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An analytic signals(t) is modeled over aT second duration by a pole-zero model by considering
its periodic extensions. This type of representation is analogous to that used in discrete-time systems
theory, where the periodic frequency response of a system is characterized by a finite number of
poles and zeros in thez-plane. Except, in this case, the poles and zeros are located in the
complex-time plane. Using this signal model, expressions are derived for the envelope, phase, and
the instantaneous frequency of the signals(t). In the special case of an analytic signal having poles
and zeros in reciprocal complex conjugate locations about the unit circle in the complex-time plane,
it is shown that their instantaneous frequency~IF! is always positive. This result paves the way for
representing signals by positive envelopes and positive IF~PIF!. An algorithm is proposed for
decomposing an analytic signal into two analytic signals, one completely characterized by its
envelope and the other having a positive IF. This algorithm is new and does not have a counterpart
in the cepstral literature. It consists of two steps. In the first step, the envelope of the signal is
approximated to desired accuracy using a minimum-phase approximation by using the dual of the
autocorrelation method of linear prediction, well known in spectral analysis. The criterion that is
optimized is a waveform flatness measure as opposed to the spectral flatness measure used in
spectral analysis. This method is called linear prediction in spectral domain~LPSD!. The resulting
residual error signal is an all-phase or phase-only analytic signal. In the second step, the derivative
of the error signal, which is the PIF, is computed. The two steps together provide a unique AM-FM
or minimum-phase/all-phase decomposition of a signal. This method is then applied to synthetic
signals and filtered speech signals. ©1999 Acoustical Society of America.
@S0001-4966~99!01003-6#
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INTRODUCTION

Many natural and man-made signals of interest are tim
varying or nonstationary in nature, i.e., their frequency c
tent or spectrum changes with time. Examples inclu
speech signals, animal calls, biological/biomedical sign
such as cardiac rhythms, etc. Techniques for characteri
such signals are of great importance in applications invo
ing such signals. A collection of short-time Fourier spec
known as spectrogram is a common tool for analyzing s
time-varying signals. Unfortunately, the spectrogram suff
from the need to compromise time and frequency resolut
i.e., a large time window is required to resolve close
spaced frequencies. To overcome this problem, a numbe
so-called time-frequency distributions or representati
have been developed.1,2 The time-frequency analysis too
are very useful in visualizing the time and frequency beh
ior of simple signals like a chirp. However, when the sign
are complex, as in the case of speech, it is hard to inter
time-frequency representations because of the interact
between components in the signal. The time-freque
analysis methods also create a practical problem. They re
in enormous 2D data sets. Although sometimes these
data sets can be viewed by humans to sort out the impo
features of interest, it is hard to program a machine to r
ably extract such features. Hence it has been difficult to
ply these methods to automatic signal classification pr
lems.
1912 J. Acoust. Soc. Am. 105 (3), March 1999 0001-4966/99/105
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In the area of speech processing, the above problem
circumvented by directly extracting features from short s
ments of a speech signal. Such algorithms are based
short-term spectral analysis in the form of linear predicti
~which captures the spectral envelope of a signal with a
parameters!,3,4 cepstral analysis,5 and Mel-cepstrum.6 Using
these procedures, spectral templates or feature vectors
computed and used in applications like machine recognit
verification. However, these methods are vulnerable to in
ference and channel degradations as encountered in
phone speech. Signals are also often analyzed over s
time intervals, using specific signal models, such as sum
sinusoidal or damped sinusoidal signals or phase-modul
sinusoidal signals. If such models are appropriate for the d
at hand, then significant advantages can be gained. In
paper a model-based approach is proposed for represe
signals by their envelope and instantaneous frequency w
is guaranteed to be positive.

A. Envelope and instantaneous frequency of signals

Many of the above-mentioned methods represent a
nal by characterizing its power as a function of time a
frequency. Are there other alternatives? Clearly, a sign
phase and envelope carry information about how vari
components of the signal are related to each other. Henc
it possible to characterize a signal by its phase and enve
1912(3)/1912/13/$15.00 © 1999 Acoustical Society of America
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modulations? In his 1946 paper, among other import
ideas, Gabor approached this question by defining the
called analytic signal or pre-envelope.7,8 Recall that ifsr(t)
is a real signal, then the corresponding analytic signa
s(t)5sr(t)1 j ŝr(t), whereŝr(t) is the Hilbert transform9 of
sr(t). The Fourier transform ofs(t), S(v), is nonzero only
for v.0. The envelope ofsr(t) is then defined asus(t)u and
its instantaneous frequency~IF! is denoted by the first de
rivative of s(t)’s phase function scaled by 1/2p. An analytic
signal is valuable because it permits an unambiguous c
acterization of a real signal in terms of its envelope and IF10

Characterizing a signal by envelope and IF is also commo
referred to as AM-FM modeling of signals.11–14

Engineers and scientists are most familiar with IF in t
context of frequency-modulated signals as in a FM rad
But what about the IF of an arbitrary signal? For an arbitr
signal, the IF is typically an erratic function whose ran
may extend from negative to positive infinity.10 For example,
for a signal consisting of two complex sine waves, i.
s(t)5a1ej v1t1a2ej v2t, the IF could lie anywhere in the
range of~2`,`! depending on the relative sizes ofa1 and
a2 . The general impression among researchers is that th
function is unusable unless it is sufficiently smoothed15

Some incompletely resolved questions regarding IF inclu
how do we interpret the envelope and IF of naturally occ
ring ~not man-made! signals like speech? How are phase
IF and envelope related to each other? Is IF more impor
than envelope? When is a signal’s IF a smooth functio
Under what conditions is a signal’s IF guaranteed to be p
tive, and so on. Further, one of the factors that has disc
aged researchers15,16 in using phase and envelope to repr
sent a signal is the following: for example, if bandpa
filtered speech is decomposed into envelope and IF, then
resulting modulations, rather ironically, have bandwid
that are typically much greater compared to that of the or
nal band-limited signal.

In addition to Gabor, Dugundji, and others,7,8,17–22sig-
nificant contributions to understanding analytic signals w
made nearly 30 years ago by Voelcker.23,24 Voelcker pro-
posed a methodical way to understanding the IF and
envelope of signals which may help answer some of
questions raised above. Unfortunately, Voelcker’s wo
never became popular because it was somewhat hard to
He proposed that complex-valued signals~and hence analytic
signals! be modeled as polynomials or a ratio of polynomia
in the complex variablet ~time!, just like a given system o
frequency response may be modeled by a ratio of polyno
als in the s-domain ~continuous-time systems! or the
z-domain~discrete-time systems!. He called it ‘‘product rep-
resentation of signals.’’ Once we realize that signals may
represented by a polynomial or a ratio of polynomials w
complex coefficients, then a myriad of ideas that have b
developed in systems literature can be applied to this
called product representation of signals. In this paper
extend Voelcker’s work by applying some of the well-know
ideas from the theory of linear prediction25 to his signal
model.

