are put in a
web server, user can do online retrieval by visiting
the retrieval site using either common browsers or

Java appletviewer (http://www.gscit.monash.edu.
au/edengs/) (Fig. 7(a)).
Common performance measure, i.e., precision

and recall of the retrieval [2,24,25], are used as the
evaluation of the query result. Precision P is
defined as the ratio of the number of retrieved
relevant shapes r to the total number of retrieved
shapes n; i.e. P ¼ r=n: Precision P measures
the accuracy of the retrieval and the speed of the
recall. Recall R is defined as the ratio of
the number of retrieved relevant images r to the

Fig. 7. (a) Retrieval online using browser; (b) comparison of retrieval effectiveness of VZMD, FD1 and FD2.
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total number m of relevant shapes in the whole
database, i.e. R ¼ r=m: Recall R measures the
robustness of the retrieval.
For each query, the precision of the retrieval at

each level of the recall is obtained. The result
precision of retrieval using a type of shape
descriptors is the average precision of all the query
retrievals using the type of shape descriptors. The
average precision and recall of the 651queries
using the three derived shape descriptors are
shown in Fig. 7(b).
It is clear from Fig. 7(b) that FD derived from

PFT2 outperforms VZMD and FD derived from
PFT1. The fact that FD2 outperforms VZMD and
FD1 significantly indicates that FD derived from
PFT2 is the most suitable for shape description.
Therefore, FD derived from PFT2 is selected as
the generic FD (GFD) as shape representation.
Hereafter, GFD refers to FD derived using PFT2.
60 GFDs (reflecting 5 radial frequencies and 12

angular frequencies) are selected as shape descrip-
tors. However, different number of FDs with
different parameters are tested to decide which is
the most appropriate number of FDs to describe
the shape. The test results are given in Table 1.
From Table 1, it is observed that retrieval
effectiveness is improved by increasing radial
resolution. However, retrieval effectiveness does
not improve significantly when the radial resolu-
tion is greater than 3. It is also observed from the
table that retrieval effectiveness does not improve
significantly when the angular resolution is greater
than 12. The observation indicates that for
efficient retrieval, 36 GFDs (reflecting 3 radial
frequencies and 12 angular frequencies) or 60
GFDs (reflecting 4 radial frequencies and 15
angular frequencies) is the suitable number of
GFDs for shape description.

3.2. Comparison between GFD and contour-based

shape descriptors

The above-derived GFD is compared with
common shape contour-shape descriptors: 1-D
FD and curvature scale space descriptor (CSSD)
which has been adopted as contour shape descrip-
tor in MPEG-7. The technique of 1-D FD has
been briefly described in Section 2.1. The technical

details of CSSD are described in [16], and the
implementation details are given in [10]. Basically,
CSSD applies iterative Gaussian smoothing (scale
space) to the shape boundary. The curvature zero-
crossing points at each scale are recorded. A CSS
contour map is created consisting of zero-crossing
points from all scales. The normalized peaks of the
contour branches in the CSS contour map are used
as shape descriptor.
The retrieval tests are conducted on MPEG-7

contour shape database (CE-1). MPEG-7 contour
shape database CE-1 is composed of Set A1, A2, B
and C which are for testing different types of
robustness. The following explains how to use the
database:

* Set A1 consists of 420 shapes which are
organized into 70 groups. There are 6 similar
shapes in each group. Set A1 is for test of scale
invariance.

* Set A2 consists of 420 shapes which are
organized into 70 groups. There are 6 similar
shapes in each group. Set A2 is for test of
rotation invariance.

* Set B consists of 1400 shapes of 70 groups.
There are 20 similar shapes in each group. Set B
is for similarity-based retrieval which tests
overall robustness of the shape representations.

* Set C consists of 1300 marine fishes, 200 bream
fishes are generated through affine transform
with different parameters. Set C is for test of
robustness of non-rigid deformations.

