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An analytic signals(t) is modeled over & second duration by a pole-zero model by considering

its periodic extensions. This type of representation is analogous to that used in discrete-time systems
theory, where the periodic frequency response of a system is characterized by a finite number of
poles and zeros in the-plane. Except, in this case, the poles and zeros are located in the
complex-time plane. Using this signal model, expressions are derived for the envelope, phase, and
the instantaneous frequency of the sigs(@). In the special case of an analytic signal having poles
and zeros in reciprocal complex conjugate locations about the unit circle in the complex-time plane,
it is shown that their instantaneous frequefiy) is always positive. This result paves the way for
representing signals by positive envelopes and positivéPIF). An algorithm is proposed for
decomposing an analytic signal into two analytic signals, one completely characterized by its
envelope and the other having a positive IF. This algorithm is new and does not have a counterpart
in the cepstral literature. It consists of two steps. In the first step, the envelope of the signal is
approximated to desired accuracy using a minimum-phase approximation by using the dual of the
autocorrelation method of linear prediction, well known in spectral analysis. The criterion that is
optimized is a waveform flathess measure as opposed to the spectral flathess measure used in
spectral analysis. This method is called linear prediction in spectral dain@BD). The resulting
residual error signal is an all-phase or phase-only analytic signal. In the second step, the derivative
of the error signal, which is the PIF, is computed. The two steps together provide a uniqgue AM-FM
or minimum-phase/all-phase decomposition of a signal. This method is then applied to synthetic
signals and filtered speech signals. 1®99 Acoustical Society of America.
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INTRODUCTION In the area of speech processing, the above problem is
circumvented by directly extracting features from short seg-

Many natural and man-made signals of interest are time ; h sianal h alqorith based
varying or nonstationary in nature, i.e., their frequency conMeNts of a speech signal. Such algorithms are based on

tent or spectrum changes with time. Examples mcmdesho_rt—term spectral analysis in the form of Ii_near pr_ediction
speech signals, animal calls, biological/biomedical signaléWhich capt;;:es the spectral envelope of a signal with a few
such as cardiac rhythms, etc. Techniques for characterizing@rameters™” cepstral analysi3and Mel-cepstrunfi.Using
such signals are of great importance in applications involvihese procedures, spectral templates or feature vectors are
ing such signals. A collection of short-time Fourier spectracomputed and used in applications like machine recognition/
known as spectrogram is a common tool for analyzing suclyerification. However, these methods are vulnerable to inter-
time-varying signals. Unfortunately, the spectrogram sufferderence and channel degradations as encountered in tele-
from the need to compromise time and frequency resolutionphone speech. Signals are also often analyzed over short-
i.e., a large time window is required to resolve closelytime intervals, using specific signal models, such as sum of
spaced frequencies. To overcome this problem, a number @inusoidal or damped sinusoidal signals or phase-modulated
so-called time-frequency distributions or representationsinusoidal signals. If such models are appropriate for the data
have been developéd. The time-frequency analysis tools at hand, then significant advantages can be gained. In this
are very useful in visualizing the time and frequency behavpaper a model-based approach is proposed for representing
ior of simple signals like a chirp. However, when the signalssignals by their envelope and instantaneous frequency which
are complex, as in the case of speech, it is hard to interpré$ guaranteed to be positive.
time-frequency representations because of the interactions
between components in the signal. The time-frequencya\ E . :
. . . Envelope and instantaneous frequency of signals
analysis methods also create a practical problem. They result
in enormous 2D data sets. Although sometimes these 2D Many of the above-mentioned methods represent a sig-
data sets can be viewed by humans to sort out the importamal by characterizing its power as a function of time and
features of interest, it is hard to program a machine to relifrequency. Are there other alternatives? Clearly, a signal’s
ably extract such features. Hence it has been difficult to apphase and envelope carry information about how various
ply these methods to automatic signal classification probeomponents of the signal are related to each other. Hence, is
lems. it possible to characterize a signal by its phase and envelope
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modulations? In his 1946 paper, among other importanprocessing function performed by the auditory periphery,
ideas, Gabor approached this question by defining the sgarticularly the cochlea. The cochlea is kndWio decom-
called analytic signal or pre-envelop@ Recall that ifs, (t) pose acoustic stimuli into frequency components along the
is a real signal, then the corresponding analytic signal idength of the basilar membrane. This phenomenon is called
s(t)=s,(t) +j5,(t), where§,(t) is the Hilbert transforfhof  tonotopic decomposition. Further, it is also known that the
s,(t). The Fourier transform oé(t), S(w), is nonzero only nerve fibers emanating from a high-frequency location in the
for >0. The envelope oé,(t) is then defined aks(t)| and  cochlea “phase-lock” to the envelope of the stimulus around
its instantaneous frequendiF) is denoted by the first de- that frequency, i.e., convey information about the envelope
rivative of s(t)’s phase function scaled by H2An analytic  modulations in the signdl. Thus, to a first-order approxima-
signal is valuable because it permits an unambiguous chation, it is often argued that the tonotopic location/place along
acterization of a real signal in terms of its envelope anfIF. the length of the basilar membrane conveys the IF or fre-
Characterizing a signal by envelope and IF is also commonlguency information about the signal, and the rate of nerve
referred to as AM-FM modeling of signats:-14 fiber activity around that location conveys the envelope in-
Engineers and scientists are most familiar with IF in theformation. Hence analytical signal models that explicitly
context of frequency-modulated signals as in a FM radiocharacterize the envelope and phase variations of a complex
But what about the IF of an arbitrary signal? For an arbitrarystimulus on a short-time basis may eventually help in under-
signal, the IF is typically an erratic function whose rangestanding the cochlear function.
may extend from negative to positive infinityFor example,
for a signal consisting of two complex sine waves, i.e.,B. Organization of the paper
s(t)=a,e'“'+a,el“?', the IF could lie anywhere in the

range of(—x) depending on the relative sizes af and In Sec. | we consider complex-valued periodic signals

a,. The general impression among researchers is that the I‘?lnd EXpress them as a product of so—callgd eI'ementary SIg-
function is unusable unless it is sufficiently smootf&d. hals ala Voe!ckgr. This type of representation is analogous'
Some incompletely resolved questions regarding IF includet:0 .that used in discrete-time systems theory, where. the peri-

. odic frequency response of a system is characterized by a
how do we interpret the envelope and IF of naturally occur-; " :
. ) ; finite number of poles and zeros, except in our case the poles
ring (not man-madgsignals like speech? How are phase or

