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AbstratPhase Evaluation and SegmentationMihel R. NahonYale University2000
This dissertation is organized in 3 parts. The �rst part is a study of instantaneous fre-quenies for one and two-dimensional signals. In 1946, Gabor proposed in [1℄ to analyze aone dimensional signal via its omplexi�ation. We re�ne this idea and study the BlashkeFatorization to separate frequential and amplitudal information. We demonstrate stabilityand invariane properties. We desribe an iterative algorithm to deompose a signal in anorthogonal basis of �nite Blashke produt. An extension of this algorithm is presented forthe two dimensional ase.In part II, we deal with the problem of textural segmentation. Many appliations in imageanalysis are based diretly or indiretly on segmentation. Several algorithms give good re-sults. We study the properties of the pyramidal algorithm developed by J.-M. Morel (andhis ollaborators), that is based on the Mumford-Shah funtional, as its properties interestus. For textured images a preproessing is mandatory. In [19℄, a vetor image is obtainedafter �ltering with an undeimated wavelet deomposition by Koeper et al.. The problemis now to segment a vetor image. The \good �lters" have to be hosen to obtain a rea-sonable segmentation, regions with omparable sizes. We propose an algorithm to seletthe useful �lters in a library for a hosen image. It enables to redue the omputationaliii



time and give a more eÆient segmentation. We present an extension of the Mumford-Shahfuntional and show how to redue the dimension of our vetor image. Di�erent results anda ounter-example, where the pyramidal algorithm is not optimal, are presented.The last part is devoted to the appliation of undeimated wavelets. We believe that multi-sale analysis is an important tool for image and signal proessing. We represent our datawith the wavelets and wavelet pakets deomposition. We work with undeimated waveletssine they are grid's independent. We �rst summarize their properties before showing someappliations. The �rst appliation is deonvolution, sharpening and smoothing signals us-ing the subspaes obtained with the wavelet pakets. The seond one is about denoisingradar images using the separation of the strutures given by the wavelet representation, tosolve the troubles generated by the the targets. And �nally, by extrating the variations atvarious sales, we show results for the detetion of brain ativities in funtional-MRI.
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Chapter 1
Phase Evaluation and BlashkeProdut
1.1 IntrodutionWe develop an approah to signal analysis using instantaneous frequenies, for periodifuntion. We exploit an idea of Gabor's developed in [1℄ to use the phase of the omplex-i�ed analyti signal to de�ne the instantaneous frequeny. In [8℄ and [9℄, Voekler showedhow to understand the instantaneous frequenies and envelope, based on the \produt rep-resentation of signals" whih he modeled as polynomials or rational funtions. The Hilberttransform is used to ompute this analyti signal. In ase of a one-dimensional signal, itsamplitude gives an \envelope" of the signal. Computing the frequential information fromsuh a funtion is unstable in the presene of noise. For the one-dimensional ase we willrefer to the Canonial Fatorization (see [2℄) and the Blashke produt that gives us someinvariane properties. This fatorization an be assimilate with Voekler idea of \produtrepresentation signals". In [3℄, Kumaresan proposed an extension of this work. He men-tioned that the 'Min Phase', 'Max Phase' and 'All Phase' was not done by Voekler butby Oppenheim and olleagues in hapter 12 of [6℄. In the representation, the 'All-phase'is a Blashke produt and the 'Min-phase' is an outer funtion (that orresponds to our1



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 2funtion G, up to a onstant fator, that we will desribe later). We observe, also shownby Loughin and Taer in [4℄, that the sum of the derivative of the phase and the amplitudemodulation an be interpreted as the instantaneous frequeny.We begin with an overview of results about the Canonial Fatorization. We de�nean iterative algorithm to deompose an analyti signal in an orthogonal basis of �niteBlashke produts. We e�etively obtain the information ontents in a wide variety ofexamples. This algorithm onsists in the deomposition of a signal into di�erent osillatorymodes.In onlusion of our study, we attempt to extend the notion of Blashke produt tothe two-dimensional ase in a onsistent way. We apply this algorithm to synthesized andreal images.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 31.2 Summary of results about Blashke ProdutsIn this setion we de�ne Blashke produt. We follow Zygmund [12℄ and Garnett [2℄ in thispresentation.1.2.1 De�nitionsOur disussion will require the following basi de�nitions and properties, f. [2℄ and [12℄ fordetails.Theorem 1.2.1. If z 7! F (z) is regular for jzj � 1, then log jF (z)j is dominated in jzj < 1by the Poisson integral of the funtion log ��F (eix)��, i.e.log ���F (�ei�)��� � 12� Z 2�0 log ���F (�ei�)��� 1� �21� 2� os(� � �) + �2d�: (1.1)Let �1; �2; �3; � � � ; �m; � � � be a sequene of points suh that 0 < j�mj < 1, and thatQm j�mj onverges. Then the produtYm b(z; �m) =Ym (z � �m)(z � ��m) 1j�mj ; ��m = 1��m : (1.2)onverges absolutely and uniformly in every dis jzj < r < 1 to a funtion �(z), regular andbounded above by 1 in jzj < r, whih has �1; �2; �3; � � � ; �m; � � � as its only zeros there.Given F 2 N , let �1; �2; �3; � � � ; �m; � � � be the zeros of F loated in fz; jzj < 1g and�k 6= 0 for all k. If F has an additional zero of order N � 0 at z = 0 the expressionB(z) = eizN �Ym (z � �m)(z � ��m) 1j�mj (1.3)where  is any real number, is alled the Blashke produt of F . If F has no zero forfz; 0 < jzj < 1g , then B(z) = eizN for suh F . We have jB(z)j � 1 for jzj < 1 and theratio G(z) = F (z)B(z) (1.4)is regular and has no zeros in fz; jzj < 1g. We shall always assume that  is seleted sothat G(0) is real and positive.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 4In [2℄ various properties of the Nevanlinna Class are desribed. In partiular, oneobtains the least harmoni upper bound of log jf(z)j of the form R Pz(�)d�(�), with theimportant relation: d�(�) = log jf(�)j d�2� + d�s(�) (1.5)with d�s singular i.e. orthogonal to d�. The anonial fatorization theorem for funtions inN is given by writing d�s as the di�erene of two positive measures d�2 and d�1, orthogonalto d�. With the previous de�nitions, we have the outer funtion:G1(z) = exp�Z 2�0 ei� + zei� � z � log ���f(ei�)��� d�2�� (1.6)And the singular inner analyti funtions Sj are de�ned by:Sj(z) = exp�� Z 2�0 ei� + zei� � z d�j(�)�; j = 1; 2 (1.7)That enables us to state the Canonial Fatorization theorem:Theorem 1.2.2. Let f 2 N; f 6� 0. ThenF (z) = C �B(z) �G1(z) � S1(z)S2(z) ; jCj = 1 (1.8)where B is a Blashke produt, G1 is an outer funtion and Si are singular funtions. Thefatorization is unique exept for the hoie of C.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 51.3 Elementary omputations of the phase of a signalThroughout the paper, the signal f will always be a trigonometri polynomial with valuesin IR. We will ompute an analyti funtion f+ suh that Re(f+jIR) = f . This funtionexists and an be obtained by aneling the negative frequenies of the signal f̂ , the FourierTransform of f , so that supp(f̂+) � [0;+1). The steps are the following:� We ompute f̂ , the Fourier transform of f , and preserve the positive frequenies:f̂+ = 2F(f) �1(0;+1)+ Æ0(F)(f). A multipliation by two is neessary to preserve thereal part and we have Re(f+jIR) = f� We ompute the inverse Fourier transform: f+ = F�1(f̂+)Thus we have onstruted a mapping from L2(IR) 7! L2(IC) that maps a real funtionf to an analyti funtion f+ using the Hilbert transform:f+jIR = f + iH(f) (1.9)Now we work on the unit irle, given a trigonometri polynomial f , we onstrut onIC an analyti funtion f+ (suh that Re(f+jIR) = f). We then have holomorphi funtionF suh that the restrition to the unit irle has the following properties:for eah � 2 (��; �℄; F (ei�) = f+(�) (1.10)This notation for funtions will be kept throughout the paper. We have interests in theinstantaneous frequenies. Thus, we will now explain how to ompute it.1.3.1 Evaluation of the instantaneous frequeniesWe an obtain the Blashke produt by extrating the roots �k of F , an analyti funtionon IC , with absolute value smaller or equal to 1 and denote N the order of zero as a root.We have the following identity:F (z) = B(z) �G(z)withB(z) = zN � MYk=0� z � �k1� ��kz � ��kj�kj� (1.11)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 6We have, on the unit irle, jBj = 1 and jGj = jF j. Thus there exists a funtion � :[��; �)! IR, suh that ei�(�) = B(ei�) and we obtain:B(ei�) = B(1) � ei R �0 �0(t)dt with �0(�) = N + MXk=0 1� j�kj2jei� � �kj2 > 0: (1.12)The fat that the phase � is non-dereasing means that B has the property of always turningaround the origin in the same diretion. The urve de�ned by B has a ounter-lokwisetrajetory. This property is not always veri�ed by analyti funtions even if by de�nitiontheir Fourier Transform has only positive frequenies.1.3.2 The lassial method to ompute the phase gradientGiven a trigonometri signal f+, we ompute its phase modulo (2�) and its amplitude.We \unwrap" the phase along the �-axis and ompute its derivative in order to obtain theinstantaneous frequeny of f . We assume that the phase does not have any jumps greaterthan �, or otherwise the phase ould not be unique.1.3.3 An alternative way to ompute the phase gradientMany numerial artifats are introdued when F vanishes, making the phase omputationssensitive to noise, and its phase has a disontinuity as supported on the interval (��; �℄ . Tosolve these problems, we begin by omputing diretly the phase derivative and determineafter the phase value by integration. As a omplex signal, F , an be written as that follows:F = jF jei� 2 IC;with � the phase that we are interested inWe have a determined � if only jF j > 0, indeed � = �i log FjF j . We notie that a segmen-tation of the signal an be obtained using this riterion, the regions Ki are separated bypoints where jF j anels. When we have separated our onneted omponents Ki ontainedin K = fx 2 
 : jF (x)j > 0g, we ompute the derivative of F aording to � and obtain theexpression: F 0 = jF j0ei� + i�0jF jei�, where u0 orresponds to ��u



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 7thus: F 0F = jF j0jF j + i�0 (1.13)To obtain a signal with a meaningful phase, in the sense that the phase has somevariations, we �rst extrat the low frequenies from our original signal. The instantaneousfrequeny is onsidered as unhanged under this operation, sine signals with low frequeniesontents have very small utuation of their phase by de�nition.Remark 1.3.1. In the preprint \Lifting in Sobolev Spaes" the authors propose a multi-resolutions algorithm to determinate the phase of a \given funtion u : 
 7! S1 (i.e.,u : 
 7! IC and ju(x) = 1j a.e.) we may write pointwiseu(x) = ei (x)for some funtion  ; 
 7! IR. The objetive is to �nd a lifting  \as regular as u permits."This funtion  is obtained by an iterative proess, that omputes the funtion atvarious sales from oarse to �ne.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 81.4 An algorithm to ompute the Blashke ProdutLet f+ be a trigonometri polynomial of one variable, de�ned by the restrition of f to thepositive frequenies in the Fourier spae:f+ = 2 � FT�1�FT (f) � �[0;+1)�; thus Re(f+jIR) = f: (1.14)We write f+ as a Fourier series with only positive frequenies on the irle:f+(�) = k=MXk=0 akeik:� (1.15)And now on the unit dis, we have:F+(z) = k=MXk=0 akzk (1.16)We have shown that F+ is analyti in IC. But F+ has some zeros inside the unit irle. Wewant to build a new analyti funtion G+ with same absolute value a F+ on the unit irleC but no zeros inside the unit irle. Let's denote l = log jF+j, and obtain L+ analyti suhthat Re(L+jIR) = l. Denote further G+ = eL+ so that:jG+j = ��eL+�� = eRe(L+) = el = jF+j ; on C:Thus, we have now the following identity:F+ = B+ �G+ with jB+j = ����F+G+ ���� = 1 on the unit irle C: (1.17)We interpret now these two funtions and show that B+ orresponds to the Blashke prod-ut. We will assume that F+ has no zeros on the unit irle through the paper.1.4.1 The interpretation of the \B �G" deompositionWe have deomposed a holomorphi funtion F+ on the omplex plane as the produt oftwo holomorphi funtions B+ and G+. Just as F+ the funtion B+ has no zeros on theunit irle and G+ has the same modulus as F+ on the unit irle. We show now that



