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TRANSPORT PATHS
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Abstract. In this paper, we introduce a multiple-sources version of the land-

scape function which was originally introduced by Santambrogio in [10]. More
precisely, we study landscape functions associated with a transport path be-

tween two atomic measures of equal mass. We also study p-harmonic functions

on a directed graph for nonpositive p. We show an equivalence relation be-
tween landscape functions associated with an α-transport path and p-harmonic

functions on the underlying graph of the transport path for p = α/(α − 1),

which is the conjugate of α. Furthermore, we prove the Lipschitz continuity
of a landscape function associated with an optimal transport path on each of

its connected components.

1. Introduction

The optimal transport problem aims at finding an optimal way to transport
a given probability measure into another. In contrast to the well-known Monge-
Kantorovich problem (see [11] and references therein), the ramified optimal trans-
portation problem aims at modeling a branching transport network by an optimal
transport path between two given probability measures. An essential feature of such
a transport path is to favor group transportation in a large amount. Representative
studies in this field can be found for instance in Bernot, Caselles and Morel [2, 3],
Brancolini, Buttazzo and Santambrogio [4], Brancolini and Solimini [5], Brasco,
Buttazzo and Santambrogio [6], Devillanova and Solimini [7], Maddalena, Morel
and Solimini [8], Morel and Santambrogio [9], Santambrogio [10], Xia [12–18], Xia
and Vershynina [19].

In particular, in [10], Santambrogio introduced a concept called “the landscape
function” associated with an optimal irrigation pattern from a Dirac mass to an-
other probability measure µ. This concept is motivated from the study of river
basins, and represents the elevation of the landscape. We refer to the introduction
of [10] for a detailed discussion about the geophysics background on this topic.
A main result of [10] is the Hölder regularity of the landscape function when the
targeting measure µ has a density bounded from below by a positive constant and
its support satisfies the “type A” condition. These hypotheses on the targeting
measure µ imply that the measure µ is Ahlfors regular from below in the ambient
Euclidean space. Later in [5], Brancolini and Solimini extended the Hölder continu-
ity of the landscape function to general Ahlfors regular measures from below. In the
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context of ramified optimal transportation, the landscape function at a point can
be viewed as the marginal transportation cost from the point to the source. Analo-
gous ideas of the landscape function have been used in applications such as [20] in
modeling diffusion-limited aggregation driven by optimal transportation and [21]
about the ramified optimal allocation problem in economics.

In the works [5,10], it was assumed that the initial measure is a Dirac mass (i.e.
a single common source). In this article, we generalize the concept of landscape
function by allowing multiple sources rather than a single source. For simplicity,
we will only consider transport paths between atomic measures in this article. The
continuous version will be left for future exploration.

We organized this paper as follows: First, we introduce preliminary notations
and concepts about graph theory and ramified optimal transportation in section
2. In particular, we introduce the concept of the incidence matrix of a directed
graph and see how to relate it with concepts in ramified optimal transportation. In
section 3, we generalize the concept of landscape functions associated with a trans-
port path between atomic measures. By means of the incidence matrix, landscape
functions can be solved using linear algebra. Then, we also explore some properties
of landscape functions. In section 4, we consider p-harmonic functions defined on a
directed graph for p ≤ 0. These p-harmonic functions minimize the corresponding
p-energy with a Dirichlet boundary condition. In section 5, we showed an equiv-
alence relation between an α-landscape function associated with a transport path
and p-harmonic function on the underlying graph of the transport path when the
parameters p ≤ 0 and 0 ≤ α < 1 are Hölder conjugate. In section 6, we stud-
ied properties of a landscape function associated with an optimal transport path.
In particular, we showed Lipschitz continuity of any landscape function associated
with an optimal transport path on each connected component of the transport path.

2. Preliminaries

We first recall the definition of the incidence matrix of a directed graph as given
in [1]. Let G = {V (G) , E (G)} be a directed graph with a vertex set V (G) =
{v1, v2, · · · , vJ} and an edge set E (G) = {e1, e2, · · · , eK} consisting of directed
edges ej ’s. The (vertex-edge) incidence matrix of G, denoted by Q (G), is the
J × K matrix defined as follows. For any i = 1, · · · , J and j = 1, · · · ,K, the
(i, j)-entry of Q (G) is

(2.1) Q (G) (i, j) =


1, if e+j = vi
−1, if e−j = vi
0, otherwise

,

where e−j is the starting endpoint of ej and e+j is the ending point of ej . Sometimes,

we denote Q (G) (i, j) by Q (G) (vi, ej).
Here are some basic properties of incidence matrix Q (G) that we will use in this

article. Proofs of these properties can be found for instance in [1].

Proposition 2.1. Suppose Q (G) is the incidence matrix of a directed graph G.

(1) If G has g connected components, then the rank of Q (G) is J − g.
(2) Let G be a connected graph on J vertices. Then the column space of Q (G)

consists of all vectors x ∈ RJ such that
∑J
i=1 xi = 0.

