
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000 2973

On Minimum/Maximum/All-Pass Decompositions in Time
and Frequency Domains

Ramdas Kumaresan and Ashwin Rao

Abstract—We model a signal over seconds by a pole-zero model by
considering its periodic extensions. Using this model, we decompose the
signal into its minimum-phase (MinP)/maximum-phase (MaxP) and all-
phase (AllP) components. A simple algorithm for this decomposition that
does not seem to have a counterpart in the cepstral literature is presented.
This decomposition leads to representing signals by their envelope and in-
stantaneous frequency that takes on positive values only. Nonperiodic sig-
nals can be processed by appropriately windowing the signals.

Index Terms—All-phase, maximum-phase, minimum-phase.

I. INTRODUCTION

Given the signal samplesx(n) n = 0; 1; 2 � � � ; N � 1, a number
of approaches to computing the minimum-phase (MinP)/maximum-
phase (MaxP) and minimum-phase (MinP)/all-pass (AllP) components
of x(n) are well known [1]. These approaches include rooting the poly-
nomialX(z) to separate the components or computing the cepstrum,
i.e., the inverse Fourier transform of the logarithm of the spectrum
X(ej!) of x(n) [1]. These are collectively called homomorphic or log-
arithmic signal analysis [1]. In this correspondence, we propose a dual
approach to logarithmic signal analysis based on processing the signal
itself rather than its Fourier transform. This approach naturally leads
to representation of signals by their envelope, instantaneous frequency,
and zero-crossings.

In Section II, we consider complex-valued periodic signals and
express them as a product of so-called elementary signals á la
Voelcker [2]. This type of representation is analogous to that used in
discrete-time systems theory, where the periodic frequency response
of a system is characterized by a finite number of poles and zeros,
except in our case, the poles and zeros are located in a complex-time
or �-plane. Using this signal model, expressions for the envelope,
phase, and the instantaneous frequency (IF) of a signal may be derived
[3], [4]. This representation also leads to a special class of signals
whose instantaneous frequency is always positive. See also [2] and
[5]. In Section III, we introduce a two-step algorithm to decompose
an analytic periodic signal into two analytic signals: one completely
described by its envelope and the other having a positive IF (PIF). This
type of decomposition is different from those known in the cepstral
literature [1]. By appropriately windowing signals, the proposed
algorithm can be adapted to representing nonstationary signals by
using envelopes/PIF’s or equivalently by zero-crossings [6].

II. ENVELOPE AND IF IN TERMS OF ASIGNAL MODEL

Consider a periodic analytic signals(t) with a period ofT seconds.
Let 
 = 2�=T . If s(t) has finite bandwidth, it may be described by
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the following model for a sufficiently largeM over an interval ofT
seconds.

s(t) = ej! t

M

k=0

ake
jk
t: (1)

!t = K
 represents the lower band-edge of the spectrum ofs(t).
ak are the complex amplitudes of the sinusoidsejk
t; a0 6= 0, and
aM 6= 0. By analytic continuation, we may writes(t) in terms of a
complex variable� (á la the traditional complex-frequency variablez)
asS(�) = ��K(a0 + a1�

�1 + a2�
�2 + � � � + aM��M . Thus,s(t)

is obtained by evaluatingS(�) around the unit circle in the�-plane,
i.e.,� = e�j
t. Note thats(t) [or S(�)] is a polynomial ine�j
t (or
�). We may factor this polynomial into itsM(= P + Q) factors and
rewrites(t) as
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p1; p2; � � � ; pP and q1; q2; � � � ; qQ denote the polynomial’s roots;
pi = jpije

j� , qi = jqije
j� . pi denotes roots inside the unit circle

in the complex plane, andqi are outside the unit circle, assuming that
there are no roots on the circle. That is,jpij < 1, andjqij > 1. Each
factor of the form(1 � pie

j
t) in the above is called an “elementary
signal” [2]. Thepi andqi are referred to as zeros of the signals(t). The
above expressions, representing a bandlimited periodic signal, may be
recognized as the counterpart of the frequency response of a finite im-
pulse response (FIR) filter in discrete-time systems theory [1]. More
generally, ifs(t) consists of an infinite number of spectral lines, then
we can represent it to desired accuracy using sufficient number of poles
and zeros, analogous to IIR filters. Voelcker called this way of modeling
signals the “product representation of signals.” We will primarily work
with the all-zero models since they are easier to use.
sMaxP(t) andsMinP(t) are the direct counterparts of the frequency