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 9this algorithm, based on the numerial values on the unit irle C, gives B+ equal to theBlashke produt of F+ (to a multipliative onstant , with jj = 1). We have a disretesignal F+ with roots faig all distint from zero. N is the order of zero as a root, thus:F+(z) = � � zN � Yjaij<1(z � ai) � Y1<jaij(z � ai) (1.18)Then it is obvious that:log jF+(z)j = log j�j+ Xjaij<1 log jz � aij+ X1<jaij log jz � aij (1.19)But we know that z belongs to the unit irle C, thus we write:log jF+(z)j = log j�j+ Xjaij<1 log j1� z � �aij+ X1<jaij log jz � aij (1.20)And we know that inside the unit dis, for jaj > 1, we have z 7! log(z � a) analyti, thuswe have: Re� log(z � 1�ai )� = log ����z � 1�ai ���� for jaij < 1 (1.21)Re� log(z � ai)� = log jz � aij for jaij > 1 (1.22)We onlude that:G+(z) = j�j � Yjaij<1(1� �ai � z) � Y1<jaij(ai � z) � �aijaij (1.23)B+(z) = �j�j � zN � Yjaij<1 (z � ai)(z � a�i ) :�1�ai � Y1<jaij � �aijaij ; where a�i = 1�ai (1.24)We observe that this algorithm enables us to obtain the deomposition that onforms tothe Blashke produt de�ned previously. As we will see below, we have thus separated thefrequeny and the amplitude ontents of our signal F+. The fatorization above yields:Phase(F+) = Phase(B+) + Phase(G+) (1.25)In [2℄, Garnett shows that the same deomposition an be obtained for funtions within�nitely many zeroes. After experimentation, we note that in some ases the phase of G+



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 10is ontained in (��=2; �=2) but it is not a rule. Nevertheless, the urve de�ned by G+ hasthe property of not surrounding the origin. On the other hand, B+ ontains omplementaryinformation. In fat its phase orresponds to the number of turns around the origin whihis a topologial invariant. Computing the instantaneous frequenies of B+ is more stable asit never vanishes sine jB+j = 1. Moreover its phase is non-dereasing as we have seen inequation (1.12) and may lead to more stability to noise. The shortoming of the algorithmis that we note that numerial artifats appear when the roots of F+ are lose to the unitirle C, that orresponds to the limit ase for a root to hange from being a root of B+ orG+.The absene of singular funtionIt is well known that an analyti funtion F is the produt of an Inner and Outer funtion.The Inner funtion is omposed of two fators: the Blashke produt and a ratio of twosingular funtions (Theorem 5.5 in [2℄ ). Sine we work with trigonometri polynomials,the measure d�s (that is the singular part of the weak limit of log jF (rei�)j as r ! 1) isequal to zero. Moreover, the trigonometri polynomial an be written as a polynomial ofz = ei�, as its has a Fourier series with only positive frequenies. It means that it is theprodut of B, with roots in the unit dis, and G with roots outside the unit dis. They arerespetively rational funtions and polynomials.1.4.2 Properties of the Blashke ProdutWe notie that this deomposition is similar to the Loal Trigonometri bases as bothdeompositions enables us to have loalized osillations. For example, the loal osinetransform has its osillations parametrized (it orresponds to the spatial and frequentialloalization of the signal). Eah term has a well de�ned support.8x 2 [ak; ak+1)x 7! os�j � (x� ak)ak+1 � ak � (1.26)For the Blashke produt it will depend on the phase of the roots ontained in the unit dis,as � 7! ei���ei�01��ei(���0) (with � � 0). The osillations are more or less onentrated depending on



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 11the distane of the root to the unit irle. The osillations are around �0 and the frequeniesdepend on (1��). If � is equal to zero we have a low frequeny by opposition to � near one.The frequenies will be a�eted too, loalization and osillations are fored at the same timein both ases. We notie on �gure 1.1, the loalization properties of the Blashke Produt.The fatorization proess obtained from the family of Blashke produts is a non-linear
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Figure 1.1: An example of Blashke produt B = ei�B that has three roots of di�erentorders. The top graph shows the real part of B, while the seond and third row show thephase �B and its derivative �0B. We observe that the \spread" of the osillations dependson the distane of the root to the boundary (unit irle C). The order of the root inreasesthe number of loal osillations.approximation as it will generate a funtion B, the Blashke produt, that is adapted tothe signal. We observe that the osillations, related to the derivative of �B (the phase ofB), will depend on the loal frequenies of our signal. We also notie that the loalizationsof the zeros an be obtained by observing the maxima of the derivative �B as shown in



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 12hapter 1.3.1. On the other hand, it has the drawbak of being of absolute value equal toone. We will show in the next hapters some numerial results and neessary orretions toredue the omputational artifats.1.4.3 Numerial ExperimentsIn the previous algorithm, we apply the logarithm to the absolute value of F+, It meansthat in every region where jF+j is lose to zero the omputations of G+ and therefore of B+are going to be unstable and artifats will appear. We an also notie that in some aseswe loose analytiity of G+ even if it orresponds to the exponential of an analyti funtion.Corretions for regions where F+ vanishesTo prevent this numerial diÆulty we apply a orretion, we have tried two di�erent kindsof �ltering. In the �rst ase we smooth log jF+j by hoosing a parameter � that we use asa threshold. It an be written as follows:��F new+ �� =qjF+j2 + (� � kF+k1)2 (1.27)And we have now on the unit irle:jB+j = �1 + ��kF+k1jF+j �2�� 12 (1.28)We onlude that jB+j << 1 for F+ << �kF+k1 (1.29)and jB+j � 1 for F+ >> �kF+k1 (1.30)The result is then obvious on the left bottom graph of �gure 1.2. Another possibility isto �lter the funtion jF+j in order to \separate the funtion from zero". The onvolutionby a positive funtion will raise the values in the regions where jF+j are equal to zero (asjF+j is a non-negative funtion), it has a similar e�et to the heat kernel. We onvolve jF+jwith the Poisson kernel at (1 � �), this orresponds to multiply by (1 � �)jij eah Fourier
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Figure 1.3: Numerial artifats appearing for � 7! (ei��z1)p1 �(ei��z2)p2 �(ei��z3)p3 �g1(�),with g1 an outer funtion, sine the roots zi are too lose to the unit irle. We notie thatjBj 6= 1 and the �0B, derivative of B's phase, is not non-dereasing anymore.We know G+ is an analyti funtion as the exponential of an analyti funtion.Nevertheless artifats appear in this omputation. We observe on the example shown on�gure 1.3 the numerial artifats that appear learly in the phase of B+ and modify therelation jB+j = 1. A Fourier transform will on�rm the loss of analytiity (we have highnegative frequenies di�erent from zero) and also we easily notie that B has an absolutevalue di�erent from one in some points. This numerial errors interfere with our resultsespeially for the iterative deomposition that we apply later.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 15Corretions to ompute the logarithm and exponentialThe Blashke produt is related to the roots of F+ living in the unit dis D. These twofuntions have in ommon all the roots inluded in D. The poles of B+ have an absolutevalue greater than one. We want to see how aurate is the omputation of B+ knowingF+. Sine B+ is a produt, we restrit our study to a simple real root in the unit dis D,and the problem is invariant by rotation so the root an be taken on the interval [0; 1). We
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Figure 1.4: The funtion � 7! ei� � r, with r lose to one, and its B+ � G+ deomposition,where it appears that jB+j is not equal to one everywhereare working on a simple example, shown on �gure 1.4, the binomial de�ned by:F+(z) = z � r; with 0 � r < 1: (1.31)We know that the deomposition \F+ = B+ �G+" is obtained with:B+(z) = z � r1� rz and G+(z) = 1� rz (1.32)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 16We notie that if r is lose to one the funtion log jF+j goes to minus in�nity andgenerates artifats in the omplexi�ation proess. It will reate some high negative fre-quenies that should be equal to zero as an analyti signal. In fat, the signal is suddenlygoing to turn muh faster around the origin and if the signal is not oversampled enough, itwill mean a jump greater than � for the phase. Some artifats are obtained in the Fourierdeomposition of G+. As we know the exponential of an analyti funtion is also analyti,so the non-zero oeÆients appearing for the negatives frequenies are obviously artifats.And as a onsequene, we have jB+j 6= 1 and its phase will not be non-dereasing We observe
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Figure 1.5: The funtion � 7! ei� � r and its B+ � G+ deomposition, where the artifatsdisappear using an oversampling of four.on �gure 1.5 that oversampling the funtion, applying a zero padding in the Fourier spae,makes the negative frequenies tend to anel. We keep the same trigonometri polynomialbut oversample the signal to avoid artifats. We notie that G+ is a polynomial of degree