(3) Columns of Q (G) are linearly independent if and only if G is an acyclic
graph.
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We now recall some concepts about ramified optimal transportation as in Xia
[12]. Let X be a compact convex subset of a Euclidean space Rm, equipped with
the standard Euclidean distance ‖·‖. Recall that a positive Radon measure a on X
is atomic if a is a finite sum of Dirac measures with positive multiplicities. That is

a =

k∑
i=1

miδxi

for some integer k ≥ 1 and some points xi ∈ X, mi > 0 for each i = 1, · · · , k. The

mass of the measure a is
k∑
i=1

mi.

Definition 2.2. Suppose

(2.2) a =

k∑
i=1

miδxi
and b =

∑̀
j=1

njδyj

are two atomic measures on X of equal mass. A transport path P = {V (P ) , E (P ) , w}
from a to b is a directed graph GP = {V (P ) , E (P )} together with a weight function
ω : E (P )→ (0,+∞) such that

(1) V (P ) ⊆ Rm and {x1, x2, ..., xk} ∪ {y1, y2, ..., y`} ⊆ V (P );
(2) Each directed edge e ∈ E (P ) is a line segment from the starting endpoint

e− ∈ V (P ) to the ending endpoint e+ ∈ V (P );
(3) The weight function ω : E (P )→ (0,+∞) satisfies a balance equation

(2.3) ∑
e∈E(P ),e−=v

ω(e) =
∑

e∈E(P ),e+=v

ω(e) +

 mi, if v = xi for some i = 1, ..., k
−nj , if v = yj for some j = 1, ..., `

0, otherwise

at any vertex v ∈ V (P ).

The directed graph GP = {V (P ) , E (P )} is called the underlying graph of the
transport path P . Also, we denote Path (a,b) as the space of all transport paths
from a to b.

For each transport path P ∈ Path (a,b) as above and any α ∈ [0, 1], the Mα

cost of P is defined by

(2.4) Mα (P ) :=
∑

e∈E(P )

[ω (e)]
α
length (e) ,

where length (e) = ‖e+ − e−‖ is the Euclidean distance between endpoints e+ and
e− of edge e. Ramified optimal transportation studies how to find a transport path
to minimize the Mα cost, i.e.,

(2.5) min
P∈Path(a,b)

Mα (P ) ,

whose minimizer is called an α−optimal transport path from a to b.
For any α−optimal transport path P = {V (P ) , E (P ) , ω}, the first variation of

Mα (P ) yields

(2.6)
∑
e+=v

[ω (e)]
α
~e =

∑
e−=v

[ω (e)]
α
~e

at any vertex v ∈ V (P ) \ {x1, · · · , xk, y1, · · · , y`}, where ~e is the unit directional
vector of the directed edge e.
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According to Xia [12, Proposition 2.1], the underlying graph of an optimal trans-
port path is acyclic, i.e. contains no cycles. Thus, without loss of generality, we
will only consider acyclic transport paths in this article.

For any atomic measures a and b on X of equal mass, define the minimum
transportation cost as

(2.7) dα (a,b) := min {Mα (P ) : P ∈ Path (a,b)} .
As shown in Xia [12], dα is indeed a metric on the space of atomic measures of
equal mass. Also, for each λ > 0, it holds that

(2.8) dα (λa, λb) = λαdα (a,b) .

Let P = {V (P ) , E (P ) , ω} be a transport path from a to b with V (P ) =
{v1, v2, · · · , vJ} and E(P ) = {e1, e2, · · · , eK}. Then in matrix notation, the balance
equation (2.3) can be expressed as

(2.9) wQ (GP )
′
=c

where Q (GP )
′

denotes the transpose of the incidence matrix Q (GP ) of the under-
lying graph GP , w= [ω (e1) , · · · , ω (eK)] and c= [c (v1) , · · · , c (vJ)] with for each
v ∈ V (G) = {v1, v2, · · · , vJ},

c (v) =

 −mi, if v = xi for some i = 1, ..., k
nj , if v = yj for some j = 1, ..., `

0, otherwise
.

By (3) of Proposition 2.1, when GP is acyclic, rows of Q (GP )
′

are linearly indepen-
dent. If in addition GP is connected, then by (2) of Proposition 2.1, c lies in the
row space of Q (GP )

′
. In this case, the linear system (2.9) has a unique solution w.

In other words, when GP is acyclic and connected, then w is uniquely determined
by the incidence matrix Q (GP ) and c.

3. Landscape functions associated with a transport path

Suppose the initial source is a single Dirac mass δS and the targeting measure
µ is a probability measure on X. In [10], Santambrogio introduced the landscape
function z (x). It is the marginal transportation cost of the mass from the initial
source S to the point x. A main result of [10] is the Hölder regularity of the
landscape function when the targeting measure µ has a density bounded from below
by a positive constant and its support satisfies the “type A” condition.

