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Abstract. This paper proposes an optimal allocation problem with ramified

transport technologies in a spatial economy. Ramified transportation is used to

model network-like branching structures attributed to the economies of scale
in group transportation. A social planner aims at finding an optimal allocation

plan and an associated optimal allocation path to minimize the overall cost of

transporting commodity from factories to households. This problem differen-
tiates itself from existing ramified transport literature in that the distribution

of production among factories is not fixed but endogenously determined as
observed in many allocation practices. It is shown that due to the transport

economies of scale, each optimal allocation plan corresponds equivalently to an

optimal assignment map from households to factories. This optimal assignment
map provides a natural partition of both households and allocation paths. We

develop methods of marginal transportation analysis and projectional analysis

to study the properties of optimal assignment maps. These properties are then
related to the search for an optimal assignment map in the context of state

matrix.

1. Introduction. One of the lasting interests in economics is to study the optimal
resource allocation in a spatial economy. For instance, the well known Monge-
Kantorovich transport problem aims at finding an efficient allocation plan or map
for transporting some commodity from factories to households. This problem was
pioneered by Monge [15] and advanced fully by Kantorovich [12] who won the
Nobel prize in economics in 1975 for his seminal work on optimal allocation of
resources. Recent advancement of this problem in mathematics can be found in
Villani [18, 19] and references therein. The Monge-Kantorovich problem has also
been applied to study other related economic problems, e.g., spatial firm pricing
(Buttazzo and Carlier [5]), principal-agent problem (Figalli, Kim and McCann [10]),
hedonic equilibrium models (Chiappori, McCann and Nesheim [7]; Ekeland [9]),
matching and partition in labor market (Carlier and Ekeland [6]; McCann and
Trokhimtchouk [14]).
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Figure 1. An optimal transport path with a ramified structure.

Recently, a research field known as ramified optimal transportation has grown
out of the Monge-Kantorovich problem. Representative studies can be found for
instance in Gilbert [11], Xia [20, 21, 22, 23, 24, 25, 26], Maddalena, Solimini and
Morel [13], Bernot, Caselles and Morel [1, 2], Brancolini, Buttazzo and Santambro-
gio [3], Santambrogio [17], Devillanova and Solimini [8], Xia and Vershynina [27].
The ramified transport problem studies how to find an optimal transport path from
sources to targets as illustrated in Figure 1 (Xia [26]). Different from the standard
Monge-Kantorovich problem where the transportation cost is solely determined by
a transport plan or map, the transportation cost in the ramified transport problem
is determined by the actual transport path which transports the commodity from
sources to targets. For example, in shipping two items from nearby cities to the
same far away city, it may be less expensive to first bring them to a common location
and put them on a single truck for most of the transport. In this case, a “Y-shaped”
path is preferable to a “V-shaped” path. In general, an efficient transport system
emerges in the form of a network with some branching structure. This network-like
structure is attributed to the economies of scale in group transportation observed
widely in both nature (e.g., trees, blood vessels, river channel networks, lightning)
and efficiently designed transport systems of branching structures (e.g., railway
configurations and postage delivery networks). An application of ramified optimal
transportation in economics can be found in Xia and Xu [28], which showed that
a well designed ramified transport system can improve the welfare of consumers in
the system.

In this paper, we propose an optimal resource allocation problem where a planner
chooses both an optimal allocation plan as well as an associated optimal transport
path using ramified transport technologies. Both Monge-Kantorovich and ramified
transport problems typically assume an exogenous fixed distribution on both sources
and targets. However, in many resource allocation practices, the distribution on ei-
ther sources or targets is not pre-determined but rather determined endogenously.
For instance, in a production allocation problem, suppose there are k factories and `
households located in different places in some area. The demand for some commod-
ity from each household is fixed. Nevertheless, the allocation of production among
factories is not pre-determined but rather depends on the distribution of demands
among households as well as their relative locations to factories. A planner needs to
make an efficient allocation plan of production over these k factories to meet given
demands from these ` households. With ramified transportation, the transportation
cost of each production plan is determined by an associated optimal transport path
from factories to households. Consequently, the planner needs to find an optimal
production plan as well as an associated optimal transport path to minimize the
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total cost of distributing commodity from factories to households. Another exam-
ple of similar nature exists in the following storage arrangement problem. Suppose
there are k warehouses and ` factories located in different places in some area. Each
factory has already produced some amount of commodity. However, the assignment
of the commodity among warehouses is not pre-determined but instead relies on the
distribution of output among factories as well as relative locations between factories
and warehouses. Similarly, a planner needs to make an efficient storage arrangement
as well as an associated optimal transport path for storing the produced commodity
in the given k warehouses with minimum transportation cost.

This type of allocation problems is named as ramified optimal allocation prob-
lem formulated in Section 2. Throughout the following context, we will focus our
discussion on the scenario of the production allocation problem. Little additional
effort is needed to interpret results for other scenarios. We start with modeling a
transport path from factories to households as a weighted directed graph, where
the transportation cost on each edge of the graph depends linearly on the length
of the edge but concavely on the amount of commodity moved on the edge. The
motivation of a concave cost function comes from the observation of the economies
of scale in group transportation. The more concave the cost function or the greater
the magnitude of the transport economies of scale, the more efficient is to transport
commodity in larger groups. We define the cost of an allocation plan as the mini-
mum transportation cost of a transport path compatible with this plan. A planner
needs to find an efficient allocation plan such that demands from households will
be met in a least cost way. In this problem, the distribution of production over
factories is not pre-determined as in either Monge-Kantorovich or ramified trans-
port problem, but endogenously determined by the distribution of demands from
households as well as their relative locations to factories.

We prove the existence of the ramified allocation problem in Section 3. It is
shown that due to the transport economies of scale, under any optimal allocation
plan, no two factories will be connected on any associated optimal allocation path.
Consequently, any optimal allocation path can be decomposed into a set of mutually
disjoint transport paths originating from each factory. As a result, each household
will receive its commodity from only one factory under any optimal allocation plan.
It implies that each optimal allocation plan corresponds equivalently to an optimal
assignment map from households to factories. Thus, solving the ramified optimal
allocation problem is equivalent to finding an optimal assignment map. This optimal
assignment map is shown to provide a partition not only in households but also in
the associated allocation path according to factories.

Because of the equivalence between an optimal allocation plan and an optimal
assignment map, we can instead focus attention on studying the properties of op-
timal assignment maps in the ramified optimal allocation problem. In Section 4,
we develop methods of marginal transportation analysis and projectional analy-
sis to study properties of optimal assignment maps. The marginal transportation
method extends the standard marginal analysis in economics into the analysis for
transport paths. It builds upon an intuitive idea that a marginal change on an
optimal allocation path should not reduce the existing minimal transportation cost.
Using this method, we develop a criterion which relates the optimal assignment of
a household with its relative location to factories and other households, as well as
its demand and production at factories. In particular, it is shown that each factory
has a nearby region such that a household living at this region will be assigned
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to the factory, where the size of this region depends positively on the demand of
the household. In this case, a planner takes advantage of relative spatial locations
between households and factories. Also, if an optimal assignment map assigns a
household to some factory, then this household has a neighborhood area such that
any household with a smaller demand living in this area will also be assigned to
the same factory. Here, the planner utilizes the benefits in group transportation
due to the economies of scale embedded in ramified transportation. The roles of
spatial location and group transportation in resource allocation are further studied
by a method of projectional analysis. We show that under an optimal assignment
map, a household will be assigned to some factory only when either it lives close to
the factory or it has some nearby neighbours assigned to the factory. In particular,
when households and factories are located on two disjoint areas lying distant away
from each other, the demand of households will solely be satisfied from their local
factories.

An important application of the properties of optimal assignment maps is that
they can shed light on the search for those maps. In Section 5, we develop a search
method utilizing these properties in a notion of state matrix. A state matrix rep-
resents the information set of a planner during the search process for an optimal
assignment map. Any zero entry ush in the matrix reflects that the planner has
excluded the possibility of assigning household h to factory s under this map. When
a state matrix has exactly one non-zero entry in each column, it completely deter-
mines an optimal assignment map by those non-zero entries. Our search method
uses the properties of optimal assignment maps to update some non-zero entries
with zeros in a state matrix. This method is motivated by the observation that
via group transportation, the assignment of each household has a global effect on
the allocation path as well as the associated assignment map. Thus, the planner
can deduce more information about the optimal assignment map by exploiting the
existing information from those zero entries of a state matrix. Each updated state
matrix contains more zeros and thus more information than its pre-updated coun-
terpart. This method is useful in the search for optimal assignment maps as each
updating step increases the number of zero entries which in turn reduces the size
of the restriction set of assignment maps in a large magnitude. In some non-trivial
cases, it is shown that this method can exactly find an optimal assignment map.

Future Work. One natural extension of the ramified optimal allocation problem
is to allow the locations of factories to vary which then gives rise to an optimal
location problem. An analogous optimal location problem associated with Monge-
Kantorovich transportation has been extensively studied as in Morgan and Bolton
[16] and references therein. Meanwhile, it is also useful to extend the ramified
allocation problem by generalizing the atomic measure representing households to
a general Radon measure µ, not necessarily atomic. In particular, when µ represents
the Lebesgue measure on a domain, a partition of µ given by an optimal assignment
map may analogously lead to a partition of the domain. This consequently raises an
optimal partition problem of dividing the given domain into k regions according to
ramified transportation. Furthermore, our model considers the establishment of an
optimal network by a social planner. The grouping nature in ramified transportation
gives a space for strategic interdependence between network users. An interesting
future work is to study the effect of strategic behaviours among households on the
network formation.
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2. Ramified optimal allocation problem. In this section, we describe the set-
ting of the optimal allocation model with ramified optimal transportation.

2.1. Ramified optimal transportation. In a spatial economy, there are k fac-
tories and ` households located at x = {x1, x2,··· ,xk} and {y1, y2, · · · , y`} in some
area X, where X is a compact convex subset of a Euclidean space Rm endowed
with the standard norm ‖·‖. In this model economy, there is only one commodity,
and each household j = 1, · · · , ` has a fixed demand nj > 0 for the commodity. In
the following context, we also use factory i (household j) to represent the factory
at xi (household at yj) if no confusion arises.

For analytical convenience, we first represent households and factories as atomic
measures. Recall that a measure c on X is atomic if c is a finite sum of Dirac
measures with positive multiplicities, i.e., c =

∑s
i=1 ciδzi for some integer s ≥ 1

and some points zi ∈ X with ci > 0 for each i = 1, · · · , s. The mass of c is denoted
by m (c) :=

∑s
i=1 ci. We can thus represent the ` households as an atomic measure

on X by

b =
∑̀
j=1

njδyj . (2.1)

For each i = 1, · · · , k, denote mi as the units of the commodity produced at factory
i located at xi. Then, the k factories can be represented by another atomic measure
on X by

a =

k∑
i=1

miδxi . (2.2)

In the study of transport problems, we usually assume m (a) = m (b), i.e.,∑k
i=1mi =

∑`
j=1 nj , which simply means that supply equals demand in aggregate.