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 17smaller or equal than F+, then we trunate the Fourier expansion of our signals L+ and G+at a rank R (that we denote by (�)R) to obtain (L+)R and (G+)R aording to the degreeof F+, and we have: (L+)R = F�1(F(L+) � 1[0;R℄) (1.33)
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Figure 1.6: The funtion F+ : � 7! (ei� � z1)p1 � (ei� � z2)p2 � (ei� � z3)p3 � g1(�), from �gure1.3, oversampled has now the desired deomposition \B+ � G+": jB+j = 1 and B+ = ei�Band �B is non-dereasing (bottom row). We observe that �B has jump of 2� where thedisontinuity was before on �gure 1.3.The degree of G+ is smaller or equal than the degree of F+. As we write the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 18deomposition of \F+ = B+ �G+", where we note N the order of zero (as a root):B+(z) = �zN � Y0<jaij<1 (z � ai)(1� �aiz) (1.34)and G+(z) = Yjaij>1(z � ai) � Y0<jaij<1(1� �aiz) (1.35)) deg(G+) = deg(F+)�N; with N � 0: (1.36)We trunate L+ and G+ at the same degree R. And we have:(G+)R = � exp �(log jF+j)+�R�R (1.37)We onlude from this experiene, �gure 1.6, that we obtain a better result byoversampling a trigonometri polynomial funtion to ompute L+. Trunate the signals inthe Fourier spae to the same order as the original signal F+, before and after applying theexponential to these two steps, is also neessary to keep the non-dereasing phase of B+.But the possible presene of zeroes lose to boundary, the unit irle C, is a majorproblem for this algorithm. We have shown that oversampling solves it up to a point. Nomatter how muh we oversample, if the root is lose enough to the boundary, we will havealiasing (\lose" of ourse depends on the amount of oversampling). So this \solution" tothe problem is merely a onveniene to allow omputations for signals having roots loserto the boundary than we ould with no oversampling, but it doesn't resolve the diÆulty.Stability of the zeroes ontained in the unit disWe hoose, as an example, an analyti funtion with three distint roots in the unit dis.We apply di�erent bells (modifying the support of the signal) to quantify the stability ofthe positions of the zeroes. We have shown before that the derivative of B's phase is asum of Poisson kernels (related to the root of B+), in hapter 1.3.1. In hapter 1.4.2, weshowed that the phase of the roots is related to the maxima of �0B ,the �rst derivative ofthe phase. While we had the oversampling to eliminate artifats, we observed that theposition of the zeroes was stable with the oversampling of the signal. We also observe thefollowing paradox: the omputation of B+ is global, as we use the Fourier transform, but
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CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 201.5 Properties of F+ = B+ �G+In the beginning of this hapter, ee look at the e�ets of an eventual �ltering of F+. Forsimpli�ation we study the properties on the upper half plane that orresponds to anotherrepresentation, knowing that there exists a onformal mapping between the unit dis andthe upper half plane. After this study, we look at the properties of the numerial Blashkeprodut, de�ned as before, on some trigonometri polynomials to enable the reader todevelop an intuition about the \B �G" fatorization. And we �nish the hapter by showingthe robustness of the algorithm and its property of invariane.1.5.1 Phase properties on the upper half planeLet f 2 L2(IR), we have onstruted f+ in the Fourier spae with the following formula:f+(x) = 2 � Z 10 eix�� f̂(�)d�; x 2 IR: (1.38)We an also de�ne F+ on the upper half plane as follows:F+(z) = 2 � Z 10 eiz��f̂(�)d�; z 2 IC (1.39)And we have Re(f+jIR) = f . Also we assume jF+(z)j > 0 for real z and we de�ne G+ asbefore: G+(z) = exp(log jF+(z)j)+ (1.40)It an be written as G+ = exp(L+) where L+(z) = l(z) + i � ~l(z) and l(z) = log jF+(z)j forreal z, and B+ = F+G+ . As B+ is de�ned as the Blashke produt for the deomposition ofF+, we have: B+(z) = �z � iz + i�k �Yj z � ajz � �aj � ���a2j + 1���a2j + 1 (1.41)where aj = �j + i�j are the roots of F+ in the upper half plane. �, the phase of B+ veri�esthe relation i�0 = B0+B+ , with u0 = dud� , and a simple alulation shows that :�0(x) = 2Xj �jjx� aj j2 > 0 (1.42)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 21We denote the following projetion:P�f(z) = F+(z + i�) (1.43)We note F�, l� and K� the respetive projetions of the funtions F , l and K = log jF j. Weobserve that we have: jF+(x+ i�)j = Yj ����x+ i�� ajx+ i�� �aj ���� � exp(l�(x)) (1.44)And also: K�(x) = 12Xj log �(x� �j)2 + (�� �j)2(x� �j)2 + (�+ �j)2�+ l�(x) (1.45)~K 0�(x) = H(K 0�)(x) (1.46)~K 0�(x) = Xj j�+ �j j(x� �j)2 + (�+ �j)2 � j�� �jj(x� �j)2 + (�� �j)2 + ~l�0(x) (1.47)Therefore we get that:Im�F 0(x+ i�)F (x+ i�) � = ~l0(x+ i�) +Xj (�j + �)(x� �j)2 + (�i + �)2 (1.48)� Xj j�j � �j(x� �j)2 + (�i � �)2+ 2Xj (�j � �)(x� �j)2 + (�i � �)2Sine F (z + i�) has zeroes (aj � i�)j , for �j > �.Im�F 0(x+ i�)F (x+ i�) � = ~l0(x+ i�) + X�j>� (�j + �)(x� �j)2 + (�j + �)2 (1.49)+ X�j>� (�j � �)(x� �j)2 + (�i � �)2� X�j<�" (�j + �)(x� �j)2 + (�j + �)2 � j�j � �j(x� �j)2 + (�i � �)2#And if we �-�lter the phase of B� we get :
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2X�j>� �j(x� �j)2 + �2j (1.50)We have shown that by �ltering we an eliminate the roots of B� that are to lose tothe real axis. They orrespond to the roots ontained in the unit dis D near the boundaryC.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 231.5.2 Examples of \B �G" deompositionIn this hapter we present two examples showing the deomposition desribed before. Theseexamples are reated to show properties linked to this study and to give to the reader anbetter intuition about the Blashke produt. The �rst example is given by �gure 1.8, thatrepresents the fatorization of two trigonometri monomials with disjoint supports, di�erentamplitudes and frequenies. We easily see that the phase of B+ and F+ are similar but B+has the property of having a modulus equal to one.
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Figure 1.8: A simple signal omposed of two trigonometri monomials, � 7! ei2n1� � 1I1 +2ein1� � 1I2 , where I1 and I2 orrespond to the �rst and seond half of the signal. On thebottom row, we observe that B+ is keeping the frequential information given by F+. Themiddle row shows G+ living in the right half plane.B+ an be ompared to F+jF+j but it has the partiularity of being an analyti funtion.Moreover we an observe on the �gure that G+ is living in the right half plane and has then



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 24it phase is in the small range [��=2; �=2℄ and is not surrounding the origin O as B+ does.The winding information is ontained by B+. The seond example, on �gure 1.9 shows twohirps with distint support, amplitudes and frequenies range as before. We observe as
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Figure 1.9: A seond signal omposed of two hirps, � 7! ei2n1�2 � 1I1 +2ein1�2 � 1I2 , where I1and I2 orrespond to the �rst and seond half of the signal. As the previous �gure showedB+ ontains all the frequential information while G+ lives in the right half plane.before that G+ is living in the right half plane and B+ is similar to F+jF+j . Using �gures 1.8and 1.9, as a �rst onlusion we an say that the e�et of fatorization on F+ to give B+ isquite intuitive, and we observe that the phases of F+ and B+ are similar in both ases.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 251.5.3 Examples of robustness to noiseWe show now on di�erent examples that the fatorization is robust to noise in the sense thatthe Blashke produt is invariant. We apply the deomposition algorithm on the examplespreviously shown on �gure 1.8 and 1.9 but we generate additive or multipliative noise. Weeasily notie, in the new �gures 1.10 and 1.11, that B+ stay the same while the noise a�etsF+ and G+. The funtion G+ seems to \attrat the noise" and leave B+ lean. A possible
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Figure 1.10: Deomposition of the two trigonometri monomials from �gure 1.8 with additivenoise. B seems to not be a�eted by the noise while G+ is keeping all the noise.explanation omes from the fat that the phase of B+ is non-dereasing. But no reasonableexplanation seems to be obvious. A possible interpretation is given by the fat that thewinding number is a topologial invariant. Sine the Blashke produt is diretly related to
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Figure 1.11: Deomposition of the two hirps from �gure 1.9 with additive noise. B seemsto be invariant to this noise.to be without any noise. If we represent F and B on the same graph we an observe thatB+ is like a metronome. The rhythm seems to be not sensitive to the noise as it appearson the following graphs that resume the study of the noise e�et.As a �rst onlusion, we an say that the e�et of the noise is obvious on the funtionsG+ by ontrast to B+ that seems to be idential to the funtion obtained before withoutnoise. We onlude that B+, obtained by fatorization, is not sensitive to noise and so byonsequene its phase either.
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Figure 1.12: The Real parts of the Blashke produts and the �rst signal with and withoutnoise (shown in �gures 1.8 and 1.10), and their phases.
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Figure 1.13: The Real parts of the Blashke produts and the �rst signal with and withoutnoise (shown in �gures 1.9 and 1.11), and their phases.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 281.5.4 Examples of invarianeAfter showing some properties of stability with noise for the phase, we are taking theexample of a family of deformed funtions on the unit irle (parametrized by � 2 [��; �)and z = ei��) suh as � 7! sign(sin(k � �2)).
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Figure 1.14: The original real signal � 7! sign(sin(k��2)) and its three di�erent perturbationsplotted separately with the real parts of the Blashke produts. The phase of the four signalsare also plotted belowWe an observe that eah B+, for this family of funtions, is an invariant. B+orresponds to the metronome of a zero rossing ounter.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 291.6 Orthogonal Deomposition into Blashke produtsIn this setion, we develop an idea to represent and understand analyti signals with a�nite orthogonal deomposition. In [7℄, Szabo et al. presents an \orthonormal basis onL2(IR) generated by a �nite Blashke produt". Our deomposition is based on an iterativemethod similar to the Gram-Shmidt orthogonal deomposition, some realls and detailsare given in [11℄ by Walsh. We use his remarks to develop a non-linear algorithm: onstrutan orthonormal deomposition with Blashke produts. But the main di�erene is that theexamples given by Walsh are related to a basis onstrution and we are interested in anorthonormal series, with a high rate of onvergene and without interest in the ompleteness.This method an be interpreted as a mathing pursuit that di�ers from a lassial best basisapproah. We present some simple examples to develop the intuition of the reader andexplain how the algorithm works (pealing the di�erent layers of the signal). We then applythe deomposition on a random trigonometri polynomial to show is e�etiveness. For afamily of funtions, with a uniform distribution on the unit sphere, we ompute a lowerbound of the average projetion on the Blashke produts family. We �nish our exampleswith a ase for whih our algorithm is not adapted at all and present an alternative.1.6.1 Rational Orthogonal BasisOne an orthogonalize the set of rational polynomials, as shown in hapter IX of [11℄:1; 1z � �1 ; 1z � �2 ; � � � ; 1z � �n with j�ij > 1 (1.51)We have to reall that the funtions f analyti on and within the unit irle C, vanishing atthe point z = 1�� with j�j > 1, are orthogonal on C to the funtion z 7! 1z�� . And the Gram-Shmidt orthonormalisation proess, in L2(jzj = 1; d�2� ), gives the following deomposition:1; zz � �1 ; z � (1� ��1 � z)(z � �1) � (z � �2) ; � � � ; z � (1� ��1 � z) � � � (1� ��n�1 � z)(z � �1) � � � (z � �n) (1.52)We observe that the Blashke Produts are a key fator in this orthonormal deomposition.We are developing this idea in the following hapter to onstrut mathing pursuit withBlashke produts.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 301.6.2 Informal desription of the methodWe want to deompose an analytial signal f in an orthogonal sum of Blashke produts,with the fatorization de�ned before. We develop an iterative algorithm that will extratthe main osillations of our signal in di�erent steps.Remark 1.6.1. A good interpretation of this algorithm is given by looking at the rotationof the Moon turning around the Sun. We manage to separate the two rotations, the Moonaround Earth and the Earth around the Sun, by running this iterative algorithm.At the �rst iteration we subtrat the onstant part of f on C (that is to f(0) =R 2�0 f(ei��) d�2� ). We obtain f1 = f � f(0) that has obviously zero has a root, it enables us todeompose z 7! f1(z)=z (that is analytial) with the produt of b1 and g1, where b1 is theBlashke produt and g1 an outer funtion. We iterate the previous two steps on g1 and soforth. For notation reasons, we denote g0 = f , and we have the following algorithm:f = g0 = g0(0) + z � b1 � g1g1 = g1(0) + z � b2 � g2� � �gn�1 = gn�1(0) + z � bn � gn (1.53)Remark 1.6.2. As gi is an outer funtion, for all i > 0, we know that gi(0) 6= 0 (for alli > 0) sine gi is an outer funtion.By summation we obtain:g0 = g0(0) + g1(0) � z � b1 + � � �+ gn�1(0) � zn�1 � b1 � b2 � � � bn�1 (1.54)+ zn � b1 � b2 � � � bn � gnEquation (1.54) is omposed of a residual (the last right hand term) and an approximationat the level (n�1) that is g0 minus the residual. We will now prove that the approximation,just de�ned, is an orthonormal deomposition and that we have onvergene in norm of the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 31residual to zero. On the unit irle C, the salar produt of two terms of g0's deompositionis: 8(p; n) 2 (IN�)2; p < n; (1.55)< zp � b1 � � � bp; znb1 � � � bn >= IC(�zp � �b1 � � � �bp) � (zn � b1 � � � bn)d�;But we know that jbj j = 1, thus:< zp � b1 � � � bp; zn � b1 � � � bn >= 12�i � IC zn�p � bp+1 � � � bndzz (1.56)We know that the poles are outside C and n� p � 1, so it implies:< zp � b1 � � � bp; zn � b1 � � � bn >= 0 (1.57)The L2-norm is veri�ed as we have:8n 2 IN� < zn � b1 � � � bn; zn � b1 � � � bn > = 12�i IC jb1 � � � bnj2 dzz) kzn � b1 � � � bnk2 = 1 (1.58)Therefore we have the orthonormality of the series. We are now interested in the evaluationof the residual part of the deomposition. By onstrution we know that jbij = 1 (where fdoesn't vanish numerially), so kbik = 1, and we want to show that kgnk onverges to zeroas n goes to in�nity. And so if we denote approxn the approximation of f with n vetorswe have : approxn(z) = nXi=0 i � iYk=1 z � bk(z); where ; i = gi(0) > 0) kf � approxn(z)k2 = k� n+1Yk=1 z � bk(z)� � gn+1k2) kf � approxn(z)k2 = kgn+1k2 (1.59)We have shown before the orthogonality of the deomposition it means that we an applyPythagore's Theorem: kfk22 = nXi=0 2i + kgn+1k22 (1.60)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 32Remark 1.6.3. An alternative way to write this algorithm is to split the funtion f in twoparts using the low frequeny ontent instead of just the onstant term. And we observe thatthe onvergene rate is improved.1.6.3 Properties of the iterative algorithmWe have shown in hapter 1.4.2 some of the properties of the Blashke produt and itssimilarities to the loal trigonometri basis. We observe that the iterative algorithm, thatwe just desribed, produes a launary series. Sine, eah time a new term is omputedby indution, it ontains the previous term and is multiplied by z and a Blashke produt.And two onseutive terms, the pth and (p + 1)th terms, of the deomposition are writtenas follows: zp � b1 � � � bp and zp+1 � b1 � � � bp � bp+1 (1.61)The ratio is obviously z �bp+1, where bp+1 orresponds to the roots inside the unit dis (bp+1an be equal to one or orresponds to multiple roots inside the unit irle C). By buildinga launary series the algorithm reates a deomposition using fewer terms than what isneessary to have an orthonormal basis. The fast onvergene and non-ompleteness of thealgorithm are some of these onsequenes.1.6.4 Some examples of deompositionIn this hapter we show the advantages and properties of suh a deomposition for di�erentexamples. We hoose them to explain how this algorithm works and more preisely thereursive algorithm that extrats the di�erent signal layers. The three examples show howthe algorithm works.Three elementary examplesThe �rst example is omposed of a trigonometri binomial where eah term has a di�erentamplitude (� 7! 0eim0�+1eim1�). In the omplex plane, the signal an be interpreted as the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 33