IF and envelope related to each other? Is IF more importanatl.nd zeros are located in a complex-time plane. Using this

than envelope? When is a signal’s IF a smooth function ignal model, we derive expressions for the envelope, phase,

o . . ) and the instantaneous frequency. In the special case of an
Under what conditions is a signal’s IF guaranteed to be POSI3 halytic signal having poles and zeros in reciprocal complex
tive, and so on. Further, one of the factors that has discour- y g gp P P

. . nj I ion he unit circle in th mplex-tim
aged researchérst® in using phase and envelope to repre-CO jugate locations about the unit circle in the complex-time

sent a sianal is the followina: for examole. if band assplane, it is shown in Sec. Il that their instantaneous fre-
9 9 pie, P uency(IF) is always positive. This result paves the way for

filtered speech is decomposed into envelope and IF, then tkﬂ%presenting signals by positive envelopes and positive IF

resulting mpdulatmns, rather ironically, have bandWIdt.h.S(PlF) as desired in literature associated with time-frequency

that are typically much greater compared to that of the Ordiyistributionsi® In Sec. IIl we propose a new algorithm

nal band-limited signal g17-22 which consists of two steps to achieve a unique decomposi-
' 19" tion of an analytic signal into two analytic signals, one com-

" E'pletely described by its envelope and the other having a posi-
made nearly 30 years ago by Voelckef." Voelcker pro- tive IF. This type of decomposition is different from those

posed a methodical way to understanding the IF and 100g, o in the cepstral literatureln the first step, the enve-

envelope of signals which may help answer some of thEi’ope of the signal is approximated to desired accuracy using

guestions raised above. Unfortunately, Voelcker's worka minimum-phase approximation by using the dual of the

never became popular because it was somewhat hard tq re"'%ﬂjtocorrelation method of linear predictfSrwell known in
He proposed that complex-valued sign@ed hence analytic - g0 ctra1 analysis. The criterion that is optimized is a wave-

signals be modeled as polynomials or a ratio of polynomialS¢o . flatness measure as opposed to the spectral flatness
in the complex variable (time), just like a given system or  neaqre used in the spectral domain. We call our method,

frequency response may be modeled by a ratio of polynomifnear prediction in spectral domaif.PSD). The resulting

als in the s-domain (continuous-time systemsor the  regjqual error signal is an all-phase or phase-only analytic

zdomain(discrete-time systemsHe called it “product rep-  gigna. In the second step, the derivative of the error signal is

resentation of signals.” Once we realize that signals may b%pproximated. The two steps together provide a unique

represented by a polynomial or a ratio of polynomials withap1-EM or minimum-phase/all-phase decomposition of a

complex coefficients, then a myriad of ideas that have beegigna|. This method is then applied to synthetic signals and
developed in systems literature can be applied to this sOjiered speech signals.

called product representation of signals. In this paper we
extend Voelcker’'s work by applying some of the well-known
ideas from the theory of linear predictfonto his signal
model.

A motivation for representing signals by envelope and  Consider a periodic analytic signs(t), with periodT
IF comes from our desire to understand and model the signaleconds. Let)=2=/T denote its fundamental angular fre-

I. ENVELOPE AND IF IN TERMS OF A SIGNAL
MODEL
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guency. Ifs(t) has finite bandwidth, it may be described by signals.” We shall primarily work with the all-zero models
the following model for a sufficiently larg®l, over an inter-  since they are easier to use.

val of T seconds: The factors corresponding to the zeros inside the unit
circle, TIT_,(1—p;e'™), constitute the minimum-phase
oM ' (MinP) signal. Similarly, the factors corresponding to the
S(t)zej""tgo e, (1) zeros outside the circlelI2,(1—q;e!), constitute the

maximum-phaséMaxP) signal. These are the direct coun-
terparts of the frequency responses of the well-known
minimum-and maximum-phase FIR filters in discrete-time
systems theory;just as in systems theorfgee Sec. 10.3 in
Ref. 5 the phase of the MinP signal is the Hilbert transform
of its log-envelope. That is, the MinP signal may be ex-
.I}Bressed in the forne*®*1¢( See Appendix A for details.
Ia(t) is the Hilbert transform ofa(t). Similarly, since a
maximum-phasgMaxP) signal has zeros outside the unit

circle, it may be expressed @8V 1A Thus, envelope or
phase alone is sufficient to essentially characterize a MinP or
P 0 a Max_P s_ignal.[AIong the same lines, an all-phagallP)
s()=anel @ 1—p.ei® 1—g.e/%); analytic signalthe analog of an all-pass filjewould be of
(N=aq ;=Hl (1=pi )i=Hx (1=q:e”™: (o the formel "] Thuss(t) may be expressed as

el“t represents a frequency translation. In other words,
=0 is the nominal carrier frequency of the sigre).are the
complex amplitudes of the sinusoi@’; a,+0 anday
#0. By analytic continuation we may regaetf*' as a com-
plex variable(a la the complex variabl&). That is,t, the
time variable, is regarded as complex-valued. Note that
Eq. (1) the Mth degree polynomial irel”t represents the
complex envelope of the signalt). We may factor this
polynomial into itsM (=P + Q) factors and rewrites(t) as

sMinp(?) SMaxp(t)

S(£) = A eI0cl g @+]E(0) B~ TAW), (4)
P1.P2,....Pp, and CI1,CI2,--.-,QQ denote the p0|yn0mial's N — “e——
roots; p;=|pile'%, gi=|qi|e'?. p; denote roots inside the MinP MaxP

unit circle in the complex planey; are outside the unit circle. \yhere the “hat” stands for Hilbert transformo, is QQ
Currently we assume that there are no roots on the circlgcontributed by the linear phase term from the MaxP signal
That 'Igt|p'i|<1 and |qi|_> 1. Each fﬁctor of the form 3(} plus the arbitrary frequency translatiom,, shown in Eq.
—p;e!™) in the above is called an “elementary signaf: (2). A is aglT ,(—q;). See Appendix A for details. The