Let a = δS and b be an atomic measure on X. Let P = {V (P ) , E (P ) , w} be
an acyclic transport path from a to b. Then for any x in the support of P , there
is a unique polyhedral curve γx on P from the initial source S to x. In this case,
Santambrogio’s landscape function z (x) associated with P can be simply written
as

z (x) =

∫
γx

θ (s)
α−1

dH1 (s)

where H1 represents the 1−dimensional Hausdorff measure, and θ is a function on
P defined as follows: for any point p on the support of P , set

(3.1) θ (p) :=


w(e), if p is in the interior of some edge e ∈ E (P )

1, if p = S

w(e), if p is the ending endpoint e+ for some e ∈ E (P )

,
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which represents the mass flowing through p.
In general, an atomic measure a is not necessarily a single source but of the form

in (2.2) that contains multiple-sources. In this section, we will study a multiple-
sources version of landscape functions associated with a transport path.

Definition 3.1. Let P = {V (P ) , E (P ) , ω} be an acyclic transport path from a
to b with V (P ) = {v1, v2, · · · , vJ}, E(P ) = {e1, e2, · · · , eK}, and 0 ≤ α < 1. A
function Z : V (P )→ R is called an α−landscape function associated with P if for
each edge e ∈ E (P ), it holds that

(3.2) Z
(
e+
)
− Z

(
e−
)

= ω (e)
α−1

length (e) .

Using matrix notations the system (3.2) of linear equations on Z becomes

(3.3) ZQ (GP ) = D

where Z = [Z (v1) , Z (v2) , · · · , Z (vJ)], Q (GP ) is the incidence matrix of the un-
derlying graph GP of P and

D = [ω (e1)
α−1

length (e1) , · · · , ω (eK)
α−1

length (eK)].

IfGP has g connected components, then by (1) of Proposition 2.1, rank (Q (GP )) =
J−g. Since GP is acyclic, by (3) of Proposition 2.1, columns of Q (GP ) are linearly
independent. As a result, the solution space of the system (3.3) has dimension g.
In particular, for a connected transport path P , its α-landscape function is unique
up to a constant. This agrees with the motivation that the landscape function
represents the elevation of the landscape.

Figure 1. Landscape functions associated with a transport path.

Example 3.2. We consider landscape functions associated with the transport path
P as shown in Figure 1. The coordinates of vertices {vi} in R2 are given by the
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following table:

vertex v = (x, y) v1 v2 v3 v4 v5 v6 v7 v8
x 3 5.5 5 4 4 3 5 6
y 9 9 8 7 5 4 4 5

Let

a =
1

4
δv1 +

3

4
δv2

b =
1

2
δv6 +

1

4
δv7 +

1

4
δv8

Then, the incidence matrix of GP is

Q (GP ) =



−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 −1 0 −1 0 0
1 0 1 −1 0 0 0
0 0 0 1 0 −1 −1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0


, c =



−1/4
−3/4

0
0
0

1/2
1/4
1/4



′

By calculating the reduced row echelon form corresponding to the system (2.9), the
weight function w solving (2.9) is given by

w = [1/4, 3/4, 1/2, 3/4, 1/4, 1/2, 1/4].

The lengths of edges are given by the vector

L = [
√

5,
√

5/2,
√

2, 2,
√

10,
√

2,
√

2].

Now, we can find landscape functions associated with P by solving the system (3.3).
For instance, when α = 0.5,

Z = [0, 1.1811, 2.4721, 4.4721, 6.7815, 8.7815, 9.6100, 8.7967]

is a particular α-landscape function associated with P . When α = 0.85,

Z = [0, 0.0164, 1.1838, 2.7529, 4.8411, 6.4103, 6.5822, 5.0770]

is a particular α-landscape function associated with P .

Now, we study properties of landscape functions as follows.

Proposition 3.3. For any α−landscape function Z associated with a transport
path P ∈ Path (a,b), it holds that∫

X

Zd (b− a) = Mα (P ) .

In particular, if P is an α-optimal transport path from a to b, then∫
X

Zd (b− a) = dα (a,b) .
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Proof. By (3.2) and the balance equation (2.3) on ω,

Mα (P ) =
∑

e∈E(P )

ω (e)
α
length (e)

=
∑

e∈E(P )

(
Z
(
e+
)
− Z

(
e−
))
ω (e)

=
∑

v∈V (P )

 ∑
e∈E(P )

e+=v

ω (e)−
∑

e∈E(P )

e−=v

ω (e)

Z (v)

= −
k∑
i=1

Z (xi)mi +
∑̀
j=1

Z (yj)nj

=

∫
X

Zd (b− a) .

�

Let Z be an α-landscape function associated with a transport path P ∈ Path (a,b).
For each edge e ∈ E (P ), define

∇Z (e) =

(
Z (e+)− Z (e−)

length (e)

)
~e

where ~e is the unit directional vector of e. Then, by (3.2),

(3.4) ∇Z (e) = ω (e)
α−1

~e and ω (e) = |∇Z (e)|1/(α−1) .

