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Abstract

We point out that the conventional de"nition of instantaneous amplitude and frequency, namely as the magnitude and
derivative of the phase, respectively, of a complex representation of the signal, sometimes contains an ambiguity, even for
a unique complex representation (e.g., the analytic signal). There are at least two choices for resolving this ambiguity
when it arises. One choice yields a nonnegative amplitude but an instantaneous frequency with in"nite spikes, and one
yields a bounded instantaneous frequency but an instantaneous amplitude with positive and negative values. Histori-
cally, both solutions (i.e., both amplitudes) have been important in radio engineering, and both can be measured with real
devices. The former choice is more commonly used for de"ning the instantaneous amplitude and frequency of signals, but
the latter choice is equally acceptable and may be preferred in some situations. ( 1999 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Wir machen darauf aufmerksam, da{ die herkoK mmliche De"nition der Momentanamplitude und -frequenz, naK mlich
als Betrag respektive Ableitung der Phase einer komplexen Darstellung des Signals, manchmal eine Mehrdeutigkeit
aufweist; dies gilt sogar fuK r eine eindeutige komplexe Darstellung (z.B. das analytische Signal). Es gibt zumindest zwei
MoK glichkeiten, diese Mehrdeutigkeit zu beseitigen. Eine MoK glichkeit fuK hrt auf eine nichtnegative Amplitude, aber
andererseits auf eine Momentanfrequenz mit unendlichen Spitzen; eine andere fuK hrt auf eine beschraK nkte Momentan-
frequenz, aber andererseits auf eine Momentanamplitude mit positiven und negativen Werten. Historisch gesehen waren
beide LoK sungen (d.h. beide Amplituden) in der Radiotechnik von Bedeutung, und beide koK nnen mit realen GeraK ten
gemessen werden. Die erste MoK glichkeit wird haK u"ger verwendet, um die Momentanamplitude und -frequenz von
Signalen zu de"nieren, aber die zweite MoK glichkeit ist genauso akzeptabel und koK nnte in manchen Situationen bevorzugt
werden. ( 1999 Elsevier Science B.V. All rights reserved.
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Re2 sume2

Nous mettons en lumière le fait que la deH "nition conventionnelle de l'amplitude et la freH quence instantaneH es en tant
qu'amplitude et deH riveH e de la phase, respectivement, d'une repreH sentation complexe du signal, donne parfois lieu à une
ambigumK teH , me(me pour une repreH sentation complex unique (à savoir le signal analytique). Il existe au moins deux choix
pour reH soudre cette ambigumK teH lorsqu'elle se preH sente. Un choix fournit une amplitude non neH gative mais une freH quence
instantaneH e avec des pics in"nis, et l'autre une freH quence instantaneH e borneH e mais une amplitude instantaneH e ayant des
valeurs positives et neH gatives. Historiquement, les deux solutions (les deux amplitudes) ont eH teH importantes en radio, et
toutes deux peuvent e( tre mesureH es avec des appareils reH els. Le premier choix est plus communeHment utiliseH pour deH "nir
l'amplitude et la freH quence instantaneH es des signaux, mais le deuxième est eH galement acceptable et peut e( tre preH feH rable
dans certaines situations. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main motivation of Gabor for de"ning the
analytic signal was to provide an unambiguous
de"nition of instantaneous frequency [1]. Gabor
(and later Ville [6]) argued that to de"ne instan-
taneous frequency we have to "rst de"ne a complex
signal from which the instantaneous frequency is
then the derivative of the phase. But given a real
signal, there is an in"nite number of complex sig-
nals whose real part is the given real signal, but
whose imaginary parts } and therefore instan-
taneous amplitude, phase and frequency (APF) }
are di!erent. Gabor proposed a method for
choosing a particular APF for a given real signal.
Gabor's prescription was to `suppress the ampli-
tudes belonging to negative frequencies (in the
spectrum of the real signal), and multiply the ampli-
tudes of positive frequencies by two [1].a Inverse
Fourier transformation of this modi"ed spectrum
yields a complex signal, namely the analytic signal,
whose real part equals the given real signal and
whose imaginary part equals the Hilbert transform
of the real signal. It has since been shown that the
analytic signal can be derived from just a few rea-
sonable physical conditions [5]. We discuss these
conditions in Section 3.

Having thus de"ned a particular complex signal,
we can express it as amplitude and phase in the
usual way,

z(t)"x(t)#jy(t)"A(t) e+((t), (1.1)

where the amplitude and phase are commonly
given as

A(t)"Jx2(t)#y2(t), /(t)"arctan y(t)/x(t), (1.2)

and the instantaneous frequency is

u
i
(t)"/@(t)"(y@x!x@y)/A2. (1.3)

Eq. (1.2) is the one that is generally written in most
articles dealing with these issues for the amplitude
and phase of the complex representation. It is the
purpose of this note to point out that sometimes
there is an ambiguity that arises in specifying the
amplitude and phase, even when a unique real and
imaginary part is given. To show when this ambiguity
arises, we begin with a simple example to motivate
and develop the main ideas. We remark that our
considerations are not restricted to the analytic sig-
nal, but apply to complex representations in general.

