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In transport problems of Monge’s types, the total cost of a transport map is usually an
integral of some function of the distance, such as |x − y|p. In many real applications,
the actual cost may naturally be determined by a transport path. For shipping two
items to one location, a “Y shaped” path may be preferable to a “V shaped” path.
Here, we show that any probability measure can be transported to another probability
measure through a general optimal transport path, which is given by a vector measure
in our setting. Moreover, we define a new distance on the space of probability measures
which in fact metrizies the weak * topology of measures. Under this distance, the space
of probability measures becomes a length space. Relations as well as related problems
about transport paths and transport plans are also discussed in the end.
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1. Introduction

The transport problem introduced by Monge in 1781 [8] has been studied in many

interesting works in the last 10 years [1, 4, 5, 7, 11]. In these works, the cost of

a transport mapping or a transport plan is usually an integral of some convex

(or concave [7]) function of the distance, such as |x − y|p. However, in some

real applications, the actual cost of the transport procedures is not necessarily

determined by just knowing an optimal mapping from the starting position to the

target position. For example in shipping two items from nearby cities to the same

far away city, it may be less expensive to first bring them to a common location and

put them on a single truck for most of the transport. In this case, a “Y shaped”

path is preferable to a “V shaped” path. In both cases, the transport mapping is

trivially the same, but the actual transport path naturally gives the total cost. We

may consider the following general problem.

Problem 1.1. Given two general probability measures µ+ and µ−, find an optimal

path for transporting µ+ to µ−.
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To solve this problem, one needs to find a suitable category of transport paths

as well as a suitable cost functional acting on these paths. Such a category should

be broad enough to give existence of an optimal transport path. Also, an optimal

transport path should allow the possibility that some parts overlap in a cost efficient

(maybe complicated) fashion but still enjoy some nice regularity properties. If

possible, one may hope to visualize such an optimal transport path using numerical

analysis and computer graphics.

The family of paths we choose in this paper is a subset of the space of vector

measures with divergence being the difference of the given two measures in the

sense of distribution. A transport path between two atomic measures is just a

directed graph with balanced weighting at interior vertices. For arbitrary measures,

a transport path between them is a vector measure given by a limit of some weighted

directed graphs. The cost on each transport path is a suitably modified weighted

mass of the vector measure (see Sec. 2, Definition 2.2), similar to the H mass of

integral currents in [3]. Unlike in [3], we work with vector measures (or 1 dimensional

flat currents in the language of geometric measure theory) whose multiplicities are

not necessarily integer valued. With this category and cost functional, the original

optimal transport path problem becomes a Plateau-type problem as in the study of

minimal surfaces. Luckily, we have the existence theorem of an optimal transport

path joining any given probability measure to another.

In Sec. 4, we consider a new distance on the space of probability measures on a

fixed convex set. Such a distance is different from any of the Wasserstein distances

[4], but still metrizes the weak ∗ topology of the space of probability measures.

In Sec. 5, we show that the space of probability measures with the above distance

becomes a length space. The geodesic between two probability measures is an

optimal transport path between them.

In Sec. 6, we use numeric analysis to visualize optimal transport paths.

In the last section, we discuss the relationship between transport paths and

transport plans. A compatible pair of a transport plan and a transport path contains

necessary information about the actual transportation such as how, where and when

the original measure is decomposed into the targeting measure on the road.

We are presently considering regularity questions about these optimal transport

paths. It seems likely that the optimal transport path is given by a countable sum

of oriented segments.

In this paper, we will use the following notations:

• X : a compact convex subset of a Euclidean space R
m.

• Q: a cube in R
m contains X .

• d: the edge length of Q.

• c: the center of Q.

• α: a positive number in [0, 1].

• MΛ(X): the space of Radon measure µ on X with total mass µ(X) = Λ.

• Mm(X): the space of Radon vector measure µ = (µ1, µ2, . . . , µm) on X .
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• ‖µ‖: the total variational measure of any vector measure µ ∈ Mm(X).

• W : the Wasserstein 1-distance on MΛ(X).

2. Transport Atomic Measures

Recall that a Radon measure a on X is atomic if a is a finite sum of Dirac measures

with positive multiplicities. That is

a =

k
∑

i=1

aiδxi

for some integer k ≥ 1 and some points xi ∈ X , ai > 0 for each i = 1, . . . , k. For

any Λ > 0, let

AΛ(X) ⊂ MΛ(X)

be the space of all atomic measures on X with total mass Λ.

Suppose

a =

k
∑

i=1

aiδxi
and b =

l
∑

j=1

bjδyj
∈ AΛ(X) (2.1)

are two atomic measures on X of equal total mass:

k
∑

i=1

ai = Λ =

l
∑

j=1

bj .

Definition 2.1. A transport path from a to b is a weighted directed graph G

consists of a vertex set V (G), a directed edge set E(G) and a weight function

w : E(G) → (0,+∞)

such that

(1) {x1, x2, . . . , xk} ∪ {y1, y2, . . . , yl} ⊂ V (G).

(2) For each source vertex xi, i = 1, . . . , k,

ai =
∑

e∈E(G)

e−=xi

w(e) ,

where e− denotes the starting endpoint of the edge e ∈ E(G).

(3) For each j = 1, . . . , k,

bj =
∑

e∈E(G)

e+=yj

w(e) ,

where e+ denotes the ending endpoint of the edge e ∈ E(G).
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(4) For any interior vertex v ∈ V (G),
∑

e∈E(G)

e−=v

w(e) =
∑

e∈E(G)

e+=v

w(e) .

In other words, G satisfies the Kirchoff’s law at each of its interior vertices.

Denote

Path (a, b) = {all transport paths from a to b}
and

GΛ(X) =
⋃

(a,b)∈AΛ(X)×AΛ(X)

Path (a, b) ,

the union of all transport paths between atomic measures on X of equal total

mass Λ.

Remark 2.1. Each transport path G ∈ Path (a, b) determines the vector measure

on X

G =
∑

e∈E(G)

w(e)[[e]] ,

where [[e]] is the vector measure H1bee for each edge e ∈ E(G) with unit directional

vector e. The above conditions can be simplified to be a single divergence condition

on G

div (G) = a− b ,

in the sense of distribution. Thus,

Path (a, b) =







G =
∑

e∈E(G)

w(e)[[e]] ∈ Mm(X) : div (G) = a− b







.

Among all paths in Path (a, b), we want to find an optimal path which allows

the possibility that some parts overlap in a cost efficient fashion. To get such a

“Y-shaped” optimal path, we define the following cost function on GΛ(X).