-1 0 1

-1

-0.5

0

0.5

1

 Function F

200 400 600 800 1000

-2

0

2

4

6

 Phase of B

200 400 600 800 1000

-1

-0.5

0

0.5

1

 Function B

-0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

200 400 600 800 1000
0

20

40

60

80

200 400 600 800 1000

-1

-0.5

0

0.5

1

Figure 1.15: Deomposition of F+ : z 7! z � (1+0:2 � zn) with two main osillations, B1+ andB2+ are two osillating funtions with di�erent radius and speed. The main osillation isextrated at the �rst iteration (top row), while the seond step extrats the minor amplitudeosillation (bottom row).rotation of the Moon around Earth around the Sun. The �rst deomposition orresponds tothe main osillation (the one with the greatest amplitude). In the seond step we obtain theminor osillation. It an be interpreted as the rotation of the Moon around Earth (minoramplitude osillation), the Earth turning around the Sun. The results are shown on �gure1.15 where we see the simpliity of the deomposition. Our signal is omposed of only twoosillant signals, and we have extrated them of our signal in two iterations. Eah time weiterate the deomposition, we peel one layer o� our signal.For the seond ase, we hoose to study the deomposition on a simple funtionomposed of two trigonometri monomials with distint support (as one of the exampleused previously), shown on �gure 1.16. The original signal has an average value equal
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Figure 1.20: Orthogonal deomposition of the modulated Gaussian signal F : � 7! e�(���0)2 �ein� in three steps. The right olumn shows the evolution of the approximation.An analyti funtion with a numerial ompat support di�erent from the wholeunit irleWe treat in this paragraph some speial ases: analytial funtions on the unit irle C witha \numerial ompat support". It means that the funtions have numerial values lose tozero on a set of non-null measure. With a representation using the phase �, it means thatnumerially the funtion vanishes numerially on an interval stritly inluded in ℄ � �; �℄.On �gure 1.20, we have the ase of a modulated Gaussian:f(�) = exp(�� � (� � �0)2) � os(n(� � �0)) (1.66)) f+(�) = exp(��(� � �0)2 + in(� � �0)) (1.67)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 39In this ase, we know that we have to ���lter the funtion F to be able to ompute B.We observe that \support(B)" an be adapted to F as it depends on the ��threshold. Weobserve that the norm of G+ as a Gaussian distribution and onverges to zero very fast on�gure 1.21. kGiterk = kFk � exp(�� � iter2) (1.68)
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Figure 1.21: Fast Convergene rate of the Gaussian approximation shown in �gure 1.201.6.5 Density of Blashke produt in the lass of analyti funtionsIn the informal desription of the method, we have written any signal f as a sum of Blashkeproduts were the oeÆients n orrespond to the salar produt of gn�1 and the family ofBlashke produts. So one renormalized with the gn and gn�1 norms, it gives the osinesof the angle between our library and the funtion.A good approximation on averageExperiments ran on random trigonometri polynomials have been done, the oeÆients ofour polynomials have a Normal distribution entered in zero. We stored the value g0(0)obtained by the iterative deomposition algorithm. A mean value of 0:75 for the value ofg1(0) (with g0 renormalised to one) with a standard deviation of 0:03 is obtained for our



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 40data. The following theorem gives us a lower bound for this value.For simpliity we use auniform distribution of the Fourier oeÆients on the unit sphere.Theorem 1.6.1. Let H2N = fF (�) = PNk=0 ak � eik�; jjakjj2 = 1g equipped with denotedd�F Lebesgue surfae measure of �2N�1 in ICN normalized to one. There exists a universalonstant  suh that:E� exp � Z log jF j d��� = Z�2N�1 exp h Z 2�0 log jF j d�id�F �  (1.69)where  = exp��  + log(2)2 �; and  is the Euler onstant.Proof: See Appendix .1Remark 1.6.4.  orresponds to the salar produt between F and our family of Blashkeproduts. It orresponds to an angle around 58 degrees. We have shown a result thatorresponds to an average value.The next hapter will show that the basis an be inappropriate in some ases.A basis not adapted for polynomialsWe show in this hapter that the polynomials z 7! (z � �)n are not well represented in thebasis using the family of Blashke produts. In this ase, we observe on �gure 1.22 that theBlashke Produt is unadapted to this polynomial. We show that using a variant rationalfuntion we onsiderably improve our basis, this idea is oming from the previous hapter1.6.1. We study two ases to overome this problem. We onstrut a polynomial fn withthe order-n root � in the unit dis. By rotation we simplify the study to the real positivease. If � = 0 the ase is trivial as Bn = Fn. We normalize fn with n for the L2(IR)-norm.fn(z) = n � �z � �1 + ��n; with 0 < �; and n � pn: (1.70)We split our study in two main ases depending on the value of �.� First ase � < 1
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Figure 1.22: The Real parts of the polynomial Pn (z 7! (z � �)n, j�j < 1) and its Blashkeprodut BnWe have fn(0) = ( �1+�)n < 12n << 1, and as the salar produt is linear, in thisase we write < fn; � >�< fn � fn(0); � >. Thus, the iterative algorithm gives its Blashkeprodut Bn assoiated:Bn(z) = 0 �� z � �1� �� � z�n; with j0j = 1: (1.71)We ompute the salar produt on the unit irle C between these two unit vetors:< fn; Bn > = 0 n(1 + �)n � 12�i IC(z � �)n� �z � ��1� � � �z�ndzz< fn; Bn > = 0 n(1 + �)n � 12�i IC(z � �)n�1� ��zz � � �ndzz< fn; Bn > = 0 n(1 + �)n � 12�i IC(1� ��z)n dzzj< fn; Bn >j � pn(1 + �)n << 1 (1.72)The salar produt dereases exponentially to zero as n tends to in�nity and orresponds tothe osine of the minimum angle between fn and any vetors from our family. We onludethat our family of funtions is not very well adapted to this ase. We generate a new family,



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 42more onentrated spatially (most of the energy is within a small region of C) to obtain abetter result:  n(z) = Bn(z) � (1� j�j2) 121� �� � z ; with � 2 IC: (1.73)We then ompute, in a similar way as before, the salar produt:< fn;  n > = 0n � (1� j�j2)1=2(1 + �)n � 12�i IC(z � �)n�1� ��zz � � �n � 11� ��z dzz< fn;  n > = 0n � (1� j�j2)1=2(1 + �)n � 12�i IC (1� ��z)nz � � dz< fn;  n > = 0n � (1� j�j2)1=2(1 + �)n (1� ��)n (1.74)We observe that � = 0 gives  n = Bn. We use � to maximize this salar produt in orderto obtain a better approximation. Thus, our iterative algorithm will be optimize as it getsmore energy at eah iteration of the deomposition. We observe that this salar produtan be written in a di�erent way by using the B �G deomposition as follow:< fn;  n >=< F (z); Bn(z) � (1� j�j2)1=21� �� � z > (1.75)And we an ompute the Blashke produt on the unit irle C:< fn;  n > = 12�i IC Bn(z) �Gn(z) � �Bn(z) � (1� j�j2)1=21� � � �z dzz< fn;  n > = 12�i IC Gn(z) � (1� j�j2)1=2z � � dzj< fn;  n >j = jGn(�)j � (1� j�j2)1=2 (1.76)In this ase, we know that fn has � for only root, with order n, Gn(z) = (1 � �� � z)n.We have to maximize the right term of 1.76: � 7! ��(1� �� � �)n(1� j�j)1=2��. We suppose� 2 [0; 1℄, as a rotation will leave the problem unhanged, and we obtain a � real de�nedas: � = �1 + 1 + �� � (2n+ 1) (1.77)
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Figure 1.23: The Real parts of the polynomial Pn (z 7! (z � �)n (j�j < 1)), its Blashkeprodut Bn and  nWe have the following salar produt:j< fn;  n >j � qn � 1+���n(1 + �)n �1 + �(1� 1 + �� � 2n)�nj< fn;  n >j � r1 + �� � e � 1 (1.78)We observe on �gure 1.23 that the funtion  n is more loalized than Bn and obviously anumerial omputation on�rms that the seond salar produt is greater.� Seond ase � > 1We have fn(0) = ( ��1+�)n that is not neessarily small. One an veri�es easily thatthe roots of fn � fn(0) = 0 are zk = � � (1 � !k) with !k = exp(i2k�=n). The rootsof Bn belong to the unit dis. Thus, we are only interested in the value of zk suh thatjzkj < 1. z0 = 0, thus 0 is a root of Bn. We then have two sub-ases depending on the
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Figure 1.24: The Real parts of the polynomial Pn (z 7! (z � �)n, j�j > 1), its Blashkeprodut Bn and  nvalue of r = min!k 6=1 j�(1 � !k)j, there is only zero as a root or not. A short alulationgives r = 2� sin(�=n). But we know that if � > 1, the signal is not really osillant. Thuswe are just omputing a lower bound of our projetion. We onsider that 0 is the only rootof Bn. Then we have Bn(z) = z and Gn(z) = (Fn(z)� Fn(0))=z. The salar produt is thefollowing: < fn; Bn > = n(1 + �)n � 12�i IC �(z � �)n � (��)n� � �z � dzzj< fn; Bn >j � n 32� �� �1 + ��n << 1 (1.79)
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Figure 1.25: The Real parts of the polynomial Pn (z 7! (z � �)n j�j > 1), its Blashkeprodut Bn and  nThis salar produt is small and we onstrut another family more onentrated spatiallyto obtain a better result. We have  n(z) = p1�j�j21����z , with � 2 IC. The salar produt is:< fn;  n > = n(1 + �)n � 12�i IC �(z � �)n � (��)n� � q1� j�j21� � � �z � �z � dzz< fn;  n > = n(1 + �)n � 12�i IC �(z � �)n � (��)n� � (1� j�j2)1=2z � � � dzz< fn;  n > = n � (��)n�1(1 + �)n �� n�1Xp=0 �� � ��� �p� �q1� j�j2< fn;  n > = n � (��)n(1 + �)n ���1� ���n � 1� � q1� j�j2� (1.80)That orresponds as shown before to Gn(�) � (1 � j�j2)1=2. Then we study the extrema of� 7! p1�j�j2� � ������� �n � 1�. And for � > 1, we approximate �:� = �1 + �2n + o� 1n� (1.81)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 46The salar produt is then:j< fn;  n >j � n � �n(1 + �)n � ���+ 1� � 12n�n � 1� �r1� ���1� �2n ���2j< fn;  n >j � n � �1� �(�+ 1) � 2n�n �r�nj< fn;  n >j � r �e �(�+1) � 1 (1.82)And we onlude that in this ase the family ( n)n is more adapted to our funtion than(Bn)n as observed on �gure 1.25 and 1.24 that orrespond to the two sub-ases for � > 1.Improvement of the iterative algorithmWe have shown that we obtain a muh better projetion by hanging our projeting s-pae. The iterative algorithm given by equation (1.53) is modi�ed. We are now using newnotations and the iterative algorithm is the following:rn(z) = rn�1(z)� < rn�1; bn�1 � q1� j�nj21� ��n � z > �bn�1(z) � q1� j�nj21� ��n � z (1.83)Where bn�1 is the Blashke Produt of rn�1 = bn1 � gn�1. rn is orthogonal to rn�1. We annotie also that < rn�1; bn�1 � q1� j�nj21� ��n � z >= gn�1(�n)q1� j�nj2 (1.84)�n has been hosen suh that the absolute value of equation (1.84) is maximum. Theprevious algorithm based on the Blashke produt only orresponds to �n = 0. And wehave obviously rn(�n) = 0. We then have the following iterative orthogonal deomposition.r0(z) = 0 � b0(z) � 11� ��1 � z (1.85)+ 0 � 1 � b0(z) � z � �11� ��1 � z � b1(z) � 11� ��2 � z+ � � �with i = < gi; bi � 1� j�i+1j21� ��i+1 >