Next, we introduce the concept of transport path from a to b as in Xia [20].

Definition 2.1. Suppose a and b are two atomic measures on X of equal mass. A
transport path from a to b is a weighted directed graph G consisting of a vertex set
V (G), a directed edge set E (G) and a weight function w : E (G) → (0,+∞) such
that {x1, x2, ..., xk} ∪ {y1, y2, ..., y`} ⊆ V (G) and for any vertex v ∈ V (G), there is
a balance equation

∑
e∈E(G),e−=v

w(e) =
∑

e∈E(G),e+=v

w(e) +

 mi, if v = xi for some i = 1, ..., k
−nj , if v = yj for some j = 1, ..., `

0, otherwise
(2.3)

where each edge e ∈ E (G) is a line segment from the starting endpoint e− to the
ending endpoint e+. Denote Path (a,b) as the space of all transport paths from a
to b.

Note that the balance equation (2.3) simply means the conservation of mass
at each vertex. Now, we consider the transportation cost of a transport path.
As observed in both nature and efficiently designed transport networks, there are
economies of scale underlying group transportation. For this consideration, ramified
optimal transport theories use a concave transportation cost function. Here, for the
sake of simplicity, we only consider concave power functions instead of more general
concave ones. The transportation cost of a transport path is defined as follows.
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Definition 2.2. For each transport path G ∈ Path (a,b) and any α ∈ [0, 1], the
Mα cost of G is defined by

Mα (G) :=
∑

e∈E(G)

[w (e)]
α
length (e) . (2.4)

The parameter α represents the magnitude of transport economies of scale. The
smaller the α, the more efficient is to move the commodity in groups. Ramified
optimal transportation studies how to find a transport path to minimize the Mα

cost, i.e.,
min

G∈Path(a,b)
Mα (G) , (2.5)

whose minimizer is called an optimal transport path from a to b.
According to Xia [20, Proposition 2.1], an optimal transport path contains no cy-

cles. Thus, without loss of generality, we assume that all transport paths considered
in the following context of this paper contain no cycles.

The following example illustrates the effect of transport economies of scale on
optimal transport paths. In a spatial economy, there are one factory a = δO located
at the origin and fifty households b =

∑50
j=1

1
50δyj of equal demand nj = 1

50 with
their locations randomly generated. We use the numerical method proposed in Xia
[26] to find optimal transport paths for three different values of α. As seen in Figure
2, when α = 1, the optimal transport path is “linear” in the sense that the factory
will ship the commodity directly to each household. When α < 1, optimal transport
paths become “ramified” or display some branching structures as a planner would
like the commodity to be transported in groups in order to reap the benefits of
transport economies of scale. Furthermore, by comparing for instance the width of
the transport paths for α = 0.75 and α = 0.25, we observe that the smaller the α,
the more likely the commodity will be transported in a larger scale.

For any atomic measures a and b on X of equal mass, define the minimum
transportation cost as

dα (a,b) := min {Mα (G) : G ∈ Path (a,b)} . (2.6)

As shown in Xia [20], dα is indeed a metric on the space of atomic measures of equal
mass. Also, for each λ > 0, it holds that

dα (λa, λb) = λαdα (a,b) . (2.7)

Without loss of generality, we normalize both a and b to be a probability measure

on X, i.e.,
k∑
i=1

mi =
∑̀
j=1

nj = 1.

Figure 2. Examples of optimal transport paths.
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2.2. Compatibility between transport plan and path. For the allocation
problem to be described shortly, an important decision a planner needs to make
is about the transport plan from factories to households. We first introduce the
concept of transport plan commonly used in the Monge-Kantorovich transport lit-
erature (e.g., [12],[18]).

Definition 2.3. Suppose a and b are two atomic probability measures on X as in
(2.2) and (2.1). A transport plan from a to b is an atomic probability measure

q =

k∑
i=1

∑̀
j=1

qijδ(xi,yj) (2.8)

on the product space X ×X such that for each i and j, qij ≥ 0,

k∑
i=1

qij = nj and
∑̀
j=1

qij = mi. (2.9)

Denote Plan (a,b) as the space of all transport plans from a to b.

Now, as in Section 7.1 of Xia [20], we want to consider the compatibility between a
transport path and a transport plan. Let G be a given transport path in Path (a,b).
Since G contains no cycles, for each xi and yj , there exists at most one directed
polyhedral curve gij on G from xi to yj . In other words, there exists a list of
distinct vertices V (gij) := {vi1 , vi2 , · · · , vih} in V (G) with xi = vi1 , yj = vih , and
each

[
vit , vit+1

]
is a directed edge in E (G) for each t = 1, 2, · · · , h − 1. For some

pairs of (i, j), such a curve gij from xi to yj may not exist, in which case we set
gij = 0 to denote the empty directed polyhedral curve.

Definition 2.4. Let G ∈ Path (a,b) be a transport path and q ∈ Plan (a,b) be
a transport plan. The pair (G, q) is compatible if qij = 0 whenever gij = 0 and as
polyhedral chains,

G =

k∑
i=1

∑̀
j=1

qij · gij , (2.10)

where the product qij · gij denotes that qij units of commodity is moved along the
polyhedral curve gij from factory i to household j.

Roughly speaking, compatibility conditions check whether a transport plan is
realizable by a transport path. Given a transport plan, a planner must design a
transport path which can support this plan. To see the concept more precisely,
let a = 1

4δx1 + 3
4δx2 and b = 5

8δy1 + 3
8δy2 , and consider a transport plan q =

1
8δ(x1,y1) + 1

8δ(x1,y2) + 1
2δ(x2,y1) + 1

4δ(x2,y2) ∈ Plan (a,b). It is straightforward to see
from Figure 3 that q is compatible with G1 but not G2. This is because there is no
directed curve g12 from factory 1 to household 2 in G2.

2.3. Ramified allocation problem. Both Monge-Kantorovich and ramified trans-
port problems typically assume an exogenous fixed distribution of production among
factories. In this paper, we consider a scenario where this distribution is not fixed
but instead endogenously determined. In other words, the atomic measure a which
represents the k factories can have varying production level mi at each factory i.
This consideration is motivated by our observation that in many allocation prac-
tices as discussed in the introduction, the distribution of production among factories
is not pre-determined but rather depends on the distribution of demands among
households as well as their relative locations to factories.
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(a) G1 (b) G2

Figure 3. Compatibility between transport plan and transport path.

Definition 2.5. Let x = {x1, x2,··· ,xk} be a finite subset of X, and b be the atomic
probability measure representing households defined in (2.1). An allocation plan
from x to b is a probability measure

q =

k∑
i=1

∑̀
j=1

qijδ(xi,yj)

on X ×X such that qij ≥ 0 for each i, j and

k∑
i=1

qij = nj for each j = 1, · · · , `.

Denote Plan [x,b] as the set of all allocation plans from x to b.

Note that any allocation plan q ∈ Plan [x,b] corresponds to a transport plan
q from a (q) to b, where a (q) is the probability measure representing k factories
defined as

a (q) :=

k∑
i=1

mi (q) δxi , with mi (q) =
∑̀
j=1

qij , i = 1, ..., k. (2.11)

In other words, Plan [x,b] is the union of Plan (a,b) among all atomic probability
measures a supported on x.

Example 2.1. Any function S : {1, · · · , `} → {1, · · · , k} determines an allocation
plan in Plan [x,b] as

qS =

k∑
i=1

∑̀
j=1

qijδ(xi,yj) with qij =

{
nj , if i = S (j)
0, else

.

That is,

qS =
∑̀
j=1

njδ(x(S(j)),yj). (2.12)

For a given allocation plan, we define the associated transportation cost as fol-
lows.
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Definition 2.6. For any allocation plan q ∈ Plan [x,b] and α ∈ [0, 1), the ramified
transportation cost of q is

Tα (q) := min {Mα (G) : G ∈ Path (a (q) ,b) , (G, q) compatible } , (2.13)

where Mα (·) is defined in (2.4). An allocation plan q∗ ∈ Plan [x,b] is optimal if

Tα (q∗) ≤ Tα (q) for any q ∈ Plan [x,b] .

For each allocation plan q, as shown in Xia [20, Proposition 7.3], there exists a
path Gq ∈ Path (a (q) ,b) such that Gq is compatible with q and Tα (q) = Mα (Gq).
Thus, the minimum value in (2.13) is achieved by Gq for each q. Now, we are ready
to define the major problem in this paper.

Problem. (Ramified Optimal Allocation Problem) Let X be a compact convex do-
main in Rm. Given a finite subset x = {x1, x2,··· ,xk} in X, an atomic probability
measure b on X defined in (2.1), and a parameter α ∈ [0, 1). Find a minimizer of
Tα (q) among all allocation plans q ∈ Plan [x,b], i.e.,

min {Tα (q) : q ∈ Plan [x,b]} . (2.14)

3. Characterizing optimal allocation plans. In this section, we establish the
existence result of the ramified optimal allocation problem. It is shown that any
optimal allocation plan corresponds to an optimal assignment map from households
to factories, which provides a partition in both households and transport paths. To
characterize the properties of an optimal allocation plan, we first introduce the
concept of an allocation path as follows:

Definition 3.1. An allocation path from x to b is a transport path G ∈ Path (a,b)
for some atomic probability measure a supported on x. Denote Path [x,b] as the
set of all allocation paths from x to b. An allocation path G∗ ∈ Path [x,b] is
optimal if Mα (G∗) ≤Mα (G) for any G ∈ Path [x,b].

The following theorem presents a key property of an optimal allocation path.

Theorem 3.1. For any allocation path G ∈ Path [x,b] from x to b, there exists

an allocation path G̃ ∈ Path [x,b] such that Mα

(
G̃
)
≤ Mα (G), and for any

r 6= s ∈ {1, · · · , k}, xr and xs do not belong to the same connected component of G̃.

Proof. Assume xr and xs belong to the same connected component of an allocation
path G = {V (G), E (G), w : E (G) → (0,+∞)}, then there exists a polyhedra
curve γ supported on G from xr to xs. We may list edges of γ as {ε1e1, · · · , εnen}
with εi = ±1 and ei ∈ E (G). Here, εi = 1 (or −1) if ei has the same (or opposite)
direction as γ. Let λ = min1≤i≤n w (ei) > 0 and consider Gt := G+tγ as polyhedral
chains for t = ±λ. Note that Gt is still in Path [x,b], and when α ∈ (0, 1),

Mα (Gt)−Mα (G) =

n∑
i=1

[(w (ei) + tεi)
α − (w (ei))

α
] length (ei) .