For Set A1, A2 and B, all the shapes in the
database are used as queries. For Set C, the 200
bream fishes are used as queries. The common
retrieval measurement precision–recall which is
described in Section 3.1 is used for evaluation
of the retrieval effectiveness. The average precision
and recall of the retrieval using the three shape
descriptors on each set are shown in Fig. 8(a)–(d).
Some screen shots of retrieval on MPEG-7
contour shape database are shown in Fig. 9(a)–
(g). In all the screen shots, the top left shape is the
query shape. The retrieved shapes are ranked in
descending order of similarity to the query shape,
they are arranged in left to right and top to bottom
order.
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It can be seen from Fig. 8 that the proposed
GFD outperforms 1-D FD and CSSD on all the
sets of MPEG-7 contour-shape database. The
performance of CSSD is significantly lower than

GFD and 1-D FD due to its complex normal-
ization and matching [33]. GFD has 100% correct
retrieval of rotated shapes. It has almost 100%
correct retrieval of scaled shapes and non-rigid
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Fig. 8. Average precision–recall charts of retrieval on MPEG-7 contour shape database. (a) Average precision–recall of 420 queries in

Set A1 of CE-1. (b) Average precision–recall of 420 queries in Set A2 of CE-1. (c) Average precision–recall of 1400 queries in Set B of

CE-1. (d) Average precision–recall of 200 queries in Set C of CE-1.
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shapes. The advantage of GFD over contour-
based shape descriptors is obvious in situations
where severe protrusions and indentations occur.

For example, in Fig. 9(a), GFD not only retrieves
those distorted square shapes but also retrieves
those squares with severe indentations. For the

(a)

(b)

(c)

Fig. 9. Example retrievals using GFD, 1-D FD and CSSD on different sets of CE-1. (a) Retrieval of query device3-20 on Set B using

(left) GFD; (middle) 1-D FD; (right) CSSD. (b) Retrieval of query ray-1 on Set B using (left) GFD; (middle) 1-D FD; (right) CSSD. (c)

Retrieval of query fly-1 on Set B using (left) GFD; (middle) 1-D FD; (right) CSSD. (d) Retrieval of query fork-1 on Set B using (left)

GFD; (middle) 1-D FD; (right) CSSD. (e) Retrieval of query bream-120 on Set C using (left) GFD; (middle) 1-D FD; (right) CSSD. (f)

Retrievals of device6-1 SD 01, fly-1 SD 01 and butterfly-1 on Set A1 using (left) GFD; (middle) 1-D FD; (right) CSSD. (g) Retrieval

of query spring-1 on Set A2 using (left) GFD; (middle) 1-D FD; (right) CSSD.
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contour-shape descriptors, they can only retrieve
square shapes without any indentations. In
Fig. 9(b), GFD retrieves most of the ray fish
shapes in the first screen; however, the contour
shape descriptors are easily trapped by those

protrusions of the shapes. They treat any shapes
with hook-like parts as similar shapes to the ray
fish shape which has a hook-like tail. Similar to
(b), in Fig. 9(c), contour shape descriptors are
easily distracted by the complex arms of the flies.

(d)

(e)

(f)

(g)

Fig. 9 (continued).
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They are confused with shapes with similar
protrusions, or similar number of protrusions.
While GFD is able to concentrate on the main
body of the fly shapes, successfully retrieve most of
the fly shapes in the first screen.
When a shape is scaled, its boundary can be

substantially changed. The contour shape descrip-
tors can fail completely when large scaling (scaling
factor larger than 2) occurs (Fig. 9(f)). However,
GFD is not affected by large scaling.

GFD is also more robust to severe deformation
of shape than the contour-shape descriptors. The
fish bream-120 is a severely distorted shape;
however, GFD correctly retrieve its similar shapes
(Fig. 10(e)). 1-D FD only works better than GFD
in situations where the protrusions and indenta-
tions constitute the main body of the shape. The
fork shape in Fig. 9(d) consists only of protrusion
parts. 1-D FD has very high performance on this
shape.
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Fig. 10. Retrieval performance of GFD and ZMD on different sets of CE-2. (a) Average precision–recall of 100 queries in Set A1 of