Thep; andq; are referred to as zeros of the sigs@). The  expressions for(t) and B(t) are derived in Appendix A.
above expressions, representing a band-limited periodic sig-

nal, may be recognized as the counterpart of the frequency > P |pil*

response of a finite impulse respor{&¢R) filter in discrete- al)=2, > - i coskQt+ké)
time systems theor$? More generally, ifs(t) consists of an ki

infinite number of spectral lined.e., its Fourier transform, gnd

Sw) ==, _oakd(w—kQ)], then we can represes(t) over

T seconds to desired accuracy using a sufficient number of 2 1
poles and zeros as follows: B(t)zgl izl — i codkQtrke). %)
oy Ti=i(1=p;e?™) 2 . Closed-form expressions can be obtained feft) and
s(t)=age’*° 07 (1=ue™) II 0-qe™™). (3 = “aa - - —
i=1 u;e’™) i=y B(1). The “dot” stands for the time-derivative opera-
tion. Note that the envelope stt) is A.e*® 41 and the IF
SMinp(t) SMaxp(®) )

is we+ a(t)— B(t). A detailed description of properties of
p; and qg; correspond to zeros inside and outside the unienvelope and IF of signals described by E2).can be found
circle, respectivelyu; correspond to the signal’s poles. Since in Ref. 31. We briefly summarize the main points here. The
the spectrum of the signal is assumed to have only positivenvelope, log-envelope, and pha®# IF) of s(t) are not
frequencies, poles are restricted to be inside the unit circlédband-limited quantities. It can be shown thas(f) is band-
Again this representation is analogous to causal, stable lIRmited then|s(t)|? anddZ s(t)/dt|s(t)|? are band-limited.
filters in discrete-time systems literature. Even more generFurther, it can also be shown that no “information” is lost
ally, if the spectrum o8(t) is two-sided then we may model by filtering the log-envelope and IF of a band-limiteft),
s(t) using poles and zeros inside and outside the unit circleusing a lowpass filter with bandwidth equal to that of the
e/t the arbitrary frequency translation, is analogous to arsignals(t). That is, in principle, it is possible to essentially
arbitrary time shift in the impulse response in the case of aeconstruct the signal(t) given ideally filtered versions of
discrete-time filter. In summary, we model complex-valuedlog-envelope and IF dd(t). The counterpart of this property
periodic signals using an all-zero or a pole-zero signal modeih the systems domain is the property of complex cepstrum
as in Egs(2) and(3), respectively. This type of signal mod- (see Ch. 12 in Ref.)5 That is, even though the complex
eling goes back to the work of Cauchy and Hadamard and isepstrum of a finite-length discrete-time sequence is infinite
related to the theory of entire functiofis° Voelcker called in length, only a finite number of samples of the complex
this way of modeling signals as “product representation ofcepstrum is needed to recover the original sequence.
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Using the above product representation model, in addiA. General case
tion to being able_tc_) obtain explicit expr_essio_ns for the log- Let s(t) be any analytic signal with spectrum confined
gnvelope and _IF, it is also easy to gain intuitive undersp&mdf0 the positive side of the frequency axis,
ing of the relationship between phase and envelope of signals
based on familiar results in systems theory. Just like the unit ~ s(t)=a(t)el?(V, (6)
circle in the(discrete-timg z plane corresponds to the inter- o i
val between zero frequency and the sampling frequértiog, -6t a(t)>0. The IF ofs(t) is ¢(t)/2z. The IF could lie
unit circle in the complex-time plane corresponds to the in-2nYWhere in the interval of(—x,) depending on the
terval of T seconds. If a periodic signal is such that a zero Ofmakeup ofs(t). Let us rewrites(t) as
the signalp; or q;, is close to the unit circle, then significant s(t)=ehat+id) 7
phase changes will occur in the temporal neighborhood of o i
this zero, which will be reflected in the IF values. Specifi- Adding and subtracting in the exponent the @rjina(t),
cally, a zero close to the unit circle will result in a large spike(hat” stands for Hilbert transform we get after rearrang-

in the IF. In fact, if a zero happens to fall on the circle, the'N9:

envelope goes to zer@t a time instant determined by the e .

zero's location and the IF at that time instant is undefingd s(t)=emo@+ina(Dyj(¢(n-Tna(®) (8)
la group delay of systemsThus if we want to use IF and
log-envelope as information-bearing attributes of a signal,
then it is necessary to “tame” these quantities by shapingrhe above is analogous to the unique decomposition of the
the signal spectrum. That is, we must preprocess the signéilequency response of a linear, causal, continuous-time sys-
such that the zerog; andq; , stay away from the unit circle. tem into its minimum-phase and all-pass pa@bserve that
This preprocessing then becomes part and parcel of the si@in the above the first term on the right is a MinP analytic
nal representation. signal. If we multiply both sides of the above by
e~ na®-iMmal (which is also MinP with spectrum confined to
positive frequencigs since the spectrum af(t) is already

confined to positive frequencies only, it follows that the
The model in Eq(2) describes a stationary and periodic spectrum ofel(¢(-Ma®) is nonzero only for positive fre-

signal. Of course, most signals of interest are not stationarguencies. Hencel (¢ -Ma®) must be an AllP analytic sig-
and certainly not periodic. Hence, as in the case of short-tim@al. The AIIP signal is also called a Blaschke function in
spectral analysis/spectrogram, we may consider a shognalytic function theory?**and may be written as a product
T-second segment of a nonstationary signal and imagine thaf all-phase “sections,” i.e., aBl;(t—z)/(t—2z"). It can be

it is periodically extended in order to apply the model in Eq.shown that the AllP signal has not only a one-sided spectrum
(2). Then, successive overlappirigsecond segments of a put has the remarkable property that its IF is a positive defi-
signal may be described as in E@), possibly with slowly  nite function?®*2 Based on this property we have defined a

drifting parametersf; andq;) and the associated envelope function y(t), called the positive IFPIF),* of any analytic
and IF they represent. Thus although the model described igignals(t) as follows:

this section is strictly valid for a periodic signal, we intend to
apply it to nonstationary signals by viewing the signal W(t)=PIF of s(t)= d(¢(t) —Ma(t))
through a slidingr-second window. In fact there is no reason dt '

to fix the Wme\.N length toT seponds. The window length In words, we define an analytic signal’s PIF as the derivative
may be a function of the nominal center frequency of the

. X . of that part of its phase which is left over after removing the
signal s(t) as its characterlstlcs change. .Next, We use th%ontribution due to the signal’s log-envelofspecifically the
above model to define a signal whose IF is positive. Hilbert transform of its log-envelopefrom the original
phase. The main point is that any analytic signal can be
characterized by two positive functions: a positive envelope
function (the magnitude of the MinP parand a positive IF
function (of its AlIP par) rather than by its usual Ifphase-
Recall that an analytic signal is said to be minimum-derivative, ¢(t)]. This is an important observation that we
phaseMinP) if its log-envelope (lig(t)|) and its phase angle repeatedly exploit.
are related by Hilbert transform. An analytic signal is said to
be maximum-phasé@MaxP) if its log-envelope is the nega-
tive of the Hilbert transform of its phase angle. An importantB Periodic case
property of these signals is that their logarithm is also an™"
analytic signal. Another important aspect is that either enve-  Although the above decomposition is valid for any ana-
lope or phase of these signals is essentially sufficient inforlytic signal, as mentioned before, in practice one has to work
mation to characterize these signals. An analytic signal isvith a finite, T-second, segment of a possibly nonstationary
said to be all-phas@llP) if its envelope|s(t)|, is constant.  signal,s(t). Hence, we may invoke th@eriodic extension
That is, AlIP is a pure phase signal with one-sided spectrummodel we have used in E¢l). We shall repeat Eq$2) and
Now we shall discuss signals whose IF is always positive. (4) here for convenience.