By the strict concavity of xα, we have

(w (ei) + λ)
α

+ (w (ei)− λ)
α − 2 (w (ei))

α
< 0,

and thus

Mα (Gλ) + Mα (G−λ)− 2Mα (G)

=

n∑
i=1

[(w (ei) + λ)
α

+ (w (ei)− λ)
α − 2 (w (ei))

α
] length (ei) < 0.



600 QINGLAN XIA AND SHAOFENG XU

When α = 0, note that

Mα (G) =
∑

e∈E(G),w(e)>0

length (e) ,

and then

Mα (Gλ) + Mα (G−λ)− 2Mα (G) = −
∑

w(ei)=λ

length (ei) < 0.

Therefore, when α ∈ [0, 1), it holds that

Mα (Gλ) + Mα (G−λ)− 2Mα (G) < 0, i.e., min {Mα (Gλ) ,Mα (G−λ)} < Mα (G) .

Continue this process for Gλ (or G−λ), we eventually find an allocation path G̃ ∈
Path [x,b] with desired properties.

This theorem says that no two factories will be connected on any optimal al-
location path. Alternatively speaking, on an optimal allocation path, each single
household will receive its commodity from only one factory, i.e., each household is
assigned to one factory. This result is attributed to the economies of scale underly-
ing ramified transport technologies. As seen in Section 2, an α ∈ [0, 1) implies the
existence of transport economies of scale with transporting in groups being more
cost efficient than transporting separately. Any allocation path on which some sin-
gle household receives its commodity from two factories cannot be optimal because
a planner would be able to reduce the transportation cost by transferring production
of one factory to the other. This transfer makes the benefits of transport economies
of scale more likely to be realized as this household’s commodity is transported in
a larger scale on the path.

By Theorem 3.1, each xi determines a connected component G̃i of G̃. Thus, as
polyhedral chains, G̃ can be decomposed as

G̃ =

k∑
i=1

G̃i with Mα

(
G̃
)

=

k∑
i=1

Mα

(
G̃i

)
. (3.1)

Note that each yj is connected to a unique xi on G̃. This defines a map S :

{1, · · · , `} → {1, · · · , k} such that S (j) = i if yj is connected to xi on G̃. Clearly,

each G̃i is a transport path from ai =
(∑

j∈S−1(i) nj

)
δxi to bi =

∑
j∈S−1(i) njδyj .

Figure 4 illustrates a partition result in a spatial economy consisting of factories
{x1, x2} and households {y1, · · · , y145} with equal demand nj = 1

145 . The figure
shows a partition in both the allocation path and households: First, the allocation
path is decomposed into two disjoint sub-transport paths originating from factory x1

and x2 respectively. Second, the 145 households are divided into two unconnected
populations centered around the factory from which they receive the commodity.

The result that each household is assigned to one factory on an optimal allocation
path motivates the following notion of assignment map.

Definition 3.2. An assignment map is a function S : {1, · · · , `} → {1, · · · , k}. Let
Map [`, k] be the set of all assignment maps. For any assignment map S ∈Map [`, k]
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Figure 4. A partition in households and allocation path.

and α ∈ [0, 1), define, for any given x and b,

Eα (S; x,b) :=

k∑
i=1

dα (ai,bi) with ai =

 ∑
j∈S−1(i)

nj

 δxi and bi =
∑

j∈S−1(i)

njδyi .

(3.2)
where dα is the metric defined in (2.6). An assignment map S∗ ∈ Map [`, k] is
optimal if

Eα (S∗; x,b) ≤ Eα (S; x,b) for any S ∈Map [`, k] .

By Theorem 3.1, Mα (G) ≥ Mα

(
G̃
)

=
∑k
i=1 Mα

(
G̃i

)
≥
∑k
i=1 dα (ai,bi) =

Eα (S; x,b). Therefore, we have the following corollary:

Corollary 3.1. For any allocation path G ∈ Path [x,b] from x to b, there exists
an S ∈Map [`, k] such that Eα (S; x,b) ≤Mα (G).

Note that any assignment map S ∈Map [`, k] provides a partition among house-

holds b =
∑k
i=1 bi where all households in bi given in (3.2) are assigned to a single

factory located at xi. For each i, let Gi ∈ Path (ai,bi) be an optimal transport
path which transports the commodity produced at factory i to households in bi.
This yields an allocation path from x to b

GS =

k∑
i=1

Gi ∈ Path [x,b] , (3.3)

which is compatible with the allocation plan qS given in (2.12). Thus,

Eα (S; x,b) =

k∑
i=1

dα (ai,bi) =

k∑
i=1

Mα (Gi) ≥Mα (GS) ≥ Tα (qS) . (3.4)

By Corollary 3.1, any optimal allocation path is in the form of (3.3) with respect
to its associated assignment map.

Now, we state the main results of this section as follows:
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Theorem 3.2. Given a subset x = {x1, x2,··· ,xk} in X, an atomic probability
measure b as in (2.1), and a parameter α ∈ [0, 1).

1. (Existence) Each of the following minimization problems has a solution with

min
S∈Map[`,k]

Eα (S; x,b) = min
G∈Path[x,b]

Mα (G) = min
q∈Plan[x,b]

Tα (q) . (3.5)

2. An allocation path G ∈ Path [x,b] is optimal if and only if there exists an
optimal assignment map S ∈ Map [`, k] such that G = GS for some GS of S
defined in (3.3).

3. An allocation plan q ∈ Plan [x,b] is optimal if and only if there exists an
optimal assignment map S ∈Map [`, k] such that q = qS.

Proof. Since Map [`, k] is a finite set, it is obvious that problem

min
S∈Map[`,k]

Eα (S; x,b)

has a solution. By Corollary 3.1 and (3.4), any optimal assignment map S provides
an optimal allocation path GS . This proves the first equality in (3.5) as well as
the “if” part of (2). For the “only if” part of (2), suppose G ∈ Path [x,b] is an
optimal allocation path. By Theorem 3.1, G = GS for some S ∈ Map [`, k]. Then,
the optimality of S follows from the optimality of G and the first equality in (3.5).

Now, suppose G∗ ∈ Path [x,b] is an optimal allocation path, i.e., G∗ is an
optimal transport path in Path (a∗,b) for some a∗ supported on x with Mα (G∗) =
dα (a∗,b). By Xia [20, Lemma 7.1], G∗ has at least one compatible plan q∗ ∈
Plan (a∗,b) ⊆ Plan [x,b] and thus

Tα (q∗) ≤Mα (G∗) = dα (a∗,b) . (3.6)

For any q ∈ Plan [x,b], by the optimality of G∗ in Path [x,b] we have

Tα (q) ≥ dα (a (q) ,b) ≥ dα (a∗,b) ≥ Tα (q∗) .

This shows that

Tα (q∗) = min {Tα (q) : q ∈ Plan [x,b]} and Tα (q∗) = Mα (G∗) . (3.7)

Thus, q∗ is a solution to the ramified optimal allocation problem (2.14). This shows
the second equality in (3.5). Then, the equivalence in (3) follows from (3.5), (2)
and (3.4).

Theorem 3.2 shows that in the ramified optimal allocation problem, there exists
an equivalence between an optimal allocation plan and an optimal assignment map.
This result has an analogous counterpart in the Monge-Kantorovich problem, but
has not been observed in the current literature of ramified transport problems. An
implication of this theorem is that one can instead search for an optimal assignment
map in order to find an optimal allocation plan. Each optimal assignment map
S ∈ Map [`, k] would give an optimal allocation plan qS ∈ Plan [x,b] as in (2.12).
For this consideration, the following sections of the paper will focus on characterizing
the various properties of optimal assignment maps.

4. Marginal transportation analysis of optimal assignment maps. In this
section, we develop a method of marginal transportation analysis and use it to study
the properties of optimal assignment maps.

We first formalize a concept of marginal transportation cost for a single-source
transport system. Let G ∈ Path (m (c) δO, c) be a transport path from a single
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source O to an atomic measure c of mass m (c). For any point p on the support of
G, we set

θ (p) :=


w(e), if p is in the interior of some edge e ∈ E (G)

m (c) , if p = O

w(e), if p ∈ V (G) \ {O} , and p = e+ for some e ∈ E (G)

, (4.1)

which represents the mass flowing through p, where e+ denotes the ending endpoint
of the edge e ∈ E (G). Since G has a single source and contains no cycles, for any
point p on G, there exists a unique polyhedral curve γp on G from O to p. Moreover,
for any point s ∈ γp, it holds that

m (c) ≥ θ (s) ≥ θ (p) . (4.2)

When the mass at p changes by an amount ∆m with ∆m ≥ − θ (p), the mass
flowing through each point of γp also changes by ∆m. As a result, the corresponding
incremental transportation cost is

∆CG (p,∆m) := Mα (G+ (∆m) γp)−Mα (G) =

∫
γp

(θ (s) + ∆m)
α − (θ (s))

α
ds.

(4.3)
The marginal transportation cost at p via G is defined by

MCG (p) := lim
∆m→0

∆CG (p,∆m)

∆m
= α

∫
γp

(θ (s))
α−1

ds.

Remark 4.1. As one of the referees has pointed out to the authors, the marginal
transportation cost function MCG (p) is also called the landscape function in [4] and
[17]. Using similar techniques and ideas in proving Proposition 4.1 and 4.2, authors
of [4] and [17] have studied the Hölder regularity of the landscape function in the
case of continuous measures. Nevertheless, for the purpose of this paper, we will
show some results about the incremental transportation cost function ∆CG (p,∆m)
in the case of discrete measures.

The following proposition establishes some properties of the function ∆CG (p,∆m)
given in (4.3). Those properties are the key elements of marginal transportation
analysis used to study optimal assignment maps later.

Proposition 4.1. For any G ∈ Path (m (c) δO, c) and p on G, we have

∆CG (p,−∆m) = −∆CG̃ (p,∆m) , for ∆m ∈ [−θ (p) , θ (p)] , (4.4)

where G̃ = G− (∆m) γp. Moreover, for any ∆m ≥ 0, we have

[(m (c) + ∆m)
α −m (c)

α
] length (γp)

≤ ∆CG (p,∆m) ≤ [(θ (p) + ∆m)
α − θ (p)

α
] length (γp) . (4.5)

If, in addition, G ∈ Path (m (c) δO, c) is optimal in (2.5), then

dα ((m (c) + ∆m) δO, c+ (∆m) δp)− dα (m (c) δO, c) ≤ ∆CG (p,∆m) (4.6)

for any ∆m ≥ − θ (p) with p on G.