Definition 2.2. The Mα cost function on GΛ(X) is defined by

Mα(G) ≡
∑

e∈E(G)

w(e)α length (e)

for any transport path G =
∑

e∈E(G) w(e)[[e]] ∈ GΛ(X).

• This definition is motivated by the study of scans in [9] and also the H mass of

integer multiplicity rectifiable currents in [3] or [12].

• Note that, when α = 1, we have

M1(G) = ‖G‖(X) ,

where ‖G‖ is the total variational measure of G.
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Example 2.1. Let a = m1δx1 +m2δx2 and b = m3δx3 with m3 = m1 +m2. Then

the optimal transport path from a to b under the Mα cost looks like the following

“Y shaped” graph

X
3
 

X
1
 

X
2
 

m
1
 

 m
2

m
3
=m

1
+m

2
 

X 

Here the interior vertex x is determined by a balance formula:

mα
1 n1 +mα

2 n2 = mα
2 n3 ,

where ni = x−xi

|x−xi| is the unit vector from x to xi, i = 1, 2, 3. Let θi be the angle

between ni and −n3 for i = 1, 2 and k1 = m1

m1+m2
, k2 = m2

m1+m2
= 1− k1. Then the

above formula implies that the angles satisfy

cos θ1 =
kα
1 + 1 − kα

2

2kα
1

,

cos θ2 =
kα
2 + 1 − kα

1

2kα
2

,

and

cos(θ1 + θ2) =
1 − k2α

1 − k2α
2

2kα
1 k

α
2

.

In particular, if m1 = m2, then

θ1 + θ2 = arccos (22α−1 − 1) .

Also, if α = 1/2, then θ1 + θ2 = π/2 for any m1 and m2.
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Example 2.2. For a = m1δx1 +m2δx2 and b = m3δx3 +m4δx4 with m1 +m2 =

m3 + m4, there are three possible types of optimal transport path in Path (a, b),

depending on the positions of xi as well as the ratios of mi:

Three types from two points to two points

x
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An arbitrary transport path G ∈ Path (a, b) is a weighted directed graph,

but not necessarily a directed tree. In other words, G may contain some cycles.

However, the following proposition says G can be modified to be a directed tree

G̃ ∈ Path (a, b) (i.e. contains no cycles) with less Mα cost.

Proposition 2.1. For any G ∈ Path (a, b), there exists a G̃ ∈ Path (a, b) contains

no cycles and Mα(G̃) ≤Mα(G).

Proof. Suppose G contains some cycle L. For each edge e of L, define

m(e) =
α length (e)

w(e)1−α
.

Arbitrarily pick an orientation for L and let

L1 =
∑

{[[e]] : edge e of G has the same orientation as L} and

L2 =
∑

{[[e]] : edge e of G has the reverse orientation as L} .
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Note that L1 or L2 is possibly empty and div L1 = div L2. By changing orientation

on L if necessary, we may assume that
∑

e∈L1

m(e) ≤
∑

e∈L2

m(e) .

Now we set

G′ = G+ w(L1 − L2)

with w = min{w(e) : e ∈ L2}. Then G′ ∈ Path (a, b) and has fewer cycles than G

does. Moreover, Mα(G′) ≤ Mα(G). To see this, we consider the function on [0, w]

defined by

f(λ) : = Mα(G+ λ(L1 − L2)) −Mα(G)

=
∑

e∈L1

length (e)[(w(e) + λ)α − w(e)α]

+
∑

e∈L2

length (e)[(w(e) − λ)α − w(e)α] .

Then, since α ≤ 1, trivial calculations imply that

f ′′(λ) ≤ 0 , f ′(λ) ≤ f ′(0) =
∑

e∈L1

m(e) −
∑

e∈L2

m(e) ≤ 0

and f(λ) ≤ f(0) = 0. Therefore, Mα(G′) ≤ Mα(G). Repeating the above

procedure, we get the desired transport path G̃ with no cycles.

From the above proposition, we may restrict our transport paths to be the class

of directed trees. For directed trees, we have the following trivial but important

lemma.

Lemma 2.1. Suppose 0 < Λ < +∞ and G =
∑

e∈E(G) w(e)[[e]] ∈ Path (a, b) is a

directed tree with a, b ∈ AΛ as before. Then for any edge e ∈ E(G), we have

0 < w(e) ≤ Λ .

Thus,

Mα(G)

Λα
≥ M1(G)

Λ
.

Proof.

Mα(G)

Λα
=

∑

e∈E(G)

(

w(e)

Λ

)α

length (e)

≥
∑

e∈E(G)

w(e)

Λ
length (e)

=
M1(G)

Λ
.
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From the following elementary proposition we know that in order to transport

general atomic measures, it is sufficient to transport probability atomic measures.

Proposition 2.2. For any G =
∑

e∈E(G) w(e)[[e]] ∈ Path (a, b) and any positive

number r > 0,

rG :=
∑

e∈E(G)

(rw(e))[[e]]

is a transport path from ra to rb ∈ ArΛ(X), and

Mα(rG) = rαMα(G) .

In particular,

G

Λ
∈ Path

(

a

Λ
,
b

Λ

)

with Mα(G) = ΛαMα

(

G

Λ

)

.

3. Transport General Measures

In this section, we will consider transport paths for general Radon measures

in MΛ(X). The idea here is to approximate those general measures by atomic

measures in AΛ(X), and then using the transport paths of those approximating

atomic measures to approximate a transport path of general measures in MΛ(X).

Recall that any Radon measure µ onX can be approximated by atomic measures

in the weak ∗ topology of Radon measures as we see in the following simple example.

Example 3.1. For any Radon measure µ in MΛ(X), we may approximate µ by

atomic measures in AΛ(X) as follows. For each i = 0, 1, 2, . . . , let

Qi = {Qh
i : h ∈ Z

m ∩ [0, 2i)m}

be a partition of Q into cubes of edge length d
2i . Now, for each h ∈ Z

m ∩ [0, 2i)m,

let chi be the center of Qh
i and

mh
i = µ(Qh

i )

be the µ mass of the cube Qh
i . Define an atomic measure

Ai(µ) =
∑

h∈Zm∩[0,2i)m

mh
i δch

i
∈ AΛ(X) .

Then {Ai(µ)} converges to µ weakly. This approximation {Ai(µ)} is called the

dyadic approximation of µ.

Now, we can talk about transport paths between general measures.