A motivation for representing signals by envelope a
IF comes from our desire to understand and model the si
1913 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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processing function performed by the auditory periphe
particularly the cochlea. The cochlea is known26 to decom-
pose acoustic stimuli into frequency components along
length of the basilar membrane. This phenomenon is ca
tonotopic decomposition. Further, it is also known that t
nerve fibers emanating from a high-frequency location in
cochlea ‘‘phase-lock’’ to the envelope of the stimulus arou
that frequency, i.e., convey information about the envelo
modulations in the signal.27 Thus, to a first-order approxima
tion, it is often argued that the tonotopic location/place alo
the length of the basilar membrane conveys the IF or
quency information about the signal, and the rate of ne
fiber activity around that location conveys the envelope
formation. Hence analytical signal models that explici
characterize the envelope and phase variations of a com
stimulus on a short-time basis may eventually help in und
standing the cochlear function.

B. Organization of the paper

In Sec. I we consider complex-valued periodic sign
and express them as a product of so-called elementary
nals àla Voelcker. This type of representation is analogo
to that used in discrete-time systems theory, where the p
odic frequency response of a system is characterized b
finite number of poles and zeros, except in our case the p
and zeros are located in a complex-time plane. Using
signal model, we derive expressions for the envelope, ph
and the instantaneous frequency. In the special case o
analytic signal having poles and zeros in reciprocal comp
conjugate locations about the unit circle in the complex-ti
plane, it is shown in Sec. II that their instantaneous f
quency~IF! is always positive. This result paves the way f
representing signals by positive envelopes and positive
~PIF! as desired in literature associated with time-frequen
distributions.10,14 In Sec. III we propose a new algorithm
which consists of two steps to achieve a unique decomp
tion of an analytic signal into two analytic signals, one co
pletely described by its envelope and the other having a p
tive IF. This type of decomposition is different from thos
known in the cepstral literature.5 In the first step, the enve
lope of the signal is approximated to desired accuracy us
a minimum-phase approximation by using the dual of
autocorrelation method of linear prediction25 well known in
spectral analysis. The criterion that is optimized is a wa
form flatness measure as opposed to the spectral flat
measure used in the spectral domain. We call our meth
linear prediction in spectral domain~LPSD!. The resulting
residual error signal is an all-phase or phase-only anal
signal. In the second step, the derivative of the error signa
approximated. The two steps together provide a uniq
AM-FM or minimum-phase/all-phase decomposition of
signal. This method is then applied to synthetic signals a
filtered speech signals.

I. ENVELOPE AND IF IN TERMS OF A SIGNAL
MODEL

Consider a periodic analytic signals(t), with periodT
seconds. LetV52p/T denote its fundamental angular fre
1913R. Kumaresan and A. Rao: Model-based estimation of signals
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quency. Ifs(t) has finite bandwidth, it may be described b
the following model for a sufficiently largeM, over an inter-
val of T seconds:

s~ t !5ej v tt(
k50

M

ake
jkVt. ~1!

ej v tt represents a frequency translation. In other words,v t

>0 is the nominal carrier frequency of the signal.ak are the
complex amplitudes of the sinusoidsejkVt; a0Þ0 and aM

Þ0. By analytic continuation we may regardej Vt as a com-
plex variable~à la the complex variableZ!. That is, t, the
time variable, is regarded as complex-valued. Note tha
Eq. ~1! the M th degree polynomial inej Vt represents the
complex envelope of the signals(t). We may factor this
polynomial into itsM (5P1Q) factors and rewrites(t) as

~2!

p1 ,p2 ,...,pP , and q1 ,q2 ,...,qQ denote the polynomial’s
roots; pi5upi uej u i, qi5uqi uej f i. pi denote roots inside the
unit circle in the complex plane,qi are outside the unit circle
Currently we assume that there are no roots on the cir
That is upi u,1 and uqi u.1. Each factor of the form (1
2pie

j Vt) in the above is called an ‘‘elementary signal.’’23

The pi andqi are referred to as zeros of the signals(t). The
above expressions, representing a band-limited periodic
nal, may be recognized as the counterpart of the freque
response of a finite impulse response~FIR! filter in discrete-
time systems theory.28 More generally, ifs(t) consists of an
infinite number of spectral lines@i.e., its Fourier transform
S(v)5(k50

` akd(v2kV)#, then we can represents(t) over
T seconds to desired accuracy using a sufficient numbe
poles and zeros as follows:

~3!

pi and qi correspond to zeros inside and outside the u
circle, respectively.ui correspond to the signal’s poles. Sin
the spectrum of the signal is assumed to have only pos
frequencies, poles are restricted to be inside the unit cir
Again this representation is analogous to causal, stable
filters in discrete-time systems literature. Even more gen
ally, if the spectrum ofs(t) is two-sided then we may mode
s(t) using poles and zeros inside and outside the unit cir
ej v tt, the arbitrary frequency translation, is analogous to
arbitrary time shift in the impulse response in the case o
discrete-time filter. In summary, we model complex-valu
periodic signals using an all-zero or a pole-zero signal mo
as in Eqs.~2! and~3!, respectively. This type of signal mod
eling goes back to the work of Cauchy and Hadamard an
related to the theory of entire functions.29,30 Voelcker called
this way of modeling signals as ‘‘product representation
1914 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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signals.’’ We shall primarily work with the all-zero model
since they are easier to use.

The factors corresponding to the zeros inside the u
circle, P i 51

P (12pie
j Vt), constitute the minimum-phas

~MinP! signal. Similarly, the factors corresponding to th
zeros outside the circle,P i 51

Q (12qie
j Vt), constitute the

maximum-phase~MaxP! signal. These are the direct coun
terparts of the frequency responses of the well-kno
minimum-and maximum-phase FIR filters in discrete-tim
systems theory;5 just as in systems theory~see Sec. 10.3 in
Ref. 5! the phase of the MinP signal is the Hilbert transfor
of its log-envelope. That is, the MinP signal may be e
pressed in the formea(t)1 j â(t). See Appendix A for details
â(t) is the Hilbert transform ofa(t). Similarly, since a
maximum-phase~MaxP! signal has zeros outside the un

circle, it may be expressed aseb(t)2 j b̂(t). Thus, envelope or
phase alone is sufficient to essentially characterize a MinP
a MaxP signal.@Along the same lines, an all-phase~AllP!
analytic signal~the analog of an all-pass filter! would be of
the formej g(t).# Thuss(t) may be expressed as

~4!

where the ‘‘hat’’ stands for Hilbert transform.vc is QV
~contributed by the linear phase term from the MaxP sign!
plus the arbitrary frequency translation,v t , shown in Eq.
~2!. Ac is a0P i 51

Q (2qi). See Appendix A for details. The
expressions fora(t) andb(t) are derived in Appendix A.

a~ t !5 (
k51

`

(
i 51

P

2
upi uk

k
cos~kVt1ku i !

and

b~ t !5 (
k51

`

(
i 51

Q

2
1/uqi uk

k
cos~kQt1kf i !. ~5!