Proof. It is easy to check that equality (4.4) follows directly from definition (4.3).
For any ∆m ≥ 0, note that the function f (t) := (t+ ∆m)

α − tα is monotonically
non-increasing on t > 0 when 0 ≤ α < 1. By (4.2), we have

(m (c) + ∆m)
α − (m (c))

α ≤ (θ (s) + ∆m)
α − (θ (s))

α ≤ (θ (p) + ∆m)
α − (θ (p))

α
.
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Thus, by (4.3), inequalities (4.5) hold.
When G is also optimal, we have Mα (G) = dα (m (c) δO, c). For any ∆m ≥ −

θ (p), since G+ (∆m) γp ∈ Path ((m (c) + ∆m) δO, c+ (∆m) δp), we have

∆CG (p,∆m) = Mα (G+ (∆m) γp)−Mα (G)

≥ dα ((m (c) + ∆m) δO, c+ (∆m) δp)− dα (m (c) δO, c) .

Now, let G ∈ Path [x,b] be any optimal allocation path. By Theorem 3.2, G
must be in the form of (3.3), which is simply a disjoint union of single-sourced paths
Gi’s. For any p on G, there exists a unique i such that p is on Gi. Thus, we can
define the corresponding θi (p) and ∆CGi (p,∆m) as in (4.1) and (4.3). Then, we
set

θ (p) := θi (p) and ∆CG (p,∆m) := ∆CGi (p,∆m)

for any p on the support of G.
For any α ∈ (0, 1) and σ ≥ ε > 0, define

ρα (σ, ε) :=
(σ
ε

)α
−
(σ
ε
− 1
)α

. (4.7)

The function ρα (σ, ε) is decreasing in σ and increasing in ε; also 0 < ρα (σ, ε) ≤ 1
for any σ ≥ ε > 0. For α = 0, set ρ0 (σ, ε) = 0 when σ > ε > 0 and ρ0 (σ, ε) = 1
when σ = ε > 0.

The following proposition includes a key result in marginal transportation anal-
ysis, and is used to prove Theorem 4.1 and 4.2.

Proposition 4.2. Suppose G ∈ Path [x,b] is an optimal allocation path as given
in (3.3). Let p be a point on Gs for some s ∈ {1, · · · , k} and ∆m ∈ (0, θ (p)]. For
any p∗ on G with γp ∩ γp∗ having zero length, we have

∆CG (p,−∆m) + (∆m)
α ‖p− p∗‖+ ∆CG (p∗,∆m) ≥ 0, (4.8)

and

‖p− p∗‖+ ρα (θ (p∗) + ∆m,∆m) length (γp∗) ≥ ρα (m (bs) ,∆m) length (γp) .
(4.9)

In particular, for any i ∈ {1, · · · , k},
‖p− xi‖ ≥ ρα (m (bs) ,∆m) length (γp) ≥ ρα (m (bs) ,∆m) ‖p− xs‖ . (4.10)

Moreover, suppose p∗ is on Gi with i 6= s and ∆m ≤ θ (p∗), then

‖p− p∗‖+
ρα (θ (p∗) + ∆m,∆m)

ρα (m (bi) ,∆m)
‖p∗ − xi‖ ≥ ρα (m (bs) ,∆m) ‖p− xs‖ . (4.11)

Proof. Let Ĝ = G − (∆m) γp + (∆m) [p, p∗] + (∆m) γp∗ , where [p, p∗] denotes the
line segment from p to p∗. Then, when the intersection of polyhedral curves γp∩γp∗
has length zero, we have

∆CG (p,−∆m) + (∆m)
α ‖p− p∗‖+ ∆CG (p∗,∆m)

=

∫
γp

[(θ (s)−∆m)
α − θ (s)

α
] ds+ (∆m)

α ‖p− p∗‖

+

∫
γp∗

[(θ (s) + ∆m)
α − θ (s)

α
] ds

≥ Mα

(
Ĝ
)
−Mα (G) ≥ 0, by the optimality of G.
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To prove (4.9), we observe that

(∆m)
α

[‖p− p∗‖+ ρα (θ (p∗) + ∆m,∆m) length (γp∗)]

= (∆m)
α ‖p− p∗‖+ [(θ (p∗) + ∆m)

α − (θ (p∗))
α

] length (γp∗)

≥ (∆m)
α ‖p− p∗‖+ ∆CG (p∗,∆m) , by (4.5)

≥ −∆CG (p,−∆m) = ∆CG̃ (p,∆m) , by (4.8) and (4.4)

≥ [(m (bs))
α − (m (bs)−∆m)

α
] length (γp) , by (4.5)

= (∆m)
α
ρα (m (bs) ,∆m)

∫
γp

ds ≥ (∆m)
α
ρα (m (bs) ,∆m) ‖p− xs‖ .

In particular, when p∗ = xi for some i, (4.9) becomes (4.10) as length (γp∗) = 0.
Now, suppose p∗ is on Gi with i 6= s. Apply (4.10) to p∗, we have

‖p∗ − xi‖
ρα (m (bi) ,∆m)

≥ length (γp∗) .

Therefore, by (4.9),

‖p− p∗‖+
ρα (θ (p∗) + ∆m,∆m)

ρα (m (bi) ,∆m)
‖p∗ − xi‖

≥ ‖p− p∗‖+ ρα (θ (p∗) + ∆m,∆m) length (γp∗)

≥ ρα (m (bs) ,∆m) length (γp) ≥ ρα (m (bs) ,∆m) ‖p− xs‖ .

Inequality (4.8) follows intuitively by a standard marginal argument. For conve-
nience of illustration, let p denote the location yj of household j who is connected
to factory s by some curve γp. A planner will find it not optimal to choose an allo-
cation path G such that ∆CG (yj ,−∆m) + (∆m)

α ‖yj − p∗‖ + ∆CG (p∗,∆m) < 0
for p∗ on some Gi. It is because in this case the planner has a less costly alternative
by transferring ∆m amount of production from factory s to factory i and trans-
porting this additional ∆m units of commodity from factory i first to a stopover
point p∗ via the curve γp∗ and then directly from p∗ to household j. It is clear that
this strategy will send the same amount of commodity to household j as before.
However, by the inequality, the reduction in transportation cost −∆CG (p,−∆m)
on the curve γp exceeds its increase counterpart ∆CG (p∗,∆m) + (∆m)

α ‖yj − p∗‖ ,
which cannot be the case for an optimal allocation path.

By means of Proposition 4.2, we obtain the following results regarding the prop-
erties of optimal assignment maps.

Theorem 4.1. Suppose S ∈ Map [`, k] is an optimal assignment map. Let j ∈
{1, · · · , `} and s ∈ {1, · · · , k}. If

yj ∈ ΓsS (nj) :=

{
z ∈ Rm : min

i 6=s
‖z − xi‖ < ρα (m (bs) , nj) ‖z − xs‖

}
, (4.12)

then S (j) 6= s. If

yj ∈ ΩsS (nj) :=

{
z ∈ Rm : ‖z − xs‖ < min

i 6=s
ρα (m (bi) , nj) ‖z − xi‖

}
, (4.13)

then S (j) = s.
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Proof. Assume yj ∈ ΓsS (nj) but S (j) = s. Let G = GS be an allocation path as in
(3.3). By Theorem 3.2, G ∈ Path [x,b] is an optimal allocation path. Clearly, yj is
on Gs when S (j) = s . Apply (4.10) to p = yj and ∆m = nj , we have

min
i∈{1,··· ,k}

‖yj − xi‖ ≥ ρα (m (bs) , nj) ‖yj − xs‖ ,

which contradicts (4.12).
On the other hand, for each i 6= s, if yj ∈ ΩsS (nj), then

min
i∗ 6=i
‖yj − xi∗‖ ≤ ‖yj − xs‖ < ρα (m (bi) , nj) ‖yj − xi‖ .

By (4.12), yj ∈ ΓiS (nj) and S (j) 6= i for such i 6= s. Thus, S (j) = s.

Intuitively speaking, inequality in (4.12) says that if household j locates “closer”
to some factory other than factory s, then the planner will not assign it to factory
s. Here the relative closeness is weighted by a number ρα (m (bs) , nj). When the
production m (bs) at factory s is low, due to the transport economies of scale,
one would expect that the planner would less likely assign household j to factory
s. This predication is justified by Theorem 4.1 because in this case, inequality in
(4.12) becomes more likely to hold as ρα (m (bs) , nj) becomes higher. The later part
(4.13) of the theorem states a special case that if household j is located uniformly
closer to a factory s than to other factories, then it will be assigned to factory s
under any optimal assignment map.

We now give a geometric description of sets ΓsS (nj) and ΩsS (nj). It can be
verified that for any constant C ∈ (0, 1), the set

{x ∈ Rm : ‖x− xi‖ < C ‖x− xs‖} (4.14)

= B
(
xi + C2

1−C2 (xi − xs) , C
1−C2 ‖xi − xs‖

)
,

where B (x, r) denotes the open ball {z ∈ Rm : ‖z − x‖ < r}. By (4.14), relation
(4.12) says that geometrically, if household j lies in the union of k − 1 open balls

ΓsS (nj) =
⋃
i6=s

B

(
xi +

(wsj)
2

1− (wsj)
2 (xi − xs) ,

wsj

1− (wsj)
2 ‖xs − xi‖

)
,

where wsj = ρα (m (bs) , nj), then S (j) 6= s. Also, (4.13) says that if household j
lies in the intersection of (k − 1) balls

ΩsS (nj) =
⋂
i6=s

B

(
xs +

(wij)
2

1− (wij)
2 (xs − xi) ,

wij

1− (wij)
2 ‖xi − xs‖

)
(4.15)

for some s, then S (j) = s.
Since m (bs) ≤ m (b) = 1 and the function ρα (·, nj) is decreasing, we have

ρα (1, nj) ≤ ρα (m (bs) , nj) and thus

Γs (nj) : =

{
z : min

i 6=s
‖z − xi‖ < ρα(1, nj) ‖z − xs‖

}
⊆ ΓsS (nj) , (4.16)

Ωs (nj) : =

{
z : ‖z − xs‖ < ρα (1, nj) min

s6=i
‖z − xi‖

}
⊆ ΩsS (nj) (4.17)

for any optimal assignment map S. Note that the set Γs (nj) (or Ωs (nj)) is still
the union (or intersection) of k − 1 balls in Rm, and is independent of S. For
example, sets Ωs (nj) with nj = 0.8 and nj = 0.5 are displayed in Figure 5, where
x1 = (0, 0), x2 = (2, 0) and x3 = (1, 2).
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Figure 5. An example of set Ωs (nj) with nj = 0.8 (blue) and
nj = 0.5 (red) when α = 1/2.

By Theorem 4.1, (4.16) and (4.17), we have the following corollary.

Corollary 4.1. For any optimal assignment map S ∈Map [`, k] and s ∈ {1, · · · , k},
if yj ∈ Γs (nj), then S (j) 6= s. If yj ∈ Ωs (nj), then S (j) = s.

This corollary shows that if household j falls into the region Ωs (nj) of some
factory s, then it will be assigned to this factory under any optimal assignment
map S. As a result, if all households belong to the union of regions Ωs (nj) of
factories s except factory i, then factory i will not be used. Note that as ρα (1, nj)
is increasing in nj , the size of the region Ωs (nj) increases with nj as shown in
Figure 5.