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 47We still have an orthogonal deomposition, sine we have a proess similar to the Gram-Shmidt algorithm desribes for rational funtional in hapter 1.6.1 and eah suessiveterm of equation (1.85) are orthogonal to eah other.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 481.7 Appliation to Sound SignalsIn this setion, we want to study sound signals using the \F = B�G" fatorization properties.We reord sounds on a mirophone, that ontain many times the word \Mihel" for di�erentspeakers, as real one dimensional signals. We separate eah word and ompute the analytisignal orresponding and the \B �G" produt. We show that the Blashke produt gives areasonable way to disriminate the di�erent speakers.1.7.1 Study of the word \Mihel"
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Figure 1.26: The time series of the word \Mihel" pronouned six times by the same speakerDi�erent segments \Mihel", from the same speaker, have been extrated from the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 49omplexi�ed extension of our original one dimensional signal, eah of them are denotedFi. It is diÆult to observe and study the signal as is. We observe that these signals anbe segmented in three regions. We apply a post-treatment on our signal, as any analysison them seems to be far from obvious as we an observe in �gure 1.26. We deomposethese signals, indexed with i, using the Blashke produt. We have for eah signal thedeomposition Fi = Bi �Gi.
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Figure 1.27: Deomposition of the word \Mihel": real part of F , B and the non-dereasingphase �B.We know that any Blashke produt Bi has a non-dereasing phase �Bi as seenpreviously, this harateristi is false for the signal Fi. The family of �Bi seems easier tostudy and lassify than the Fi as we an observe on the �gure 1.27. One an observe thethree distint intervals of �B , plotted on the bottom row of �gure 1.27.We now represent six phases �Bi orresponding to the Blashke produt Bi of the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 50deomposition for the words \Mihel" pronouned by the same speaker. It gives the inter-esting �gure 1.28.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-500

0

500

1000

1500

2000

2500

3000

3500
Phases of different B

Figure 1.28: Six phases �Bi , orresponding to the Blashke produt of the word \Mihel".One an look the slope of �Bi and separate the signal in three intervals. We also notie thatthis representation may be stable.We observe that the �Bi have a simple struture. At �rst sight, we note three regions,eah of them haraterized by a di�erent slope. The slopes are linked to the syllables. Itgives us the main frequenies or pithes of the word, and orresponds to the melody of theword. We obtain a basi segmentation of \Mihel" using a polygonal line, by splitting Fiwhere �Bi has the same main frequeny. These three parts have di�erent lengths for eah�Bi and orrespond to the syllables of \Mihel". Figure 1.29 show the graphs for six words\Mihel" pronouned by another speaker.Surprisingly, if the word is pronouned more or less slowly we still have three intervalswith slope of similar value. As a onsequene the length of eah interval will be obviously
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Figure 1.29: Six phases �Bi (obtained from the Blashke produt) of \Mihel", said byanother speaker, showing the inuene of the speeh speed. One an obviously see that thelength of eah interval is not a stable parameter, as supposed in �gure 1.28, but one annotie that the slopes on eah interval may be quite stable.modi�ed and the \winding number", as the phase will vary aordingly. We an also observethat the slopes are slightly di�erent from one speaker to another. The same word \Mihel"pronouned by two di�erent persons has the same struture: one very slow slope at thebeginning, one faster in the middle and a slow one at the end. Thus, we an think thatfor the �xed word \Mihel", the three slopes depend on the speaker only and the threelengths on the speed of the speeh. To determine if this property is true we represent now�ve di�erent speakers using the two last slopes (and not three for an easier visualization)as parameters for the graphial representation. We obtain the �gure 1.30. We observe thatwith only two parameters, in some ases, we an start to evaluate whih speaker orrespondsto the word \Mihel".
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Figure 1.30: The word \Mihel" represented for �ve di�erent speakers, who pronouned theword six times eah, using the two last slopes of �B for �ve di�erent speakersWe observe that some speakers have their six points more or less onentrated. Themain reason is that two of the �ve speakers have done variations of their tone and speehspeed, as we observe the di�erene between the �gures 1.28 and 1.29, that represent twodi�erent speakers. It makes their representation more diÆult by ontrast to the threeothers speakers. We ompare now the instantaneous frequenies given by a lassial phase-plane analysis with best basis (�gure 1.31)on the signal F and the derivative of �F and �B(�gure 1.32).
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Figure 1.31: The instantaneous frequenies of the word \Mihel" using the phase planeanalysisA hange of variables between two di�erent phases doesn't give too muh result!And the registration should be done �rst!!1.7.2 Appliation to ompressionWe observed previously that in the fatorization \F = B � G" a form of noise is mostlyontained in the phase of G. We deide to study F � = jF j � B, than an be also writtenas F � e�i��G , and use the properties of B. The sound of Re(F �) doesn't seem to bedi�erent from Re(F ). It means that the ear has diÆulty to ompare jF j � os(�B) andjF j � os(�F ). Reduing �B to lines on eah segment, as observed before, orresponds to amajor ompression and what we hear has lost most of the information. Having the mainfrequeny gives us just a whispering by itself, it orresponds to the melody of the word. Weneed to have information on the instantaneous frequeny at every point. But if we ombinethe polygonal phase with F amplitude we an almost guess the sound \Mihel", but we stillhave a lot of noise even if it sounds better than just the F amplitude. Furthermore, we haveto keep the smaller osillations of the phase that ontains the instantaneous frequenies of
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Figure 1.32: First derivative of the F and B phases for the same sound \Mihel".the signal. We ompressed the amplitude of F and the phase of B, using a Best Basisdeomposition. And we observe that both signals have more than 99:9% of their energywith only one perent of the signal as opposed to Re(F ) that needs around �ve perent ofthe signal to keep the same amount of energy. But we observe the following paradox thatthe seond ompression, that retains a lower perentage of energy, gives us a better result.This paradox an be explained as we approximate �B and not B, thus we do not have anyontrol on the approximations.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 551.8 A two-dimensional extension of the Blashke ProdutIn the previous hapters, we omputed the Blashke produt for the one-dimensional ase.We omplexi�ed a real funtion de�ned on the unit irle C, using the Hilbert transform,to extend it to the whole omplex plane IC. The Blashke produt is known to only existin the one dimensional ase, but we want to extend this approah to the two-dimensionalase by developing a similar algorithm, knowing that the anonial fatorization assoiatedis obtained without searhing for the zeroes. We will would like for example to re-normalizethe \three irles" on �gure 1.33. Where eah irle is de�ned by the enter, the radius, the
Original Image F with Multiplicative Noise ( 1 + δ . Unif[0,1] , δ = 0)
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120Figure 1.33: Three irles with di�erent frequenies, amplitudes and radii. The amplitudesare proportional to 1; 5; 10. We use this example to show later on how we an re-normalizeto the same amplitude these three irles.amplitude, frequeny modulation and the variane of the Gaussian that supports it. Thesefour variables are noted (zi; ri; �i; �i) and thus the equations of eah irle Cirlei and theimage I are as follows:Cirlei(z) = �i � sin(�i jz � zij) � e� (jz�zij�ri)2�i (1.86)I = 3Xi=1 Cirlei (1.87)For this example, we hose the amplitude �i proportional to 1; 5; 10.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 561.8.1 Artifat related to the two dimensional aseDuring the omplexi�ation proess of f in the one-dimensional ase, we apply the Hilberttransform and thus the Fourier transform. For the two-dimensional ase, this step is sensi-tive as there is not a anonial extension. But we are interested in the di�erent struturesontained in images using the osillatory ontents (as many strutures seem to be related tothe osillations). The extration of the osillations is obtained by a division of the Fourierspae with \ones" (we keep the regions in the Fourier spae that orresponds to a ommon
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120Figure 1.34: A possible one de�ned for a partition of the Fourier Spae, left �gure, andFCi , right image, obtained after �ltering of the \three irles" shown on �gure 1.33. Wenotie that the present osillations of FCi are obviously ontained in the one de�ned in theFourier spae.main osillation diretion), using a partition of unity. For eah one \Ci", we note FCithe subimage obtained after �ltering in the Fourier spae. The division is obtained to givepriority to the diretion and not to the frequeny. One of the partition of unity funtionsan be hosen with a Ci as seen on the �gure 1.34.1.8.2 Analyti extension with oneWe divide the Fourier spae in \ones" entered in the origin, and isolated the low frequen-ies for a separate study, as seen on �gure 1.34. The number of ones has to be adapted tothe image omposition, we hoose usually eight ones and the low frequenies as the parti-



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 57tion of the Fourier spae. We use the lassi Cartesian Fourier transform. We start from areal signal F from IR2 to IR, we ompute FCi , that orresponds to the frequenies living inthe region Ci, letting C0 be the entral region ontaining the low frequenies omponent.Eah FCi is analyti on C�i xIR2, where C�i is the dual one of Ci. An example is shown on�gure 1.34. We have the following formulae:8i > 0; FCi = FT�1�FT (f) � 1Ci� and Xi 1Ci = 1 (1.88)f = Re�XCi FCi� (1.89)To avoid artifats, the regions Ci an be de�ned using smooth bells. The funtions FCi areomparable to the brushlets developed by F. Meyer [5℄. The similarity is due to the fat thatwe have a partition of the Fourier spae and separate the osillations in di�erent diretions,but we do not fold the projetion sine the orthogonality is not our onern. We present nowthe fatorization proess for the two-dimensional ase. After the �rst step orresponding to
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120Figure 1.35: Two BCi obtained for the \three irles" (shown on �gure 1.33) with twodi�erent �-�ltering. The � on the left is smaller than the right one. Then the right �gureshows an \upper B" than on the left.the omplexi�ation, explained in the previous hapter, we obtain li = log jFCi j. We haveto extend li to Li;+, to obtain an analyti funtion. We ompute Li;+ using the same oneCi in the Fourier spae and obtain the equivalent of the one dimensional outer funtion