Definition 3.1. Let µ+, µ− ∈ MΛ(X) be any two Radon measures on X with

equal total mass Λ. Extending Definition 2.1 from Sec. 1, we say a vector measure

T ∈ Mm(X) is a transport path from µ+ to µ− if there exist two sequences

{ai}, {bi} of atomic measures in AΛ(X) with a corresponding sequence of transport
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paths Gi ∈ Path (ai, bi) such that

ai ⇀ µ+, bi ⇀ µ−, Gi ⇀ T

weakly as Radon measures and vector measures.

The sequence of triples {ai, bi, Gi} is called an approximating graph

sequence for T . Note that for any such T ,

div(T ) = µ+ − µ−

in the sense of distributions.

Let

Path (µ+, µ−) ⊂ Mm(X)

be the space of all transport paths from µ+ to µ−.

Also, given any α ∈ [0, 1], for any T ∈ Path (µ+, µ−), we define its Mα cost to

be

Mα(T ) := inf lim inf
i→∞

Mα(Gi) ,

where the infimum is over the set of all possible approximating graph sequence

{ai, bi, Gi} of T .

Remark 3.1. One can easily see that Mα is lower semicontinuous. Also, when µ+

and µ− are atomic, the above definition about transport path and Mα cost function

agrees with the previous definitions in the last section.

Remark 3.2. In the proof of Theorem 5.1, we will see how a transport path

T ∈ Path (µ+, µ−) with finite Mα cost be represented by a Lipschitz curve in

M1(X) from µ+ to µ−.

For simplicity, we may assume both µ+ and µ− to be probability measures,

i.e. µ+(X) = µ−(X) = 1.

For any probability measure µ ∈ M1(X), we will now use the dyadic

approximation Ai(µ) of µ to construct a transport path of finite Mα cost from

µ to the Dirac measure δc, where c is the center of the cube Q containing X with

edge length d.

Proposition 3.1. For any µ ∈ M1(X), there exists a transport path T ∈
Path (µ, δc) such that

Mα(T ) ≤ 1

21−m(1−α) − 1

√
md

2

for any α ∈ (1 − 1
m , 1].

Proof. Let {Ai(µ)} be the dyadic approximation of µ as in the Example 3.1.
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For each i = 0, 1, . . . , and h ∈ Zm∩ [0, 2i)m, each cube Qh
i of level i corresponds

to 2m cubes {Q2mh+h′

i+1 : h′ = 0, 1, 2, . . . , 2m−1} of level i+1 by dyadic subdivision.

Then one can construct a transport path

Gh
i :=

2m−1
∑

h′=0

m2mh+h′

i+1 [[(c2
mh+h′

i+1 , chi )]] ∈ Path

(

mh
i δch

i
,

2m−1
∑

h′=0

m2mh+h′

i+1 δ
c2mh+h′

i+1

)

,

which is a directed tree from the center chi of Qh
i to the centers c2

mh+h′

i+1 of 2m cubes

{Q2mh+h′

i+1 : h′ = 0, 1, 2, . . . , 2m − 1} with suitable weights. Now, for each n ≥ 0, set

Gn =

n
∑

i=0

∑

h∈Zm∩[0,2i)m

Gh
i ∈ Path (A0(µ),An+1(µ)) .

Since

Mα(Gn) =

n
∑

i=0

∑

h∈Zm∩[0,2i)m

2m−1
∑

h′=0

(m2mh+h′

i+1 )α length (c2
mh+h′

i+1 , chi )

=
n
∑

i=0

∑

h∈Zm∩[0,2i)m

2m−1
∑

h′=0

(m2mh+h′

i+1 )α

√
md

2i+2

≤
n
∑

i=0

∑

h∈Zm∩[0,2i)m

2m−1
∑

h′=0

(

1

2m(i+1)

)α √
md

2i+2

=

n
∑

i=0

(2i+1)m(1−α)−1

√
md

2

≤ 1

21−m(1−α) − 1

√
md

2
, if α > 1 − 1

m
,

where (∗) follows from the fact that the function

fi(x1, x2, . . . , x2m(i+1) ) =
∑

h∈Zm∩[0,2i)m

2m−1
∑

h′=0

(x2mh+h′)α

√
md

2i+2

achieves its maximum at the point ( 1
2m(i+1) ,

1
2m(i+1) , . . . ,

1
2m(i+1) ).

Since ‖Gn‖(X) = M1(Gn) ≤ Mα(Gn) has bounded total variation, by the

compactness of vector measures, {Gn} subconverges weakly to a vector measure T

with

Mα(T ) ≤ lim inf Mα(Gi) ≤
1

21−m(1−α) − 1

√
md

2
.

Thus T ∈ Path (µ, δc) has finite Mα cost.
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Now, we solve the Problem 1.1 in the following existence theorem:

Theorem 3.1 (Existence theorem). Given two Radon measures µ+, µ− ∈
MΛ(X) on X ⊂ R

m and α ∈ (1 − 1
m , 1], there exists an optimal transport path

S with least Mα cost among all transport paths in the family Path (µ+, µ−). More-

over

Mα(S) ≤ Λα

21−m(1−α) − 1

√
md

2
.

Proof. Let {Ti} be an Mα minimizing sequence in Path (µ+, µ−). For each Ti,

there exists a transport path Gi ∈ Path (ai, bi) such that

Mα(Gi) ≤Mα(Ti) +
1

2i
and W (ai, µ

+) +W (bi, µ
−) <

1

2i
,

where W is the Wasserstein 1-distance on M1(X) which metrizies the weak ∗

topology of M1(X). By Proposition 2.1, we may assume Gi has no cycles. Thus

the total variation of Gi

‖Gi‖(X) = M1(Gi) ≤ Λ1−αMα(Gi) ≤
(

Mα(Ti) +
1

2i

)

Λ1−α

is uniformly bounded. Therefore, by the compactness of vector measure, {Gi} is

subsequently convergent to a vector measure S ∈ Path (µ+, µ−). By the lower

semicontinuity of Mα, S is an optimal transport path. Also, by the Proposition 3.1,

we know Mα(S) ≤ Λα

21−m(1−α)−1

√
md
2 .

4. A New Distance dα on the Space of Probability Measures

By the existence theorem (Theorem 3.1), we give the following definition:

Definition 4.1. For any α ∈ (1 − 1
m , 1], we define

dα(µ+, µ−) := min{Mα(T ) : T ∈ Path (µ+, µ−)} ,

for any two Radon measures µ+, µ− ∈ MΛ(X).