Closed-form expressions can be obtained forȧ̂(t) and

ḃ̂(t).23,31 The ‘‘dot’’ stands for the time-derivative opera
tion. Note that the envelope ofs(t) is Ace

a(t)1b(t) and the IF

is vc1 ȧ̂(t)2 ḃ̂(t). A detailed description of properties o
envelope and IF of signals described by Eq.~2! can be found
in Ref. 31. We briefly summarize the main points here. T
envelope, log-envelope, and phase~or IF! of s(t) are not
band-limited quantities. It can be shown that ifs(t) is band-
limited then us(t)u2 and d/s(t)/dtus(t)u2 are band-limited.
Further, it can also be shown that no ‘‘information’’ is lo
by filtering the log-envelope and IF of a band-limiteds(t),
using a lowpass filter with bandwidth equal to that of t
signals(t). That is, in principle, it is possible to essential
reconstruct the signals(t) given ideally filtered versions o
log-envelope and IF ofs(t). The counterpart of this propert
in the systems domain is the property of complex cepstr
~see Ch. 12 in Ref. 5!. That is, even though the comple
cepstrum of a finite-length discrete-time sequence is infin
in length, only a finite number of samples of the compl
cepstrum is needed to recover the original sequence.
1914R. Kumaresan and A. Rao: Model-based estimation of signals
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Using the above product representation model, in ad
tion to being able to obtain explicit expressions for the lo
envelope and IF, it is also easy to gain intuitive understa
ing of the relationship between phase and envelope of sig
based on familiar results in systems theory. Just like the
circle in the~discrete-time! z plane corresponds to the inte
val between zero frequency and the sampling frequency,5 the
unit circle in the complex-time plane corresponds to the
terval ofT seconds. If a periodic signal is such that a zero
the signal,pi or qi , is close to the unit circle, then significan
phase changes will occur in the temporal neighborhood
this zero, which will be reflected in the IF values. Spec
cally, a zero close to the unit circle will result in a large spi
in the IF. In fact, if a zero happens to fall on the circle, t
envelope goes to zero~at a time instant determined by th
zero’s location! and the IF at that time instant is undefined~à
la group delay of systems!. Thus if we want to use IF and
log-envelope as information-bearing attributes of a sign
then it is necessary to ‘‘tame’’ these quantities by shap
the signal spectrum. That is, we must preprocess the si
such that the zeros,pi andqi , stay away from the unit circle
This preprocessing then becomes part and parcel of the
nal representation.

A. Extension to nonstationary signals

The model in Eq.~2! describes a stationary and period
signal. Of course, most signals of interest are not station
and certainly not periodic. Hence, as in the case of short-t
spectral analysis/spectrogram, we may consider a s
T-second segment of a nonstationary signal and imagine
it is periodically extended in order to apply the model in E
~2!. Then, successive overlappingT-second segments of
signal may be described as in Eq.~2!, possibly with slowly
drifting parameters (pi andqi) and the associated envelop
and IF they represent. Thus although the model describe
this section is strictly valid for a periodic signal, we intend
apply it to nonstationary signals by viewing the sign
through a slidingT-second window. In fact there is no reaso
to fix the window length toT seconds. The window lengt
may be a function of the nominal center frequency of
signal s(t) as its characteristics change. Next, we use
above model to define a signal whose IF is positive.

II. POSITIVE INSTANTANEOUS FREQUENCY „PIF… OF
A SIGNAL

Recall that an analytic signal is said to be minimu
phase~MinP! if its log-envelope (lnus(t)u) and its phase angle
are related by Hilbert transform. An analytic signal is said
be maximum-phase~MaxP! if its log-envelope is the nega
tive of the Hilbert transform of its phase angle. An importa
property of these signals is that their logarithm is also
analytic signal. Another important aspect is that either en
lope or phase of these signals is essentially sufficient in
mation to characterize these signals. An analytic signa
said to be all-phase~AllP! if its envelope,us(t)u, is constant.
That is, AllP is a pure phase signal with one-sided spectr
Now we shall discuss signals whose IF is always positiv
1915 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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A. General case

Let s(t) be any analytic signal with spectrum confine
to the positive side of the frequency axis,

s~ t !5a~ t !ej f~ t !. ~6!

Let a(t).0. The IF of s(t) is ḟ(t)/2p. The IF could lie
anywhere in the interval of~2`,`! depending on the
makeup ofs(t). Let us rewrites(t) as

s~ t !5eln a~ t !1 j f~ t !. ~7!

Adding and subtracting in the exponent the term31 j ln â(t),
~‘‘hat’’ stands for Hilbert transform!, we get after rearrang
ing,

~8!

The above is analogous to the unique decomposition of
frequency response of a linear, causal, continuous-time
tem into its minimum-phase and all-pass parts.9 Observe that
in the above the first term on the right is a MinP analy
signal. If we multiply both sides of the above b
e2 ln a(t)2j ln â(t) ~which is also MinP with spectrum confined t
positive frequencies!, since the spectrum ofs(t) is already
confined to positive frequencies only, it follows that th
spectrum ofej (f(t)2 ln â(t)) is nonzero only for positive fre-
quencies. Henceej (f(t)2 ln â(t)) must be an AllP analytic sig-
nal. The AllP signal is also called a Blaschke function
analytic function theory,32,33and may be written as a produc
of all-phase ‘‘sections,’’ i.e., asP i(t2zi)/(t2zi* ). It can be
shown that the AllP signal has not only a one-sided spect
but has the remarkable property that its IF is a positive d
nite function.23,32 Based on this property we have defined
function c(t), called the positive IF~PIF!,34 of any analytic
signals(t) as follows:

c~ t !5PIF of s~ t !5
d„f~ t !2 ln â~ t !…

dt
. ~9!