MinP AllP

A. Extension to nonstationary signals

C)

Il. POSITIVE INSTANTANEOUS FREQUENCY (PIF) OF
A SIGNAL
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P Q

sth=age ! [] (1-pie™]] (1-qel?) (10)
=1 i=1
=A oI 0cl gD+ IE0) AW =jBW), (12)
— — “C— —
MinP MaxP

Note that the zerog); , andp; are assumed to be outside and

inside the unit-circle, respectively. We shall reflect theo

s(t) Minimize . 2 e(t) | Measure
—_— t)12dt — PIF (¢
over Ry Jo le®)] Frequency w(e)
h(t)
I1sG
R(t) =1+ he’® +.. 4+ hye/ ™ o MinP 1/h(t)

FIG. 1. LPSD algorithm; H(t) corresponds to the MinP part of the signal
s(t). ¥(t) corresponds to the IF of the AlIP part of the sigsét).

inside the circlgas 1) and cancel them using poles. Then MinP part conveys the AM information, i-eea(mﬁ(t)_ [or
we group all the zeros inside the unit circle to form a differ- €quivalently, its logarithna(t) + B(t)] around the carriei,
ent MinP signal and the zeros outside the circle and the poleand the AllP part conveys the PIF informatia(t).

that are their reflections inside the unit circle to form the

all-phase or AlIP part of the signal. That is,

P ]
, , 1 .
s(£)=aqe’ ” (1—p,-eJQ’)|| (l—q—*e’m)
i=1 i=1 ;

MinP
H?=1(1 _‘Iiejm)

12
“TZ = (WgHe™ "

AllP

Equivalently, multiplying and dividing Eq(11) by ei2B)
and collecting terms we get

5(F)=A @D+ BU+HIGED+BW) g0 1-28() | (13)

MinP AllP

The next question is: gives(t) over aT-second inter-
val, how do we compute the PIF of the signal or equivalently
separate the MinP and AllIP components? There are at least
three not so elegant ways to separate the MinP and AllP
components. First, one could find the Fourier coefficients of
s(t), then root the polynomial formed using the Fourier co-
efficients, i.e., findo; andq;, and then group them as in Eq.
(12) to separate the components. Alternatively, one could
compute the log-envelope aft) (i.e., Ins(t)|), compute its
Hilbert transform, and subtract it from the phases(f) [as
in Eq. (8)]. Third, we can use the block diagram in Fig. 12.7
(p. 784 of Oppenheim and Schafeby replacing their
X(e'®) by s(t). In this case one computes the logarithm of
s(t) and keeps the causal part of its spectriiue, spectrum
corresponding to the positive frequengies the MinP part.
The AP part is obtained by dividing(t) by the MinP part
as in Ref. 5. However, there is a new and elegant way of
achieving this decomposition which we describe riéxke-
markably, it does not require explicit computation of the
logarithm or the Hilbert transform or rooting of a polyno-
mial. We also called this method a generalized AM-FM de-
modulator since the outputs of the algorithm are the envelope

This grouping of signals is, of course, analogous to well-and PIF.
known decomposition of a linear discrete-time system into

minimum-phase and all-pass systef®se Sec. 5.6 in Ref)5

lll. ALGORITHM FOR DECOMPOSING AN ANALYTIC

Analogous to the fact that the group delay of the a”'pas%lGNAL INTO ENVELOPE AND PIE

filters is always positivéSec. 5.5 in Ref. § the IF of AllP
part will always be positivéeven if w,, the frequency trans-

Although in the previous section we have pointed to the

lation, is zerg. See Appendix B for a derivation of the IF of fact that any analytic signal can be written as a product as in

an AllP signal. Thus the PIF(t), of s(t) is a positive
function and is as follows:

W)= we—2B(1). (14)

The expression foB(t) is the same as that @f(t) in Eq. (5)

with cosine replaced with sine. Of course, we could als
group the zeros outside the unit circle together to form a
MaxP-AllIP decomposition. That is, we could also rewrite .

Eqg. (12) as a MaxP/AlIP product as follows:

S(t) = A+ BO—I @V + A1) g (wet+ 24(1), (15)

In this case the IF corresponding to the AlIP part will be

always negativgassuming the frequency translation is
zerg and may be called negative (RIF). If we can separate
the MinP and the AlIP components of the sigrsét), the
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Eq. (13), the question is how do we separate these multiplied
components? In this section we describe a remarkably simple
algorithm to separate the MinP and AlIP components. This is
shown in Fig. 1. It consists of two parts. In the first part,
which consists of a multiplier or modulator, an inverse signal
generator(ISG), and an error minimization block, a model
fitting procedure is used to flatten the envelope of the signal
s(t).

This is achieved by minimizing the energy of an error
signal e(t)(=h(t)s(t)). The energy ofe(t) is defined as
follows:

T T
f|e(t)|2dt=j |s(t)h(t)|?dt. (16)
0 0

h(t) is a signal generated by the ISG using the formula
h(t)y=1+3}_ he . Q=27/T. In other words, the ISG

1916



generates a low-pass periodic signal. The error energy i S[0] s[0] s[0] (0]
minimized by choosing the coefficients,. The reader who

i j2Q jHQ
is familiar with model-based spectral analysis will immedi- S[.l] + ¢ ,S[l] ¢ _S[l] e .s[l]
ately recognize the analogy between this method and th : : : . :
“autocorrelation method” of linear predictioh? In the au- s[K] KOG K] el2KOg[K] .-+ elKHOgK]
tocorrelation method, a discrete-time FIR filter, called an in-
verse filter or prediction-error filter, with frequency response h, e[0]
H(e'*) (with first coefficient held at unity is used to flatten h, e[1]
the envelope of a spectruXi(e!®) of a sequence(n) by x{ )= - (19
minimizing the errorf 3| X(el“)H(e1®)|? dw. This is an ex- h.H e[k]

act analog of Eq.16). Analogous to the autocorrelation

method, the error in Eq16) is a measure of the flatness of If we let s, H, h, ande denote the vectors/matrices from left

the envelope oé(t)._AIsq, minimizing the error in Eq(l6) to right in Eq.(19), then the solution vectol, that mini-
amounts to performing linear prediction on the Fourier coef-

i Ta— wN-1 2 s i
ficients of the signab(t) and hence we called it linear pre- mizese'e=Zn_ole[n]*, in Eq. (19), is given by
diction in spectral domain or LPSD in earlier wotkThe ~
signalh(t) may be called the “inverse signal” analogous to h=—(H™H) 'H's. (20
the inverse filter.