Note that for any Λ > 0 and any µ+, µ− ∈ MΛ(X),

dα(µ+, µ−) = Λαdα

(

µ+

Λ
,
µ−

Λ

)

.

Thus, we may assume Λ = 1.

4.1. dα is a distance

To show that dα is in fact a distance on M1(X), we need the following lemma:

Lemma 4.1. Given µ ∈ M1(X). Suppose {ai}, {bi} ⊂ A1(X) are two sequences

of atomic probability measures on X. If ai ⇀ µ and bi ⇀ µ, then dα(ai, bi) → 0.
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Proof. Given ε > 0, since m(1−α)− 1 < 0, there exists a natural number n large

enough so that

nm(1−α)−1 1

21−m(1−α) − 1

√
md

2
<
ε

3
.

For any small number β > 0, we can find a partition Q̃n = {Qh
n : h ∈ Zm ∩ [0, n)m}

of Q consist of cubes of edge length between [(1−β) d
n , (1+β) d

n ] such that for all i,

the finite set spt (ai) ∪ spt (bi) doesn’t intersect the boundary of those cubes. For

each h, let chn be the center of Qh
n, ph

i = ai(Q
h
n) and qh

i = bi(Q
h
n). Since ai − bi ⇀ 0,

we have ph
i − qh

i = (ai − bi)(χ(interior of Qh
n)) → 0 as i→ ∞ for all h. Let

pi =
∑

h∈Zm∩[0,n)m

ph
i δch

n
and qi =

∑

h∈Zm∩[0,n)m

qh
i δch

n
.

By Proposition 3.1, there exists an Sh
i ∈ Path (aibQh

n
, ph

i δch
n
) with

Mα(Sh
i ) ≤ (ph

i )α

21−m(1−α) − 1

√
md

2n
.

Thus Si =
∑

h∈Zm∩[0,n)m Sh
i ∈ Path (ai, pi) and

Mα(Si) ≤
∑

h∈Zm∩[0,n)m

Mα(Sh
i )

≤
∑

h∈Zm∩[0,n)m

(ph
i )α 1

21−m(1−α) − 1

√
md

2n

≤
∑

h∈Zm∩[0,n)m

(

1

nm

)α
1

21−m(1−α) − 1

√
md

7n

≤ nm

(

1

nm

)α
1

21−m(1−α) − 1

√
md

2n

<
ε

3
.

Similarly, we may find some S ′
i ∈ Path (bi, qi) with Mα(S′

i) <
ε
3 .

Finally, let Gi be the cone over pi − qi with vertex c, the center of Q. Then

Gi ∈ Path (pi, qi) and

Mα(Gi) ≤
∑

h∈Zm∩[0,n)m

(|ph
i − qh

i |)α

√
md

2
<
ε

3

when i large enough. Therefore, we have Ti = Si + Gi + S′
i ∈ Path (ai, bi) with

Mα(Ti) < ε when i large enough. Thus, dα(ai, bi) → 0.

Lemma 4.2. For any µ+, µ− ∈ M1(X), we have

W (µ+, µ−) ≤ dα(µ+, µ−) ,

where W is the Wasserstein distance on M1(X).
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Proof. Let {ai, bi, Gi} be a approximating graph sequence of an optimal transport

path in Path (µ+, µ−) such that

limMα(Gi) = dα(µ+, µ−) .

For each i, one may assume that Gi contains no cycles, thus

W (ai, bi) ≤M1(Gi) ≤Mα(Gi) .

Let i→ ∞, we have

W (µ+, µ−) ≤ lim infW (ai, bi) ≤ limMα(Gi) = dα(µ+, µ−) .

Corollary 4.1. If dα(µi, µ) → 0, then µi ⇀ µ.

Theorem 4.1. dα is a distance on M1(X).

Proof. From Lemma 4.2, we know that µ1 = µ2 whenever dα(µ1, µ2) = 0. Thus,

it’s sufficient to show that

dα(µ1, µ3) ≤ dα(µ1, µ2) + dα(µ2, µ3)

for any µ1, µ2, µ3 ∈ M1(X).

In fact, given ε > 0, there exist sequences of transport paths Gi ∈
Path (ai, bi), Pi ∈ Path (ci, di) such that

limMα(Gi) ≤ dα(µ1, µ2) +
ε

3
and limMα(Pi) ≤ dα(µ2, µ3) +

ε

3

for some atomic approximations {ai}, {bi}, {ci}, {di} of µ1, µ2, µ2, µ3 respectively:

ai ⇀ µ1, bi ⇀ µ2 ,

ci ⇀ µ2, di ⇀ µ3 ,

as i → ∞. As in the proof of Lemma 4.1, we find a Ti ∈ Path (bi, ci) with

limMα(Ti) < ε/3. Thus, Gi + Ti + Pi ∈ Path (ai, di) and

dα(µ1, µ3) ≤ lim inf Mα(Gi + Ti + Pi)

≤ dα(µ1, µ2) + dα(µ2, µ3) + ε .

Therefore, dα(µ1, µ3) ≤ dα(µ1, µ2) + dα(µ2, µ3).

Corollary 4.2. Suppose {ai, bi, Gi} is any approximating graph sequence of some

transport path T ∈ Path (µ+, µ−). If Gi is optimal in Path (ai, bi) for each i, then

T is also optimal.

Proof. Suppose S is an optimal transport path in Path (µ+, µ−), and {a′i, b′i, Fi}
is an approximating graph sequence of S such that

lim
i→∞

Mα(Fi) = Mα(S) = dα(µ+, µ−) .
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Then, by Lemma 4.1,

Mα(T ) ≤ lim inf
i→∞

Mα(Gi)

= lim inf
i→∞

dα(ai, bi)

≤ lim inf
i→∞

dα(a′i, b
′
i) + dα(ai, a

′
i) + dα(bi, b

′
i)

≤ lim inf
i→∞

Mα(Fi) = dα(µ+, µ−) .

Therefore, Mα(T ) = dα(µ+, µ−) and T is also optimal.

4.2. Topology on M1(X) induced by dα

In general, the dα distance is different from any of the Wasserstein distances because

the optimal transport path for dα will be “Y shaped” rather than “V shaped” as

in Wasserstein distances. However, we’ll show that they induce the same topology

on M1(X), namely the weak ∗ topology of M1(X). We first show that atomic

measures are dense in (M1(X), dα):

Lemma 4.3. For each µ ∈ M1(X), let {An(µ)} be the dyadic approximation of µ.

Then,

dα(µ,An(µ)) ≤ Cβn

for some constant C =
√

md/2
21−m(1−α)−1

and 0 < β = 2m(1−α)−1 < 1. This implies

atomic probability measures are dense in (M1(X), dα).