In words, we define an analytic signal’s PIF as the derivat
of that part of its phase which is left over after removing t
contribution due to the signal’s log-envelope~specifically the
Hilbert transform of its log-envelope! from the original
phase. The main point is that any analytic signal can
characterized by two positive functions: a positive envelo
function ~the magnitude of the MinP part! and a positive IF
function ~of its AllP part! rather than by its usual IF@phase-
derivative,ḟ(t)#. This is an important observation that w
repeatedly exploit.

B. Periodic case

Although the above decomposition is valid for any an
lytic signal, as mentioned before, in practice one has to w
with a finite, T-second, segment of a possibly nonstationa
signal,s(t). Hence, we may invoke the~periodic extension!
model we have used in Eq.~1!. We shall repeat Eqs.~2! and
~4! here for convenience.
1915R. Kumaresan and A. Rao: Model-based estimation of signals
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s~ t !5a0ej v tt)
i 51

P

~12pie
j Vt!)

i 51

Q

~12qie
j Vt! ~10!

~11!

Note that the zeros,qi , andpi are assumed to be outside a
inside the unit-circle, respectively. We shall reflect theqi to
inside the circle~as 1/qi* ) and cancel them using poles. The
we group all the zeros inside the unit circle to form a diffe
ent MinP signal and the zeros outside the circle and the p
that are their reflections inside the unit circle to form t
all-phase or AllP part of the signal. That is,

~12!

Equivalently, multiplying and dividing Eq.~11! by ej 2b̂(t)

and collecting terms we get

~13!

This grouping of signals is, of course, analogous to w
known decomposition of a linear discrete-time system i
minimum-phase and all-pass systems~see Sec. 5.6 in Ref. 5!.
Analogous to the fact that the group delay of the all-p
filters is always positive~Sec. 5.5 in Ref. 5!, the IF of AllP
part will always be positive~even ifv t , the frequency trans
lation, is zero!. See Appendix B for a derivation of the IF o
an AllP signal. Thus the PIF,c(t), of s(t) is a positive
function and is as follows:

c~ t !5vc22ḃ̂~ t !. ~14!

The expression forb̂(t) is the same as that ofb(t) in Eq. ~5!
with cosine replaced with sine. Of course, we could a
group the zeros outside the unit circle together to form
MaxP-AllP decomposition. That is, we could also rewr
Eq. ~12! as a MaxP/AllP product as follows:

s~ t !5Ace
a~ t !1b~ t !2 j „â~ t !1b̂~ t !…ej „vct12â~ t !…. ~15!

In this case the IF corresponding to the AllP part will
always negative~assuming the frequency translationv t is
zero! and may be called negative IF~NIF!. If we can separate
the MinP and the AllP components of the signals(t), the
1916 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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o
a

MinP part conveys the AM information, i.e.,ea(t)1b(t) @or
equivalently, its logarithma(t)1b(t)# around the carriervc

and the AllP part conveys the PIF information,c(t).
The next question is: givens(t) over aT-second inter-

val, how do we compute the PIF of the signal or equivalen
separate the MinP and AllP components? There are at l
three not so elegant ways to separate the MinP and A
components. First, one could find the Fourier coefficients
s(t), then root the polynomial formed using the Fourier c
efficients, i.e., findpi andqi , and then group them as in Eq
~12! to separate the components. Alternatively, one co
compute the log-envelope ofs(t) ~i.e., lnus(t)u), compute its
Hilbert transform, and subtract it from the phase ofs(t) @as
in Eq. ~8!#. Third, we can use the block diagram in Fig. 12
~p. 784! of Oppenheim and Schafer5 by replacing their
X(ej v) by s(t). In this case one computes the logarithm
s(t) and keeps the causal part of its spectrum~i.e., spectrum
corresponding to the positive frequencies! as the MinP part.
The AllP part is obtained by dividings(t) by the MinP part
as in Ref. 5. However, there is a new and elegant way
achieving this decomposition which we describe next.34 Re-
markably, it does not require explicit computation of th
logarithm or the Hilbert transform or rooting of a polyno
mial. We also called this method a generalized AM-FM d
modulator since the outputs of the algorithm are the envel
and PIF.

III. ALGORITHM FOR DECOMPOSING AN ANALYTIC
SIGNAL INTO ENVELOPE AND PIF

Although in the previous section we have pointed to t
fact that any analytic signal can be written as a product a
Eq. ~13!, the question is how do we separate these multipl
components? In this section we describe a remarkably sim
algorithm to separate the MinP and AllP components. Thi
shown in Fig. 1. It consists of two parts. In the first pa
which consists of a multiplier or modulator, an inverse sign
generator~ISG!, and an error minimization block, a mode
fitting procedure is used to flatten the envelope of the sig
s(t).

This is achieved by minimizing the energy of an err
signal e(t)„5h(t)s(t)…. The energy ofe(t) is defined as
follows:

E
0

T

ue~ t !u2 dt5E
0

T

us~ t !h~ t !u2 dt. ~16!

h(t) is a signal generated by the ISG using the form
h(t)511(k51

H hke
jkVt

•V52p/T. In other words, the ISG

FIG. 1. LPSD algorithm; 1/h(t) corresponds to the MinP part of the sign
s(t). c(t) corresponds to the IF of the AllP part of the signals(t).
1916R. Kumaresan and A. Rao: Model-based estimation of signals
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generates a low-pass periodic signal. The error energ
minimized by choosing the coefficients,hk . The reader who
is familiar with model-based spectral analysis will immed
ately recognize the analogy between this method and
‘‘autocorrelation method’’ of linear prediction.4,25 In the au-
tocorrelation method, a discrete-time FIR filter, called an
verse filter or prediction-error filter, with frequency respon
H(ej v) ~with first coefficient held at unity!, is used to flatten
the envelope of a spectrunX(ej v) of a sequencex(n) by
minimizing the error*0

2puX(ej v)H(ej v)u2 dv. This is an ex-
act analog of Eq.~16!. Analogous to the autocorrelatio
method, the error in Eq.~16! is a measure of the flatness
the envelope ofe(t). Also, minimizing the error in Eq.~16!
amounts to performing linear prediction on the Fourier co
ficients of the signals(t) and hence we called it linear pre
diction in spectral domain or LPSD in earlier work.34 The
signalh(t) may be called the ‘‘inverse signal’’ analogous
the inverse filter.

Similar to the MinP property of the prediction-error fi
ter used in linear prediction,25 minimizing *0

Tue(t)u2dt results
in a h(t) that is a MinP signal~having all its signal zeros
inside the unit circle!. This is true even if the envelope o
s(t) goes to zero at some points between 0 andT seconds,
i.e., even if somepi or qi fall on the unit circle. The signifi-
cance of this MinP property is that, as we already kno
h(t)’s log-envelope and phase are Hilbert transforms. B
cause the error minimization is performed to flattens(t)’s
envelope, if the value ofH is chosen sufficiently large, the
h(t) will be given by

h~ t !'e2„a~ t !1b~ t !…e2 j „â~ t !1b̂~ t !…. ~17!