responses of the maximum- and minimum-phase FIR filters in dis-
crete-time systems theory [1]. As in systems theory (see [1, Sec. 10.3]),
the phase of the MinP signal is the Hilbert transform of its log envelope,
that is, the MinP signal may be expressed in the forme�(t)+j�̂(t). See
[4] for details.�̂(t) is the Hilbert transform of�(t). Similarly, since
a maximum-phase (MaxP) signal has zeros outside the unit circle, it
may be expressed ase�(t)�j�̂(t). Thus, envelope or phase alone is suf-
ficient to essentially characterize a MinP or a MaxP signal. [Along the
same lines, an all-phase (AllP) analytic signal, which is the analog of
an all-pass filter, would be of the formej (t).] Thus,s(t) may be ex-
pressed as

s(t) = Ace
j! t e�(t)+j�̂(t)

MinP

e�(t)�j�̂(t)

MaxP

(3)

where the “hat” stands for Hilbert transform.!c is Q
 (contributed
by the linear-phase term from the MaxP signal) plus the arbitrary fre-
quency translation!t shown in (2).Ac is a0

Q

i=1(�qi). See [7] for
details. The expressions for�(t) and�(t) are derived in [4]
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Note that the zerosqi andpi are assumed to be outside and inside
the unit circle, respectively. We will reflect theqi to inside the circle (as
1=q�i ) and cancel them using poles. Then, we group all the zeros inside
the unit circle to form a different MinP signal and the zeros outside the
circle and the poles that are their reflections inside the unit circle to
form the all-phase or AllP part of the signal. That is

s(t) = Ac
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: (5)

Equivalently, multiplying and dividing (3) byej2�̂(t) and collecting
terms, we get

s(t) = Ace
�(t)+�(t)+j(�̂(t)+�̂(t))

MinP

ej(! t�2�̂(t))

AllP

: (6)

This grouping of signals is, of course, analogous to well-known de-
composition of a linear discrete-time system into minimum-phase and
all-pass systems (see [1, Sec. 5.6]). Analogous to the fact that the group
delay of the all-pass filters is always positive [1, Sec. 5.5], the IF of AllP
part will always be positive (even if!t, which is the frequency transla-
tion, is zero). We call this the positive IF (PIF). Thus, the PIF (t) of
s(t) is a positive function and is as follows:

 (t) = !c � 2
_̂
�(t): (7)

The expression for̂�(t) is the same as that of�(t) in (4) with cosine re-
placed by sine. Of course, we could also group the zeros outside the unit
circle together to form a MaxP-AllP decomposition. If we can separate
the MinP and the AllP components of the signals(t), then the MinP
part conveys the AM information, i.e.,e�(t)+�(t) (or, equivalently, its
logarithm�(t)+�(t)) around the carrier!c, and the AllP part conveys
the PIF information (t).

Givens(t) over aT -second interval, how do we separate the MinP
and AllP components and compute the PIF of the signal? There are
at least three traditional ways to separate the MinP and AllP compo-
nents. First, one could find the Fourier coefficients ofs(t), then root
the polynomial formed using the Fourier coefficients, i.e., findpi and
qi, and then group them as in (5) to separate the components. Second,
one could compute the log-envelope ofs(t) [i.e., ln js(t)j], compute
its Hilbert transform, and subtract it from the phase ofs(t). Third, we
can use the block diagram in Oppenheim and Schafer [1, Fig. 12.7, p.
784] by replacing theirX(ej!) by s(t). In this case, one computes the
logarithm ofs(t) and keeps the causal part of its spectrum (i.e., spec-
trum corresponding to the positive frequencies) as the MinP part; the
AllP part is obtained by dividings(t) by the MinP part as in [1]. How-
ever, there is an elegant way of achieving this decomposition, which
we describe next [8]. It does not require explicit computation of the
logarithm and phase unwrapping or the Hilbert transform or rooting of
a polynomial.

III. MinP/AllP D ECOMPOSITION

In this section, we describe a simple algorithm to separate the MinP
and AllP components. This is shown in Fig. 1. It consists of two parts. In

Fig. 1. LPSD algorithm:1=h(t) corresponds to the MinP part of the signal
s(t).  (t) corresponds to the IF of the AllP part of the signals(t).

the first part, which consists of the multiplier, an inverse signal gener-
ator (ISG), and an error minimization block, a model fitting procedure
is used to remove the envelope of the signals(t).