Proof. As before, for any n ≥ 1, we let Qn = {Qh
n : h ∈ Zm ∩ [0, 2n)m} be a

partition of [0, d]m into cubes of edge length d
2n , and let chn be the center of Qh

n.

Then An(µ) =
∑

h µ(Qh
n)δch

n
and

dα(µ,An(µ)) ≤
∑

h

dα(µbQh
n, δch

n
)

≤
∑

h

µ(Qh
n)α

21−m(1−α) − 1

√
md

2n+1

≤
∑

h

(

1

2nm

)α
1

21−m(1−α) − 1

√
md

2n+1

=

√
md

21−m(1−α) − 1
2n[m(1−α)−1]−1 → 0as n→ ∞ .

Corollary 4.3. For any µ+, µ− ∈ M1(X), let {An(µ+)} and {An(µ−)} be the

dyadic approximation of µ+ and µ− respectively, then

|dα(µ+, µ−) − dα(An(µ+),An(µ−))| ≤ 2Cβn .
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Theorem 4.2. dα metrizes the weak ∗ topology of M1(X).

Proof. By Lemma 4.2, it’s sufficient to show that if µi ⇀ µ, then dα(µi, µ) → 0.

In fact, for each i, by Lemma 4.3, we can find an atomic probability measure ai

such that dα(ai, µi) ≤ 1
2i . So, ai ⇀ µ also. On the other hand, by Lemma 4.3 again,

we may find a sequence of atomic probability measures bi ⇀ µ and dα(bi, µ) → 0.

By Lemma 4.1,dα(ai, bi) → 0 and thus

dα(µi, µ) ≤ dα(µi, ai) + dα(ai, bi) + dα(bi, µ) → 0 .

5. Length Space Property

In this section, we will show that (M1(X), dα) is a length space, which means that

for any µ+, µ− ∈ M1(X), there exists a continuous map

ψ: [0, dα(µ+, µ−)] → M1(X)

such that ψ(0) = µ+, ψ(dα(µ+, µ−)) = µ− and for any 0 ≤ s1 < s2 ≤ dα(µ+, µ−),

dα(ψ(s1), ψ(s2)) = s2 − s1 .

We first construct such a map for atomic measures. Then, by means of such

maps, we achieve a desired map for arbitrary measures.

First we need a basic lemma which will allow us to assign an appropriate “time”

parameter to each vertex.

Lemma 5.1. Let G be any connected tree in X with vertex set

V (G) = {P1, P2, . . . , Pi(G);Pi(G)+1, . . . , Pi(G)+b(G)} .
where {P1, P2, . . . , Pi(G)} is the set of interior vertices of G and

{Pi(G)+1, . . . , Pi(G)+b(G)}
is the set of boundary vertices of G. For each edge PiPj ∈ E(G), let aij > 0 be a

given positive number associated to the edge PiPj .

Now, for any (c1, c2, . . . , cb(G)) ∈ R
b(G), there exists a unique map

t: V (G) → R (5.1)

such that for each j = 1, 2, . . . , b(G),

t(Pi(G)+j) = cj (5.2)

and for each i = 1, 2, . . . , i(G),
∑

j

aij

t(Pj) − t(Pi)
= 0 , (5.3)

where the summation is over all j such that Pj and Pi are connected by an edge

of G.

Proof. If i(G) = 1, then

V (G) = {P1;P2, . . . , Pb(G)+1} .
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Since the function
b(G)
∑

i=2

a1i

t− ci−1

is a strictly increasing function with range (−∞,+∞). Thus it has a unique zero

t1. Note that

min{c1, . . . , cb(G)} ≤ t1 ≤ max{c1, . . . , cb(G)}
and when view t1 as a function of c1, . . . , cbt(G), we have

∂t1
∂cj−1

=

a1j

(t−cj−1)2

∑b(G)
i=2

a1i

(t−ci−1)2

∈ [0, 1]

for each j = 2, . . . , b(G) + 1.

Suppose for each Ḡ with i(Ḡ) ≤ N , there exists a t̄ satisfying (5.1)–(5.3). Then,

for each interior vertex P ,

min{c1, c2, . . . , cb(Ḡ)} ≤ t̄(P ) ≤ max{c1, c2, . . . , cb(Ḡ)} .
Moreover, if one of P ’s adjacent vertices is a boundary vertex Pi(Ḡ)+j for some j,

then

∂(t̄(P ))

∂cj
∈ [0, 1] .

Now assume i(G) = N + 1. Note that there exists an interior vertex of G which

has exactly one other interior vertex of G as its adjacent vertex. All other adjacent

vertices are boundary vertices of G. In fact, by removing all edges with one of its

endpoints being a boundary vertex of G, we get a new connected tree. Then, any

boundary vertex of this new connected tree will be an interior vertex of the original

G with the desired properties. Without losing generality, we may assume that the

vertex is P1 and its adjacent vertices are Pi(G)+1, . . . , Pi(G)+h and P2.

Now, removing these edges P1Pi(G)+1, . . . , P1Pi(G)+h from G, we get another

connected tree Ḡ with

V (Ḡ) = {P2, . . . , Pi(G);P1, Pi(G)+h+1, . . . , Pi(G)+b(G)} .
Since i(Ḡ) = i(G) − 1, we may apply induction to Ḡ. Thus, for any λ ∈ R, there

exists a solution t̄λ : V (Ḡ) → R to the system (5.3) with

t̄λ(P1) = λ and t̄λ(Pi(G)+j) = cj

for each j = h+ 1, . . . , b(G). Let

g(λ) = t̄λ(P2) .

By induction,

min{λ, ch+1, ch+2, . . . , cb(G)} ≤ g(λ) ≤ max{λ, ch+1, ch+2, . . . , cb(G)} (5.4)

and

0 ≤ g′(λ) ≤ 1 .
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Now, let

f(λ) =

h
∑

j=1

a1,i(G)+j

cj − λ
+

a12

g(λ) − λ
.

By (5.4), when λ is large enough, then g(λ) ≤ λ and thus

f(λ) < 0

as λ→ +∞.

Similarly, as λ→ −∞, g(λ) ≥ λ and f(λ) > 0. Moreover,

f ′(λ) =

h
∑

j=1

a1,i(G)+j

(cj − λ)2
+

a12

(g(λ) − λ)2
(1 − g′(λ)) > 0 ,

thus f is strictly increasing and has a unique zero t1. Note that, by (5.4),

t1 ≤ max{c1, . . . , ch, g(t1)} ≤ max{c1, . . . , cb(G)} .