Thus, 1/h(t) is the desired approximation tos(t)’s MinP
component and hence the name ‘‘inverse signal’’ forh(t).
Consequently, the error signale(t) will be e(t)

'Ace
j „vct22b̂(t)…, and hence is an approximation to the Al

component ofs(t). In the second part, denoted in Fig. 1
‘‘measure frequency,’’ the PIF is computed asė(t)/ue(t)u or
d/e(t)/dt. The next section describes the algorithm used
minimize the error*0

Tue(t)u2 dt.

A. LPSD algorithm using signal samples

In this section we present the details of the LPSD al
rithm for computing the MinP and AllP approximation
given the samples of the signals(t). The algorithm amounts
to performing linear prediction on the discrete Fourier tra
form ~DFT! values of the signal samples. Lets@n# (n
50,1,...,K), given by Eq.~1!, denote samples of the give
signal;K5N21. Let V52p/N be the assumed fundame
tal frequency. By replacingh(t) ande(t) by their respective
sampled versions, we have

e@n#5s@n#h@n#5s@n#1 (
k51

H

hks@n#ejkVn, ~18!

which can be further expressed in matrix notation as
1917 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
is

e

-
e

-

,
-

o

-

-

S s@0#
s@1#
]

s@K#

D 1S s@0# s@0# ¯ s@0#

ej Vs@1# ej 2Vs@1# ¯ ejHVs@1#

] ] � ]

ejKVs@K# ej 2KVs@K# ¯ ejKHVs@K#

D
3S h1

h2

]

hH

D 5S e@0#
e@1#
]

e@K#

D . ~19!

If we let s, H, h, ande denote the vectors/matrices from le
to right in Eq. ~19!, then the solution vector,h, that mini-
mizeseTe5(n50

N21ue@n#u2, in Eq. ~19!, is given by

h̃52~HTH!21HTs. ~20!

Here T stands for conjugate-transpose and ( )21 denotes
matrix inverse operation. The matrix,H, can be further de-
composed into a productH5SN3NXN3H :

H5S s@0# 0 ¯ ¯ 0

0 s@1# 0 ¯ 0

] ] � ] ]

0 0 ¯ 0 s@K#

D
N3N

3S 1 1 ¯ 1

ej V ej 2V
¯ ejHV

] ] � ]

ejKV ej 2KV
¯ ejHKV

D
N3H

. ~21!

In Eq. ~21!, observe thatS is a diagonal matrix consisting o
signal samples whileX is essentially the DFT matrix. Using
this decomposition, the solution vector,h̃, given by Eq.~20!,
can be rewritten as

h̃52~XTSTSX!21XTSTs. ~22!

Clearly, the solution depends only on the magnitude
s@n#. h@n# can then be reconstructed by substituting e
ments of the vectorh̃ in h@n#511(k51

H hke
jkVn

•sMinP@n#
can then be computed as 1/h@n#; the log-envelope and phas
of sMinP@n# correspond toa@n#1b@n# andâ@n#1b̂@n#, re-

spectively. The positive frequency,vc22ḃ̂@n#, can be
found as the IF of the error signal,e@n#, using any standard
IF estimator such as the phase difference between neigh
ing samples.35 Instead, as mentioned earlier, we may a
apply the LPSD algorithm again toė@n# @because the enve
lope of the first derivative ofe(t) is c(t), which is the PIF#.
We call this step the second-stage LPSD.

The LPSD algorithm attempts to flatten the envelope
the signals(t) by using an adaptive amplitude demodulato
This process not only eliminates the AM but also automa
cally removes from the phase ofs(t) a quantity equal to the
Hilbert transform of the log-envelope ofs(t). This is what
1917R. Kumaresan and A. Rao: Model-based estimation of signals
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causes the IF ofe(t) to be positive. Instead, if we simpl
‘‘clip’’ s(t), i.e., obtains(t)/us(t)u, then its phase derivative
the traditional IF, will not always be positive. Second, t
MinP property ofh(t) guarantees that the envelope appro
mation 1/uh(t)u will never equal zero. Further, MinP signa
will have their energy concentrated over a relatively sm
region in the spectral domain analogous to a MinP fil
which has its impulse response peaking close to origin. I
also possible to use the LPSD algorithm to achieve a Mi
MaxP ~instead of MinP-AllP! decomposition ofs(t). Sepa-
ration of these components may also be viewed as deco
lution of their spectra in the frequency domain. Third,
important advantage of the LPSD algorithm is that
achieves the separation of the MinP and AllP compone
without explicitly rooting a polynomial or computing th
logarithm or Hilbert transform of the signals(t).

B. Simulation results

We now provide results of applying the LPSD procedu
to decompose synthetic signals. It will be followed by
example of a speech signal.

1. Synthetic signals

A signal s(t) consisting of nine@M58 in Eq. ~1!# har-
monically related complex exponentials with frequencies
200 Hz,..., up to 1.6 kHz, with amplitudes 1, 3.37, 3.42, 9.
15.76, 5.4, 5.4, 3.72, and 1.5, respectively, and whose
spective phases~in radians! were 0,20.3, 21.3, 23.1, 2.8,
2.7, 21.3, 20.9, and20.6, was synthesized.s(t) corre-
sponds to a mixed phase signal consisting of four zeros
side and four zeros outside the unit circle. The signal is
riodic with 5-msec periods~200-Hz fundamental frequency!
and has a carrier frequency of 800 Hz~corresponding to its
MaxP component’s translationQV, vc52p3800 andv t

50). The signal was sampled at 16 kHz. In Fig. 2~a! we
have displayed the signal’s zeros while in Fig. 2~b! we have
plotted its magnitude spectrum.