Proposition 3.4. For any α-landscape function Z associated with a transport path
P , it holds that

Mα (P ) =
∑

e∈E(P )

|∇Z (e)|ω (e) length (e)

Proof. The transport cost of P is

Mα (P ) =
∑

e∈E(P )

ω (e)
α
length (e)

=
∑

e∈E(P )

ω (e)
α−1

length (e)ω (e)

=
∑

e∈E(P )

|∇Z (e)| length (e)ω (e) .

�

Now, we will prove an estimate on the landscape function. Such an estimate
will be used later in Proposition 6.3 to show the Lipschitz continuity of landscape
function on an optimal transport path. This result is analogous to Theorem 3.7
in [5] by Brancolini and Solimini.

Proposition 3.5. Let Z be an α-landscape function associated with an acyclic
transport path P ∈ Path (a,b). Then, for any x, y ∈ V (P ) on the same connected
components of GP , it holds that

(3.5) αε (Z (x)− Z (y)) ≥Mα (P + εγ)−Mα (P )
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for any ε with |ε| ≤ mine⊆γ ω (e), where γ is the unique polyhedral curve on GP
from x to y and P + εγ is an acyclic transport path from a + εδx to b + εδy.

Proof. Since P is acyclic, there exists a unique polyhedral curve γ on P from x to y.
This polyhedral curve γ is represented by a list of vertices {v0, v1, · · · , vk} ⊆ V (P )
such that v0 = x, vk = y and [vi−1, vi] = σiei for some edge ei in E (P ) for each
i = 1, 2, · · · , k, where

σi =

{
1, if ei has the same direction with γ
−1, if ei has the opposite direction with γ

.

By definition, the α-landscape function Z satisfies

Z (vi)− Z (vi−1) = ω (ei)
α−1

length (ei)σi

for each i. Using the inequality

(1 + t)
α ≤ 1 + αt

when t > −1, it follows that whenever ε > −ω (ei),

(ω (ei) + ε)
α

= ω (ei)
α

(
1 +

ε

ω (ei)

)α
≤ ω (ei)

α

(
1 + α

ε

ω (ei)

)
.

That is,

(ω (ei) + ε)
α − ω (ei)

α ≤ αεω (ei)
α−1

.

Now, when |ε| < min {ω (ei) : i = 1, · · · , k}, it holds that εσi > −ω (ei) for each i
and

αε (Z (x)− Z (y)) = αε

k∑
i=1

(Z (vi)− Z (vi−1))

=

k∑
i=1

αεσiω (ei)
α−1

length (ei)

≥
k∑
i=1

[(ω (ei) + σiε)
α − ω (ei)

α
] length (ei)

= Mα (P + εγ)−Mα (P ) .

�

Remark 3.6. By linear extension of a landscape function Z on each edge e in
E (G), we can view Z as a continuous and “edge-wise” linear function on the sup-
port of the transport path P . The above proof still work and the inequality (3.5)
holds for all x, y in the support of P .

4. p−harmonic functions on directed graphs

Let G be an acyclic directed graph with a vertex set V (G) and an edge set E (G)
of directed edges.

Definition 4.1. For any two vertices v, ṽ ∈ V (G), we say v ≺ ṽ if there exists a
list of edges {ei1,ei2 , · · · , eik} in E (G) with e+ih = e−ih+1

for h = 1, 2, · · · , k− 1, and

e−i1 = v, e+ik = ṽ.

Note that since G is acyclic, the partial order ≺ is well-defined on V (G). In
particular, e− ≺ e+ for any edge e ∈ E (G).
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Definition 4.2. Let Ṽ be a subset of V (G). A function u : Ṽ → R is monotone

increasing with respect to G if for any x, y ∈ Ṽ with x ≺ y, it holds that u (x) <
u (y).

Clearly, when Ṽ = V (G), a function u : V (G)→ R is monotone increasing with
respect to G if and only if for any edge e ∈ E (G),

(4.1) u
(
e+
)
> u

(
e−
)
.

Let FG be the family of all monotone increasing functions u : V (G) → R with
respect to G. For instance, any landscape function Z associated with an acyclic
transport path P is monotone increasing with respect to the underlying graph GP .

For each u ∈ FG and p ≤ 0, the p-energy of u is given by

(4.2) Ep (u) =
∑

e∈E(G)

|∇u (e)|p length (e)

where for each e ∈ E (G) with unit directional vector ~e,

∇u (e) =
u (e+)− u (e−)

length (e)
~e.

We are interested in minimizing Ep (u) among u ∈ FG with a Dirichlet boundary
condition.

Remark 4.3. One may also consider the minimization of

(4.3) Ẽp (u) =:

∫
G

|∇u|p dH1 (x) =
∑

e∈E(G)

∫
e

|∇u|p dH1 (x)

among all continuous real valued functions u on the support of G such that u is
differentiable and monotone increasing on each directed edge e in E (G). By con-

sidering the first variation of Ẽp, the minimum of each
∫
e
|∇u|p dH1 (x) is achieved

when u is linear on e. Thus, it is sufficient to restrict u to be linear on each edge
when considering the minimization problem (4.3). The corresponding energy Ẽp

for an edge-wise linear function u is Ep (u) in the form of (4.2).