Similarly,

t1 ≥ min{c1, . . . , ch, g(t1)} ≤ min{c1, . . . , cb(G)} .

Furthermore,

∂t1
∂cj

=

a1,i(G)+1

(c1−t1)2

∑h
j=1

a1,i(G)+j

(cj−t1)2 + a12

(g(t1)−t1)2 (1 − g′(t1))
∈ [0, 1]

for each j = 1, . . . , h. Hence, when setting

t(Pi) =











t̄t1(Pi), if Pi ∈ V (Ḡ) ,

t1, i = 1 ,

cj , i = i(G) + j, j = 1, . . . , h

we get a solution t to the system (5.3) for G.

Next we consider two atomic measures

a =

k
∑

i=1

aiδxi
and b =

l
∑

j=1

bjδyj
∈ AΛ(X)

and a positive number H .

Now, for any connected tree G ∈ Path (a, b) which contains no cycles, there

exists, by Lemma 5.1, a map

t: V (G) → [0, H ]

satisfying (5.3) such that

t(v) =

{

0, if v = xi for some i = 1, 2, . . . , k

H, if v = yj for some j = 1, . . . , l
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where

aij = w(e)α length (e) > 0

for each edge e = PiPj . By linearly extension on every edge of G, we may extend

the map t to a map on the whole graph G. Still denote the extended map by

t. If G\{x1, . . . , xk, y1, . . . , yl} is not connected, one may work with its connected

components first, and then combine them to get a common map t.

Note, for any s ∈ [0, H ], t−1(s) is a finite subset of G. We associate a positive

multiplicity m(a) for each a ∈ t−1(s). If a is an interior point of an edge e ∈ E(G),

then m(a) = w(e). If a is a vertex of G, then

m(a) =
∑

e+=a

w(e) =
∑

e−=a

w(e) .

Thus, we have a map

s 7−→
∑

a∈t−1(s)

m(a)δa . (5.5)

Since M1(
∑

a∈t−1(s)m(a)δa) is a continuous function on s ∈ [0, H ], and locally

constant at least outside the range of the vertices of t, we know it must be a

constant, namely M1(µ+) = Λ. Thus,
∑

a∈t−1(s)m(a)δa ∈ AΛ(X).

Lemma 5.2. For any G ∈ Path (a, b) as above and any 0 ≤ s1 < s2 ≤ H,

Mα(G ∩ t−1[s1, s2]) =
s1 − s2
H

Mα(G) .

Proof. Consider the function

f(s) = Mα(G ∩ t−1[0, s])

on [0, H ].

Given any s ∈ [0, H), since G has only finite many vertices, one may choose

h > 0 small enough so that t−1((s, s+ h)) contains no vertices of G. Then, since t

is linear and increasing on each edge of the graph G, we have

t−1(s+h)=

{

a+ h
e+ − e−

t(e+) − t(e−)
∈ X : a ∈ t−1(s), a ∈ [e−, e+) for some e ∈ E(G)

}

,

where [e−, e+) denotes the line segment e including the endpoint e−, but not the

endpoint e+. Thus,

G∩t−1([s, s+h])=∪
{[

a, a+ h
e+ − e−

t(e+) − t(e−)

]

: a ∈ t−1(s), a ∈ [e−, e+), e ∈ E(G)

}

,

and

Mα(G ∩ t−1[s, s+ h]) =
∑

a∈t−1(s)

a∈[e−,e+)

h
length (e)

t(e+) − t(e−)
w(e)α .
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Thus,

f ′(s+ 0) =
∑

s∈[t(e−),t(e+))
e∈E(G)

length (e)

t(e+) − t(e−)
w(e)α .

Similarly, for any s ∈ (0, H ], we have

f ′(s− 0) =
∑

s∈(t(e−),t(e+)]
e∈E(G)

length (e)

t(e+) − t(e−)
w(e)α .

Thus, if t−1(s) contains no vertices of G, then f ′(s) exists and its value is locally

the constant

f ′(s) =
∑

s∈(t(e−),t(e+))
e∈E(G)

length (e)

t(e+) − t(e−)
w(e)α .

On the other hand, when t−1(s) contains some vertices of G, by the key Lemma 5.1,

f ′(s − 0) = f ′(s + 0) so that f ′(s) also exists. Moreover, f ′ becomes globally a

constant. Therefore, f must be affine. Since

f(0) = 0 and f(H) = Mα(G) ,

we have

f(s) =
Mα(G)

H
s .

Theorem 5.1. (M1(X), dα) is a length space.

Proof. It is sufficient to show that for any µ+, µ− ∈ M1(X), there exists a map

ψ : [0, H ] → M1(X)

with H = dα(µ+, µ−) such that ψ(0) = µ+, ψ(H) = µ− and

dα(ψ(s1), ψ(s2)) = s2 − s1 (5.6)

for any 0 ≤ s1 < s2 ≤ H .

In fact, let {ai, bi, Gi} be an approximating graph sequence for an optimal

transport path R in Path (µ+, µ−). By Lemma 5.2, there exists a map ti : Gi →
[0, H ] such that

Mα(Gi ∩ t−1
i [s1, s2]) =

s1 − s2
H

Mα(Gi)

for any s1, s2 ∈ [0, H ].

Let π (and p) be the first (and second ) component projection of X× [0, H ]. For

each i, lift Gi into the graph of the map ti in X × [0, H ], we get a transport path

Ḡi ∈ Path (ai × {0}, bi × {H}). Since

M1(Ḡi) ≤ M1(p#Ḡi) +M1(Gi)

≤ H +Mα(Gi) →i→∞ 2H
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is uniformly bounded, {Ḡi} is subsequently weakly convergent to some vector

measure R̄ on X × [0, H ].

Since for any s ∈ [0, H ] and any i, we have, as in (5.5), the atomic probability

measures

π#(Ḡi ∩ p−1(s)) =
∑

a∈t−1
i

(s)

m(a)δa .

By [6, 4.3.6] and Fatou’s lemma, one has for almost every s ∈ [0, H ], a subsequence

of {π#(Ḡi∩p−1(s))} convergent to π#(R̄∩p−1(s)), which must also be a probability

measure.