Theorem 4.2. Suppose S ∈ Map [`, k] is an optimal assignment map, h and j ∈
{1, · · · , `} with nj ≤ nh. If S (h) = s∗ 6= s for some s ∈ {1, · · · , k} and

yj ∈ Γs,hS (nj) :=

{
z ∈ Rm

∣∣∣∣∣ ‖z − yh‖+
ρα(nh+nj ,nj)
ρα(m(bs∗ ),nj)

‖yh − xs∗‖
< ρα (m (bs) , nj) ‖z − xs‖

}
, (4.18)

then S (j) 6= s. If S (h) = s for some s ∈ {1, · · · , k} and

yj ∈ Ωs,hS (nj) :=
⋂

i6=s,m(bi)≥nj

{
z ∈ Rm

∣∣∣∣∣ ‖z − yh‖+
ρα(nh+nj ,nj)
ρα(m(bs),nj)

‖yh − xs‖
< ρα (m (bi) , nj) ‖z − xi‖

}
,

(4.19)
then S (j) = s.

Proof. In the first scenario, assume S (h) = s∗ 6= s, yj ∈ Γs,hS (nj) but S (j) = s.
Then

‖yj − yh‖+
ρα (nh + nj , nj)

ρα (m (bs∗) , nj)
‖yh − xs∗‖

≥ ‖yj − yh‖+
ρα (θ (yh) + nj , nj)

ρα (m (bs∗) , nj)
‖yh − xs∗‖ as θ (yh) ≥ nh,

≥ ρα (m (bs) , nj) ‖yj − xs‖ , by (4.11),

a contradiction with yj ∈ Γs,hS (nj). Thus, S (j) 6= s.
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Now, in the second scenario, assume S (h) = s, yj ∈ Ωs,hS (nj) but S (j) = i∗ for
some i∗ 6= s. Then,

‖yj − yh‖+
ρα (nh + nj , nj)

ρα (m (bs) , nj)
‖yh − xs‖

≥ ‖yj − yh‖+
ρα (θ (yh) + nj , nj)

ρα (m (bs) , nj)
‖yh − xs‖ as θ (yh) ≥ nh,

≥ ρα (m (bi∗) , nj) ‖yj − xi∗‖ , by (4.11),

a contradiction with yj ∈ Ωs,hS (nj) as m (bi∗) ≥ nj and i∗ 6= s. Thus, S (j) = s.

The first part of Theorem 4.2 says that if some household h is not assigned to
factory s, then any other nearby household j (i.e., within the neighborhood region

Γs,hS (nj)) with a smaller demand will also not be assigned to factory s. The second
part says that if some household h is assigned to factory s, then any other nearby

household j (i.e., within the neighborhood region Ωs,hS (nj)) with a smaller demand
will also be assigned to factory s. These findings agree with the intuition that
grouping with nearby households of large demand would make it more likely to
reap the benefits of transport economies of scale.

5. Projectional analysis of optimal assignment maps. As seen in the pre-
vious section, under an optimal assignment map, a household will be assigned to
some factory if it lives close to the factory (Theorem 4.1) or it has some nearby
neighbours assigned to the factory (Theorem 4.2). In this section, we will show a
reverse result (Theorem 5.1) using a method of projectional analysis.

Throughout this section, we consider the orthogonal projection from Rm to a
fixed line L = {p+ tv: t ∈ R} represented by a fixed point p ∈ Rm and a unit vector
v. Under this map, each point z ∈ Rm is mapped to p+ π (z) v with

π (z) = 〈z − p, v〉 , (5.1)

where 〈·, ·〉 stands for the standard inner product in Rm. For instance, when p =
(0, · · · , 0) ∈ Rm, and v = (1, 0, · · · , 0) ∈ Rm, for each z = (z1, · · · , zm), π (z) = z1

gives the first coordinate of z. For any real number R > 0, let

LR = {z ∈ Rm : ‖z − p− π (z) v‖ ≤ R} (5.2)

be the tubular neighborhood of the line L of radius R.

5.1. Preliminary lemmas. We start with some lemmas regarding properties of
a single-sourced transport system. These lemmas will play an important role in
establishing Theorem 5.1 later. Suppose

c =
∑
j∈Θ

cjδzj , cj > 0 for j in a finite set Θ (5.3)

is an atomic measure on X ⊆ Rm, and B̄R (O1) is the closed ball in Rm−1 centered
at the origin O1 with radius R.

Lemma 5.1. If c in (5.3) is supported on the ball B̄R (O1) × {0}, then for any
point P = (p1, p2, · · · , pm) ∈ B̄R (O1)× R ⊆ Rm, it holds that

m (c)
α |pm| ≤ dα (c,m (c) δP ) ≤ m (c)

α
(|pm|+ CR)

where

C =

√
m− 1

21−(m−1)(1−α) − 1
+ 1. (5.4)
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Proof. By a normalization process and (2.7), without loss of generality, we may as-
sume that c is a probability measure with m (c) = 1. Since dα (c, δP ) is a decreasing
function in α ∈ [0, 1], it holds that

dα (c, δP ) ≥ d1 (c, δP ) =
∑
j∈Θ

cj ‖zj − P‖ ≥
∑
j∈Θ

cj |pm| = |pm| .

On the other hand, since c is supported on the m−1 dimensional ball B̄R (O1)×{0},
by Xia [20, Theorem 3.1],

dα (c, δO1) ≤
√
m− 1

21−(m−1)(1−α) − 1
R.

By the triangle inequality,

dα (c, δP ) ≤ dα (c, δO1
)+dα (δO1

, δP ) ≤
√
m− 1

21−(m−1)(1−α) − 1
R+R+|pm| = |pm|+CR.

Lemma 5.2. If c in (5.3) is supported in the semi-tube B̄R (O1)×(−∞, 0] as shown
in Figure 6, then for any point P = (p1, p2, · · · , pm) ∈ B̄R (O1)× (0,∞) ⊆ Rm, and
Q = (q1, q2, · · · , qm) ∈ B̄R (O1)× R, it holds that

dα (c,m (c) δP )− dα (c,m (c) δQ) ≥ m (c)
α

(|pm| − CR− |qm|) ,

where C is the constant given in (5.4).

Figure 6. Transportation of a measure c located in a semi-tube
region to a point P located on the other side of B̄R (O1)× {0}.

Proof. Let G ∈ Path (c,m (c) δP ) be an optimal transport path. Since both c and
δP are supported in the convex set B̄R (O1)× (−∞,∞), the optimal transport path
G is also contained in B̄R (O1)× (−∞,∞). Since G contains no cycles, there exists
a unique polyhedral curve γzj from P to zj for each j. Because P and zj are

located on different sides of B̄R (O1)×{0}, each γzj will intersect with the (m− 1)-

dimensional ball B̄R (O1)× {0} at least once. Let vj be the last intersection point
of γzj with B̄R (O1)× {0}, and define

c̃ =
∑
j∈Θ

cjδvj ,
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which is supported on the ball B̄R (O1)× {0}. By the optimality of G, we have

dα (c,m (c) δP ) = dα (c, c̃) + dα (c̃,m (c) δP ) . (5.5)

Therefore, by the triangle inequality, (5.5) and Lemma 5.1,

dα (c,m (c) δP )− dα (c,m (c) δQ)

≥ dα (c,m (c) δP )− [dα (c, c̃) + dα (c̃,m (c) δQ)]

= dα (c̃,m (c) δP )− dα (c̃,m (c) δQ)

≥ m (c)
α |pm| −m (c)

α
(CR+ |qm|) .

Corollary 5.1. Suppose c in (5.3) is supported in a tubular neighborhood LR of
the line L as given in (5.2) and P is a point in LR with

π (P ) ≥ max
j∈Θ

π (zj) .

For any point Q ∈ LR, and any t1 with π (P ) ≥ t1 ≥ maxj∈Θ π (zj), it holds that

dα (c,m (c) δP )− dα (c,m (c) δQ) ≥ m (c)
α

(|π (P )− t1| − CR− |π (Q)− t1|) ,
(5.6)

where C is the constant given in (5.4).

Proof. By means of a rigid motion in Rm, we could transform the tubular neigh-
borhood LR of the line L to a tubular neighborhood of the zm−axis
{z = (0, 0, · · · , 0, zm)} and the point p + t1v on L to the origin O1. Then, under
this rigid motion, inequality (5.6) follows from Lemma 5.2.

Lemma 5.3. Let c be an atomic measure as given in (5.3) and O be a fixed point
in X. If the set Θ is decomposed as the disjoint union of two nonempty subsets (as
illustrated in Figure 7)

Θ = Θ1 qΘ2,

then, for any optimal transport path G ∈ Path (m (c) δO, c), there exist a vertex
point P ∈ V (G) and a decomposition of each Θi:

Θi = Θ̃i q Θ̄i with Θ̃i nonempty, i = 1, 2

such that G can be decomposed as

G = G1 +G2 +G3 (5.7)

where for each i = 1, 2, Gi is an optimal transport path from m (c̃i) δP to c̃i for

c̃i =
∑
j∈Θ̃i

cjδzj , (5.8)

G3 is an optimal transport path from m (c) δO to c̄ + (m (c̃1) + m (c̃2)) δP for

c̄ =
∑

j∈Θ̄1∪Θ̄2

cjδzj ,

and {Gi}3i=1 are pairwise disjoint except at P . Moreover, (5.7) implies

Mα (G) = Mα (G1) + Mα (G2) + Mα (G3) (5.9)

and by the optimality of G, it follows

dα (m (c) δO, c) = dα (m (c̃1) δP , c̃1) + dα (m (c̃2) δP , c̃2)

+dα (m (c) δO, c̄+ (m (c̃1) + m (c̃2)) δP ) . (5.10)
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Figure 7. In this example, Θ = {1, 2, 3, 4, 5, 6},Θ1 =
{1, 2, 3},Θ2 = {4, 5, 6}, Θ̄1 = {2, 3}, Θ̄2 = {4, 5}. G1 is in blue
color, G2 is in red color, and the rest black part is G3.

Proof. For any z on the support of G, since G is a transport path from a single
source O and contains no cycles, there exists a unique curve γz on G from O to z.
As a result, it holds that

if z̃ lies on γz for some z, then γz̃ is the part of γz from O to z̃. (5.11)

Now, let set Γi be the union of all curves γzj with j ∈ Θi for i = 1, 2, and set Γ =
Γ1 ∩ Γ2. By (5.11), if z ∈ Γ, then γz ⊆ Γ. This shows that Γ is a connected subset
of the support of G containing O. Since Γ contains no cycles, it is a contractible set
containing O. Then, by calculating the Euler characteristic number of Γ, we have
either Γ = {O} or Γ has at least two endpoints (i.e., vertices of degree 1).