Example 4.4. Without the monotone increasing condition (4.1), a minimizer of
Ep may fail to exist when p < 0. For instance, let G be a directed graph with
V (G) = {−1, 0, 1} and E (G) = {[−1, 0] , [0, 1]}. We consider the minimization
problem: minimize

Ep (u) = |u (0)− u (−1)|p + |u (1)− u (0)|p

among u : V (G) → R with boundary conditions u (−1) = 0 and u (1) = 1.
Clearly, for any u : V (G) → R, Ep(u) > 0. Consider un : V (G) → R with
un (−1) = 0, un (0) = n and un (1) = 1. Then, Ep (un) = np + (n− 1)

p → 0
as n → ∞ when p < 0. This indicates that the infimum of Ep (u) with u ∈
{u : V (G)→ R with u (−1) = 0 and u (1) = 1.} is zero. Thus, without the condi-
tion (4.1), the minimizer of Ep does not exist in this case. Nevertheless, with the
monotone increasing condition (4.1), the problem has a unique minimizer given by
u∗ (−1) = 0, u∗ (0) = 1/2 and u∗ (1) = 1. The minimum value is Ep (u∗) = 21−p.

Let ∂G be a subset of V (G) such that{
v ∈ V (G) : either there is no edge e ∈ E (G) with e+ = v

or there is no edge e ∈ E (G) with e− = v

}
⊆ ∂G ⊆ V (G) .
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In other words, ∂G contains all source and sink vertices in V (G), and may contain
some other vertices. We view ∂G as the boundary set of V (G). Without loss of
generality, we may assume that

V (G) \∂G = {v1, v2, · · · , vI} .

For a given function u0 : ∂G→ R, we consider the map

g : U = {u ∈ FG|u = u0 on ∂G} → RI

given by g (u) = (u (v1) , u (v2) , · · · , u (vI)) for each u ∈ U . This map g is injective,
and we denote Ω ⊆ RI as the image of U under the map g.

Lemma 4.5. The set Ω is a nonempty convex domain in RI if and only if u0 :
∂G→ R is monotone increasing with respect to G as in definition 4.2.

Proof. For any function u0 : ∂G → R, since u ∈ FG is determined by a system
of linear inequalities in the form of (4.1), Ω is a convex domain in RI if it is non-
empty. We will show that Ω is nonempty if and only if u0 is monotone increasing
with respect to G.

If Ω is nonempty, then U is nonempty. For any u ∈ U , by definition, u ∈ FG
and u = u0 on ∂G. Since u : V (G) → R is monotone increasing, its restriction
u0 : ∂G→ R is also monotone increasing with respect to G.

On the other hand, suppose u0 is monotone increasing with respect to G. We
construct a function u in U as follows. We first define u = u0 on ∂G. If ∂G 6= V (G),
then the partially ordered set (V (G) \ ∂G,≺) has a minimal element xmin which
is not greater than any other element in V (G) \ ∂G. Note that since G is acyclic
and ∂G contains all source and sink vertices of V (G), both {x ∈ ∂G, x ≺ xmin} and
{y ∈ ∂G, xmin ≺ y} are nonempty sets. If x ∈ ∂G with x ≺ xmin and y ∈ ∂G with
xmin ≺ y, then x ≺ y. By the monotonicity of u0, it follows that u0 (x) < u0 (y).
Thus,

max {u0 (x) : x ∈ ∂G, x ≺ xmin} < min {u0 (y) : y ∈ ∂G, xmin ≺ y} .

Define u (xmin) to be a number with

max {u0 (x) : x ∈ ∂G, x ≺ v1} < u (xmin) < min {u0 (y) : y ∈ ∂G, v1 ≺ y} .

Now, u is defined on ∂G ∪ {xmin}. Continue the above process by treating ∂G ∪
{xmin} as the new ∂G, we eventually define u on the set V (G). By the construction
process, this function u is monotone increasing with respect to G and u = u0 on
the original ∂G. Thus, u ∈ U and U is nonempty. �

Now we consider the following minimization problem with Dirichlet boundary
condition:

Problem 4.6. Suppose u0 : ∂G → R is monotone increasing with respect to G,
and p < 0. Minimize

Ep (u) =
∑

e∈E(G)

|∇u (e)|p length (e)

among all u ∈ U = {u : V (G)→ R|u ∈ FG and u = u0 on ∂G} .

Equivalently, we want to minimize

(4.4) f (u1,u2, · · · , uI) := Ep (u)
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among all (u1, u2, · · · , uI) in the nonempty convex domain Ω, where u = g−1 (u1,u2, · · · , uI).
i.e. u (v) = u0 (v) on ∂G and u (vi) = ui for each i = 1, 2, · · · , I.