Similar to the MinP property of the prediction-error fil- Here T stands for conjugate-transpose and {* )denotes
ter used in linear predictiof?,minimizing f }|e(t)|?dt results ~ matrix inverse operation. The matrik, can be further de-
in a h(t) that is a MinP signalhaving all its signal zeros composed into a produ¢t =Sy nXnxH
inside the unit circlg This is true even if the envelope of
s(t) goes to zero at some points between 0 argkconds, 0] O - - 0
i.e., even if some; or g; fall on the unit circle. The signifi-

cance of this MinP property is that, as we already know, 1 _ 0 S['l] 0 O

h(t)’s log-envelope and phase are Hilbert transforms. Be- : : N :

cause the error minimization is performed to flatsi)'s 0 0 - 0 S[KI/ .y

envelope, if the value ofl is chosen sufficiently large, then

h(t) will be given by 1 1 1

) el Qi20 .. giHO
h(t)~e™ (@O +B)g=i@v+AV) 17) x| . . . . : (21

JKQ  Lj2KQ ... LiHKO
e e e NXH

Thus, 1h(t) is the desired approximation ts(t)’'s MinP

component and hence the name “inverse signal”fi¢t).  |n Eq. (21), observe thaB is a diagonal matrix consisting of

Consequently, the error signak(t) will be e(t)  signal samples whilX is essentially the DFT matrix. Using

~Ael(*ct=28M), and hence is an approximation to the AllP this decomposition, the solution vectdr, given by Eq.(20),

component ofs(t). In the second part, denoted in Fig. 1 ascan be rewritten as

“measure frequency,” the PIF is computed &g)/|e(t)| or

d2 e(t)/dt. The next section describes the algorithm usedto  «~_ 17 C1uTeT

minimize the errorf j|e(t)|? dt. h=-(X'S'SYH"X'S's. (22
Clearly, the solution depends only on the magnitude of

s[n]. h[n] can then be reconstructed by substituting ele-
In this section we present the details of the LPSD algoents of the vectoh in h[n]=1+ EE=1hkeij"-SMmp[n]

rithm fr(])r complutingf tr:‘e M&T)a’_}?} AHIP a_lr;]proximations can then be computed aslLh]; the log-envelope and phase

given the samples of the signs(t). The algorithm amounts - -

to performing linear prediction on the discrete Fourier trans-Of SMif‘P[n] correspon('jltm[n]+ﬁ[n] anda[kn]+,8[n], e

form (DFT) values of the signal samples. Lefn] (n  SPectively. The positive frequencyp.—2p[n], can be

=0,1,...K), given by Eq.(1), denote samples of the given found as the IF of the error signa|,n], using any standard

signal: K=N—1. Let 0 =2x/N be the assumed fundamen- _IF estimator E§uch as the phase _d|fference_between neighbor-

tal frequency. By replacing(t) ande(t) by their respective N9 samples’ Instead, as mentioned earlier, we may also

sampled versions, we have apply the LPSD algorithm again & n] [because the enve-

lope of the first derivative of(t) is ¢(t), which is the PIF.

We call this step the second-stage LPSD.

. The LPSD algorithm attempts to flatten the envelope of
e[n]=s[n]h[n]=s[n]+k21 his[n]e*™, (18 the signals(t) by using an adaptive amplitude demodulator.

This process not only eliminates the AM but also automati-
cally removes from the phase sft) a quantity equal to the
which can be further expressed in matrix notation as Hilbert transform of the log-envelope &ft). This is what

A. LPSD algorithm using signal samples

H
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causes the IF o&(t) to be positive. Instead, if we simply 28
“clip” s(t), i.e., obtains(t)/|s(t)|, then its phase derivative, 2
the traditional IF, will not always be positive. Second, the 15
MinP property ofh(t) guarantees that the envelope approxi-
mation 1/h(t)| will never equal zero. Further, MinP signals
will have their energy concentrated over a relatively small
region in the spectral domain analogous to a MinP filter
which has its impulse response peaking close to origin. It is
also possible to use the LPSD algorithm to achieve a MinP-
MaxP (instead of MinP-Alll decomposition of(t). Sepa-
ration of these components may also be viewed as deconvo- 2 A 0 1 2
lution of their spectra in the frequency domain. Third, an (@ Real part
important advantage of the LPSD algorithm is that it
achieves the separation of the MinP and AlIP components
without explicitly rooting a polynomial or computing the
logarithm or Hilbert transform of the signa(t).

Imaginary part
o

25

20

B. Simulation results

mplitude

We now provide results of applying the LPSD procedure <
to decompose synthetic signals. It will be followed by an
example of a speech signal.

1. Synthetic signals o1 | ’ . l ‘ .I . .

0 500 1000 1500 2000 2500

A signal s(t) consisting of ninfM =8 in Eq.(1)] har- (®) Frequency (Hz)
monically related complex _expone_nuals with frequencies Ocg 2 The eight zeros of the synthetic sigrsét) are shown in(@): its
200 Hz,..., up to 1.6 kHz, with amplitudes 1, 3.37, 3.42, 9.45 magnitude spectrum is plotted ih). The signalsampled at 16 kHzhas a
15.76, 5.4, 5.4, 3.72, and 1.5, respectively, and whose re200-Hz fundamental frequency and a carrier frequency of 800 kHz.
spective phase@n radiang were 0,—0.3, —1.3, —3.1, 2.8,
2.7, ~13, 0.9, and -0.6, was synthesizeds(t) corre- second-stage LPSD gave essentially the same results. Also
sponds to a mixed phasg signal CC.)nS.IStIng of fogr zeros In[')Iotted in Fig. 3b) is the true PIRdashed-dotted line, again
s’.'de. anq four zeros oqt5|de the unit circle. The signal is P€hot visible. The true PIF was obtained, for the purpose of
riodic with 5-msec period200-Hz fundamental frequency comparison, by using the roots of the polynomial in ED.
and has a carrier frequency_ of 800 Ktorresponding to its and synthesizing the AlIP signal given in Ed2) and deter-
MaxP component’s translatioQ(), w.=27X800 andw; T _ -
=0). The signal was sampled at 16 kHz. In Figa2we  Mmining its IF.w. was estlmat_ed as the_mean of PIF g#jd ]
have displayed the signal’s zeros while in Fighj2we have ~Was separated by subtracting's estimate from the PIF.
plotted its magnitude spectrum. Further,a[ n] was computed by subtracting the estimate of