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 58that we note GCi;Ci . We lose the properties on B+, obtained in the one dimensional ase,shown before as we do not preserve jGCi;Ci j = jFCi j (we use the double notation \Ci; Ci",for index, as we use the one Ci for the Fourier transform at eah iteration). It means thatjBCi;Ci j is not equal anymore to one. An alternative way presents to us, �ltering in theFourier spae using the half plane Hi entered with the angle hosen before. In this ase,we have by onstrution jBCi;Hi j = ��� FCiGCi;Hi ��� = 1 sine the �ltering in the Fourier spae givesjGCi;Hi j = jFCi j. For �gure 1.33, we obtain B as shown on �gure 1.35. This transformationhas the partiularity to make jBCi;Hi j = 1. But unfortunately it is not neessarily anadvantage as osillations appear all over the image.We �lter our signal with the �-threshold, as de�ned in the one dimensional ase inthe hapter 1.4.3, to obtain with a new notation GCi;Hi;� (for � = 0, we omit the parameter� in our notation), to lower to zero the regions where jFCi j is smaller than �kFCik1. Andwe obtain BCi;Hi;� = FiGCi;Hi;� . In the other regions of the image, where jFCi j >> �kFCik1,the absolute value is then re-normalized to one as seen in the one-dimensional ase. Forthe two-dimensional ase we have hoose the Poisson �ltering as de�ned previously. Bydereasing, the value of � we only keep the osillations in the regions where FCi has moreenergy.The main di�erene between the one-dimensional and two-dimensional ase is omingfrom the fat that FCi has numerially a ompat support in most of the ase as opposedto F+ in the one-dimensional ase. It omes from the fat that by seleting a one Ci in theFourier spae, instead of the half plane Hi, to ompute FCi we lose a main part of the energyof f . Therefore it does not make sense to raise jBCi;Hi;�j to one everywhere by lowering thevalue of �. A solution that one an hoose is to set to zero BCi;Hi;� in the regions whereFCi > �kFCik1. From the deomposition we obtain:f = Re�FC0 + XCi;i>0BCi;Hi;� �GCi;Hi;�� (1.90)Sine by onstrution of BCi;Hi;� = FCiGCi;Hi;� . If we use an �-threshold we have:8i > 0; jBCi;Hi j = 1 if jFCi j > �; and jBCi;Hi j = 0 else: (1.91)
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Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 45 
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Image REAL(Fana)  with cone orientation = -45  aperture = 45 
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120Figure 1.36: The left �gure represents BCi obtained for the \three irles" (shown on �gure1.35) with an �-threshold. We observe the extension from the right �gure FCiWe represent on �gure 1.36 the funtion BCi;Hi;� with an �-threshold and set to zero forjFCi j < �kFCik1. We observe that with this new BCi;Hi;� (with a threshold to set to zero)we have extended in some sense the funtion FCi shown on �gure 1.34, the region wherethe osillations are visible is now greater than previously. The value of the �, hose for the�-�ltering, will a�et muh more our two-dimensional signal during the extension, than inthe one-dimensional ase.1.8.3 Image enhanement of \the three irles"jBCi;Hi;�j has the partiularity to be similar to 1FCi , as we apply a �-threshold, renormalizingthe funtion to one where FCi >> �kFCik1, and setting to zero the regions where FCi <�kFCik1. BCi;Hi;� and FCi have similar osillations but a di�erent amplitude. We aninterpret BCi;Hi;� as a re-normalization of FCi suh that all its osillations have the sameamplitude one.It an be in some ases an advantage as seen in the example of the three \irles",eah one them have a di�erent frequeny and amplitude. So by using the \B � G" fator-ization we manage to restore the three irles with the same ontrast. On �gure 1.37, wepresent two results with a di�erent �-�ltering. If the � is hosee quite small it gives a muh
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Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 

Figure 1.37: Two B obtained for the \three irles" (shown on �gure 1.33) with two di�erent�-�lterings. The left image has a smaller � and then a better ontrast than the right image.But we an observe that some artifats appear when � starts to be too small as on the left�gure.better ontrast. We also observe that the more we gain on the ontrast the more we looseon the spatial loalization of the osillations. There, we an onlude that a trade-o� hasto be done.1.9 Stability to noiseIn this hapter, we test the algorithm with a similar image as before exept that we mademodi�ations to transform the irles on ellipses, to avoid rotation symmetries in the image.We also add a multipliative noise to observe the stability of the transform as we see on �gure1.38. We are interested in the gradient phase of the signal, and we observe that we inreasedthe regions where we ompute it. We observe that a large value for the multipliative noiseis not a main problem for the proess. We still have an eÆient result. Artifats appear inregion where jFHi j is small.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 61

.

Original Image F with Multiplicative Noise ( 1 + δ . Unif[-1,1] , δ = 0.9) Angle of the gradient of the Phase of F

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Angle of the gradient of the Phase of newB

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Angle of the gradient of the Phase of newB

Figure 1.38: The top row shows the original image Re(FHi) (on the left) \one irle andtwo ellipses" and the orresponding angle of r�FHi . The seond and third rows representBHi;Hi;� with two �-�ltering and the angle of the r�B. The value of � is lower for the bottomrow, thus it raises jBHi;Hi;�j to one in wider regions than the seond row



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 621.9.1 Real ImagesWe an observe the result on a real image. Figure 1.39 shows the improvement betweenthe analyti image that ontains half of the Fourier information and the extension to theBlashke produt.

.

Original Image F Image REAL(Fana)  with cone orientation = -45  aperture = 175 

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 

Figure 1.39: The top row shows the original �ngerprint and the real part of the omplexi�edsignal without high and low frequenies. We mainly keep the frequenies orresponding to the\stripes osillations". On the bottom row, the left �gure represents the \Blashke Produt"while the right one is its signum. We observe that the ontrast has been inreased from thetop to the bottom.1.9.2 Eventual segmentationAs observed in the one dimensional ase, BCi;Hi enables us to ompute the instantaneousfrequenies of our signal that belongs to a region Ci. After thresholding, we ompute the



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 63gradient of the phase of BCi;Hi on the region Ci seleted on wider regions than for FCi as wehave seen before. For eah point, pixel, we an then attribuate its r�FCi and r�BCi;Hi;�
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Amplitude of the gradient of the Phase of newB
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120Figure 1.40: The amplitude of the gradient of the phase of FHi and BHi;Hi obtained forthe \three irles" (shown on �gure 1.33) with an half plane entered at �45 degres and an�-threshold. We observe artifat due to the fat that there exist no analyti signal with asymmetry of rotation. The right image, obtained from B, has obviously extended the domainwhere the phase's gradient an be omputed.related to eah Ci. As we have seen before we have inreased the area of the regions wherethe phase gradient exists or has a meaningful value. Using these di�erent gradients andthe low frequenies omponents we obtain a vetor image that an be used for vetorialsegmentation



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 641.10 ConlusionIn the one dimsenional ase, we have shown invariane and stability properties of theBlashke produt using our fatorization representation. We have shown how to work with\numerial ompat" signal by adapting of � for the �-threshold. We presented an orthog-onal deomposition based on the Blashke produts an be done and gives good results inmany ases. An optimisation obtained by extension with a loalized fator, z 7! p1�j�j21����z ,is also possible but need an algorithm to �nd the optimal �.The two dimensional extension of the Blashke produt, based on the same steps,enables a similar representation. It renormalizes our funtion to an absolute value equalsto one, in the regions ontaining the osillations that have frequenies in the region seletedin the Fourier spae. More has to be studiedin the two dimensional ase, espeially to testthe stability to noise and how to hoose the partition of the Fourier spae for the two steps.The pseudo polar Fourier transform, desribed and implemented in [10℄, is also an optionto the artesian Fourier transform as it may give a representation more adapted, dependingon whih �lter has to be reated.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 65.1 A rih lassIn this hapter, we provide a detailed proof of the Theorem 1.6.1. The Jensen inequalityenables us to write:E(exp h Z log(jF j)d�i) � exp" 12� Z 2�0 d� � Z�2N�1 log(jF j)d�i (92)As we know that F is a random trigonometri polynomial, we an write:F (�) = NXk=0 ak � eik� ) F (�) = A � E�pN (93)where E� = f 1pN e�ik�g; k = 0 � � �N; and A = fakgE� is a unit vetor whih an be rotated to the �rst oordinate axis without hangingE(log jF j). So we have: E(log jF j) = E� log jA � E�j+ log(N)2 � (94)E(log jF j) = E(log jA � E�j) + log(N)2 (95)The Lebesgue measure on �2N�1 = fz : jz1j2 + � � � + jzN j2 = 1g an be written as thefollowing: E(�(z1; � � � ; zN )) = Z �d�N�1(r)d�1 � � � d�1; (96)where zi = ri � ei�i ; ri � 0; NXi=0 r2i = 1:d�N�1(r) is renormalized to 1 on �2N�1 to have E(1) = 1. We obtain:E(log jA � E�j) = N � Z �0 log jos( )j sinN�1( )d (97)Where N = p���(N2 )�( 1+N2 ) . And if we let  be the Euler onstant we have:E(log jA �E�j) = �� + log(4) + �0(1+N2 )�(1+N2 ) �=2 (98)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 66There is an asymptoti formula for the digamma funtion:�0(N)�(N) = log(N) + o(1) (99)) �0(N+12 )�(N+12 ) = log(N)� log(2) + o(1) (100)Finally we have E(log jF j) = � + log(2)2 + o(1) (101))  = exp �� ( + log(2))=2� (102))  = 0:52 : : : (103)



Chapter 2
A Vetorial SegmentationAlgorithm
2.1 IntrodutionSegmentation is a key fator for image proessing, it enables \to extrat in homogeneousregions separated by edges". The term homogeneous has to be understood in a very broadsense. The regions an be pieewise onstant, have a repetitive pattern or texture as seenin Brodatz book [13℄. Works on the subjet have led to a better understanding: Textons byJulesz [17℄, Wavelets representation with Mallat [21℄, Funtional with Mumford and Shah[25℄. These di�erent theories generated reently many algorithms. We know the eÆieny ofthe pyramidal algorithm presented by J.-M. Morel, and the CEREMADE (University ParisIX-Dauphine). This algorithm is based on the Mumford-Shah funtional, a dereasingfuntion of the number of regions, and is part of the Megawave platform [15℄. We studythe pyramidal algorithm that gives a segmentation for a predetermined number of regions.Some properties of onvexity are shown for this algorithm. We use these properties tointrodue an extra term, related to the number of regions, in the funtional. This newfuntional has now a minima depending on the number of regions. We also show a ounterexample for the non-optimality of the algorithm. The algorithm approximates regions by67



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 68a onstant, so it implies that for textured images a preproessing has to be done. Koeperet al. showed some good results in [19℄ for textural image using a vetorial segmentationafter a wavelets preproessing. A summary of wavelets properties is then given as we willuse them for our multi-sale representation, we also show the fast deomposition done byMallat and present the Wavelet pakets. These algorithms use deimation. But we want agrid independent algorithm so we introdue the notion of undeimated wavelets and presentdi�erent preproessing. A ost funtion is then applied to evaluate the usefulness of the�ltering, we want to avoid \uninteresting �lters" to shorten omputations time and improveeÆieny. We obtain the \Cost Subspaes" on whih the segmentation algorithm will run.Our aim is to �nd a riterion to determinate the number of regions and the eÆieny of thesegmentation for eah subspae. This approah is based on the fat that we are interested in�nding a segmentation with regions of reasonable sizes and we are not looking, for example,for \targets" that are typial of small regions. Thus we reate a riterion of \segmentationeÆieny" for eah omponent and disard the insigni�ant �ltered images. We run thepyramidal algorithm on syntheti and real images, applying di�erent improvements.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 692.2 Segmentation AlgorithmJ.-M. Morel and his ollaborators from the CEREMADE developed Megawave [15℄, a soft-ware that works as a platform ontaining C programs, essentially for image proessing.For segmentation, a pyramidal algorithm has been developed, it is based on Mumford-Shahfuntional. This merging algorithm is very eÆient in the ase of pieewise onstant images.For textured images, a vetor image is obtained after preproessing before evaluating theost funtion that enables to selet the useful �lters. Then we an redue omputationaltime and errors by hoosing the appropriate omponent of our vetor image. We desribethe pyramidal algorithm and explain its advantages and show problems that an our.This desription is done with the purpose to �nd a riterion for a good segmentation.2.2.1 Mumford-Shah FuntionalThere is an obvious relation between the pieewise onstant approximation on eah regionand the region itself. Therefore, we de�ne Mumford-Shah funtional with a parameter �,that an be ompared to the sale, by using the regions (the funtion orresponding is thende�ned by the average value on the region). To determinate the regions is equivalent toobtain the pieewise onstant funtions. We de�ne P (
) partition of 
, and N(�) numberof regions for a �xed �. And we obtain 8K � P (
), with K = [N(�)i=1 Ki where the domainsKi are onneted, a segmentation similar to �gure 2.1.
.