Now, for almost any 0 ≤ s1 < s2 ≤ H, π#(R̄ ∩ p−1[s1, s2]) gives a path from

π#(R̄ ∩ p−1(s1)) to π#(R̄ ∩ p−1(s2)), we have the Lipschitz estimate

dα(π#(R̄ ∩ p−1(s1)), π#(R̄ ∩ p−1(s2))) ≤ Mα(π#(R̄ ∩ p−1[s1, s2]))

≤ lim inf Mα(π#(Ḡi ∩ p−1[s1, s2]))

= lim inf Mα(Gi ∩ t−1
i [s1, s2])

≤ s2 − s1
H

H = s2 − s1 .

Thus, π#(R̄ ∩ p−1(s)) extends to a Lipschitz 1 map ψ from all of [0, H ] to the

complete metric space(M1(X), dα)

ψ: [0, H ] → (M1(X), dα) .

Note that ψ(0) = µ+, ψ(H) = µ− and since

dα(ψ(0), ψ(H)) = dα(µ+, µ−) = H ,

we readily see that ψ satisfies (5.6) and hence (M1(X), dα) is a length space.

Remark 5.1. By Theorem 5.1, one may regard π#R̄ ∈ Path (µ+, µ−) as a geodesic

from µ+ to µ−.

6. Computer Visualizations

In this section, we’d like to use the ideas of the previous sections to give some

computer visualizations about optimal transport paths.

6.1. Flows from any probability measure to a Dirac measure

Given any probability measure µ supported in a cube C in R
m with edge length d,

we’d like to flow it into a Dirac measure δp for some p ∈ X with an almost optimal

transport path. Let H be a fixed positive real number.
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Algorithm:

(1) Given an approximating depth n, let an = An(µ) be the nth dyadic approxi-

mation of µ as in Example 3.1.

(2) For each h ∈ Z
m ∩ [0, 2n−1)m, the cube Qh

n−1 of level n − 1 consisting of 2m

subcubes of level n. For any x ∈ X×[0, H ], let Gh
x be the union of (the cone over

anbQh
n−1 with vertex x) and the line segment xp with weight µ(Qh

n−1). Then Gh
x

is a transport path in Path (an(µ)bQh
n−1, µ(Qh

n−1)δp). Let qh ∈ X × [0, H ] be

the point at which Mα(Gh
x) achieves its minimum among all x ∈ X× [0, H ]. Let

an−1 =
∑

h∈Zm∩[0,2n−1)m

µ(Qh
n−1)δqh .

(3) For each k = n − 1, . . . , 1, repeatedly doing step 2 to get ak−1. In the end we

get a transport path Gn ∈ Path (an, δp) with finite Mα mass.

(4) By using Example 1, we can locally optimize the locations of the vertices of G.

One may repeatedly doing upward optimization and downward optimization

until the transport path converges to a fixed graph.

(5) Increase depth n to get better approximation.

Example 6.1. When taking µ = Lebesgue measure on [0, 1] and p = 1
2 , α = 0.95,

H = 1 and take the depth n = 6, the above algorithm gives the following graph.
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As we increase the approximating depth n, the Mα mass of approximating

paths may also be increasing. However, by Theorem 3.1, they will converge to a
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finite number i.e. the cost of an optimal transport path. This phenomenon may be

illustrated by the following example:

Example 6.2. Take µ+ to be the Lebesgue measure on [0, 1] and µ− = [[1/2]] to

be the Dirac measure at 1/2.H = 1. Then the above algorithm gives approximating

transporting flows from µ+ to µ− with different α:
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
alpha=0.1  totalvalue=1.3943

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
alpha=0.1  totalvalue=1.634

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
alpha=0.1  totalvalue=1.9319

1 2 3 4
1.2

1.4

1.6

1.8

2

2.2

subdivision depth

to
ta

lv
al

ue
 o

f t
he

 g
ra

ph
s

6.2. General measure to general measure

Now, we want to flow a general measure µ+ to another general measure µ−.

Algorithm:

(1) Given depth n, let An(µ+) and An(µ−) be the nth dyadic approximation of µ+

and µ− respectively.

(2) Flow both An(µ+) and An(µ+) to a common Dirac measure as before.

(3) Simplify the graphs by getting rid of unnecessary vertices (e.g. some vertex may

have only one child and one parent).

(4) Optimize the locations of each vertex as before.

(5) If a vertex has two parents and two children (or has two parent and one child

but the child has two children), use Example 2 to optimize the positions. This

step may change the topology of the graphs.

(6) Repeat steps 3–5 until it converges to an optimal path.

Example 6.3. Use the above algorithm, we flow the Lebesgue measure (with depth

n = 6, H = 1) into an atomic measure
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as follows:
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7. Transport Path Versus Transport Plan

When splitting a vertex on a transport path, information about source and target

may become unclear. However, we’ll see very soon that those information can be

traced by a transport path together with a compatible transport plan.

Recall that a transport plan for µ+, µ− ∈ M1(X) is a probability measure

γ ∈ M1(X ×X) such that

πx#γ = µ+, πy#γ = µ− , (7.1)

where πx (and πy): X×X → X are the first (and the second) component projection.

Let

Plan (µ+, µ−)

be the space of all transport plan for µ+ and µ−.

7.1. Atomic case

In this subsection, we fix two given atomic probability measures

a =

m
∑

i=1

miδxi
and b =

n
∑

j=1

njδyj
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in M1(X). Let

Path0(a, b) = {G ∈ Path (a, b) contains no cycles} .

Note that for any G ∈ Path0(a, b), each i and j, there exists at most one

connected oriented piecewise linear curve gij from xi to yj , supported in G. If such

curve doesn’t exist, we set gij = 0. Thus, we may associate each G ∈ Path0(a, b)

with an m× n 1-dimensional vector measure valued matrix

g(G) = (gij)m×n (7.2)

with

each entry gij being either zero or an oriented piecewise linear curve

from xi to yj and the union of support (gij) contains no cycles. (7.3)

Similarly, any transport plan γ ∈ Plan (a, b) can be expressed as

γ =

m
∑

i=1

n
∑

j=1

uijδ(xi,yj) ∈ M1(X ×X) . (7.4)

Thus, associated with each γ, there is an m× n real matrix

u(γ) = (uij)

with

uij ≥ 0,
n
∑

j=1

uij = mi,
m
∑

i=1

uij = njand
m
∑

i=1

n
∑

j=1

uij = 1 . (7.5)

Definition 7.1. Any pair (G, γ) ∈ Path0(a, b) × Plan (a, b) is said to be

compatible if

G =

m
∑

i=1

n
∑

j=1

uijgij ,

i.e. G = u(γ) · g(G), where uij and gij are given in (7.4) and (7.2) respectively.