CE-2. (b) Average precision–recall of 140 queries in Set A2 of CE-2. (c) Average precision–recall of 330 queries in Set A3 of CE-2. (d)

Average precision–recall of 330 queries in Set A4 of CE-2. (e) Average precision–recall of 651 queries in CE-2.
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To summarize, because of using only boundary
information, 1-D FD and CSSD are more likely
affected by various types of shape variations such
as scaling, protrusions, indentations and deforma-
tions. Due to using all the information within a
shape region, GFD is more robust to shape
variations than 1-D FD and CSSD.
Although the extraction of GFD requires more

computation than the extraction of contour FD,
the computation of online matching using GFD is
about the same as that using contour FD. Because
the number of GFDs used to index the shape is
about the same as the number of FDs used to
index the shape, and both matching using Eu-
clidean distance [33,11]. For image retrieval
application, low computation of online matching
is essential while low computation of offline
feature extraction is not as essential.

3.3. Comparison between GFD and region-based

shape descriptors

The GFD is also compared with ZMD which
is adopted as region-based shape descriptor in

MPEG-7. The comparison is conducted on
MPEG-7 region-based shape database (CE-2).
MPEG-7 region shape database CE-2 consists of
3621 shapes of mainly trademarks. It is organized
as 5 sets for testing different types of robustness.
The use of the database is summarized as follows:

* Set A1 consists of 2881 shapes from the whole
database, it is for test of scale invariance. One
hundred shapes in Set A1 are organized into 20
groups (5 similar shapes in each group) which
can be used as queries for test of retrieval. In
our experiment, all the 100 shapes from the 20
groups are used as queries to test the retrieval.

* Set A2 consists of 2921 shapes from the whole
database, it is for test of rotation invariance.
140 shapes in Set A2 are organized into 20
groups (7 similar shapes in each group) which
can be used as queries for test of retrieval. In
our experiment, all the 140 shapes from the 20
groups are used as queries to test the retrieval.

* Set A3 consists of 3101 shapes from the whole
database, it is for test of rotation/scale invar-
iance. 330 shapes in Set A3 are organized into
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Fig. 10 (continued).
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30 groups (11 similar shapes in each group)
which can be used as queries for test of
retrieval. In our experiment, all the 330 shapes
from the 30 groups are used as queries to test
the retrieval.

* Set A4 consists of 3101 from the whole
database, it is for test of robustness to
perspective transform. 330 shapes in Set A4
are organized into 30 groups (11 similar shapes
in each group) which can be used as queries for
test of retrieval. In our experiment, all the 330
shapes from the 30 groups are used as queries to
test the retrieval.

* Set B consists of 2811 shapes from the whole
database, it is for subjective test. 682 shapes
in Set B are manually sorted out into 10 groups
by MPEG-7. The grouping is rough even for a
normal observer. Some of the members in
groups 1 and 2 are shown in Fig. 11. In our
experiment, all the 682 shapes from 10 classes
are used as queries to test the retrieval.

* The whole database consists of 3621 shapes, 651
shapes of the 3621 shapes are organized into 31
groups (21 similar shapes in each groups). For
the 21 similar shapes in each group, there are 10
perspective transformed shapes, 5 rotated
shapes and 5 scaled shapes. The 31 groups of
shapes reflect overall shape operations, and they

test the overall robustness of a shape descriptor.
The whole database is 17–29% larger in size
than the individual sets.

For Set A1, A2, A3, A4 and the whole database,
the precision–recall which described in Section 3
is used for evaluation of retrieval effectiveness.
The average precision–recall of retrieval using
the two shape descriptors on each set are shown
in Fig. 10(a)–(e). For Set B, because the number
of members in each group is different, the Bull’s
eye performance (BEP) is used for the evaluation
of retrieval effectiveness. The BEP is measured
by the correct retrievals among the top 2N

retrievals, where N is the number of relevant
(or similar shapes) shapes to the query in the
database. The BEP of Set B is given in Tables 2
and 3.
It can be seen from Fig. 10 that there is only

slight difference (overall precision is less than 1%
different) of retrieval performance between GFD
and ZMD on Sets A2 and A3. Both GFD and
ZMD have very high performance on these two
sets. However, the difference between GFD and
ZMD on Set A1, A4 and Set B is obvious
(difference of overall precision on each set is over
4%) and the difference between GFD and ZMD
on the whole database is significant (difference of