       K1
               K2

             

   K3      K4

                K5Figure 2.1: Example of a segmentation in �ve regions for an image.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 70And we have the following representation:8u 2 L2(
); 9!g 2 L2(
); suh that gjKi = uKi = 1jKij � ZKi u (2.1)And we denote �K = [N(�)i=1 �KiE�(u;K) = Z
ku� gk2 + �:length(�K) (2.2)E�(u;K) = N(�)Xi=1 ZKiku� uKik2 + �:length(�K) (2.3)We note the optimal result: E�(u) = minK�P (
)E�(u;K) (2.4)And we want to �nd K suh that E�(u;K) is minimum. We now present the harateristisof a pyramidal algorithm developed and programmed by J.-M. Morel and his team.2.2.2 A pyramidal algorithmWe know that a way to solve Mumford-Shah funtional, with pieewise onstant funtion,is to use an iterative algorithm. This algorithm has been developed by J.-M. Morel and histeam the CEREMADE. They de�ne this algorithm by reursion in Koeper's thesis [18℄.This algorithm starts with a segmentation at the pixel level (we obviously have N2 regionsfor a image of size (N;N)) and � is equal to zero. A merging algorithm runs until thedesired number of regions � is reahed. The pyramidal algorithm onstruting 2-normalaÆne segmentations is de�ned as followed in [18℄:\We now onsider the problem of de�ning and omputing a 2-normal segmentation.Notie that not all 2-normal segmentation are interesting: for instane, the empty segmenta-tion, where 
 is the single region is learly a 2-normal segmentation. If the sale parameter� is very large, it is also a reasonable segmentation sine one \pays" a too large energyamount for having any boundary. However, it is obvious from the de�nition that the emp-ty segmentation is 2-normal for every �, whih ertainly proves that the assertion that a



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 71segmentation is 2-normal is not enough to ensure that it is \good". But if we follow themain idea of the region growing methods, we shall see that what they ompute is preisely a2-normal sub-segmentation of a �ne initial segmentation, obtained by reursive merging.Assume that the datum g is de�ned on a retangle. This retangle is divided insmall squares of onstant size (the pixels) and g is assumed to be onstant on eah pixel.Here are the properties whih we require for the segmentation omputed by a region growingalgorithm, de�ned as an appliation assoiating to g and � a segmentation (u;K).a) \orretedness"(Fixed point property): Assume that g is pieewise onstant on someareas of the retangle. Then there exists a value �0 of the parameter � suh for thatfor every � < �0, the segmentation (u;K) obtained by the algorithm veri�es u = g andK is the union of the boundaries of the areas where g is onstant. This property hasbeen proved to be asymptotially true for the segmentations whih are global minima ofthe energy E as � tends to zero. But we impose it here as a non-asymptoti property.b) "Causality"(Pyramidal segmentation property): If � > �0, then the boundaries pro-vided by the algorithm for � are ontained in those obtained for �0and the areas ofsegmentation assoiated to � are the unions of some the areas obtained for �0 .The last Property ensures that a fast pyramidal algorithm an be implemented, omputinga hierarhy of segmentations from �ne to oarse sales. Moreover the oarser segmentationwill be dedued from the �ner by \merging" operations, with a pyramidal struture for theomputation. Note that, as a onsequene of the �xed point property, if � is very small, theomputed segmentation is attained with (u0;K0) where U0 = u and K0 onsists of all theboundaries of all the pixels and therefore oinides with the global minimum as � is zero.We shall all this segmentation, where eah pixel is a region, the \trivial segmentation". Itis easy to see that reursive merging algorithm whih we present now veri�es all the abovementioned properties." We believe that the algorithm does not de�ne the segmentationthat we are looking for as the number of regions is not inserted in the funtional. We willde�ne later a new funtional with an extra term. But before we present the onavity and



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 72onvexity harateristis of the algorithm.2.2.3 Convexity and ConavityIn this setion we onsider the ase of the pyramidal algorithm where only two regionsmerge at a time. We will show later that this detail has its importane. Let's show someproperties of our initial ost funtion E�(u;K) We have a pyramidal algorithm to segment
Number of regions:

2

     1  2  3  4         p  p+1 p+2      N2

Value of λ:

   1  2  3  4  ...   p  p+1 p+2   ...N    
    |  |  |  |         |  |  |

    |  |  |  |         |  |  |             

+∝   λ   λ   λ    λ                λ    λ     λ              λ    = 0Figure 2.2: Diagram showing relations between � and N(�) (the orresponding number ofregions for the image segmentation)our image, and we start from a �ne grid and merge neighborhood regions two by two inorder to satisfy our riterion. For eah ouple of regions, we have a di�erent value for � thatenables us to merge. The pyramidal algorithm merges, at eah step, the ouple of regionsthat needs the smallest � over all the possible values, we note it �k at the step k. Then thenumber of regions is a dereasing funtion of �, and stay onstant between two onseutive�n: 8n 2 N�; 8� 2 [�n+1; �n) N(�) = n+ 1: (2.5)We have N(�) � n only for � � �n as showed on the �gure 2.3. And �n is the ritialvalue to pass from the segmentation K to K 0. Let's de�ne the two variations:�E = E�n+1(u)�E�n(u) < 0 (2.6)�� = �n+1 � �n < 0 (2.7)
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       K’ 1
              

             
             K’ 2

   K’ 3   

                K’4Figure 2.3: Construting K 0 from K by merging two regions for � = �4Thus, �E�� � 0 (2.8)By onstrution we have �n+1 � �n and the number of regions is onstant on eah interval[�n+1; �n) then �n�� � 0 (2.9)We note K and K 0 the two segmentations that minimize our funtional for their respetive�n+1 and �n. We note Ki and Kj the two regions merging, for � = �n, in order to obtainK 0p = Ki [Kj (in the �gure 2.3, the indies are i = 2, j = 4, p = 2 and n = 4). En andEn+1 have terms in ommon, we de�ne, for the merging region ouple (Ki;Kj) related tothe value of �, the integral term orresponding to the di�erene:I(Ki;Kj) = ZK0pku� uK0pk2 � h ZKiku� uKik2 + ZKjku� uKjk2i (2.10)I(Ki;Kj) = ZK0pku� uK0pk2 � ku� (uKi :�Ki + uKj :�Kj )k2: (2.11)By de�nition of uKi , we have u = (u� uKi)� uKi , Pythagoras theorem enables to write:ku� uK0pk2 = ku� uKik2 + kuKi � uK0pk2) I(Ki;Kj) = ZKikuKi � uK0pk2 + ZKjkuKj � uK0pk2 > 0 (2.12)with K 0p = Ki [Kj. After simpli�ation, we easily obtain the relation:�E = I(Ki;Kj) + �n+1 � length(�K)� �n � length(�K 0) (2.13)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 74The pyramidal algorithm onstruts K 0 from K, by merging two regions, Ki and Kj sepa-rated by a ommon boundary �Ki \ �Kj , that disappears in the merging proess:�E = I(Ki;Kj) + �� � length(�K) + �n � length(�Ki \ �Kj) (2.14)For � 2 [�n+1; �n) we have n regions, Ki and Kj merge at � = �n. Then we have thefollowing properties:1. � 7! E�(u;K) is stritly inreasing on [�n+1; �n[, as E�(u;K) evolves linearly like� 7! � � length(�K) on the interval.2. For � = �n, K 0 minimizes K 7! E�n(u;K), as there are n regions.3. For � 2 [�n+1; �n[, K minimizes K 7! E�(u;K) for (n+ 1) regions.We dedue from these previous properties that 8� 2 [�n+1; �n):E�(u;K) = E�n+1(u;K) + (�� �n+1) � length(�K) (2.15)But 8n 2 N�; �n > �n+1 and E�n(u;K) > E�n+1(u;K). We also have:E�n(u;K) � E�n(u;K 0)) �n � length(�Ki \ �Kj) � I(Ki;Kj)) �n � �Ki;Kj = I(Ki;Kj)length(�Ki \ �Kj) (2.16)But for � 2 [�n+1; �n), we have a segmentation with (n+1) regions. We an onlude that9Æ > 0;80 < � < Æ : E(�n��)(u;K 0) � E(�n��)(u;K)�n � � � �Ki;Kj) �n = I(Ki;Kj)length(�Ki \ �Kj) (2.17)We obtain then the following formula that determines the � neessary for two regions tomerge: �n = RKikuKi � uK0pk2 + RKjkuKj � uK0pk2length(�Ki \ �Kj) (2.18)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 75The energy's variation between two onseutive merging is then:�E = �� � length(�K)) �E�� = length(�K) (2.19)We know that length(�K) > length(�K 0), as one boundary between two regions has dis-appeared. So �E�� is a dereasing funtion of the number of regions. It means that we havea graph similar to �gure 2.4:
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∆Ε
∆λ   = length( δK)

E (u)λ

Figure 2.4: Graph of the theoretial � 7! E�(u)We ompare this result to our experiments (image + di�erent levels of noise) on�gure 2.5, and we observe that experimentally we also have onavity of � 7! E�(u) asshown on the theoretial �gure 2.4. We observe that the slopes of the asymptote are thesame for the di�erent images. We dedue that the length of the boundaries for the imageat the last segmentation are similar.�E�� (�n+1) > �E�� (�n) (2.20)and � 7! E�(u) is pieewise linear on eah interval [�n+1; �n℄. The onavity of E� is thenobvious as: �2E�(u)�2� < 0 (2.21)
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Figure 2.5: Graphs of experimental � 7! E�(u), an image with di�erent Gaussian noisesadded.We showed some properties for � 7! E�(u) and we would like to have a similar relation forn 7! E�n(u). We an �rst look at the graph of this funtion. The experiments seem to
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Figure 2.6: Graph of experimental n 7! En(u) = E�n(u), an image with di�erent Gaussiannoises addedagree on the onvexity of n 7! E�n(u). But we have to verify this property more arefully.Espeially the way the �rst derivate evolves when the regions merge.
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 2   3   4    5   6   7   8                       Nb. of regionsFigure 2.7: Graph of the theoretial n 7! En(u) = E�n(u)We have an obvious property oming from the study of � 7! E�(u):�E = �� � length(�K) < 0; thus �E�� < 0 (2.22)We know that n 7! length(�Kn) is inreasing and �� < 0. We would like to havea onvexity property for n 7! E�n(u). We will see later that this property is linked to thestruture of the image.2.2.4 Mumford-Shah and Extra TermWe note that the Mumford-Shah funtional does not depend on the number of regions, butonly on the length of these boundaries. It means that there will be no penalties for a largenumber of small regions. But we are mostly interested in segmented images with a smallnumber of regions, for example three to a dozen of regions seems like a reasonable number.We add an extra term to the Mumford-Shah funtional that will take are of the omplexityof the image. This idea is similar to the ompression problem. We want, for a �xed budget,to de�ne a �xed number of regions, with a ertain omplexity, and a minimal error. Wede�ne an extension of Mumford-Shah funtional with an extra term, in this ase we fore



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 78our funtional to minimize the number of regions also.E0�;�(u;K) = Z
ku� gk2 + �:length(�K) + �:N(�) (2.23)E0�;�(u;K) = N(�)Xi=1 ZKiku� uKik2 + � � length(�K) + � �N(�) (2.24)We an notie that by inreasing the value of �, we indiretly derease the number of regions(N(�)). Our new funtional is the sum of a onave and onvex funtions.