The signal samples were fed to the LPSD algorithm
scribed in the previous subsection. The coefficients of
inverse signalh(t) were computed using Eq.~20!. Once the
coefficients ofh(t) are computed, thenh(t) ~actually its
samples! is synthesized. For the case of 60 coefficients@i.e.,
H560 in Eq. ~19!#, the estimated log-envelope given b
1/uh(t)u is shown~solid line! in Fig. 3~a!. Actually, two pe-
riods ~10 msec! of the log-envelope are shown. Also show
is the true envelope~dashed line! given by lnus(t)u. They per-
fectly match and hence the dashed line is not visible. T
magnitude of the error signale(t) is shown in the dashed
dotted line in Fig. 3~a!, and is close to unity, indicating tha
the error signale(t) is indeed AllP. In Fig. 3~b! we have
plotted the signal’s raw IF@obtained by differencing the
phase angles of adjacent samples of the signals(t)#. Note
that the raw IF goes negative~dashed line!. On the other

hand, the PIF~i.e., vc22ḃ̂@n#) computed by differencing
the phases of the neighboring samples of the error sig
e(t), stays positive, as it should. The PIF can also be
tained by using the LPSD algorithm onė(t); we call this
second-stage LPSD. The PIF obtained by differencing
phase angles of neighboring samples ofe(t) or by using the
1918 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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second-stage LPSD gave essentially the same results.
plotted in Fig. 3~b! is the true PIF~dashed-dotted line, agai
not visible!. The true PIF was obtained, for the purpose
comparison, by using the roots of the polynomial in Eq.~1!
and synthesizing the AllP signal given in Eq.~12! and deter-

mining its IF.vc was estimated as the mean of PIF andḃ̂@n#
was separated by subtractingvc’s estimate from the PIF.
Further, ȧ̂@n# was computed by subtracting the estimate

b̂̇@n# from the MinP signal’s (1/h(t)’s! IF; the solid line in
Fig. 3~c! corresponds to the separatedâ̇@n#; it matches with
the true one~obtained using the signal’s roots! shown as a
dashed-dotted line. In Fig. 3~d! we have displayed the rea
part of the signal reconstructed using the separated MinP
MaxP components using a solid line; the dashed-dotted
corresponds to two periods of the real part of the origi
signals(t); they match exactly.

Figure 3~e! corresponds to the estimated PIF~solid line!
whenH520 in first stage andH515 in second-stage LPSD
Clearly, a higher model order@the results of which are show
in Fig. 3~b!# results in a better approximation. The effect
varying a signal’s duration and changing model order
shown in Fig. 3~f!: we have plotted210 log ~error! as a
function of the signal length and model order; ‘‘error’’ de
notes sum of squared error between the true PIF and
estimated one. First, not surprisingly, the approximation g
better as model order increases. Second, asT approaches the
true period~80 samples! of the signal, the approximation
improves. However, asT further increases, the assumed fu
damental frequency,V, decreases and hence LPSD requi
a much higher order for a better approximation.

FIG. 2. The eight zeros of the synthetic signals(t) are shown in~a!; its
magnitude spectrum is plotted in~b!. The signal~sampled at 16 kHz! has a
200-Hz fundamental frequency and a carrier frequency of 800 kHz.
1918R. Kumaresan and A. Rao: Model-based estimation of signals
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FIG. 3. The separated log-envelope using LPSD~60 coefficients! is shown
~solid line! in ~a!; the true one is shown as dashed line; the magnitude of
error signale(n) is shown as dashed-dotted line. In~b! we plot the signal’s
raw IF ~dashed! which goes negative; the solid line refers to estimate of P
(H515 in second stage!; the true PIF is also displayed~dashed-dotted!.

First stage estimate ofâ̇@n# is shown as solid line in~c! along with true

â̇@n# plotted as dashed-dotted line. The real part of the reconstructed s
using the separated components is plotted in~d! ~using solid line! along
with the real part of the original signals(t) ~dashed-dotted line!; they match
exactly. The PIF when 20 coefficients were used in LPSD’s first stage
15 in the second is plotted in~e!. The effect of increasing a signal’s duratio
and increasing model order is shown in~f!. We plot 2 log10 ~error! as a
function of the signal length~in samples! and model order; error denote
sum of squared error between true PIF and estimated one. Time is sho
samples.
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The above example had no roots with unit magnitu
To test LPSD on signals with some zeros on the unit circ
magnitude of one of the zeros of the signal used in a pr
ous example was set to unity. We usedH540 in LPSD’s
first stage andH510 in the second one. The results a
displayed in Fig. 4~a! and ~b!. In Fig. 4~a! we plot the log
envelopes; sharp dips in the signal’s log magnitude~dashed
line! are due to the on-circle zero. Observe that the appr
mation ~solid line! tends to exclude this zero. Further o
serve that the magnitude of the error signale(t) is unity, but
1919 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
.
,
i-

i-

for the time corresponding to location of on-circle ze
~dashed-dotted line!. In Fig. 4~b! we show the approximated

PIF using a solid line along with the truevc22ḃ̂@n# ~dashed
line!. Clearly, the PIF approximates the spikes due to
circle zeros in addition to closely matching the IF due
zeros off the unit circle. To summarize thus far, given
signal s(t), its various components~MinP/MaxP/AllP!,
which are actually multiplied components, can be separa
using simple linear techniques without resorting to logari
1919R. Kumaresan and A. Rao: Model-based estimation of signals
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mic processing or rooting algorithms. We now give an e
ample using speech signals.

2. Speech signal

In this section we give results of processing clean voic
speech, obtained from the TIMIT database, in the sente
train/dr3/fcke0/si1111.wavwhich corresponded to the utte
ance ‘‘How do we define it?’’ Figure 5~a! shows the results
for a segment, whereas Fig. 5~b! shows the results for the
entire sentence. The signal~sampled at 16 kHz! was preem-
phasized using a high-pass filter~with transfer function 1
20.98z21) and its analytic version was computed using t
fast Fourier transform~FFT! based Hilbert transformer in
Matlab. We then chose 14.56 ms of the signal~samples
6851:7084! that was part of the phoneme /iy/. This sign
was then bandpass filtered using three bandpass fi
~BPFs! which were part of ‘‘Lyon’s Passive Long Wave Co
chlear Model’’ proposed by Lyon.36 The bandpass filters
~BPFs! were manually chosen such that their center frequ
cies were roughly centered around the formant locations
Fig. 5~a! we have shown the magnitude spectrum of the p
emphasized speech signal~solid line! along with the normal-
ized magnitude responses of the three BPFs~dotted lines!.
The signals at these BPFs’ output were inputs to our LP
algorithm. The bandwidths (Bc) for BPFs centered at'500
Hz, 2.25 kHz, and 5 kHz were approximately 120, 340, a
900 Hz, respectively. These bandwidths roughly corresp
to the critical bandwidths of the auditory filters at the giv
center frequencies. Recall that LPSD assumes a fundam

