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On Minimum/Maximum/All-Pass Decompositions in Time  the following model for a sufficiently largéZ over an interval ofl’
and Frequency Domains seconds.
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Abstract—\We model a signal overT” seconds by a pole-zero model by ..
considering its periodic extensions. Using this model, we decompose the”t = L2 represents the lower band-edge of the spectrum(f

signal into its minimum-phase (MinP)/maximum-phase (MaxP) and all- @ are the complex amplitudes of the SinUSO‘fng?L? ao # 0, and
phase (AllP) components. A simple algorithm for this decomposition that a.; # 0. By analytic continuation, we may writgt) in terms of a

does not seem to have a counterpart in the cepstral literature is presented. complex variable (& la the traditional complex-frequency variable
This decomposition leads to representing _S|gnals by their envelopg a_nd in- asS(¢) = C—K (a0 + a’lg—l + az('_2 + o+ ay <._Mr_ Thus,s(t)
stantaneous frequency that takes on positive values only. Nonperiodic sig- . . . L .
nals can be processed by appropriately windowing the signals. !5 obtalned_gy evaluating(¢) around t.he unit lee_ 'n_ the-_glane,
i.e., = ¢ Note thats(t) [or S(¢)]is a polynomial ine=7%*" (or
¢). We may factor this polynomial into itd/ (= P + @) factors and

rewrite s(t) as

Index Terms—All-phase, maximum-phase, minimum-phase.

|. INTRODUCTION

P Q
Given the signal samples(n) n = 0, 1, 2---, N — 1, a number s(t) = age’" H(l —pie’?) H(l — g’ 2
of approaches to computing the minimum-phase (MinP)/maximum- i=1 i=1
phase (MaxP) and minimum-phase (MinP)/all-pass (AllP) components
of «(n) are well known [1]. These approaches include rooting the poly-
nomial X (=) to separate the components or computing the cepstrum; Pz, -- -, pp andqi, ¢z, -~ ¢¢ denote the polynomial’s roots;
i.e., the inverse Fourier transform of the logarithm of the spectrum = |pile’’t, ¢i = |qile’*. p; denotes roots inside the unit circle
X (e7*) of #(n) [1]. These are collectively called homomorphic or login the complex plane, angl are outside the unit circle, assuming that
arithmic signal analysis [1]. In this correspondence, we propose a dif¥gre are no roots on the circle. Thatlis,| < 1, and|g;| > 1. Each
approach to logarithmic signal analysis based on processing the sigagtor of the form(1 — p;e’***) in the above is called an “elementary
itself rather than its Fourier transform. This approach naturally leagignal” [2]. Thep; andg; are referred to as zeros of the siga@l). The
to representation of signals by their envelope, instantaneous freque@@gve expressions, representing a bandlimited periodic signal, may be
and zero-crossings. recognized as the counterpart of the frequency response of a finite im-
In Section Il, we consider complex-valued periodic signals arHlse response (FIR) filter in discrete-time systems theory [1]. More
express them as a product of so-called elementary signals agenerally, ifs(¢) consists of an infinite number of spectral lines, then
Voelcker [2]. This type of representation is analogous to that used W can represent it to desired accuracy using sufficient number of poles
discrete-time systems theory, where the periodic frequency respofsé zeros, analogous to lIR filters. Voelcker called this way of modeling
of a system is characterized by a finite number of poles and zer§ignals the “product representation of signals.” We will primarily work
except in our case, the poles and zeros are located in a complex-tifié the all-zero models since they are easier to use.
or ¢-plane. Using this signal model, expressions for the envelope, smaxr(t) andsminp (t) are the direct counterparts of the frequency
phase, and the instantaneous frequency (IF) of a signal may be deritegponses of the maximum- and minimum-phase FIR filters in dis-
[3], [4]. This representation also leads to a special class of sign&f&te-time systems theory [1]. As in systems theory (see [1, Sec. 10.3]),
whose instantaneous frequency is always positive. See also [2] &fgphase of the MinP signal is the Hilbert transform of its log envelope,
[5]. In Section IIl, we introduce a two-step algorithm to decompos@at is, the MinP signal may be expressed in the foffi+/¢( See
an analytic periodic signal into two analytic signals: one completelg}] for details.a(t) is the Hilbert transform of(¢). Similarly, since
described by its envelope and the other having a positive IF (PIF). Thignaximum-phase (MaxP) signal has zeros outside the unit circle, it
type of decomposition is different from those known in the cepstratay be expressed a8 ~7#() Thus, envelope or phase alone is suf-
literature [1]. By appropriately windowing signals, the proposeticientto essentially characterize a MinP or a MaxP signal. [Along the
algorithm can be adapted to representing nonstationary signalssayne lines, an all-phase (AllP) analytic signal, which is the analog of