Fig. 11. Part of members in group 1 (left) and group 2 (right) of Set B of CE-2.
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overall precision is over 12%). The reasons are
explained as follows:

* Scaling, especially large scaling, can cause shape
content or spatial distribution substantially

changed. ZMD meets problem in dealing this
type of situations because it is only able
to examine shape in circular direction. How-
ever, GFD can successfully deal with this
type of situations by examining shape more

Table 2

Retrieval performance of FDs with different number of radial and angular frequencies. r: number of radial frequencies selected; t:

number of angular frequencies selected

Recall (%) 10 20 30 40 50 60 70 80 90 100 Overall precision

Parameters on full recall

r ¼ 1; t ¼ 20 94.4 85.5 83.4 82.3 81.0 76.4 70.5 59.7 53.0 37.6 72.4

r ¼ 2; t ¼ 15 96.3 89.0 87.2 86.5 86.0 85.0 82.0 66.5 60.8 46.5 78.6

r ¼ 3; t ¼ 12 97.6 90.6 88.9 88.0 87.6 87.0 84.0 68.5 62.0 48.8 80.3

r ¼ 3; t ¼ 15 97.8 90.7 89.0 88.2 87.7 87.2 84.3 68.6 62.5 48.9 80.5

r ¼ 4; t ¼ 15 98.2 90.8 89.2 88.4 88.0 87.4 84.1 69.0 62.7 48.3 80.6

r ¼ 4; t ¼ 20 98.3 91.0 89.4 88.5 88.1 87.5 84.5 69.1 63.0 48.8 80.8

r ¼ 5; t ¼ 12 98.3 90.8 88.9 88.0 87.7 87.1 84.0 68.8 62.0 48.2 80.4

r ¼ 5; t ¼ 20 98.3 91.0 89.1 88.3 87.9 87.3 84.3 68.9 62.3 48.7 80.6

r ¼ 6; t ¼ 6 97.4 88.6 86.8 86.0 85.7 84.7 81.0 66.4 58.0 44.0 77.9

r ¼ 8; t ¼ 8 97.8 89.6 87.7 87.0 86.7 85.7 82.2 68.1 60.2 46.8 79.2

r ¼ 10; t ¼ 6 97.4 88.7 86.7 86.0 85.6 84.6 80.8 66.7 58.3 44.7 78.0

r ¼ 8; t ¼ 15 98.3 90.6 88.7 87.8 87.3 86.9 83.1 68.7 62.1 48.5 80.2

r ¼ 10; t ¼ 15 98.3 90.7 88.7 87.8 87.3 87.0 83.2 68.7 62.1 48.5 80.2

Table 3

Bull’s eye performance of the 682 queries in Set B of CE-2

Class 1 2 3 4 5 6 7 8 9 10 Average

No. of shapes 68 248 22 28 17 22 45 145 45 42

GFD (%) 47.0 66.4 55.6 50.0 50.0 24.8 30.4 50.8 55.6 29.0 46.0

ZMD (%) 37.0 58.0 55.0 41.2 42.6 22.6 33.6 52.0 41.4 34.0 41.7

(a)

(b)

Fig. 12. Example retrievals on Set A1 of CE-2. (a) Retrieval of query 368 SD 033 using GFD (left) and using ZMD (right).

(b) Retrieval of query 702 SD 033 using GFD (left) and using ZMD (right).
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(a)

(b)

(c)

Fig. 13. Example retrievals on Set A4 of CE-2. (a) Retrieval of query 533 p687 pa 3 using GFD (left) and using ZMD (right). (b)

Retrieval of query 1001 p144 pa 5 using GFD (left) and using ZMD (right). (c) Retrieval of query 1605 using GFD (left) and using

ZMD (right).
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carefully on the radial directions (Figs. 12(a,b)
and 14(a)).