The signal samples were fed to the LPSD algorithm de-1n] from the MinP signal's (H(t)’s) IF: the solid line in

scribed in the previous subsection. The coefficients of thq\:ig 3(c) corresponds to the separat@fhn]; it matches with
inver;g signah(t) were computed using E20). Once t.he the true onglobtained using the signal’s, rogtshown as a
coeff|C|er_1ts ofh(t)_are computed, thei(t) (aCtl.Ja."Y its dashed-dotted line. In Fig.(@ we have displayed the real
sampleyis synthesized. For the case of 60 coefficights, part of the signal reconstructed using the separated MinP and

T/T](Sto i_n Er?' (19)], l.tg? est_imlzifted Iog-zn;/el(lnlpetgiven by MaxP components using a solid line; the dashed-dotted line
.| ()] is shown(solid line) in Fig. 3a). Actually, two pe- corresponds to two periods of the real part of the original
riods (10 mseg of the log-envelope are shown. Also shown signals(t); they match exactly

is the true envelopedashed linggiven by Irjs(t)]. They per- Figure 3e) corresponds to the estimated R#olid line)

fectly match and hence the dashed line is not visible. The . . — 55'in first stage and = 15 in second-stage LPSD
magmtu_de .Of the error S'g'.m(t) IS ShOW.” " the dgshed- Clearly, a higher model ordéthe results of which are shown
dotted line in Fig. &), and is close to unity, indicating that in Fig. 3(b)] results in a better approximation. The effect of

the error signale(t) is indeed AlIP. In Fig. &) we have varvi . , ; ; ;
. / . . _ ying a signal's duration and changing model order is
plotted the signal's raw IHobtained by differencing the shown in Fig. &): we have plotted—10log (errop as a

fhhisti angles”;)f adjacent igrgpleﬁ gf the S(,)Igﬁi?rl] N;)r:e function of the signal length and model order; “error” de-
at the raw goes nega iMelashed ling On the other notes sum of squared error between the true PIF and the

hand, the PIFi.e., w,—2B[n]) computed by differencing estimated one. First, not surprisingly, the approximation gets
the phases of the neighboring samples of the error signddetter as model order increases. Second, agproaches the
e(t), stays positive, as it should. The PIF can also be obtrue period(80 samples of the signal, the approximation
tained by using the LPSD algorithm ax(t); we call this improves. However, as further increases, the assumed fun-
second-stage LPSD. The PIF obtained by differencing thelamental frequency), decreases and hence LPSD requires
phase angles of neighboring samples€f) or by using the a much higher order for a better approximation.
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S 0 FIG. 3. The separated log-envelope using LR®D coefficients is shown
qg, 500 (solid line) in (a); the true one is shown as dashed line; the magnitude of the
(i error signale(n) is shown as dashed-dotted line.(ls) we plot the signal's
-1000 raw IF (dashediwhich goes negative; the solid line refers to estimate of PIF
_1500 (H=15 in second stagethe true PIF is also displaye@ashed-dotted
2000 ) ) ) ) , , ) ) ) First stage estimate cﬁ[n] is shown as solid line irfc) along with true

a[n] plotted as dashed-dotted line. The real part of the reconstructed signal
using the separated components is plotteddn(using solid ling along

2 . . . . . ' . . , with the real part of the original signa(t) (dashed-dotted linethey match
exactly. The PIF when 20 coefficients were used in LPSD’s first stage and
15 in the second is plotted i®). The effect of increasing a signal’s duration
and increasing model order is shown (). We plot —log,, (erron as a
function of the signal lengtliin samples and model order; error denotes
sum of squared error between true PIF and estimated one. Time is shown in
samples.

Amplitude

5
(d) Time (msecs)

The above example had no roots with unit magnitudefor the time corresponding to location of on-circle zero
To test LPSD on signals with some zeros on the unit circle(dashed-dotted lineln Fig. 4b) we show the approximated
g‘uasgzl)t(:(rjfpg ;)vr;es osfetth;aozltjarr](ii;o\l;vtgeuzgdrl:zlouisﬁdl_gsawzrewPIF using a solid line along with the true. — Z,Q[n] (dashed
first stage andH=10 in the second one. The results areIme). Clearly, the PIF approximates the spikes due to on-
displayed in Fig. 48) and (b). In Fig. 4a we plot the log circle zeros in addition to closely matching the IF due to
enve|opes; Sharp d|ps in the Signa|'s |Og magnn([dhshed zeros off the unit circle. To summarize thus far, given a
line) are due to the on-circle zero. Observe that the approxisignal s(t), its various componentgMinP/MaxP/AllP),
mation (solid line) tends to exclude this zero. Further ob- which are actually multiplied components, can be separated
serve that the magnitude of the error sigeél) is unity, but  using simple linear techniques without resorting to logarith-
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FIG. 4. We consider a signal with a zero of unity magnitude. Its log enve-
lope is shown in(a) as a dashed line; dips correspond to location of the 8000 T T T T -
on-circle zero. We useti=40 in LPSD’s first stage an#i=10 in the 7000 : A . : 1
second one. The estimated log envelope and PIF are piitéid lines in & . i i
(a) and (b), respectively; original functions are shown using dashed line;
dashed-dotted line ifB) denotes error’'s magnitude.

mic processing or rooting algorithms. We now give an ex-
ample using speech signals.

2. Speech signal )

In this section we give results of processing clean voiced'*® 5 10: 15 » —
speech, obtained from the TIMIT database, in the sentenc(®
train/dr3/fcke0/si1111.wawhich corresponded to the utter-

ance “How do we define it?” Figure (®) shows the results X ' ' ' ]
for a segment, whereas Fig(kh shows the results for the socol |
entire sentence. The sign@ampled at 16 kHzwas preem- &

. . . . . . I 5000 #3
phasized using a high-pass filtéwith transfer function 1~ % T |
—0.9& 1) and its analytic version was computed using the § sook 42 |
fast Fourier transforn{FFT) based Hilbert transformer in % 2000_\—/—\_/\/\/\_/\/_
Matlab. We then chose 14.56 ms of the sigsamples = ool |
6851:7084 that was part of the phoneme /iy/. This signal K #1 .
was then bandpass filtered using three bandpass filter . . . ‘
(BPF9 which were part of “Lyon’s Passive Long Wave Co- -1 5 0 15 20 25
chlear Model” proposed by Lyoff The bandpass filters Time (msecs)

(BPF9 were manually chosen such that their center frequen-

cies were roughly centered around the formant locations. In

Fig. 5(@) we have shown the magnitude spectrum of the prefiG. 5. The spectrum of a preemphasized voiced speech segment is dis-
emphasized speech sigriablid line) along with the normal-  played in(a). The signal was filtered using 3 BPEmagnitude responses
ized magnitude responses of the three BRftted lines. shown in(a) as dotted lineswhich correspond to Lyon’s auditory filters.