If Γ = {O}, then set P = O, and Θ̃i = Θi for i = 1, 2. If Γ 6= {O}, pick P to be

an endpoint of Γ with P 6= O. Since P ∈ Γ ⊆ Γi, set Θ̃i :=
{
j ∈ Θi : P ∈ γzj

}
6= ∅,

for i = 1, 2. For any j ∈ Θ̃i, P divides the curve γzj into two parts: γ
(1)
zj from O to

P and γ
(2)
zj from P to zj . Since P is an endpoint of Γ, we have

(
γ

(2)
zj \ {P}

)
∩Γ = ∅.

For i = 1, 2, define c̃i using (5.8) and denote the part of G from m (c̃i) δP to c̃i
by Gi. The rest of G is denoted by G3 = G − (G1 +G2). Then, by construction,

{Gi}3i=1 are pairwise disjoint except at P , and thus (5.9) holds. By the optimality
of G, each Gi must also be optimal for i = 1, 2, 3, which yields (5.10).

5.2. Main theorem of the section. The following theorem states that: under
an optimal assignment map, a household will be assigned to some factory only
when either it lives close to the factory or it has some nearby neighbours assigned
to the factory. In the first situation, a planner takes advantage of relative spatial
locations between households and factories; in the second situation, the planner
takes advantage of group transportation due to the economies of scale embedded in
ramified transport technologies.

Let S ∈Map [`, k] be an optimal assignment map. For each i ∈ {1, · · · , k}, define

Ψi = {yh : S (h) = i} ∪ {xi} (5.12)
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and

Ri = max {‖z − p− π (z) v‖ : z ∈ {yh : S (h) = i} ∪ {x1, · · · , xk}} . (5.13)

Theorem 5.1. Suppose S ∈Map [`, k] is an optimal assignment map. If S (j) = i
for some i ∈ {1, · · · , k} and j ∈ {1, · · · , `}, then there exists z ∈ Ψi\ {yj}, such that

0 < |π (yj)− π (z)| ≤ 2CRi + min
s6=i
|π (xs)− π (yj)| (5.14)

and π (z) is between π (yj) and π (xi), where C is the constant given in (5.4) and
Ri is the constant given in (5.13).

Figure 8. Theorem 5.1 says that if the household at yj is assigned
to the factory at xi under an optimal assignment map S, then either
xi is located in the shadowed region, or S also assigns another
household at yh located in the shadowed region to the factory at
xi.

Proof. Step 1: Without loss of generality, we may assume that π (yj) ≤ π (xi).
Let |π (xi∗)− π (yj)| = mins 6=i |π (xs)− π (yj)| for some i∗ 6= i. We want to prove
(5.14) by contradiction. Assume for any z ∈ Ψi\ {yj} with π (yj) < π (z) ≤ π (xi),

|π (yj)− π (z)| > 2CRi + |π (xi∗)− π (yj)| ,

i.e., π (z)− π (yj) > 2CRi + |π (xi∗)− π (yj)| . Then, there exists a real number t2
such that

π (z) > t2 > π (yj) + 2CRi + |π (xi∗)− π (yj)| (5.15)

whenever π (yj) < π (z) ≤ π (xi). In particular, since xi ∈ Ψi, (5.15) yields

π (xi) > t2 > π (yj) + 2CRi + |π (xi∗)− π (yj)| . (5.16)

As a result, S−1 (i) can be expressed as the disjoint union of two sets:

Θ1 :=
{
h ∈ S−1 (i) : π (yh) ≤ π (yj)

}
and Θ2 :=

{
h ∈ S−1 (i) : π (yh) > t2

}
.

Clearly, j ∈ Θ1.
Step 2: If Θ2 = ∅ as shown in Figure 9, then S−1 (i) = Θ1 and thus

π (xi) ≥ π (yj) ≥ max
h∈S−1(i)

π (yh) .
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Figure 9. If Θ2 = ∅, then it is better to assign bi to another
factory at xi∗ other than that at xi.

Let ai and bi be given as in (3.2). By Corollary 5.1 with t1 = π (yj) and (5.16), we
have

dα (bi,m (bi) δxi)− dα (bi,m (bi) δxi∗ )

≥ m (bi)
α

(|π (xi)− π (yj) | − CRi − |π (xi∗)− π (yj) |)
≥ m (bi)

α
(π (xi)− π (yj)− CRi − |π (xi∗)− π (yj) |) > m (bi)

α
CRi > 0,

a contradiction with the optimality of S. Thus, Θ2 6= ∅.
Let Gi ∈ Path (ai,bi) be an optimal transport path. Then, by Theorem 3.2

and the optimality of S, G =
∑
iGi is an optimal allocation path. Since both Θ1

and Θ2 are nonempty, by setting Θ = S−1 (i) = Θ1 q Θ2, O = xi and c = bi in
Lemma 5.3, there exists a point P ∈ V (Gi) such that Gi can be decomposed as

Gi = G
(1)
i +G

(2)
i +G

(3)
i with

Mα (Gi) = Mα

(
G

(1)
i

)
+ Mα

(
G

(2)
i

)
+ Mα

(
G

(3)
i

)
. (5.17)

Here, for h = 1, 2, G
(h)
i is an optimal transport path from m

(
b

(h)
i

)
δP to b

(h)
i for

some positive atomic measures b
(h)
i with spt

(
b

(h)
i

)
⊆
{
yh̃ : h̃ ∈ Θh

}
and

G
(3)
i ∈ Path

(
m (bi) δxi ,bi −

(
b

(1)
i + b

(2)
i

)
+
(
m
(
b

(1)
i

)
+ m

(
b

(2)
i

))
δP

)
.

Figure 10. If π (P ) ≥ t2−CRi, then it is better to assign b
(1)
i to

another factory xi∗ other than that at xi.
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Step 3: If π (P ) ≥ t2 − CRi as shown in Figure 10, then we can modify G into

another allocation path G̃ by just replacing the corresponding transport path from

factory i to households b
(1)
i with an optimal transport path from factory i∗ to b

(1)
i .

More precisely, we replace Gi by

G̃i = G̃
(1)
i + G̃

(2)
i + G̃

(3)
i , (5.18)

where G̃
(1)
i is an optimal transport path from m

(
b

(1)
i

)
δxi∗ to b

(1)
i , G̃

(2)
i = G

(2)
i and

G̃
(3)
i = G

(3)
i −m

(
b

(1)
i

)
γP , (5.19)

where γP is the curve on G from xi to P . Equation (5.18) and (5.19) imply respec-
tively

Mα

(
G̃i

)
≤Mα

(
G̃

(1)
i

)
+Mα

(
G

(2)
i

)
+Mα

(
G̃

(3)
i

)
and Mα

(
G̃

(3)
i

)
≤Mα

(
G

(3)
i

)
.

Consequently, by (5.17),

Mα (Gi)−Mα

(
G̃i

)
≥ Mα

(
G

(1)
i

)
−Mα

(
G̃

(1)
i

)
+
(
Mα

(
G

(3)
i

)
−Mα

(
G̃

(3)
i

))
≥ Mα

(
G

(1)
i

)
−Mα

(
G̃

(1)
i

)
= dα

(
m
(
b

(1)
i

)
δP ,b

(1)
i

)
− dα

(
m
(
b

(1)
i

)
δxi∗ ,b

(1)
i

)
,

where the last equality follows from the optimality of both G
(1)
i and G̃

(1)
i .

Since α < 1, for G̃ =
∑
s 6=iGs + G̃i, we have

Mα

(
G̃
)
≤
∑
s6=i

Mα (Gs) + Mα

(
G̃i

)
.

Due to the optimality of G, equation (3.1) says

Mα (G) =
∑
s6=i

Mα (Gs) + Mα (Gi) .

As a result,

Mα (G)−Mα

(
G̃
)
≥Mα (Gi)−Mα

(
G̃i

)
≥ dα

(
m
(
b

(1)
i

)
δP ,b

(1)
i

)
− dα

(
m
(
b

(1)
i

)
δxi∗ ,b

(1)
i

)
≥ m

(
b

(1)
i

)α
(|π (P )− π (yj) | − CRi − |π (xi∗)− π (yj) |) , by Corollary 5.1

≥ m
(
b

(1)
i

)α
(π (P )− π (yj)− CRi − |π (xi∗)− π (yj) |)

≥ m
(
b

(1)
i

)α
(t2 − π (yj)− 2CRi − |π (xi∗)− π (yj) |) > 0, by (5.15).

Thus, Mα (G) > Mα

(
G̃
)

, which contradicts the optimality of G, and thus inequal-

ity (5.14) hold.
Step 4: If π (P ) < t2 − CRi as in Figure 11, then let Q be the first point of

γP with π (Q) = t2. We can modify G into another allocation path Ḡ by just

replacing the corresponding transport path from the point Q to households b
(2)
i

with an optimal transport path from Q to b
(2)
i . More precisely, we replace Gi by



ON THE RAMIFIED OPTIMAL ALLOCATION PROBLEM 615

Figure 11. If π (P ) < t2−CRi, then it is better to transport b
(2)
i

to the point Q directly than indirectly via the point P .

Ḡi = Ḡ
(1)
i + Ḡ

(2)
i + Ḡ

(3)
i where Ḡ

(1)
i = G

(1)
i , G̃

(2)
i is an optimal transport path from

m
(
b

(2)
i

)
δQ to b

(2)
i , and G̃

(3)
i = G

(3)
i − m

(
b

(2)
i

)
γQP where γQP is the part of the

curve γP from Q to P . Similar arguments as in the previous case show that

Mα (G)−Mα

(
Ḡ
)
≥ dα

(
m
(
b

(2)
i

)
δP ,b

(2)
i

)
− dα

(
m
(
b

(2)
i

)
δQ,b

(2)
i

)
≥ m

(
b

(2)
i

)α
(t2 − π (P )− CRi) > 0, by Corollary 5.1.

Thus Mα (G) > Mα

(
Ḡ
)
, which contradicts the optimality of G. Therefore, in-

equality (5.14) must hold.

5.3. Applications of Theorem 5.1. The following corollary states a scenario
when a factory is located far away from the community of households, a planner
will never assign any production to this factory under any optimal assignment map.

Figure 12. If a factory at xi is located far away from the commu-
nity of households, then S−1(i) will be empty under any optimal
assignment map S.

Corollary 5.2. Suppose for some i ∈ {1, · · · , k},
|π (xi)− π (yj) | > 2CR+ min

s6=i
|π (xs)− π (yj) | (5.20)

for each j = 1, · · · , `, where C is the constant given in (5.4) and

R = max {‖z − p− π (z) v‖ : z ∈ {y1, · · · , y`} ∪ {x1, · · · , xk}} . (5.21)

Then, S−1 (i) = ∅ for any optimal assignment map S ∈Map [`, k].