FIG. 4. We consider a signal with a zero of unity magnitude. Its log en
lope is shown in~a! as a dashed line; dips correspond to location of
on-circle zero. We usedH540 in LPSD’s first stage andH510 in the
second one. The estimated log envelope and PIF are plotted~solid lines! in
~a! and ~b!, respectively; original functions are shown using dashed li
dashed-dotted line in~a! denotes error’s magnitude.
1920 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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FIG. 5. The spectrum of a preemphasized voiced speech segment is
played in ~a!. The signal was filtered using 3 BPFs@magnitude responses
shown in ~a! as dotted lines# which correspond to Lyon’s auditory filters
LPSD parameters were selected based on BPFs’ bandwidths. The estim
log envelopes are shown~not to scale! in ~b! as solid lines along with the
signals’ true log envelopes shown as dashed, dashed-dotted, and dotted
for BPFs 1, 2, and 3, respectively. The raw IFs for signals filtered by BP
#1, #2, and #3 are displayed in~c! as dashed, dashed-dotted, and dotted lin
respectively, along with corresponding lowpass filtered~with order 50 and
cutoffs 120, 340, and 900 Hz! IFs shown as solid lines. In~d! we plot the
PIFs estimated using LPSD withH54, 11, and 28, respectively.
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ries
frequency,V, of 2p/N; this corresponds to 32 Hz for th
present example. Having specified a certain bandwidth
envelope approximation, one can compute the algorith
model order asH52pBc /V. Based on these calculation
we chose LPSD model orders,H, to be 12, 33, and 84, cor
responding to three times the critical bandwidths for fir
stage envelope approximation. The values ofH were set to 4,
11, and 28 for approximating the PIFs in second-stage p
cessing. One may also keepH fixed and vary the processin
interval for each BPF proportional to 1/Bc . Our goal was not
to parsimoniously describe the signal but to demonstrate
the carrier frequency and the modulations carry suffici
information to describe the signal. The estimated log en
lopes are shown in Fig. 5~b! as solid lines~not to scale! along
with the signal’s Hilbert envelopes for each of the three
ters~dashed, dashed-dotted, and dotted for BPFs 1, 2, an
respectively!. The raw IFs~obtained by phase-differencing!
for signals filtered by the three BPFs are displayed in F
5~c! as dashed, dashed-dotted, and dotted lines, respecti
along with corresponding lowpass filtered~with order 50 and
cutoffs 120, 340, and 900 Hz! IFs shown as solid lines. Th
PIFs resulting from second-stage processing are depicte
Fig. 5~d!.

Based on earlier discussions we can see that the s
spikes in raw log-envelopes and most of the spikes in
IFs ~especially for signals at output of BPFs 2 and 3! are due
to signal zeros very close to the unit circle; the latter may
caused by neighboring peaks in the signal’s spectral en
lope ~or neighboring formants!. Further, the raw IFs also g
negative at times. In general, the raw log-envelopes and
are highly fluctuating quantities. Clearly, the LPSD may
viewed as a technique to compute a signal’s envelope’s lo
rithm. The IF approximated by LPSD has two distinct adva
tages over techniques that merely filter the raw IF. First
the absence of on-circle zeros, it is always positive. Seco
it approximates the typically impulsive IF better~due to the
all-pole model assumption! as opposed to lowpass filtered IF

When a composite signal consists of many spectral
gions of interest which are time-varying, as in speech,

FIG. 6. We envision a ‘‘tonotopic signal analyzer’’ as a general purp
processor that decomposes an input signal~on the time-frequency plane!
around regions of dominant spectral energies into carrier frequencies
amplitudes, and MinP-AllP~or MinP-MaxP! modulations@ak(t) andbk(t)#.
These modulations are further broken down into their respective center
quencies, and so on. The result is a treelike break-up of the signal wh
higher nodes of the tree correspond to more significant temporal-spe
events in the signal.
1921 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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signal must be decomposed by a bank of time-varying filt
which may then be followed by envelope and PIF decom
sition described here. The bank of filters must be data ad
tive and should form part of the speech signal representat
A block diagram depicting this basic idea is shown in Fig.
We have made some progress in implementing this bl
diagram,31 but due to space limitations the details are n
presented here. Figure 7~a!, ~b!, ~c!, and~d! show the results

e
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e-
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ral

FIG. 7. ~a! The speech signal for the sentence ‘‘How do we define it?’’
plotted; this segment was obtained from the TIMIT database~TIMIT/train/
dr3/fcke0/si1111.wav!. ~b! We have displayed the estimated average lo
envelopes as solid, dashed-dotted, and dotted lines at the output of the
time-varying filters. The details of the time-varying bandpass filters~BPFs!
are given in Ref. 31.~c! We have superimposed on the spectrogram
estimated PIFs of the components at the output of the time-varying B
~d! The averages of the PIFs are shown. They tend to follow the trajecto
of the first three formants.
1921R. Kumaresan and A. Rao: Model-based estimation of signals
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of processing the entire sentence ‘‘How do we define it
using this decomposition. We may call this approach ‘‘Ton
topic Signal Analysis~TSA!,’’ since the procedure not only
attempts to track the formant center frequencies but also
vides the details of modulations~the a and b! about those
frequencies. Reference 31 provides several such speech
cessing examples.

IV. DISCUSSION

In this paper our main accomplishment is the decom
sition of an analytic signal into two analytic signals using
simple ~LPSD! algorithm. Decomposition of analytic func
tions of a complex variable has been studied in syste
theory and filter design since the days of Henrik Bode37 in
the 1930s. However, much of that work dealt with frequen
responses, i.e., frequency is viewed as a complex variabs
~continuous-time systems! or z ~discrete-time systems!.
Cepstrum-related research5 may be viewed as an extensio
of this work. Voelcker’s contribution, which extends Gabo
work,7 is that he recognized that analytic functions could
used for studying the relationships between phase and e
lope of signals by treating time as a complex variable. To
knowledge, Voelcker did not attempt to decompose sign
into MinP and MaxP or AllP components. The MinP/Max
AllP decomposition was, perhaps, first done by Oppenh
and colleagues~see Ch. 12 in Ref. 5, and references there!.
However, their decomposition was achieved by rooting
polynomial or computing logarithm/log-derivative in th
z-transform or frequency domain. In contrast, the sign
cance of our result is that the MinP-AllP or MinP-Max
decomposition is achieved using an elegant adaptive
modulator without rooting, Hilbert transformation, or pha
unwrapping, directly from the given signals(t). A similar
procedure can be developed for the frequency domain
well. The primary difference between our approach and
cepstrum analysis is that we explore the signal’s logarithm
the time domain which yields a physically acceptable qu
tity like the positive instantaneous frequency. This helps
in characterizing the IF of signals which consist of ma
components such as a speech formant. The average PIF~i.e.,
the carrier frequency! indicates the place-location of a sig
nal’s spectral concentration.