2. Example

Consider the signal

s(t)"1
2

cos u
a
t#1

2
cos w

b
t"cos u

1
t cos u

2
t, (2.1)

where

u
a
"u

2
#u

1
, u

b
"u

2
!u

1
. (2.2)

For u
2
'u

1
*0, the corresponding analytic sig-

nal is

z(t)"cos u
1
t cos u

2
t#j cos u

1
t sin u

2
t

"cos (u
1
t) e+u2 t. (2.3)
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What are the amplitude and phase? According to
the usual procedure, they are

A(t)"Jcos2u
1
t cos2u

2
t#cos2u

1
t sin2u

2
t

"Dcos u
1
tD (2.4)

and

/(t)"arctan[cos u
1
t sin u

2
t/cos u

1
t cos u

2
t]

"u
2
t, (2.5)

from which we then have

z(t)"Dcos u
1

tDe+u2 t. (2.6)

But that is not correct! Speci"cally, the real part is
not the given signal,

RMDcos u
1
tDe+w2 tN

"Dcos u
1
tDcos u

2
tOcos u

1
t cos u

2
t. (2.7)

The correct amplitude-phase is

z(t)"cos (u
1
t) e+u2 t. (2.8)

Note that the instantaneous amplitude for this
signal is not strictly nonnegative, yet by convention
instantaneous amplitude is almost universally
taken to be (or assumed) nonnegative. Technically,

A(t)"Jx2(t)#y2(t) is more correctly the mag-
nitude of the complex signal, and we make that
point explicit in this paper by writing DA(t)D"
Jx2(t)#y2(t). We may of course insist that the
instantaneous amplitude equals the magnitude, but
the phase must then be modi"ed in order that the
correct real part is obtained. Speci"cally, for this
signal, if we take A(t)"DA(t)D, then the phase must
incur discontinuities and the correct &magnitude-
phase' representation of this signal is

z(t)"Dcos u
1
tDe+*u2 t`1

2p(1~4'/(#04 u1 t))+. (2.9)

The con#ict can thus be eliminated when we
take A(t)"DA(t)D by using the fact that the in-
verse tangent is not a single-valued function:
arctan(tan u

2
t)"u

2
t#kp. However, we note that

here k is not a simple constant (integer), but rather
a function of time because we have a choice at each

instant of time when evaluating the arctangent. In
particular, for the example above,

k"k(t)"1
2
(1!sgn(cos u

1
t)). (2.10)

The two expressions above for the amplitude
and phase are clearly quite di!erent, yet both
expressions yield the identical complex signal,
cos u

1
t cos u

2
t#j cos u

1
t sin u

2
t. Hence, the no-

tion that specifying a unique complex representa-
tion "xes the amplitude and phase of a signal is in
fact not always true: there are situations where an
in"nite number of possibilities for the amplitude
and phase, given a unique complex representation,
arise. We have given two possibilities above for
a particular signal, but there are actually an un-
limited number for that signal. Consider, for
example, the in"nity of possibilities for the ampli-
tude that lie between full recti"cation Dcos u

1
tD to

no recti"cation cos u
1
t: we may rectify cos u

1
t

over any period(s), and compensate with an appro-
priate jump in the corresponding phase (see Fig. 1).
Is this situation a rarity, unique to this particular
example? Finally, what are the consequences of
insisting that instantaneous amplitude is always

nonnegative, i.e., in taking A(t)"Jx2(t)#y2(t)?
We explore these questions next.

3. The general problem

To begin, let us consider brie#y the conditions
given in [5] for the amplitude and phase of a signal.
Given a real signal x(t), we desire to associate with
it another signal y(t)"H[x(t)], where H is as yet
some unde"ned operator, from which we obtain the
complex signal z(t)"x(t)#jH[x(t)] with ampli-
tude and phase as given by Eq. (1.2). What is the
operator H? Vakman proposed that the amplitude
and phase it generates should have the following
three physical properties:

1. Amplitude continuity: a small change in the value
of the signal x(t) should induce a correspond-
ingly small change in the instantaneous ampli-
tude A(t).