This is achieved by minimizing the energy of an error signale(t)(=
h(t)s(t)). The energy ofe(t) is defined as follows:

T

0

je(t)j2 dt =
T

0

js(t)h(t)j2 dt: (8)

h(t) is a signal generated by the ISG using the formulah(t) = 1 +
p

k=1 hke
jk
t. 
 = 2�=T . In other words, the ISG generates a low-

pass periodic signal. The error is minimized by choosing the coeffi-
cientshk. Those who familiar with model-based spectral analysis will
immediately recognize the duality between this method and the “auto-
correlation method” of linear prediction [9], [10]. In the autocorrelation
method, a discrete-time FIR filter called an inverse filter or predicton-
error filter with frequency responseH(ej!) (with first coefficient held
at unity) is used to flatten the envelope of a spectrumX(ej!) of a se-
quencex(n) by minimizing the error 2�

0
jX(ej!)H(ej!)j2 d!: This

is an exact analog of (8). Analogous to the autocorrelation method, the
error in (8) is a measure of the flatness of the envelope ofe(t). In addi-
tion, minimizing the error in (8) amounts to performing linear predic-
tion on the Fourier coefficients of the signals(t), and hence, we called
it linear prediction in spectral domain (LPSD) in earlier work [8].

Similar to the MinP property of the prediction-error filter used in
linear prediction [10], minimizing T

0
je(t)j2 dt results in ah(t) that

is a MinP signal (having all its signal zeros inside the unit-circle). This
is true even if the envelope ofs(t) goes to zero at some instants be-
tween 0 andT seconds and for any orderp � 1. The significance of
this MinP property is that, as we already mentioned,h(t)’s log-enve-
lope and phase are Hilbert transforms. Because the error minimization
is performed to flattens(t)’s envelope, if the value ofp is chosen suf-
ficiently large [analogous to using a high order moving average (MA)
model to approximate an autoregressive (AR) spectrum], thenh(t)will
be given by

h(t) � e�(�(t)+�(t))e�j(�̂(t)+�̂(t)): (9)

Thus, (1=h(t)) is the desired approximation tos(t)’s MinP com-
ponent, hence, the name “inverse signal” forh(t). Consequently,
the error signale(t) will be e(t) � Ace

j(! t�2�̂(t)) and, hence,
is an approximation to the AllP component ofs(t). In the second
part, which is denoted in Fig. 1 as “measure frequency,” the PIF is
computed as( _e(t)=je(t)j) or (d6 e(t)=dt).

The decomposition or LPSD algorithm involves solving only a linear
system of equations. Lets[n] n = 0; 1; � � � ; N � 1 denote samples
of the given signal. Let
 = (2�=N) be the assumed fundamental
frequency. By replacingh(t) ande(t) by their respective sampled ver-
sions, we have

e[n] = s[n] +

p

k=1

hks[n]e
jk
n: (10)

We minimize N�1
n=0 je[n]j2 by choosing the best set ofhk. This is

a linear least squares problem. Typically,p is much smaller thanN .
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(a) (b)

(c) (d)

Fig. 2. (a) Estimated envelope1=jh(t)j obtained using LPSD (p = 12 coefficients) (dashed line) along with the true envelopejs(t)j (shown in solid line); (b)
Plot of the signal’s raw IF (solid) that goes negative; dashed line refers to estimate of PIF; the true PIF is also displayed (dashed-dotted). The estimated PIF can be
made to match the true PIF more closely by choosing a largerp. (c) Estimate of̂_�[n] (dashed line) along with truê_�[n], plotted as solid line. (d) Real part of the
reconstructed signal synthesized by using the separated components (dashed line) along with the real part of the original signals(t) (solid line); they match closely.

Clearly, the solution depends only on the magnitude ofs[n]. h[n] can
then be reconstructed by computingh[n] = 1 + p

k=1
hke

jk
n.
sMinP[n] can then be computed as(1=h[n]); the log-envelope and
phase ofsMinP[n] correspond to�[n] +�[n] and�̂[n] + �̂[n], respec-

tively. The PIF!c � 2
_̂
�[n] can be found as the IF of the error signal

e[n] using any standard IF estimator such as the phase difference be-
tween neighboring samples.

The LPSD algorithm attempts to flatten the envelope of the signal
s(t) by using an adaptive amplitude demodulator. This process not
only eliminates the AM but alsoautomatically removes from the
phase ofs(t), which is a quantity equal to the Hilbert transform of
the log envelope ofs(t). This causes the IF ofe(t) to be positive.
Instead, if we simply “complex clip”s(t), i.e., obtains(t)=js(t)j, then
its phase derivative (the traditional IF) will not always be positive.
Second, the MinP property ofh(t) guarantees that the envelope
approximation1=jh(t)j will never equal zero. Further, MinP signals
will have their energy concentrated over a relatively small region in
the spectral domain analogous to a MinP filter, which has its impulse
response peaking close to the origin. It is also possible to use the
LPSD algorithm to achieve a MinP-MaxP (instead of MinP-AllP)
decomposition ofs(t). See [4]. Third, an important advantage of the
LPSD algorithm is that it achieves the separation of the MinP and AllP
components without explicitly rooting a polynomial or computing the
logarithm or Hilbert transform of the signals(t).