Lemma 4.7. Suppose u0 : ∂G→ R is monotone increasing with respect to G, and
p < 0. Then, the function f given in (4.4) is strictly convex in the nonempty convex
domain Ω.

Proof. Let Q = [Q (v, e)] be the incidence matrix of G. The rows and the columns of
Q (G) are indexed by V (G) and E (G) respectively. Assume also that V (G)\∂G =
{v1, v2, · · · , vI} are first I vertices in V (G) and K is the total number of edges in
E (G).

Now, for each edge e ∈ E (G), by (4.1),

(4.5) |∇u (e)| = u (e+)− u (e−)

length (e)
=

1

length (e)

∑
v∈V (G)

Q (v, e)u (v) .

Thus, for each i = 1, · · · , I,

∂

∂ui
(|∇u (e)|) =

1

length (e)

∂

∂ui

 ∑
v∈V (G)

Q (v, e)u (v)

 =
Q (vi, e)

length (e)
.

Therefore, the partial derivative

∂f

∂ui
=

∂

∂ui

 ∑
e∈E(G)

|∇u (e)|p length (e)


= p

∑
e∈E(G)

|∇u (e)|p−1 length (e)
∂

∂ui
(|∇u (e)|)

= p
∑

e∈E(G)

|∇u (e)|p−1Q (vi, e) .

Moreover, for any i, j ∈ {1, 2, · · · , I}, the second order partial derivative

∂2f

∂ui∂uj
=

∂

∂ui

p ∑
e∈E(G)

|∇u (e)|p−1Q (vj , e)


= p (p− 1)

∑
e∈E(G)

|∇u (e)|p−2Q (vj , e)
∂

∂ui
|∇u (e)|

= p (p− 1)
∑

e∈E(G)

|∇u (e)|p−2

length (e)
Q (vj , e)Q (vi, e) .

As a result, the Hessian matrix of f is

Hess (f) = p (p− 1) Q̃RQ̃′,

where Q̃ is the I × K matrix consisting of the first I rows of the incidence ma-
trix Q (G) of G, and R is a diagonal K × K matrix whose diagonal entries are{
|∇u(e1)|p−2

length(e1)
, · · · , |∇u(eK)|p−2

length(eK)

}
.

When p < 0, luckily p (p− 1) > 0 and the Hessian matrix Hess (f) is positive
definite. Thus, f is strictly convex on the nonempty convex domain Ω. �
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To find critical points of f in Ω, we set ∂f
∂ui

= 0. That is,∑
e∈E(G)

|∇u (e)|p−1Q (vi, e) = 0.

i.e.

(4.6)
∑

e∈E(G)
e+=vi

|∇u (e)|p−1 =
∑

e∈E(G)

e−=vi

|∇u (e)|p−1

at each vi ∈ V (G) \ ∂G. Using the discrete version of the divergence notation:

div
(
~V
)

(v) =
∑

either e+=v
or e−=v

~V (e) · ~e

for any vector field ~V : E (G) → Rm, equation (4.6) can be expressed as the
p−Laplace equation on the graph G :

(4.7) div
(
|∇u|p−2∇u

)
(v) = 0

for any v ∈ V (G) \∂G.
A solution to the p−Laplace equation (4.7) in U is called a p−harmonic function

on the graph G. By the strict convexity of f , any p−harmonic function u is an Ep-
minimizer in FG with respect to its boundary datum.

5. Equivalence between α-landscape functions and p−harmonic
functions

In this section, we will show that an α-landscape function associated with a
transport path P is equivalent to a p−harmonic function on the underlying graph
GP for conjugate parameters α ∈ [0, 1) and p ≤ 0.

Proposition 5.1. Let p ≤ 0 and α = p
p−1 ∈ [0, 1) be the conjugate of p. If u is

a p−harmonic function on an acyclic graph G, then u is an α-landscape function
associated with an acyclic transport path P ∈ Path(aP ,bP ) with G being its un-
derlying graph, where aP and bP are two atomic measures of equal mass given in
(5.1). Moreover, Ep (u) = Mα (P ).

Proof. Suppose u is a p−harmonic function on G. For each edge e ∈ E (G), set

ω (e) = |∇u (e)|p−1 =

(
u (e+)− u (e−)

length (e)

)p−1
.

Since u is p−harmonic on G, by (4.6), it follows that∑
e+=v

ω (e) =
∑
e−=v

ω (e)

for each v ∈ V (G) \∂G. Now, for each v ∈ V (G), define

m (v) =
∑
e−=v

ω (e)−
∑
e+=v

ω (e) .

Let

(5.1) aP =
∑

m(vi)>0

m (vi) δvi and bP =
∑

m(vi)<0

(−m (vi)) δvi .
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Then, ∑
v∈V (G)

m (v) =
∑

v∈V (G)

(∑
e−=v

ω (e)−
∑
e+=v

ω (e)

)

=
∑

e∈E(G)

(ω (e)− ω (e)) = 0.

i.e. ∑
m(vi)>0

m (vi) =
∑

m(vi)<0

(−m (vi)) .