. , . PSD parameters were selected based on BPFs’ bandwidths. The estimated
The S|gnals at these BPFs output were inputs to our LPS g envelopes are showmot to scalg in (b) as solid lines along with the

algorithm. The bandwidthsB() for BPFs centered at500  signals’ true log envelopes shown as dashed, dashed-dotted, and dotted lines
Hz, 2.25 kHz, and 5 kHz were approximately 120, 340, andor BPFs 1, 2, and 3, respectively. The raw IFs for signals filtered by BPFs
900 Hz, respectively. These bandwidths roughly correspongl: #2: and #3 are displayed(a as dashed, dashed-dotted, and dotted lines

.. . . . . respectively, along with corresponding lowpass filte(eith order 50 and
to the critical bandwidths of the auditory filters at the given ciotfs 120, 340, and 900 Hi#Fs shown as solid lines. Ifd) we plot the

center frequencies. Recall that LPSD assumes a fundamentaks estimated using LPSD with=4, 11, and 28, respectively.
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FIG. 6. We envision a “tonotopic signal analyzer” as a general purpose
processor that decomposes an input sigioal the time-frequency plahe
around regions of dominant spectral energies into carrier frequencies, lo
amplitudes, and MinP-AllRor MinP-MaxP modulationg a,(t) andB(t)].
These modulations are further broken down into their respective center fre
quencies, and so on. The result is a treelike break-up of the signal wherei
higher nodes of the tree correspond to more significant temporal-spectri
events in the signal.

Log-Amplitude

0 100 200 300 490 500 600 700 800
frequency,Q, of 27/N; this corresponds to 32 Hz for the () e e
present example. Having specified a certain bandwidth fo .,
envelope approximation, one can compute the algorithm’s .,
model order adH=27B./(). Based on these calculations,
we chose LPSD model ordenrd, to be 12, 33, and 84, cor- £,
responding to three times the critical bandwidths for first-2,, |
stage envelope approximation. The valueslafere set to 4, %.’1500 ‘
11, and 28 for approximating the PIFs in second-stage prci
cessing. One may also keepfixed and vary the processing
interval for each BPF proportional toB/. Our goal was not .
to parsimoniously describe the signal but to demonstrate thé () °
the carrier frequency and the modulations carry sufficien
information to describe the signal. The estimated log enve
lopes are shown in Fig.(B) as solid linegnot to scal¢along
with the signal’s Hilbert envelopes for each of the three fil- 5°
ters(dashed, dashed-dotted, and dotted for BPFs 1, 2, and 5**f
respectively. The raw IFs(obtained by phase-differencing g**|
for signals filtered by the three BPFs are displayed in Fig §15°°
5(c) as dashed, dashed-dotted, and dotted lines, respective '*®

500 =

100 200 300 400 500 600 700 800
Time (msecs)

4000

3500

along with corresponding lowpass filteraslith order 50 and S0 [ ; ; . = -

cutoffs 120, 340, and 900 HzFs shown as solid lines. The @ % 00 200 w0 500 po 700 800

PIFs resulting from second-stage processing are depicted ... Time (msecs)

Fig. 5(d). FIG. 7. (&) The speech signal for the sentence “How do we define it?” is

Based on earlier discussions we can see that the shaptted; this segment was obtained from the TIMIT datati@shIT/train/
spikes in raw log-envelopes and most of the spikes in ravdr3/fcke0/si1111.wav (b) We have displayed the estimated average log-
IFs (especially for signals at output of BPEs 2 ar)daBe due envelopes as solid, dashed-dotted, and dotted lines at the output of the three

. | | h it circle® the | b time-varying filters. The details of the time-varying bandpass filtBRRF9
to signa zerog very C osetot e unit C”’.C e; the latter may Gre given in Ref. 31(c) We have superimposed on the spectrogram the
caused by neighboring peaks in the signal’s spectral envestimated PIFs of the components at the output of the time-varying BPFs.
lope (or neighboring formanjs Further, the raw IFs also go (d) The averages of the PIFs are shown. They tend to follow the trajectories
negative at times. In general, the raw log-envelopes and |F¥ the first three formants.
are highly fluctuating quantities. Clearly, the LPSD may be
viewed as a technique to compute a signal’s envelope’s logasignal must be decomposed by a bank of time-varying filters
rithm. The IF approximated by LPSD has two distinct advan-which may then be followed by envelope and PIF decompo-
tages over techniques that merely filter the raw IF. First, insition described here. The bank of filters must be data adap-
the absence of on-circle zeros, it is always positive. Secondive and should form part of the speech signal representation.
it approximates the typically impulsive IF bett@due to the A block diagram depicting this basic idea is shown in Fig. 6.
all-pole model assumptigmms opposed to lowpass filtered IF. We have made some progress in implementing this block

When a composite signal consists of many spectral rediagram>! but due to space limitations the details are not
gions of interest which are time-varying, as in speech, theresented here. FigurédJ, (b), (c), and(d) show the results
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of processing the entire sentence “How do we define it?” APPENDIX A: MINIMUM AND MAXIMUM PHASE
using this decomposition. We may call this approach “Tono-SIGNALS

topic Signal AnalysiSTSA),” since the procedure not only
attempts to track the formant center frequencies but also pro-
vides the details of modulatiorithe « and 8) about those e(t)=1—pe®, (A1)

frequencies. Reference 31 provides several such speech pro- B 00 . . .
cessing examples. wherep=|p|e!’. If |p|<1 thene(t) is called a MinP signal,

since no other signal with the same envelope has a smaller
phase angle. Observe tHa(t)|>0. Taking the natural loga-
rithm of both sides and using the series expansion,-yjl

An elementary signa? e(t), is defined as

IV. DISCUSSION =Sy 1(—Y¥K), we get
® pke—jkm
In this paper our main accomplishment is the decompo- In(1— peiﬂt):kzl — (A2)

sition of an analytic signal into two analytic signals using a

simple (LPSD) algorithm. Decomposition of analytic func-  atter exponentiating both sides, we get the following iden-
tions of a complex variable has been studied in systemgty:

theory and filter design since the days of Henrik B8da

the 1930s. However, much of that work dealt with frequency 0t Iplk
responses, i.e., frequency is viewed as a complex varible 1~ P& =€X gl K
(continuous-time systemsor z (discrete-time systems

Cepstrum-related researctnay be viewed as an extension - Ipl* .