A. Simulation Results

A signal s(t) consisting of seven [M = 6 in (1)] harmonically
related complex exponentials with frequencies 0 Hz, 62.5 Hz,� � � , up
to 375 Hz, with amplitudes 1.0000, 3.3330, 5.8910, 7.3820, 7.0350,
8.8136, and 3.3600, respectively, and whose respective phases (in
radians) were 0,�1.7822, 2.8095, 1.5068,�0.2974,�2.2036, and

1.1969 was synthesized.s(t) corresponds to a mixed phase (MixP)
signal consisting of two (= P ) zeros inside and four (= Q) zeros
outside the unit circle. The signal is periodic with a period of 16
ms (62.5 Hz fundamental frequency) and has a carrier frequency of
249 Hz (corresponding to its MaxP component’s translationQ
,
!c = 2� � Q � 62:5, and!t = 0). The signal was sampled at 16
kHz. The signal samples were fed to the LPSD algorithm described in
the previous subsection. The coefficientshk were computed, andh(t)
(actually its samples) was synthesized. For the case of 12 coefficients
[i.e., p = 12 in (10)], the estimated envelope given by1=jh(t)j is
shown (dashed line) in Fig. 2(a). Only one period (16 ms) of the
envelope is shown. The true envelope (solid line) given byjs(t)j is also
shown. They match closely. In Fig. 2(b), we have plotted the signal’s
raw IF [which is obtained by differencing the phase angles of adjacent
samples of the signals(t)] in a solid line. Note that the raw IF could

go negative. On the other hand, the PIF (i.e.,!c�2
_̂
�[n]) computed by

differencing the phases of the neighboring samples of the error signal
e(t) stays positive (dashed line), as it should. In Fig. 2(b), the true PIF
(dashed-dotted line) that is superposed on to the estimated PIF is also
plotted. The true PIF was obtained, for the purpose of comparison,
by using the roots of the polynomial in (1) and synthesizing the AllP
signal given in (5) and determining its IF.!c was estimated as the

mean of PIF, and_̂�[n] was estimated by subtracting!c’s estimate
from the PIF. Further,_̂�[n] was computed by subtracting the estimate

of _̂�[n] from the MinP signal’s (1=h(t)’s) IF; the solid line in Fig. 2(c)
corresponds to the separated_̂�[n]; it matches closely with the true one
(which is obtained using the signal’s roots) shown as dashed-dotted
line. In Fig. 2(d), we have displayed the real part of the signal
reconstructed using the separated MinP and MaxP components using a
solid line; the dashed line corresponds to one period of the real part of
the original signals(t); they match exactly. In all of the above cases,
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the estimated components can be made to match the true ones more
closely by increasing the orderp. In summary, given a signals(t), its
various components (MinP/MaxP/AllP), which are actually multiplied
components, can be separated using simple linear techniques without
resorting to rooting or phase unwrapping algorithms.

IV. DISCUSSION ANDCONCLUSION

Traditionally, MinP/MaxP/All-Pass decompositions are applied to
filter transfer functions, i.e., in the frequency domain. In this correspon-
dence, we have proposed the dual of this decomposition in the time do-
main. In Section III, we also presented a simple algorithm to achieve
this decomposition. The duality between the frequency and time do-
mains can be extended further. IfH(z) is a MinP filter of orderp, then
the symmetric/antisymmetric polynomialsH�(1=z�)� z�nH(z) for
anyn � p will have all their roots on the unit circlejzj = 1, and they
are interlaced. These roots are called line spectrum frequencies (LSFs)
[11] and are sufficient to representH(z). The LSF’s are used exten-
sively in speech coding. Analogously, in the time domain, the signals
h(t)e�j(n=2)
t�h�(t)ej(n=2)
t (for n � p) will have interlaced zero
crossings that are sufficient to uniquely identifyh(t). In other words,
j1=h(t)j, which models the envelope of a signals(t), can be repre-
sented by these zero crossings. These ideas are explored in more detail
in [6] and for real-valued signals in [12]. Although we have considered
only periodic signals, the extension of the algorithm to any signal re-
quires appropriate time windowing.
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