This says that the atomic measures aP and bP have the same mass on X. Together
with the weight function ω, G becomes a transport path P = {V (G) , E (G) , ω}
from aP to bP . Moreover, the transport cost of P is

Mα (P ) =
∑

e∈E(P )

ω (e)
α
length (e)

=
∑

e∈E(P )

ω (e)
p

p−1 length (e)

=
∑

e∈E(P )

|∇u|p length (e) = Ep (u) .

That is, the transport cost Mα (P ) is the least p−energy Ep (u) on G.
Furthermore, for each edge e,

u
(
e+
)
− u

(
e−
)

= |∇u (e)| length (e)

= ω (e)
1

p−1 length (e)

= ω (e)
α−1

length (e) .

This shows that u is an α-landscape function associated with the transport path
P . �

In the following proposition, we have the reverse statement of Proposition 5.1.

Proposition 5.2. Let α ∈ [0, 1) and p = α
α−1 ≤ 0 be the conjugate of α. If Z is

an α-landscape function associated with an acyclic transport path P , then, Z is a
p-harmonic function on the underlying graph GP . Moreover, Mα (P ) = Ep (Z).

Proof. LetG = GP be the underlying graph of P . Clearly, any α-landscape function
Z of P satisfies the monotone increasing condition (4.1) with respect to G. So,
Z ∈ FG. Let ∂G = {x1, · · · , xk, y1, · · · , y`}.

We need to show that

Ep (Z) ≤ Ep (u)

for any u ∈ FG with u = Z on ∂G.
Indeed, set h = u − Z, then h = 0 on ∂G. For any ε ∈ [0, 1], observe that

Z + εh = (1− ε)Z + εu is still in FG. We now consider the function

f (ε) := Ep (Z + εh) =
∑

e∈E(P )

|∇Z (e) + ε∇h (e)|p length (e)

for ε ∈ [0, 1]. Note that

|∇Z (e) + ε∇h (e)| = (1− ε)
(
Z
(
e+
)
− Z

(
e−
))

+ ε
(
u
(
e+
)
− u

(
e−
))
> 0
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for any edge e and any ε ∈ [0, 1]. Also,

f ′ (ε) =
d

dε

 ∑
e∈E(P )

|∇Z (e) + ε∇h (e)|p length (e)


=

∑
e∈E(P )

p |∇Z (e) + ε∇h (e)|p−1 (∇Z (e) + ε∇h (e)) · (∇h (e))

|∇Z (e) + ε∇h (e)|
length (e)

=
∑

e∈E(P )

p |∇Z (e) + ε∇h (e)|p−2 (∇Z (e) + ε∇h (e)) · (∇h (e)) length (e)

=
∑

e∈E(P )

p |∇Z (e) + ε∇h (e)|p−1
(
h
(
e+
)
− h

(
e−
))
.

Thus, by (2.3), (3.4) and h = 0 on ∂G = {x1, · · · , xk, y1, · · · , y`}, we have

f ′ (0) =
∑

e∈E(P )

p |∇Z (e)|p−1
(
h
(
e+
)
− h

(
e−
))

=
∑

e∈E(P )

pω (e)
(α−1)(p−1) (

h
(
e+
)
− h

(
e−
))

=
∑

e∈E(P )

pω (e)
(
h
(
e+
)
− h

(
e−
))

= p
∑

v∈V (G)

(∑
e+=v

ω (e)−
∑
e−=v

ω (e)

)
h (v) = 0.

Moreover, since each |∇Z (e) + ε∇h (e)|p is a convex function of ε ∈ [0, 1] when
p = α

α−1 ≤ 0, the function f (ε) is also convex in [0, 1] with f ′ (0) = 0. This shows

that f (ε) has an absolute minimum at ε = 0. Thus,

Ep (Z) = f (0) ≤ f (1) = Ep (u) .

Notice also that the transport cost

Mα (P ) =
∑

e∈E(P )

ω (e)
α
length (e)

=
∑

e∈E(P )

|∇Z (e)|α/(α−1) length (e)

=
∑

e∈E(P )

|∇Z (e)|p length (e) = Ep (Z) .

�

6. Landscape functions associated with optimal transport paths

In this section, we study some properties of landscape functions associated with
optimal transport paths.

Proposition 6.1. Suppose P ∈ Path (a,b) is an α-optimal transport path. For
any α-landscape function Z associated with P, it holds that at each vertex v ∈
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V (P ) \ {x1, · · · , xk, y1, · · · , y`},

(6.1)
∑
e+=v

ω (e)∇Z (e) =
∑
e−=v

ω (e)∇Z (e)

and

(6.2)
∑
e+=v

|∇Z (e)|p−1∇Z (e) =
∑
e−=v

|∇Z (e)|p−1∇Z (e)

for p = α
α−1 .