~~

~
sMinp (%) sMaxP (£)-

using envelopes/PIF’s or equivalently by zero-crossings [6]. an all-pass filter, would be of the forei*(").] Thus, s(t) may be ex-
pressed as
[l. ENVELOPE AND IF IN TERMS OF ASIGNAL MODEL S(t) = Ayeret oA A=) @)
Consider a periodic analytic sign#lt) with a period ofI’ seconds. G e

LetQ = 2x/T. If s(¢t) has finite bandwidth, it may be described by
where the “hat” stands for Hilbert transform.. is Q<) (contributed
by the linear-phase term from the MaxP signal) plus the arbitrary fre-
quency translations shown in (2).A. is ao Hfgzl(—q;). See [7] for
details. The expressions fa(t) andj3(¢) are derived in [4]
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Note that the zerog; andp; are assumed to be outside and inside L
the unit circle, respectively. We will reflect theto inside the circle (as ¢

1/47) and cancel them using poles. Then, we group all the zeros insit
the unit circle to form a different MinP signal and the zeros outside th
circle and the poles that are their reflections inside the unit circle t 1SG
form the all-phase or AlIP part of the signal. That is

Minimize PIF (1)

T 2 e(t) | Measure
e(t)|*di
over hy fu le(l Frequency

hit)

L~ R(t)=14+me® .. +hye®® o MinP 1/h(t)

I Q
(1) — IS it Fig. 1. LPSD algorithmi/h(t) corresponds to the MinP part of the signal
s(t) = Ae v_l(l pie’™) 1:[1 <1 1 ¢ ) s(t). ¥ (t) corresponds to the IF of the AlIP part of the siga@d).
Min? the first part, which consists of the multiplier, an inverse signal gener-
H(l — i) ator (ISG), and an error minimization block, a model fitting procedure
jeut =1 . is used to remove the envelope of the sigs(a).
g : ) This is achieved by minimizing the energy of an error sigria)(=
H <1 — l* ejﬂt) h(t)s(t)). The energy ot(¢) is defined as follows:
=1 % T ) T ,
~ /0 le(t)|? dt = /0 |s()h(H)]? dt. ®)
Equivalently, multiplying and dividing (3) by’>*" and collecting h(f)) is a sij%g?l gene‘rated by the ISG using the formiulg) = 1 +
terms, we get ). hk_e _ ._&2 =2n/T.In other vyo_rd; the ISG generates a Iow-_
pass periodic signal. The error is minimized by choosing the coeffi-
s(t) = A, et OFBOHI(AO+BD) Lilwet=25(0)) | ©6) cientsh;.. Those who familiar with model-based spectral analysis will
’ - R immediately recognize the duality between this method and the “auto-
MinP

correlation method” of linear prediction [9], [10]. In the autocorrelation

This grouping of signals is, of course, analogous to well-known dgethod, a discrete-time FIR filter called an inverse filter or predicton-
composition of a linear discrete-time system into minimum-phase afifor filter with frequency responsié(e’*) (with first coefficient held
all-pass systems (see [1, Sec. 5.6]). Analogous to the fact that the gr8ligity) is used to flatten the envelope of a spectitife’”) of a se-
delay of the all-pass filters is always positive [1, Sec. 5.5], the IF of Alltuencer(n) by minimizing the errotf;™ | X (¢’*)H(e’*)[* dw. This

part will always be positive (evenif,, which is the frequency transla- IS @n exact analog of (8). Analogous to the autocorrelation method, the
tion, is zero). We call this the positive IF (PIF). Thus, the Rif) of  errorin (8) is ameasure of the flatness of the envelopgt In addi-

s(t) is a positive function and is as follows: tion, minimizing the error in (8) amounts to performing linear predic-
tion on the Fourier coefficients of the signdlk), and hence, we called
G(t) = we — 2{§(t) @) it linear prediction in spectral domain (LPSD) in earlier work [8].