Unfortunately, in this paper, we still need to form th
analytic signal before the proposed decomposition can
achieved. That is, since in practice only real-valued sign
are available for processing, one has to compute its Hilb
transform. In more recent work38 we have proposed an algo
rithm which avoids computation of the analytic signal. It
possible to obtain the envelope and PIF directly from the r
signal under certain restrictions.
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APPENDIX A: MINIMUM AND MAXIMUM PHASE
SIGNALS

An elementary signal,23 e(t), is defined as

e~ t !512pej Vt, ~A1!

wherep5upuej u. If upu,1 thene(t) is called a MinP signal,
since no other signal with the same envelope has a sm
phase angle. Observe thatue(t)u.0. Taking the natural loga-
rithm of both sides and using the series expansion, ln(12y)
5(k51

` (2yk/k), we get

ln~12pej Vt!5 (
k51

`
2pke2 jkVt

k
. ~A2!

After exponentiating both sides, we get the following ide
tity:

12pej Vt5expS (
k51

`
2upuk

k
cos~kVt1ku!

1 j (
k51

`
2upuk

k
sin~kVt1ku!D . ~A3!

From the above expression we note that for an elemen
MinP signal,e(t), the logarithm of its envelope and its pha
angle are related through the Hilbert transform. Similarly,
an elementary MaxP signal (12qej Vt) where q5uquej f,
uqu.1, we get the following identity:

12qej Vt5~2qej Vt!expS (
k51

`
2u1/quk

k
cos~kVt1kf!

2 j (
k51

`
2u1/quk

k
sin~kVt1kf!D . ~A4!

The key difference between Eqs.~A3! and~A4! is the change
in the sign of the phase function.

Using the above identities in Eq.~2! yields

sMinP~ t !5ea~ t !1 j â~ t ! ~A5!

and

sMaxP~ t !5A0eb~ t !1 j ~v0t2b̂~ t !!, ~A6!

where

a~ t !5 (
k51

`

(
i 51

P

2
upi uk

k
cos~kVt1ku i ! ~A7!

and

b~ t !5 (
k51

`

(
i 51

Q

2
1/uqi uk

k
cos~kVt1kf i !. ~A8!

Thus s(t) as described in Eq.~2! can be compactly repre
sented as

s~ t !5Ace
j vctea~ t !1 j â~ t !eb~ t !2 j b̂~ t !, ~A9!

whereAc corresponds to the overall amplitude of the sign
andvc denotes its ‘‘carrier’’ frequency.vc is equal toQV
plus any arbitrary frequency translation that the signals(t)
may have been subjected to. The log-envelope and phas
1922R. Kumaresan and A. Rao: Model-based estimation of signals
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s(t) are expressed in terms ofa(t) andb(t) as

lnus~ t !u5a~ t !1b~ t !1 ln Ac ~A10!

and

/s~ t !5vct1â~ t !2b̂~ t !, ~A11!

respectively. The above expressions can be a useful p
gogical tool in explaining phase-envelope relationships in
signal as well as systems domains. For instance, the w
known results in Ref. 39, where one attempts to reconstru
signal from either phase or magnitude information, may e
ily be explained using the above expressions. For exampl
a pair of roots ofs(t) occurs in complex conjugate reciproc
locations, i.e.,pi51/qi* , then thei th term in the summation
in Eqs.~A7! and~5! are identical and hence vanish from th
expression for phase in Eq.~A11!. Hence, in this case, phas
does not uniquely specify the signals(t). This is essentially
theorem 1 in Ref. 39, which is stated in the systems dom
Similarly if pi521/qi* , then from Eq.~A10! we see that
magnitude alone is not sufficient to specify a signals(t). In
general, both phase and envelope are required to repre
s(t).

The instantaneous frequency~IF! of s(t) is the deriva-

tive of the phase ofs(t) and is simplyvc1 ȧ̂(t)2 ḃ̂(t)
~where the dot stands for the first derivative!, i.e., it consists
of a dc~corresponding to carrier frequency! and a sum of IFs
of s(t)’s MinP and MaxP components. Thus we have

d/s~ t !

dt
5vc2VF (

k51

` S (
i 51

P

upi uk cos~kVt1ku i !

2(
i 51

Q

u1/qi uk cos~kVt1kf i !D G . ~A12!

Clearly, the spectrum ofs(t)’s IF @given by Eq.~A12!# con-
tains an infinite number of harmonic components~V being
the fundamental frequency!. A closed-form expression for IF
is obtained by summing Eq.~A12! as

d/s~ t !/dt

5vc2VF(
i 51

P upi u~cos~Vt1u i !2upi u!
122up1ucos~Vt1u i !1up1u2

2(
i 51

Q u1/qi u~cos~Vt1f i !2u1/qi u!
122u~1/qi !ucos~Vt1f i !1u~1/qi !u2G . ~A13!

The above reveals thats(t)’s IF tends to6` whenever one
or more of its zeros tend to lie on the unit circle~see Ref. 31
for details!. All these results were known to Voelcker.

APPENDIX B: SIGNALS WITH POSITIVE
INSTANTANEOUS FREQUENCY

Consider a signal,z(t), which is a ratio of two signals a
follows:

z~ t !5
12qej Vt

12 ~1/q* !ej Vt ; ~B1!
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‘‘ * ’’ denotes complex conjugation,q5uquej f, and uqu.1.
Rearranging the numerator we have

z~ t !52qej Vt
12~1/q!e2 j Vt

12~1/q* !ej Vt . ~B2!

Simplifying the above equation, we find thatz(t)’s envelope
is a constant~equal touqu! for all time, t, and that its phase
angle is

/z~ t !5Vt1p1f12(
k51

` u1/quk

k
sin~kVt1kf!. ~B3!

Taking the first derivative of/z(t), its IF can be expresse
as

d/z~ t !

dt
5VS 112(

k51

` U1qU
k

cos~kVt1kf!D . ~B4!

Since the right side of Eq.~B4! is V(12u1/qu2)u1
2(1/q* )ej Vtu22 and is analogous to a ‘‘power spectrum,
z(t)’s IF is always positive. We may generalize this result
the case of a signal consisting of a product of rational sign
as in Eq.~B2!, i.e., z(t) of form

z~ t !5)
i 51

L
12qie

j Vt

12~1/qi* !ej Vt . ~B5!

Since the phase angle contribution due to each of theL terms
in the above equation adds up, the corresponding IF is

d/z~ t !

dt
5V(

i 51

L S 112(
k51

` U 1

qi
Uk

cos~kVt1kf i !D .

~B6!

Since each of theL terms in the above summation is positiv
we claim that the final IF given by Eq.~B6! is positive.
These results are analogous to the results well known in
crete time all-pass~AP! systems, where the equivalent of I
is the group delay;40 our derivation is slightly different than
the one given in Oppenheim and Schafer.5
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