Proof. Assume there exists j ∈ {1, · · · , `} with S (j) = i. Without loss of generality,
we may assume π (xi) ≥ π (yj). Thus, max {π (yh) : π (xi) ≥ π (yh) , S (h) = i} =
π (yj∗) for some j∗ ∈ S−1 (i). For this j∗, by Theorem 5.1, there exists a z ∈ Ψi
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with π (yj∗) < π (z) ≤ π (xi) satisfying ( 5.14). By the maximality of π (yj∗), z 6= yh
for any yh ∈ Ψi. Thus, z = xi and by (5.20),

π (xi) > π (yj∗)+2CR+min
s6=i
|π (xs)−π (yj∗) | ≥ π (yj∗)+2CRi+min

s6=i
|π (xs)−π (yj∗) |,

a contradiction with (5.14).

The next corollary shows an “autarky” situation: if households and factories are
located on two disjoint areas lying distant away from each other, then the demand
of households will solely be satisfied from factories within the same area.

Figure 13. An “autarky” situation.

Corollary 5.3. Suppose (t1, t2) is an interval on R with

{π (x1) , · · · , π (xk) , π (y1) , · · · , π (y`)} ∩ (t1, t2) = ∅ (5.22)

and t2 > t1+2CR for C and R given in (5.4) and (5.21). Let σ = t2−t1−2CR > 0.
If

{π (x1) , · · · , π (xk)} ∩ (t1 − σ, t1] 6= ∅ and {π (x1) , · · · , π (xk)} ∩ [t2, t2 + σ) 6= ∅,
then for any optimal assignment map S ∈ Map [`, k] and interval I = (−∞, t1] or
[t2,∞), we have for j = 1, · · · , `,

π (yj) ∈ I ⇐⇒ π
(
xS(j)

)
∈ I.

Proof. It is sufficient to prove that if π (xi) ∈ [t2,∞) for some i, then the set {π (yh):
S (h) = i, π (yh) ≤ t1} must be empty. Indeed, if not, pick

π (yj) = max {π (yh) : S (h) = i,π (yh) ≤ t1}
for some j. By Theorem 5.1, there exists z ∈ Ψi such that π (yj) < π (z) ≤ π (xi),
and

π (z)−π (yj) ≤ 2CRi + min
i∗ 6=i
|π (xs)− π (yj)| < 2CRi + t1−π (yj) +σ ≤ t2−π (yj) .

Thus, π (z) < t2. On the other hand, the maximality of π (yj) and (5.22) yield
π (z) ≥ t2, a contradiction.

As a direct application of Corollary 5.3, the next corollary states that households
living in a relatively isolated area are more likely to receive their commodity from
local factories.

Corollary 5.4. Let t−1 < t−2 < t+1 < t+2 be real numbers with

t−2 = t−1 + 2CR+ σ and t+2 = t+1 + 2CR+ σ, σ > 0,

where the constants C and R are given in (5.4) and (5.21). If

{π (x1) , · · · , π (xk) , π (y1) , · · · , π (y`)} ∩
((
t−1 , t

−
2

)
∪
(
t+1 , t

+
2

))
= ∅,

{π (x1) , · · · , π (xk)} ∩
[
t−2 , t

+
1

]
= {π (xi)} (5.23)
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Figure 14. Households living nearby a local factory at xi receive
their commodity from the factory.

for some i ∈ {1, · · · , k}, and

{π (x1) , · · · , π (xk)} ∩ (t−1 − σ, t
−
1 ] 6= ∅, {π (x1) , · · · , π (xk)} ∩ [t+2 , t

+
2 + σ) 6= ∅,

then for any optimal assignment map S ∈Map [`, k],

S−1 (i) =
{
j : π (yj) ∈

[
t−2 , t

+
1

]}
.

Proof. For any j ∈ S−1 (i), using t1 = t−1 , t2 = t−2 in Corollary 5.3, and the
fact π (xi) ∈ [t−2 ,∞), we have π (yj) ∈ [t−2 ,∞). Similarly, using t1 = t+1 , t2 =
t+2 in Corollary 5.3, and the fact π (xi) ∈ (−∞, t+1 ], we have π (yj) ∈ (−∞, t+1 ].
Thus, π (yj) ∈

[
t−2 , t

+
1

]
. This shows that S−1 (i) ⊆

{
j : π (yj) ∈

[
t−2 , t

+
1

]}
. On

the other hand, for any j with π (yj) ∈
[
t−2 , t

+
1

]
, we have π (yj) ∈ [t−2 ,∞) and

π (yj) ∈ (−∞, t+1 ]. Using Corollary 5.3 again, we have π
(
xS(j)

)
∈ [t−2 ,∞) and

π
(
xS(j)

)
∈ (−∞, t+1 ]. Thus, π

(
xS(j)

)
∈
[
t−2 , t

+
1

]
. By (5.23), S (j) = i. Therefore,{

j : π (yj) ∈
[
t−2 , t

+
1

]}
⊆ S−1 (i).

6. State matrix. In this section, we show that the properties of optimal assign-
ment maps explored in the previous sections can shed light on the search for those
maps. The analysis is built upon a notion of state matrix defined as follows.

Definition 6.1. Let U = (ush) be a k× ` matrix with ush ∈ {0, 1}. The matrix U
is called

1. a state matrix for an optimal assignment map S if S (h) 6= s whenever ush = 0.
2. a uniform state matrix if U is a state matrix for any optimal assignment map.

A state matrix could be regarded as an information set of a planner during the
search process for optimal assignment maps. An entry ush = 0 (or ush = 1) simply
denotes that the planner has (or has not) excluded the possibility of assigning
household h to factory s. Recall that finding an optimal assignment map is to
minimize the function Eα (S; x,b) over the set Map [`, k] whose cardinality is k`.
Any zero entry of a state matrix U for an optimal assignment map S may exclude
as many as k`−1 assignment maps in Map [`, k] from being S. The more zero entries
in a state matrix U , the more information about S is contained in U . Consequently,
we aim at finding a state matrix U for S with as many zero entries as possible, using
properties of optimal assignment maps studied in the previous sections. When U
has exactly one non-zero entry in each column, S is completely determined by those
non-zero entries in U .

The idea of state matrix is motivated by the observation that via group trans-
portation with ramified transport technologies, assignment of each household has
a global effect on the allocation path as well as the associated assignment map.
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Thus, a planner can deduce more information about the optimal assignment map
by exploiting the existing information embedded in the zero entries of a state matrix.

We first explore the implication of Theorem 4.1 on the search for optimal as-
signment maps in the context of state matrix. For any state matrix U = (uij), we
consider a k × ` matrix

WU = (wij (U))

where wij (U) = ρα (wi (U) , nj) with wi (U) :=
∑`
h=1 uihnh, and the function ρα is

given in (4.7). Here, wi (U) denotes the maximum amount of commodity produced
at factory i one could conjecture using the existing information in the state matrix
U .

For any state matrix U , define

Γs (U ;nj) : =
⋃
i 6=s

{z ∈ Rm : ‖z − xi‖ < wsj (U) ‖z − xs‖} and

Ωs (U ;nj) : =
⋂
i6=s

{z ∈ Rm : ‖z − xs‖ < wij (U) ‖z − xi‖} ,

for any s = 1, · · · , k and j = 1, · · · , `. By (4.14), each Γs (U ;nj) (or Ωs (U ;nj) ) is
the union (or intersection) of k − 1 open balls.

Example 6.1. The matrix

U (0) = (uij) with uij = 1 for any i and j (6.1)

is a uniform state matrix. Then, WU(0) =
(
wij

(
U (0)

))
with

wij

(
U (0)

)
= ρα

(∑̀
h=1

nh, nj

)
= ρα (1, nj)

which is independent of i. Here, Γs
(
U (0);nj

)
= Γs (nj) and Ωs

(
U (0);nj

)
= Ωs (nj),

where Γs (nj) and Ωs (nj) are given in (4.16) and (4.17).

Example 6.2. Let S ∈Map [`, k] be an optimal assignment map. Define

US = (uij) with uij =

{
1, if S (j) = i
0, else

. (6.2)

Then, WUS = (wij (US)) with wij (US) = ρα

(∑
S(h)=i nh, nj

)
= ρα (m (bi) , nj) .

Note that Γs (US ;nj) = ΓsS (nj) and Ωs (US ;nj) = ΩsS (nj) where ΓsS (nj) and
ΩsS (nj) are given in (4.12) and (4.13).

Definition 6.2. Given two k × ` real matrices U = (uij) and Ũ = (ũij), we define

1. U ≥ Ũ if uij ≥ ũij for each i and j.

2. U 
 Ũ if U ≥ Ũ but U 6= Ũ .

Proposition 6.1. Let Uand Ũ be two state matrices for an optimal assignment
map S. If U ≥ Ũ , then

WU ≤WŨ (6.3)

and

xs ∈ Ωs (U ;nj) ⊆ Ωs
(
Ũ ;nj

)
and Γs (U ;nj) ⊆ Γs

(
Ũ ;nj

)
. (6.4)
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Proof. For each i, since U ≥ Ũ ,

wi (U) =
∑̀
h=1

uihnh ≥
∑̀
h=1

ũihnh = wi

(
Ũ
)
.

Then, since ρα (·, nj) is decreasing, it follows that

wij (U) = ρα (wi (U) , nj) ≤ ρα
(
wi

(
Ũ
)
, nj

)
= wij

(
Ũ
)

for each i and j. By definition, we have both (6.3) and (6.4).

Let U be a state matrix for an optimal assignment map S. By definitions of U (0)

in (6.1) and US in (6.2), it follows that

U (0) ≥ U ≥ US . (6.5)

Thus, by (6.4), we have

Γs
(
U (0);nj

)
⊆ Γs (U ;nj) ⊆ Γs (US ;nj)

and

Ωs
(
U (0);nj

)
⊆ Ωs (U ;nj) ⊆ Ωs (US ;nj) .

These relations, together with Theorem 4.1, immediately imply the following propo-
sition.

Proposition 6.2. Let U = (usj) be a state matrix for an optimal assignment map
S ∈Map [`, k]. For some s and j,

1. if yj ∈ Γs (U ;nj), then S (j) 6= s;
2. if yj ∈ Ωs (U ;nj), then S (j) = s.

Corollary 6.1. Suppose U is a state matrix for an optimal assignment map S ∈
Map [`, k]. Let Û (1) =

(
û

(1)
ij

)
be a k × ` matrix with

û
(1)
ij =

{
0, if yj ∈ Γi (U ;nj)
uij , else

, (6.6)

Then, Û (1) is also a state matrix for S with U ≥ Û (1).

Proof. If û
(1)
ij = 0, then either uij = 0 or yj ∈ Γi (U ;nj). In the first case, since U

is a state matrix for S, by definition, S (j) 6= i. In the second case, by Proposition

6.2, S (j) 6= i. Thus, Û (1) is also a state matrix for S with U ≥ Û (1).