Similar to the MinP property of the prediction-error filter used in

. . .. e 9 2 .
The expression faB(¢) is the same as that ¢ ¢) in (4) with cosine re- !mear_pred!ctmn [10]_’ m|n|m|2|q% le(t)] flt results In 'ah(_t) that .
a MinP signal (having all its signal zeros inside the unit-circle). This

placed by sine. Of course, we could also group the zeros outside the fﬁ1 ) ;
circle together to form a MaxP-AllP decomposition. If we can separa'l%true even if the envelope 6f) goes to zero at some_|_nstants be-
the MinP and the AllIP components of the sigré), then the MinP tw_een_O and’ seco_nds and for any order> 1. The 5'9”'“03”09 of
part conveys the AM information, i.e:"(0+#() (or, equivalently, its NS MinP property is that, as we already mentioned,’s log-enve-
logarithma (#)+ /3(#)) around the carriep.., and the AllP part conveys !ope and phase are H|Ibe’rt transforms_. Because the_error minimization
the PIF informationy (¢). |'_s performed to flattes(t)’s env_elope, !f the value qf _|s chosen suf-
Givens(t) over aI'-second interval, how do we separate the minBciently large [analogous to using a high order moving average (MA)

and AlIP components and compute the PIF of the signal? There S/gd€!to @pproximate an autoregressive (AR) spectrum],/ttenwill

at least three traditional ways to separate the MinP and AllP comp 9Ven by

nents. First, one could find the Fourier coefficientss¢f), then root ht) = o~ (OB =i (a(D)+B(1) )
the polynomial formed using the Fourier coefficients, i.e., fincand ARG ) '

¢i, and then group them as in (5) to separate the components. Secqmls, (1/1(t)) is the desired approximation te(¢)’s MinP com-
one could compute the log-envelopesof) [i.e., In |s(¢)[], compute ponent, hence, the name “inverse signal” feit). Consequently,

its Hilbert transform, and subtract it from the phase@f). Third, we the error signake(t) will be e(t) ~ A.e?<~23®) and, hence,
can use the block diagram in Oppenheim and Schafer [1, Fig. 12.7iPan approximation to the AllP component &ft). In the second
784] by replacing theif (¢’*) by s(?). In this case, one computes theyart, which is denoted in Fig. 1 as “measure frequency,” the PIF is
logarithm ofs(t) and keeps the causal part of its spectrum (i.e., SP€Computed agé(t)/|e(t)|) or (dLe(t)/dt).

trum corresponding to the positive frequencies) as the MinP part; therpe decomposition or LPSD algorithm involves solving only a linear
AlIP part is obtained by dividing(t¢) by the MinP part as in [1]. How- gystem of equations. Lefn] n = 0, 1, ---, N — 1 denote samples
ever, there is an elegant way of achieving this decomposition, whigfihe given signal. Lef2 = (27/N) be the assumed fundamental

we describe next [8]. It does not require explicit computation of th@aquency. By replacing(t) ande(t) by their respective sampled ver-
logarithm and phase unwrapping or the Hilbert transform or rooting Qfons, we have

a polynomial. »
e[n] = s[n] + Z hys[n]e? ™. (10)
[Il. MinP/AIIP D ECOMPOSITION k=1

In this section, we describe a simple algorithm to separate the Mikie minimize """ |e[«]|* by choosing the best set &f.. This is
and AllP components. Thisis shown in Fig. 1. It consists of two parts. inlinear least squares problem. Typicallyis much smaller thamV.
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Fig. 2. (a) Estimated envelofd¢|h(t)| obtained using LPSDp(= 12 coefficients) (dashed line) along with the true envelpge)| (shown in solid line); (b)
Plot of the signal's raw IF (solid) that goes negative; dashed line refers to estimate of PIF; the true PIF is also displayed (dashed-dotted3tethe igstiam be
made to match the true PIF more closely by choosing a larg@) Estimate ofy[n] (dashed line) along with true[r], plotted as solid line. (d) Real part of the
reconstructed signal synthesized by using the separated components (dashed line) along with the real part of the origiftal(sigiithline); they match closely.

o
Time (msecs)

Clearly, the solution depends only on the magnitude[of. h[n] can 1.1969 was synthesized(t) corresponds to a mixed phase (MixP)
then be reconstructed by computinge] = 1 + S°_, hre’*®".  signal consisting of two=£ P) zeros inside and four={ ()) zeros
sminp [1] can then be computed #$/%[n]); the log-envelope and outside the unit circle. The signal is periodic with a period of 16
phase obminr[n] correspond tav[»] 4 3[n] and@[n] + A[n], respec- ms (62.5 Hz fundamental frequency) and has a carrier frequency of
tively. The PIFw. — 2/3[n] can be found as the IF of the error signaR49 Hz (corresponding to its MaxP component's translatig,
e[n] using any standard IF estimator such as the phase difference de-= 27 X ) X 62.5, andw, = 0). The signal was sampled at 16
tween neighboring samples. kHz. The signal samples were fed to the LPSD algorithm described in