2. Phase independence of scale: multiplying the real
signal x(t) by a real positive constant c should
have no a!ect on the instantaneous phase and
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Fig. 1. Three possible di!erent amplitude-phase pairs (a, b, c), as obtained via the Hilbert transform, for the real signal at top. For each
case, we show (top to bottom) the amplitude, A(t), phase, /(t), and the cosine of the phase, cos(/(t)). The complex (and analytic) signal for
each case is A(t)e+((t), and the real signal is A(t) cos /(t). Note that although the amplitudes and phases are di!erent in each case, they
produce the identical real and complex signals. This illustrates that even when the complex form is unique, there can be an ambiguity in
specifying the amplitude and phase. For this case we may rectify the amplitude A(t) in (a) over any period(s) and compensate with a jump
of p radians in the corresponding phase. Note that although all amplitudes are continuous, the phase is continuous only in case (a).
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3We note that other physical conditions lead to other oper-
ators, and hence complex signals that are not analytic [2,3].

4As an example see Fig. 1, and in particular the amplitude-
phase pair corresponding to case (c).

frequency and should multiply the instan-
taneous amplitude by the same constant.

3. Harmonic correspondence: the instantaneous
amplitude, phase and frequency of a pure
sinusoid A

0
cos(u

0
t#/

0
) should be given, re-

spectively, by A(t)"A
0
, /(t)"u

0
t#/

0
, and

u
i
(t)"/@(t)"u

0
.

Remarkably, these three simple, reasonable con-
ditions force the operator H to be the Hilbert
transform, meaning that the APF satisfying these
conditions are those obtained from the analytic
signal representation of the given real signal.3

With these considerations in mind, we are now in
a position to consider when the ambiguity pointed
out previously arises. We write the complex signal
in two equivalent forms,

z(t)"A(t)e+((t) (3.1)

"DA(t)De+((t)`+pa(t), (3.2)

where

A(t)"z(t)e+((t)"x(t) cos /(t)#y(t) sin /(t) (3.3)

is not restricted to be nonnegative, and where a(t) is
a function of time whose value can only be 1 or 0.
We note again that there is actually an in"nite
number of equivalent ways to express the same
complex representation, ranging between full rec-
ti"cation of the amplitude as in Eq. (3.2) to no
recti"cation as in Eq. (3.1).4 However, these two
extremes are su$cient to address the general prob-
lem, to show when it arises, and to suggest possible
resolutions to this ambiguity.

Resolution 1. Always take the amplitude to be

nonnegative, i.e., A(t)"Dz(t)D"Jx2(t)#y2(t). If
we then require amplitude continuity, the ambi-
guity occurs only when the magnitude of the com-
plex representation, Dz(t)D, is not positive-de"nite
(i.e., when it is zero at certain instants of time), since
it is at those times that the amplitude may or may

not cross zero; for example, is it Dcos u
1
tD or

cos u
1
t? At those time instants, the phase may

incur a discontinuity, i.e., a(t) will jump from 0 to
1 or 1 to 0. However, there is no ambiguity when
the magnitude of the complex representation is
positive-de"nite, since then we have Dz(t)D"
DA(t)D'0, which yields, by amplitude continuity,

A(t)"DA(t)D"Jx2#y2, and no compensation in
the phase is necessary.

Resolution 2. Another possibility is to insist that,
given a continuous, di!erentiable real function, the
amplitude and phase both be continuous. Indeed,
for the example given previously, this constraint
eliminates all but the choice cos u

1
t from the set of

possibilities ranging from Dcos u
1
tD to cos u

1
t for

the amplitude of the signal above, because only that
choice yields a continuous phase.

Hence, while the conditions in [5] determine
a unique operator H for determining the instan-
taneous amplitude, phase and frequency of a signal,
they do not in fact eliminate the ambiguity that
arises in determining the amplitude from the com-
plex form for situations when the magnitude is zero
at certain times. The phase continuity condition
given here resolves this ambiguity. Insistence on
a nonnegative amplitude also resolves the ambi-
guity but yields in"nite instantaneous frequency at
zero magnitude when the phase jumps by p.

3.1. Limiting procedure

Some further insight can be gained if we consider
two tones of unequal amplitude and we consider
what happens to the phase as the amplitudes of
each tone become equal.

For that case, the order in which one evaluates
the equation makes a di!erence, because the ampli-
tude is zero at speci"c times for equal strength
tones. Consider

x(t)"A
a
cos u

a
t#A

b
cos u

b
t, (3.4)

with A
a
*A

b
'0. The instantaneous frequency is

/@(t)"1
2
(u

a
#u

b
)#1

2
(u

a
!u

b
)
A2

a
!A2

b
A2(t)

, (3.5)
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with

A2(t)"A2
a
#A2

b
#2A

a
A

b
cos(u

a
!u

b
)t. (3.6)

Note that A2(t)"0 periodically for equal strength
components. At times when cos(u

a
!u

b
)t"!1,

we have [4]

/@(t)
t/p(1`2n)@(ua~ub )

"1
2
(u

a
#u

b
)#1

2
(u

a
!u

b
)
A

a
#A

b
A

a
!A

b

. (3.7)

Taking the limit A
a
PA

b
of this expression yields

an unbounded instantaneous frequency at these
times. Thus, evaluating the expression this way, we
have that for equal strength tones, the instan-
taneous frequency is in"nite at the times when the
amplitude is zero:

/@(t)"G
1
2
(u

a
#u

b
) for tOp(1#2n)/(u

a
!u

b
),

R t"p(1#2n)/(u
a
!u

b
).