We now explore the implication of Theorem 4.2 on the search for optimal as-
signment maps. Suppose U is a state matrix for an optimal assignment map S.
If ush = 0 for some h ∈ {1, · · · , `} and s ∈ {1, · · · , k}, then for each j 6= h with
nj ≤ nh, we consider the set

Γs,h (U ;nj) := {z ∈ Rm : ‖z − yh‖+ Λ (U) < wsj (U) ‖z − xs‖} , (6.7)

where

Λ (U) = max

{
ρα (nh + nj , nj)

wij (U)
‖yh − xi‖ : for i ∈ {1, · · · , k} with uih = 1

}
.
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Lemma 6.1. Let U and Ũ be two state matrices for an optimal assignment map
S. If U ≥ Ũ , then

Γs,h (U ;nj) ⊆ Γs,h
(
Ũ ;nj

)
(6.8)

for any s ∈ {1, · · · , k}, h ∈ {1, · · · , `} with ush = 0, and nj ≤ nh for j 6= h.

Proof. For each i, if ũih = 1, then uih = 1 as U ≥ Ũ . By (6.3), we have wij (U) ≤
wij

(
Ũ
)

. Thus,

Λ
(
Ũ
)

= max

ρα (nh + nj , nj)

wij

(
Ũ
) ‖yh − xi‖ : for i with ũih = 1


≤ max

{
ρα (nh + nj , nj)

wij (U)
‖yh − xi‖ : for i with ũih = 1

}
≤ max

{
ρα (nh + nj , nj)

wij (U)
‖yh − xi‖ : for i with uih = 1

}
= Λ (U) .

Consequently, (6.8) follows from (6.7).

As a result, by (6.5),

Γs,h (U0;nj) ⊆ Γs,h (U ;nj) ⊆ Γs,h (US ;nj) = Γs,hS (nj) ,

where Γs,hS (nj) is given in (4.18). The following proposition and its associated
corollary follow from Theorem 4.2.

Proposition 6.3. Suppose U is a state matrix for an optimal assignment map
S ∈Map [`, k]. If yj ∈ Γs,h (U ;nj) for some h 6= j with ush = 0 and nj ≤ nh, then
S (j) 6= s.

Corollary 6.2. Suppose U is a state matrix for an optimal assignment map S ∈
Map [`, k]. Let Û (2) =

(
û

(2)
sj

)
be a k × ` matrix with

û
(2)
sj =

{
0, if yj ∈ Γs,h (U ;nj) for some h 6= j with ush = 0 and nj ≤ nh
usj , else

,

(6.9)

Then, Û (2) is also a state matrix for S with U ≥ Û (2).

We now explore the implication of Theorem 5.1 on the search for optimal assign-
ment maps. Suppose U is a state matrix for an optimal assignment map S. For
each i ∈ {1, · · · , k}, let

Ψi (U) = {yj : uij = 1} ∪ {xi} .

Clearly, Ψi (U) ⊇ Ψi (US) = Ψi where Ψi is defined in (5.12).
Now, for π : Rm → R given in (5.1), we define

Ri = max {‖z − p− π (z) v‖ : z ∈ Ψi (U)} . (6.10)

Without loss of generality, we may assume that

Ψi (U) = {yjh : h = 1, · · · , Ni} ∪ {xi} with π (yj1) ≤ π (yj2) ≤ · · · ≤ π
(
yjNi

)
.

(6.11)
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Proposition 6.4. Suppose U = (usj) is a state matrix for an optimal assign-
ment map S ∈ Map [`, k]. For each i ∈ {1, · · · , k}, let h ∈ {1, · · · , Ni} and
i∗ ∈ {1, · · · , k}. If

min
{
π
(
yjh+1

)
− π (yjh) , π (xi)− π (yjh)

}
> 2CRi + |π (xi∗)− π (yjh) |, (6.12)

where C and Ri are the constants given in (5.4) and (6.10) respectively, then
S (jt) 6= i for any t ≤ h. Similarly, if

min
{
π (yjh)− π

(
yjh−1

)
, π (yjh)− π (xi)

}
> 2CRi + |π (xi∗)− π (yjh) |, (6.13)

then S (jt) 6= i for any t ≥ h.

Proof. Assume (6.12) holds but S (jt∗) = i for some t∗ ≤ h. Without loss of
generality, we may assume that π (yjt∗ ) = max {π (yjt) : t ≤ h, S (jt) = i}. Note
that π (yjt∗ ) ≤ π (yjh) < π (xi) by (6.11) and (6.12). Then, by Theorem 5.1, there
exists a z ∈ Ψi\ {yjt∗ } with π (yjt∗ ) < π (z) ≤ π (xi) such that

0 < π (z)− π (yjt∗ ) ≤ 2CRi + |π (xi∗)− π (yjt∗ )| . (6.14)

By the maximality of π (yjt∗ ) and z ∈ Ψi\ {yjt∗}, we know π (yjh) < π (z). Thus,
by the ordering in (6.11), we have

min
{
π
(
yjh+1

)
, π (xi)

}
≤ π (z) . (6.15)

Therefore,

π (z)− π (yjt∗ ) = π (z)− π (yjh) + π (yjh)− π (yjt∗ )

≥ min
{
π
(
yjh+1

)
− π (yjh) , π (xi)− π (yjh)

}
+ π (yjh)− π (yjt∗ ) , by (6.15)

> 2CRi + |π (xi∗)− π (yjh) |+ π (yjh)− π (yjt∗ ) , by (6.12)

≥ 2CRi + |π (xi∗)− π (yjt∗ ) |,
a contradiction with (6.14). This proves (6.12). Similar arguments give (6.13).

For each i = {1, · · · , k}, and λ ∈ R, denote

Ii (λ) :=

{
(−∞, λ], if λ ≤ π (xi)
[λ,∞), if λ > π (xi)

.

Then, for each π : Rm → R given in (5.1), we define

Γ̃iπ (U ;nj) := {z ∈ Rm : π (z) ∈ Ii (π (yjh)) for some jh satisfying (6.12) or (6.13)} .

Corollary 6.3. Suppose U is a state matrix for an optimal assignment map S ∈
Map [`, k]. Let Û (3) =

(
û

(3)
ij

)
be a k × ` matrix with

û
(3)
ij =

{
0, if yj ∈ Γ̃iπ (U ;nj) for some π
uij , else

, (6.16)

Then, Û (3) is also a state matrix for S with U ≥ Û (3).

Remark 6.1. Depending on the spatial locations of households and factories, for
each fixed i ∈ {1, · · · , k}, a planner may choose π to be one of the standard coor-
dinate functions in Rm, i.e., π (z1, · · · , zm) = zt for some fixed 1 ≤ t ≤ m. In this
case, (6.12) and (6.13) may be simply expressed in terms of coordinates of xi’s and
yj ’s. Another reasonable choice is to set π (z) = 〈z − pi, vi〉, where

(pi, vi) ∈ arg min

{
max

z∈Ψi(U)
‖z − p− 〈z − p, v〉 v‖ : p, v ∈ Rm with ‖v‖ = 1

}
.
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This will minimizeRi given in (6.10), because the line passing through pi in direction
vi, i.e., {pi+tvi: t ∈ R} provides the least supremum norm approximation for Ψi (U)
in Rm.

Given a state matrix U for an optimal assignment map S, we have used results
from previous sections to provide three updated state matrices Û (j), j = 1, 2, 3, for
U . The next proposition, whose proof follows directly from the definition of state
matrix, makes it possible to combine them together into a further updated state
matrix.

Proposition 6.5. Suppose U = (uij) and Ū = (ūij) are two state matrices for

an optimal assignment map S ∈ Map [`, k]. Then, the matrix Ũ = (ũij) with
ũij = min {uij , ūij} for all i and j is also a state matrix for S.

Proposition 6.5 says that one could deduce more information from any two exist-
ing state matrices regarding the optimal assignment map. Using this proposition,
we immediately have the following corollary.

Corollary 6.4. Suppose U is a state matrix for an optimal assignment map S ∈
Map [`, k]. For each i and j, define ûij = min

{
û

(1)
ij , û

(2)
ij , û

(3)
ij

}
, where û

(1)
ij , û

(2)
ij

and û
(3)
ij are given in (6.6), (6.9) and (6.16) respectively. Then, Û = (ûij) is also

a state matrix for S with U ≥ Û .

This idea of updating a state matrix U into another state matrix Û as in Corol-
lary 6.4 can be implemented iteratively to obtain an even further updated state
matrix. Given any initial state matrix U (e.g. U = U (0) as in (6.1)) for an optimal

assignment map S. For each n = 0, 1, 2, · · · , define Un+1 = Ûn with U0 = U . This
gives a non-increasing sequence of k×` matrices {Un} whose entries are either 0 or 1.
Hence, there exists anN ≥ 1 such that U0 
 U1 
 · · · 
 UN−1 = UN = UN+1 = · · · .
We denote this UN as U∗. Clearly, the matrix U∗ is still a state matrix for S with

U ≥ U∗ and Û∗ = U∗.
This updated state matrix U∗ contains more information about S than the initial

state matrix U0 because U∗ contains more zero entries. In some non-trivial cases
as shown in the following example, U∗ may have exactly one non-zero entry in each
column. In such a situation, U∗ completely determines the optimal assignment map
S.

Proposition 6.6. Let U be a uniform state matrix (e.g., U = U (0) as in (6.1)),
and suppose that n1 ≥ n2 ≥ · · · ≥ n`. If for each j = 1, · · · , `,

yj ∈
⋂

usj=1
s 6=sj

Γs (U ;nj) ∪
⋃

1≤h≤j−1
sh 6=s

Γs,h (U ;nj)

 (6.17)

for some sj ∈ {1, · · · , k}, then S : {1, · · · , `} → {1, · · · , k} given by S (j) = sj is
the optimal assignment map.

Proof. It is sufficient to show that for any optimal assignment map S, it holds that
S (j) = sj for any j. Indeed, for any s 6= sj , if usj = 0, then S (j) 6= s because U is
a state matrix for S. If usj = 1, then by assumption (6.17), either yj ∈ Γs (U ;nj) or
Γs,h (U ;nj) for some h < j with sh 6= s. If yj ∈ Γs (U ;nj), then by Proposition 6.2,
S (j) 6= s. If yj ∈ Γs,h (U ;nj) for some h < j with sh 6= s, then either S (h) 6= sh or
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S (h) = sh 6= s. In the later case, since yj ∈ Γs,h (U ;nj) ⊆ Γs,hS (nj) and nj ≤ nh,
by Theorem 4.2, we still have S (j) 6= s. Thus, in all cases for any s 6= sj , we know

either S (j) 6= s or S (h) 6= sh for some h < j. (6.18)

Consequently, when j = 1, we always have S (1) 6= s for any s 6= s1, and thus
S (1) = s1. Using (6.18) again, we get S (2) 6= s for any s 6= s2, which yields
S (2) = s2. Repeating this process leads to the conclusion that S (j) = sj for any
j ∈ {1, · · · , `} .
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