The LPSD algorithm attempts to flatten the envelope of the signiie previous subsection. The coefficiehiswere computed, ankl(¢)
s(t) by using an adaptive amplitude demodulator. This process fgetually its samples) was synthesized. For the case of 12 coefficients
only eliminates the AM but als@automaticallyremoves from the [i-e.,p = 12 in (10)], the estimated envelope given by|A(t)| is
phase ofs(t), which is a quantity equal to the Hilbert transform ofshown (dashed line) in Fig. 2(a). Only one period (16 ms) of the
the log envelope of(t). This causes the IF of(t) to be positive. €nvelope is shown. The true envelope (solid line) givefsb) | is also
Instead, if we simply “complex clip(t), i.e., obtains(t)/|s(¢)|, then ~shown. They match closely. In Fig. 2(b), we have plotted the signal’s
its phase derivative (the traditional IF) will not always be positiveaw IF [which is obtained by differencing the phase angles of adjacent
Second, the MinP property of(t) guarantees that the envelopesamples of the signal(¢)] in a solid line. Note that the raw IF could
approximationl/|A(t)| will never equal zero. Further, MinP signalsgo negative. On the other hand, the PIF (i.e..- 23[n]) computed by
will have their energy concentrated over a relatively small region tlifferencing the phases of the neighboring samples of the error signal
the spectral domain analogous to a MinP filter, which has its impulsét) stays positive (dashed line), as it should. In Fig. 2(b), the true PIF
response peaking close to the origin. It is also possible to use (dashed-dotted line) that is superposed on to the estimated PIF is also
LPSD algorithm to achieve a MinP-MaxP (instead of MinP-AllPplotted. The true PIF was obtained, for the purpose of comparison,
decomposition ofi(¢). See [4]. Third, an important advantage of thévy using the roots of the polynomial in (1) and synthesizing the AllP
LPSD algorithm is that it achieves the separation of the MinP and Alliignal given in (5) and determining its |k, was estimated as the
components without explicitly rooting a polynomial or computing thénean of PIF, andf[n] was estimated by subtracting.’s estimate
logarithm or Hilbert transform of the signalt). from the PIF. Furthery[n] was computed by subtracting the estimate
of 3[n] from the MinP signal's{/%(#)'s) IF; the solid line in Fig. 2(c)
corresponds to the separateld]; it matches closely with the true one

A signal s(¢) consisting of seven) = 6 in (1)] harmonically (which is obtained using the signal’s roots) shown as dashed-dotted
related complex exponentials with frequencies 0 Hz, 62.5 Hz,up line. In Fig. 2(d), we have displayed the real part of the signal
to 375 Hz, with amplitudes 1.0000, 3.3330, 5.8910, 7.3820, 7.035@constructed using the separated MinP and MaxP components using a
8.8136, and 3.3600, respectively, and whose respective phasess(lid line; the dashed line corresponds to one period of the real part of
radians) were 0;-1.7822, 2.8095, 1.5068;0.2974,—2.2036, and the original signak(t); they match exactly. In all of the above cases,

A. Simulation Results
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the estimated components can be made to match the true ones more
closely by increasing the ordgr In summary, given a signalt), its 1]
various components (MinP/MaxP/AllP), which are actually multiplied

components, can be separated using simple linear techniques withoui2]
resorting to rooting or phase unwrapping algorithms. 3]

IV. DISCUSSION ANDCONCLUSION 4]

Traditionally, MinP/MaxP/All-Pass decompositions are applied to
filter transfer functions, i.e., in the frequency domain. In this correspon- [5]
dence, we have proposed the dual of this decomposition in the time do-
main. In Section Ill, we also presented a simple algorithm to achieve|e]
this decomposition. The duality between the frequency and time do-
mains can be extended furtherHf(z) is a MinP filter of orderp, then
the symmetric/antisymmetric polynomiats™ (1/z*) £+ =~ " H(z) for
anyn > p will have all their roots on the unit circle| = 1, and they
are interlaced. These roots are called line spectrum frequencies (LSFg3]
[11] and are sufficient to represehit(z). The LSF's are used exten-
sively in speech coding. Analogously, in the time domain, the signals
h(t)e =2/ D2t £ p* (1) (/D2 (for n > p) will have interlaced zero
crossings that are sufficient to uniquely identifyt). In other words,
[1/h(t)], which models the envelope of a signk), can be repre- [10]
sented by these zero crossings. These ideas are explored in more dz{taiH
in [6] and for real-valued signals in [12]. Although we have considere H
only periodic signals, the extension of the algorithm to any signal rej; 2]
quires appropriate time windowing.

(7]

(9]
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