Note that for any compatible pair (G, γ) and any i, j

gij = 0 =⇒ uij = 0 . (7.6)

Proposition 7.1. Any pair (u, g) satisfying (7.5), (7.3), and (7.6) provides a

compatible pair (G, γ) by

G = u · g and γ = u · bdry(g) ,

where the matrix

bdry(g) = (δ(xi,yj)) .

Moreover, if g = g(G0) for some G0 ∈ Path0(a, b), then G = G0.
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Proof. Suppose g = g(G0), then G − G0 is a cycle and is supported in the con-

tractible 1-dimensional set support (G0). Thus G−G0 = 0.

Corollary 7.1. If the matrix g = (gij) has no zero entries, then g is compatible

with u(γ) for any γ ∈ Plan (a, b).

Corollary 7.2. There exists G ∈ Path0(a, b) compatible with all γ ∈ Plan (a, b).

Proof. Pick c ∈ X outside the join of a and b, i.e. c is not on any line from a point

of a to a point of b. Then let G be the difference of two cones:

G = [[c]]#b− [[c]]#a .

Since each entry of g(G) is nonzero, by the previous corollary, G is compatible with

any γ ∈ Plan (a, b).

Lemma 7.1. For any G ∈ Path0(a, b), there exists a γ ∈ Plan (a, b) compatible

with G.

Proof. Starting with each beginning vertex xi of a having weight mi, we move

down vertex by vertex. At each vertex v ∈ V (G), we consider the total amount

received from the “ancestors” of v and decompose this amount “fairly” to the

children of v, i.e. proportional to the weights on the edges connecting v and its

children. For each beginning vertex xi on a and each ending vertex yj on b, the

amount of measure uij on the “descendant” yj inherited from the “ancestor” xi is

then well defined. Then γ =
∑m

i=1

∑n
j=1 uijδ(xi,yj) ∈ Plan (a, b) is compatible with

G.

Example 7.1. Suppose G ∈ Path0(a, b). There exists a unique plan γ ∈ Plan (a, b)

compatible with G if and only if G and γ have the following forms:

• Each connected component of G has either a single beginning point or a single

ending point (or both).

• For each i, j, either the whole ith row or the whole jth column of the matrix

representation u(γ) of γ, except the entry uij , consists of zero.

In fact, each nonzero column or row of u(γ) corresponds to precisely one

connected component of G.

Definition 7.2. For any compatible pair (G, γ), the pair (u(γ), g(G)) given

by (7.4), (7.2) is called the matrix representation of the pair (G, γ).

Remark 7.1. Note that each pair (u, g) provides exactly the transporting

information about source and targets. Each uij tells us the amount of transported

measure from xi to yj , while each gij provides the actual transport path for this

transportation. Moreover, the pair (u, g) also tells us how to split the measures

at each possible splitting points of the transport path. Thus, each transport path,



March 10, 2003 19:49 WSPC/152-CCM 00094

Optimal transport paths 277

together with a compatible transport plan, provides the necessary transporting

information by its unique matrix representation (u(γ), g(G)).

Remark 7.2. If we restrict each gij in (7.3) to be the line segment ]xi, yj [ from

xi to yj , then each transport plan γ may be identified with the transport path

u(γ) · g =
∑m

i=1

∑n
j=1 uij ]xi, yj [. In this sense, a transport path is a more general

notion than a transport plan.

7.2. General case

Definition 7.3. The pair (T, γ) ∈ Path (µ+, µ−) × Plan (µ+, µ−) is said to be

compatible if

(1) there exist two sequences of atomic probability measures {ai}, {bi} ∈ M1(X)

such that ai ⇀ µ+ and bi ⇀ µ−.

(2) there exists a compatible pair (Gi, γi) ∈ Path (ai, bi) × Plan (ai, bi) such that

Gi ⇀ T and γi ⇀ γ .

We want to consider two optimization problems related to compatible transport

paths and transport plans.

Proposition 7.2. There exists a transport path T ∈ Path (µ+, µ−) such that T is

compatible with every transport plan γ ∈ Plan (µ+, µ−), and Mα(T ) < +∞.

Proof. For any n ≥ 1, let An(µ+) and An(µ−) be the dyadic approximation of µ+

and µ−. Let Gn be the union of two directed weighted graphs constructed as in the

proof of Proposition 3.1.

Gn = G+
n +G−

n ∈ Path (An(µ+),An(µ−))

with G+
n ∈ Path (An(µ+), δc) and G−

n ∈ Path (δc,An(µ−)). Note that g(Gn) has

no zero entries. Since Mα(Gn) is uniformly bounded, it is subsequently convergent

to some T ∈ Path (µ+, µ−) with Mα(T ) < +∞.

Now, for any transport plan γ ∈ Plan (µ+, µ−), let

γn =
∑

h,h′

γ(Qh
n ×Qh′

n )δ(ch,ch′ ) ⇀ γ .

Since Gn ∈ Path (An(µ+),An(µ−)) and g(Gn) has no zero entries, by Corollary 7.1,

(Gn, γn) is compatible. This implies (T, γ) is compatible for any γ.

Proposition 7.3. Given a transport plan γ ∈ Plan (µ+, µ−), there exists an

optimal transport path T ∈ Path (µ+, µ−) with least finite Mα cost among all

compatible pairs (T, γ).

Proof. Follows from Proposition 7.2 and an analogous proof of Theorem 3.1.
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A typical realistic application for this proposition is in the mailing problem.

Everyday, the headquarters of the Post Service has a given “transport plan” for

sending out letters and packages, given by the addresses of the recipients. The best

way to transport those items to their destinations is given by the optimal transport

path compatible with the given plan as stated above.

Conversely, by Lemma 7.1 and a simple compactness argument about proba-

bility measures, one has the existence result for the following converse problem:

Proposition 7.4. Given a transport path T ∈ Path (µ+, µ−), there exists an

optimal transport plan γ ∈ Plan (µ+, µ−) with least I(γ) cost among all compatible

pairs (T, γ), where

I(γ) :=

∫

spt (µ+)×spt(µ−)

c(x, y)dγ(x, y)

for any given lower semicontinuous cost density function c : spt (µ+)× spt (µ−) →
[0,+∞) as in the Monge–Kantorovich problem.

This problem also has many applications. In shipping a given material of fixed

amounts from several suppliers to be received in fixed amounts by several customers

(along a fixed, possibly Mα optimal transport path), there may be additional

preferences of each customer y concerning the relative amounts from each supplier

x. These preferences can be handled using the “cost” density function c(x, y).
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