Proof. Since P is optimal, the equation (2.6)∑
e+=v

[ω (e)]
α
~e =

∑
e−=v

[ω (e)]
α
~e

holds at any vertex V (P ) \ {x1, · · · , xk, y1, · · · , y`}. By (3.4),

[ω (e)]
α
~e = ω (e)∇Z (e) .

So (2.6) becomes (6.1). Moreover,

[ω (e)]
α
~e = [ω (e)]

(α−1)p
~e = |∇Z (e)|p ~e = |∇Z (e)|p−1∇Z (e) .

Using this identity, equation (2.6) yields (6.2). �

Remark 6.2. For any transport path P , by (2.3), mass is conserved at each interior
vertex of P . When the transport path P is optimal, by (6.1), momentum is also
conserved at each interior vertex when viewing ∇Z(e) = w(e)α−1~e as the velocity
of a moving particle of mass w(e) on each e.

The following proposition says that any α-landscape function associated with
an α−optimal transport path is Lipschitz. Before stating the proposition, we first
extend the domain of a landscape function Z : V (P ) → R to the support of P by
linear extensions of Z on each edge of P .

Proposition 6.3. Suppose P ∈ Path (a,b) is an α-optimal transport path for some
α ∈ (0, 1). Let Z be an α-landscape function associated with P . Then, for any x, y
on the same connected components of the support of GP , it holds that

|Z (x)− Z (y)| ≤ 1

α
σα−1 ‖x− y‖

where σ = mine⊆γ ω (e), and γ is the unique curve on P from x to y. In particular,
when P is connected, let σP = mine∈E(P ) ω (e), then

|Z (x)− Z (y)| ≤ 1

α
(σP )

α−1 ‖x− y‖

for any x, y on the support of GP .

Proof. As shown in Figure 2, for any ε with |ε| ≤ σ, we set P̃ = P + εγ − ε[x, y]

where [x, y] denotes the line segment from x to y. The construction of P̃ here
is standard in this kind of problems, see for instance Proposition 3.5 in [16] and

Theorem 3.7 in [5]. By Definition 2.2, P̃ is also a transport path in Path(a,b).
Since P is optimal, it follows that

Mα (P ) ≤Mα

(
P̃
)

= Mα (P + εγ) + |ε|α ‖x− y‖ .
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Figure 2. The construction for the proof of Proposition 6.3.

On the other hand, by Proposition 3.4 and Remark 3.6, it follows that

αε (Z (x)− Z (y)) ≥Mα (P + εγ)−Ma (P ) .

Hence, when |ε| ≤ σ, we have

|ε|α ‖x− y‖ ≥ Mα (P )−Mα (P + εγ)

≥ −αε (Z (x)− Z (y)) .

Picking ε = −σsign (Z (x)− Z (y)), it follows that

‖x− y‖ ≥ ασα−1 |Z (x)− Z (y)|

as desired. �

In the end of this section, we derive a formula of Mα (P ) of an optimal transport
path P in terms of boundary values of∇Z of a landscape function Z. Such a formula
might be useful in the future works including the one considering the dual problem
of ramified optimal transportation.

Proposition 6.4. For any P ∈ Path (a,b), it holds that

(6.3) Mα (P ) =
∑

v∈V (P )

~mα (v) · v,

where v is the corresponding position vector of v in Rm and

~mα (v) =
∑
e+=v

w (e)
α
~e−

∑
e−=v

w (e)
α
~e.

In particular, for any α−landscape function Z associated with P , by (3.4),

(6.4) ~mα (v) =
∑
e+=v

w (e)∇Z (e)−
∑
e−=v

w (e)∇Z (e) ,

i.e. the net momentum at v in the sense of Remark 6.2.
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If P is an α-optimal transport path, then by (6.1), ~mα (v) = 0 for any vertex
v ∈ V (P ) \ {x1, · · · , xk, y1, · · · , y`} and thus

(6.5) Mα (P ) =
∑

v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) · v.

Proof. By (2.4),

Mα (P ) =
∑

e∈E(P )

w (e)
α
length (e)

=
∑

e∈E(P )

w (e)
α (
e+ − e−

)
· ~e

=
∑

v∈V (P )

(∑
e+=v

w (e)
α
~e−

∑
e−=v

w (e)
α
~e

)
· v

=
∑

v∈V (P )

~mα (v) · v.

�

Corollary 6.5. Suppose P is an α-optimal transport path from a to b, and Z is an
α-landscape function associated with P . Then, for ~mα (v) given in (6.4), it satisfies
that ∑

v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) = 0.

Proof. For any c ∈ Rm, we consider the translation x → x + c in Rm. Since
Mα (P ) is translational invariant, by (6.5), it holds that∑
v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) · v = Mα (P ) =
∑

v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) · (v + c).

That is, ∑
v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) · c = 0

for any c ∈ Rm. As a result, ∑
v∈{x1,x2,··· ,xk,y1,··· ,y`}

~mα (v) = 0.

�
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