* Perspective deformations can also result in scaling
effect, as a result, shape spatial distribution can be
changed (Figs. 13(b) and 14(b,c)). Parts of shape
can be lost due to the transform (Fig. 13(a)).
GFD can cope with this type of situations by
examine shape features in radial directions.

* Due to the capturing of shape features in both
radial and circular directions, the retrieved
shapes are more perceptually acceptable. For
example, in Fig. 15, both GFD and ZMD
retrieve all the similar shapes to the query.
However, GFD not only retrieve those similar
shapes, but also retrieve perceptually relevant
shapes such as the members in group

(a)

(b)

Fig. 14. Example retrievals on CE-2. (a) Retrieval of query 1006 using GFD and using ZMD. (b) Retrieval of query 1006 p144 pa 7

using GFD (left) and using ZMD (right). (c) Retrieval of query 1004 p144 pa 3 using GFD (left) and using ZMD (right).
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1002 p144. Examples from Set B (Fig. 16) and
Set A4 (Fig. 13(c)) also demonstrate retrievals
using GFD are more perceptually acceptable
than ZMD.

* GFD is more robust than ZMD when the size
of the shape database is increased. This is
reflected in the retrieval performance on the
whole database (Fig. 10(e)).

(c)

Fig. 14 (continued).

Retrieval of query 1009 using GFD (left) and using ZMD (right) 

Fig. 15. Example retrievals on Set A3.
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The comparative low retrieval performance of
GFD on Set B is due to that the grouping within
the Set is too rough, as can been seen from the
example shapes in Fig. 11. The comparative low
retrieval performance of GFD on Set A4 is due to
the circular scanning of shape with constant radius

when applying PFT. This intrinsic problem will be
considered in future implementation to increase
GFD robustness to affine or perspective deformed
shapes which are expected common in nature.
The computation of extracting GFD is simpler

than ZMD. First, it does not need to normalize

(a)

(b)

Fig. 16. Example retrievals on Set B of CE-2. (a) Retrieval of 2992 using GFD (left) and using ZMD (right). (b) Retrieval of 1180

using GFD (left) and using ZMD (right). (c) Retrieval of 1213 using GFD (left) and using ZMD (right). (d) Retrieval of 1011using

GFD (left) and using ZMD (right).

D. Zhang, G. Lu / Signal Processing: Image Communication 17 (2002) 825–848 845



shape into an unit disk as is required in extracting
ZMD (because Zernike moments is defined within
a unit disk). Furthermore, the polar Fourier
transform of (2.5) is simpler than the Zernike
moments of (2.3). PFT avoids the complex
computation of Zernike polynomials. The compu-
tations of online matching using GFD and ZMD
are about the same, because both methods use
Euclidean distance for similarity measurement and

the number of GFDs used to index the shape is
about the same as the number of ZMD used to
index the shape [10].

4. Conclusions

In this paper, we have proposed a generic
Fourier descriptor for general applications. The

(c)

(d)

Fig. 16 (continued).
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main contributions of the paper are in the
following two aspects.

* It improves common 1-D FD in that: (i) it does
not assume shape contour information which
may not be available; (ii) it captures shape
interior content as well as shape boundary
features; (iii) it is more robust.

* It improves ZMD in that: (i) it captures both
radial and circular features of a shape; (ii) it is
simpler in computation; (iii) it is more robust
and perceptually meaningful.

The proposed GFD satisfies all the six require-
ments set by MPEG-7 for shape representation,
that is, good retrieval accuracy, compact features,
general application, low computation complexity,
robust retrieval performance and hierarchical
coarse to fine representation. It has been tested
on both MPEG-7 contour shape database and
MPEG-7 region shape database. Comparisons
have been made between GFD, 1-D FD, and
MPEG-7 shape descriptors, results show that the
proposed GFD outperforms these shape descrip-
tors. Compared with scaling and rotation retrieval,
however, the retrieval accuracy for perspective
transformed shapes is significantly lower. This
problem will be studied in future research by using
non-uniform polar-raster sampling.
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