(3.8)

Apparently this result is physically di$cult to
reconcile with the fact that the complex signal is
continuous and given by cos u

1
t e+u2 t. If instead we

"rst take A
a
PA

b
in Eq. (3.5), then the numerator

of the second term is always zero and the instan-
taneous frequency is /@(t)"1

2
(u

a
#u

b
)"u

2
for

all times } which is a more physically satisfying
answer. Both, however, are mathematically correct,
with the former corresponding to an instantaneous
amplitude of Dcos u

1
tD and the latter corresponding

to cos u
1
t. We now show that the instantaneous

amplitude corresponding to both procedures above
can be physically realized.

4. Measuring instantaneous amplitude

For the speci"c case considered above, one can
ask which of the two amplitudes Dcos u

1
tD or

cos u
1
t, is the `correcta one? We point out that both

choices have been pro"tably used in well-known
practical devices that measure both amplitudes.

The "rst is the linear detector that contains a
recti"er and a low-pass "lter. For the real signal
Eq. (2.1) with high frequency u

2
Au

1
, it produces

f (Dcos u
1
t cos u

2
tD)"f (Dcos u

1
tD Dcos u

2
tD)

+c Dcos u
1
tD, (4.1)

where c is the average of Dcos u
2
tD obtained after

low-pass "ltering with the "lter f ( ). Thus, the linear
detector device measures DA(t)D"Dcos u

1
tD which is

commonly called the amplitude in radio-engineering.
A second device is the synchronous detector.

One multiplies the signal by cos u
2
t; a low-pass

"lter is then applied which produces

f (cos u
1
t cos2u

2
t)"f Acos u

1
t C12#1

2
cos2u

2
tDB

+1
2
cos u

1
t (4.2)

after "ltering. Thus, by this device we have
A(t)"cos u

1
t. In communications engineering,

this operation is often said to give the in-phase
signal component. The quadrature component is
obtained by multiplying by sin u

2
t instead, and

then "ltering (which for this signal, yields zero). The
square root of the in-phase component squared
plus the quadrature component squared is some-
times referred to as the signal amplitude or envelope
(which here is DA(t)D).

Hence both representations have been used and
have played important roles in radio-engineering,
and either one can be measured by real devices.

5. Conclusion

We have pointed out that specifying a unique
complex representation for a signal does not neces-
sarily uniquely determine the amplitude and phase
of the signal. The ambiguity arises (for continuous
amplitudes) when the magnitude of the complex
representation is zero at particular instants of time;
at those times, the amplitude may or may not cross
through zero, and the phase may or may not incur
discontinuities, yielding in"nite spikes in the in-
stantaneous frequency. Mathematically, any of
these possibilities is legitimate (since all of the cor-
responding amplitude-phase pairs yield the same
complex signal), and thus the ambiguity must be
resolved either by choosing one mathematical con-
vention, or based on physical considerations.

If a real signal is well behaved, that is, it has no
discontinuities and is di!erentiable, then we may
expect that the associated complex signal should
produce physical quantities that are also well
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behaved, that is, have no peculiarities such as dis-
continuities and singularities. Hence, if one considers
instantaneous frequency as a physical quantity,
then it is reasonable to expect it to be well behaved
(e.g., not ranging to in"nity) for real signals that
have no peculiarities. In addition, we should expect
that the amplitude be well behaved and in parti-
cular it should be continuous. This reasoning
supports the argument that for di!erentiable real
signals we should de"ne not only the instantaneous
amplitude to be continuous (the "rst condition in
[5]) but also the phase should be continuous so
that there are no singularities in the instantaneous
frequency, and so that the ambiguity noted in this
paper is resolved. However, since both de"nitions
of amplitude, namely

A(t)"Jx2(t)#y2(t) De"nition1, (5.1)

A(t)"x(t) cos /(t)#y(t) sin /(t) De"nition2 (5.2)

can be measured with real devices and have been
used in practice, and the ambiguity noted can also

be resolved by taking a discontinuous phase
corresponding to the nonnegative continuous
amplitude, the choice is then a matter of taste and
convenience.
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