of this work. Voelcker's contribution, which extends Gabor’s tl kzl i sin(kQt+ke)
work,” is that he recognized that analytic functions could be

used for studying the relationships between phase and envEtom the above expression we note that for an elementary
lope of signals by treating time as a complex variable. To ouMinP signal,e(t), the logarithm of its envelope and its phase
knowledge, Voelcker did not attempt to decompose Signa@ngle are related through the Hilbert transform. Similarly, for
into MinP and MaxP or AllP components. The MinP/MaxP/ an elementary MaxP signal (iqe/®) where q=|q|e/?,

AlIP decomposition was, perhaps, first done by Oppenheintdl>1, we get the following identity:

s

cogkQt+ko)

. (A3)

and colleaguetsee Ch. 12 in Ref. 5, and references therein 3 —|1/q|"

However, their decomposition was achieved by rooting a 1—qeiﬂt:(_qeim)exp( E cogkQt+ke)
polynomial or computing logarithm/log-derivative in the =1k

ztransform or frequency domain. In contrast, the signifi- P |14 |k

cance of our result is that the MinP-AllP or MinP-MaxP —i> q sin(kQt+ke) |. (A4)
decomposition is achieved using an elegant adaptive de- k=1 k

modulator without rooting, Hilbert transformation, or phaseype key difference between Eq&3) and(A4) is the change
unwrapping, directly from the given signa(t). A similar  , the sign of the phase function.
procedure can be developed for the frequency domain as Using the above identities in EQ) yields
well. The primary difference between our approach and the -
cepstrum analysis is that we explore the signal’s logarithm in ~ Suinp(t) =e**1a® (A5)
the time domain which yields a physically acceptable quan
tity like the positive instantaneous frequency. This helps us A
in characterizing the IF of signals which consist of many s,  (t)=A el ilwot=Ab) (A6)
components such as a speech formant. The averagé.@lF
the carrier frequengyindicates the place-location of a sig-
nal’s spectral concentration. > P Bk

Unfortunately, in this paper, we still need to form the — a(t)=>, > - o codkQt+ké) (A7)
analytic signal before the proposed decomposition can be k=11l
achieved. That is, since in practice only real-valued signaland
are available for processing, one has to compute its Hilbert % Q K
transform. In more recent wotkwe have proposed an algo- B(t)= E 2 _ Ua| cogkQt+ke) (A8)
rithm which avoids computation of the analytic signal. It is k=1i=1 K v
possible to obtain the envelope and PIF directly from the re
signal under certain restrictions.

where

aJI'hus s(t) as described in Eq2) can be compactly repre-

sented as
S(t) = A el ctea(D+iagh—iAN), (A9)
ACKNOWLEDGMENT whereA, corresponds to the overall amplitude of the signal

and w. denotes its “carrier” frequencyw, is equal toQ(}
This research was supported by a grant from the Naplus any arbitrary frequency translation that the sigs(4)
tional Science Foundation under Grant No. CCR-9804050. may have been subjected to. The log-envelope and phase of
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s(t) are expressed in terms af(t) and B(t) as

“x” denotes complex conjugatiorg=|g|e'?, and|q|>1.
Rearranging the numerator we have

In|s(t)|=a(t)+ B(t)+In A, (A10) _
and =—qget L (Lpe ™ 2
zZ(t)=—q T (Ug=)el™ (B2)
£5(t) = wt+ a(t)— B(1), (A11)

Simplifying the above equation, we find th#t)’s envelope
respectively. The above expressions can be a useful pedig @ constantequal to|g) for all time, t, and that its phase
gogical tool in explaining phase-envelope relationships in thé@ngle is

signal as well as systems domains. For instance, the well- o
known results in Ref. 39, where one attempts to reconstructa  / z(t)=Qt+ 7+ ¢+ 22
signal from either phase or magnitude information, may eas-

ily be explained using the above expressions. For example, ifaking the first derivative of z(t), its IF can be expressed
a pair of roots oB(t) occurs in complex conjugate reciprocal g5
locations, i.e.p;=1/q , then theith term in the summation

in Egs.(A7) and(5) are identical and hence vanish from the ~ dZz(t)
expression for phase in EGA11). Hence, in this case, phase dt
does not uniquely specify the signglt). This is essentially

theorem 1 in Ref. 39, which is stated in the systems domams'?f/e*;zjeml

11 QIk

sinkQt+ke). (B3)

=0l 1+2> ’a cogkQt+ke) |. (B4)
k=1
right side of Eq.B4) is Q(1—|1/q|?)|1
2 and is analogous to a “power spectrum,”

Similarly if p;=—1/q], then from Eq.(A10) we see that
magnitude alone is not sufficient to specify a sigs@). In

general, both phase and envelope are required to repres

s(t).

The instantaneous frequen¢lf) of s(t) is the deriva-

tive of the phase ofs(t) and is simply w.+ &(t) — B(t)
(where the dot stands for the first derivadiviee., it consists
of a dc(corresponding to carrier frequenand a sum of IFs
of s(t)’s MinP and MaxP components. Thus we have

d/ s(t (2
( )=wC—Q > 1> Ipil*cogkQt+ké;)
dt k=1 \i=1

Q
—Zl |1/qi|kcos{th+k¢i)”. (A12)

Clearly, the spectrum a(t)’s IF [given by Eq.(A12)] con-
tains an infinite number of harmonic compone(ts being

z(t)’s IF is always positive. We may generalize this result to

éHF case of a signal consisting of a product of rational signals

in Eq.(B2), i.e., z(t) of form
L

z(t)=]1

L-ge™ B5
=1 1—(1/g)e (85
Since the phase angle contribution due to each oL ttegms
in the above equation adds up, the corresponding IF is

1+2,
k=1

L

—QZ

sz(t)

k
— cos{th+k¢i)).

(B6)

Since each of the terms in the above summation is positive,
we claim that the final IF given by EqB6) is positive.
These results are analogous to the results well known in dis-
crete time all-pasgAP) systems, where the equivalent of IF
is the group dela§l® our derivation is slightly different than

the fundamental frequengyA closed-form expression for IF  the one given in Oppenheim and Schafer.

is obtained by summing E4A12) as

dzs(t)/dt

P — .
—w-0| S |pil(cog Qt+6,)—[pi|)

i1 1-2[py|cog Qt+ 6,) +|p,|?
_§ | 1/cy | (cos Ot + ) — | 1)
<1 1-2[(1g;)|cog Qt+ ) +|(Lfay)|? |

(A13)

The above reveals thatt)’s IF tends to*+o whenever one
or more of its zeros tend to lie on the unit cir¢kee Ref. 31
for detailg. All these results were known to Voelcker.

APPENDIX B: SIGNALS WITH POSITIVE
INSTANTANEOUS FREQUENCY

Consider a signak(t), which is a ratio of two signals as

follows:

1—qel™

z(t)= mrm: (B1)
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