. Figure 2.8: Four images oming from the same image after �lteringLet's apply this algorithm on the four �ltered images showed on �gure 2.8, omingfrom a \wave image" desribed in hapter 2.6.2. We added to these �ltered images a rownfor some boundaries problem, the reason will be explained in the same hapter. We want toknow whih one an give a reasonable segmentation. We mean by that reasonable: no small



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 79region, average values in eah regions not too lose. And we obtain the graph on �gure 2.9,it gives us two informations. The �rst one is that \Image1" and \Image4" should be betterfor segmentation sine they have a minima . The �ve regions an be seen on the four imagesbut we observe that the ontrast is muh better in these two images. The seond remark isthat the anonial segmentation should be done with �ve or six regions as the minima areobtained for these number of regions.
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Figure 2.9: Graphs of the \Mumford Shah + Extra Term" for the Images on �gure 2.8.Two of the four images seem to give an optimal segmentation for �ve or six regions. Iton�rms our visual impression.2.2.5 Counter-example for the pyramidal algorithmWe ran the pyramidal segmentation algorithm on di�erent examples to test its robustnessto noise. In some ases, we note that the funtion N� 7! E� is not dereasing or � 7! E�is only pieewise non-dereasing and onave, as some disontinuity appear and make thefuntion not globally non-dereasing. It would mean that the pyramidal algorithm is maybenot optimal. In this hapter, we build a simple example to understand what is happening.Let's take an image (N by N pixels), ontaining three regions. A disk A1 with arown A2 around of respetive radius r1 and r2 with r2 = r1p2, obviously mes(A1) =



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 80mes(A2). We deide to have mes(A3) = (4��2) �mes(A2), that implies N2 = (4��2+1+1)mes(A1). And we obtain N = 2�r1. Eah region Ai an be haraterized by a pieewiseonstant funtion. We represent the funtion on the �gure 2.10 and we have the intensityof the pixel value that de�ne the funtion I:I(x) = �1A1(x) + 1A2(x)�  � 1A3(x); with  > 0: (2.25)
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A1       A 2      

       A 3Figure 2.10: Image ontaining three regions for our ounter-exampleWe run the Pyramidal algorithm on our image (�gure 2.10). For � equals to zerowe have the \trivial segmentation", with N2 regions, and we obtain:E0 = Z
 0 + 0 � (2 �N2 � 4 �N) (2.26)Sine we have N2 regions, the error on eah region is equal to zero, and we don't ountthe outside boundaries of the image. When � starts to be greater than zero, if there is noregions merging we have: E� = � � (2 �N2 � 4 �N) (2.27)But we observe that by merging most of the regions we obtain our three regions withoutinreasing the term orresponding to the approximations error for eah region (the integralterm) in the funtional. We then have a new relation for E� :E� = 0 + � � (l(�A1) + l(�A2))) E� = � � 2�r1(1 +p2) (2.28)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 81We onlude that the region merging will appear as soon as � 6= 0. This segmentation willbe valid until merging two of the three regions. If we merge A1 and A2, it is obvious thatthe average value on A1[A2 is 1�2 = 0. Formula 2.18 enables us to ompute the thresholdvalue for �: �1�2 = 12:mes(A1) + 12:mes(A2)l(�A1) (2.29)) �1�2 = r1 (2.30)In the ase where A2 and A3 merge, the average value 2�3 on the new region A2 [A3 andthe �2�3 neessary for merging A2 and A3 are easily obtained:2�3 = 1� (4� � 2) � 4� � 1 (2.31)�2�3 = r1 � ( + 1)2 � (4� � 2)2p2(4� � 1) (2.32)We observe that if  is lose enough to zero (0 <  < 0:5), �2�3 < �1�2, it means thatwe have to merge A2 and A3 before merging A1 and A2. Until � � �2�3, we then havethree regions as a result of our segmentation, and E� de�ned by the relation 2.28. And for� = �2�3 we have the following equation for the funtional:E�2�3 = �r21 � ( + 1)2 � (4� � 2)(4� � 1) (1 + 1p2) (2.33)We now ompute the funtional for only one region (A1 [A2 [A3), we easily have that theaverage value 1�2�3 = �(2��1)2� . And then we obtain the value of our funtional, knowingthat the seond term orresponding to the boundaries term is equal to zero:E�1�2�3 = �r21 � (1 + 2 (2� � 1)2(2�)2 ) (2.34)To obtain an interesting example, we set  = 14 and obtain:E�2�3 = �r21 � 25(1 +p2)16p2 � 4� � 24� � 1 (2.35)E�1�2�3 = �r21 � (1 + (2� � 1)2(8�)2 ) (2.36)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 82Sine N 7! EN is inreasing, as we have seen before, it means that the merging of thethree regions should have been done before the merging of any two regions individually.We dedue from this experiene that in some ase where a given value of � make mergemore than one region at a time, the pyramidal algorithm is not optimal anymore. We now
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 2−3 1−2Figure 2.11: Graph showing the non-optimality of the pyramidal algorithm, Energy as afuntion of �summarize the properties of the wavelet representation.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 832.3 Continuous Wavelets ReapitulatoryIn this setion, we present some of the main properties and theorems about the waveletsdeomposition. We follow Mallat [22℄ in his study, show the di�erene between undeimatedand deimated wavelets. We introdue also the onept of wavelet pakets deomposition[14℄.2.3.1 Theorems and Properties on WaveletsTheorem 2.3.1. In the ase of a wavelet multi-resolution approximation, we have a se-quene of losed subspaes fVjgj2Z � L2(IR), that veri�es the followings properties8(j; k) 2 ZZ2; f(�) 2 Vj , f(� � 2jk) 2 Vj (2.37)8j 2 ZZ; f(�) 2 Vj , f( �2) 2 Vj+1 (2.38): : : V2 � V1 � V0 � V�1 � V�2 : : : (2.39)limj!�1Vj = [j2ZVj = L2(IR) (2.40)limj!+1Vj = \j2ZVj = f0g (2.41)And we know that there exists � suh that f�(:� n)gn2Z is a Riesz basis of V0. Forexample in the Haar ase, it orresponds to the pieewise onstant approximation. We have� = �[0;1℄. And so Vj represents the funtions f suh that f is onstant on [k � 2j ; (k + 1) �2(j+1)).Theorem 2.3.2. Let fVjgj2Z be a multi-resolution approximation and � a saling funtionsuh that: b�(�) = b�(�)�P+1�1 jb�(� + 2k�)j2� 12 (2.42)And we let �j;n(�) = 12j �( � � 2jn2j ) (2.43)For all j 2 Z; f�j;ngn2Z is an orthonormal basis of Vj



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 84Remark 2.3.1. We de�ne an approximation, at a level j, over Vj by using an expansionin the saling orthogonal basis: PVjf = +1X�1h�j;n; fi�j;n (2.44)We an easily see that h�j;n; fi = f � �j(2jn), where � represents the onvolution.Theorem 2.3.3. (Mallat, Meyer)Let � 2 L2(IR)(IR) be an integrable saling funtion. The Fourier series of h[n℄ =h 1p2�( �2 ); �(� � n)i satis�es:8� 2 IR; jbh(�)j2 + jbh(� + �)j2 = 2 (2.45)and jbh(0)j2 = 2: (2.46)Conversely, if bh is a 2�-periodi and ontinuously di�erentiable in a neighborhoodof zero, if it satis�es the two preedent properties and ifinf�2[��2 ;�2 ℄ jbh(�)j > 0 (2.47)and b�(�) = +1Yp=1 bh(2�p�)p2 (2.48)Then b� is the Fourier transform of a saling funtion � 2 L2(IR).Remark 2.3.2. For pieewise onstant approximations, � = �[0;1℄. Sine h[n℄ = h 1p2�( �2 ); �(��n)i it follows that h[n℄ = 8<: 1p2 if n = 0; 10 otherwise (2.49)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 85With the approximations of f , at the sales 2j and 2j�1, that are equal to theirorthogonal projetions on Vj and Vj�1. We know that Vj � Vj�1. Let Wj be the orthogonalomplement of Vj in Vj�1, i.e. Vj�1 = Vj �Wj: (2.50)So the orthogonal projetion of f on Vj�1 an be deomposed as the sum of twoorthogonal projetions: PVj�1f = PVjf + PWjf: (2.51)PWjf provides the \details" of f that appear at the sale 2j�1 but whih disappearat the oarser sale 2j . Furthermore from the previous relations we an easily show that�j2ZZWj = L2(IR).Theorem 2.3.4. (Mallat, Meyer):Let � be a saling funtion and h the orresponding onjugate mirror �lter. Let ' bethe funtion whose Fourier transform is:b'(�) = 1p2bg��2�b'��2�; (2.52)with bg(�) = e�i�bh(� + �); (2.53)And we note 'j;n(�) = 12j '( � � 2jn2j ) (2.54)for any sale 2j, f'j;ngn2Z is an orthonormal basis ofWj. For all sales, f'j;ngj;n2Z2is an orthonormal basis of L2(IR).We desribe now a fast algorithm to ompute the wavelets deomposition.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 862.3.2 Fast AlgorithmWe are going to desribe a fast �lter bank algorithm designed by S. Mallat. This algorithmomputes the orthogonal wavelet oeÆients of a disrete signal (a0[n℄)n. That orrespondsto a deimate wavelets deomposition. Let us de�ne:f = +1Xn=�1a0[n℄�(:� n) 2 V0: (2.55)Sine f�(:� n)gn2Z is orthonormal, we have:a0[n℄ = hf(:); �(: � n)i (2.56)Eah a0[n℄ is thus a weighted average of f in the neighborhood of n. The disretewavelet oeÆients of a0 are de�ned to be the wavelet oeÆients of f :dj [n℄ = hf; 'j;ni (2.57)And we denote �x[n℄ = x[�n℄ and�x[n℄ = 8<: x[p℄ if n = 2p0 otherwise (2.58)So the following theorem shows how to ompute the wavelet deomposition andreonstrution with disrete onvolutions.Theorem 2.3.5. (Mallat)For the deomposition we have:aj+1[p℄ = +1Xn=�1aj [n℄h[n� 2p℄ = aj � �h[2p℄; (2.59)and dj+1[p℄ = +1Xn=�1aj [n℄g[n� 2p℄ = aj � �g[2p℄: (2.60)
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zeros insertionsubsamplingFigure 2.12: A signal f is �ltered by a low-pass and high-pass �lter respetively to give sand d after subsampling, while an insertion of zero with dual �lters reonstrut fConerning the reonstrution we have:aj [p℄ = +1Xn=�1aj+1[n℄h[p� n℄ + +1Xn=�1dj+1[n℄g[p� n℄= �aj+1 � h[n℄ + �dj+1 � g[n℄: (2.61)The perfet deomposition is ensured by the next theorem.Theorem 2.3.6. (Vetterli)The �lter bank performs an exat reonstrution for any input signal if and only if :bh(� + �):b~h(�) + bg(� + �):b~g(�) = 0 (2.62)and bh(�):b~h(�) + bg(�):b~g(�) = 2 (2.63)So we obtain a perfet deomposition reonstrution by using onvolutions anddeimations as we an see on the �gure 2.12. By sub-sampling, we modify the relation-s between our wavelet deomposition oeÆients and the original signal. Sine we havebx(�) =P1n=�1 x[n℄e�in, the Fourier series of the subsampled signal, y[n℄ = x[2n℄, is going



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 88to be suh that: by(�) = 1Xn=�1x[2n℄e�in� (2.64)) by(2�) = 1Xn=�1x[2n℄e�2in� (2.65)) by(2�) = 1Xn=�1(1 + (�1)n2 )x[n℄e�in� (2.66)) by(2�) = 12(bx(�) + bx(� + �)) (2.67)And by interpolating with zero, for reonstrution we have a similar relation. Theinsertion is de�ned by: �y[n℄ = 8<: x[p℄ if n = 2p0 otherwise (2.68)whose gives us : by(�) = 1Xn=�1x[n℄e�2in� (2.69)) by(�) = bx(2�) (2.70)For a �rst level deomposition, we denote s and d the wavelet deomposition oeÆients.We have bs(�) = 12 �bh � bf ��2�+ bh � bf �� + 2�2 �� (2.71)and bd(�) = 12 �bg � bf ��2�+ bg � bf �� + 2�2 �� (2.72)and for the reonstrution we have:bf(�) = 12 hbh � bs(2�) + bh � bd(2� + �)i (2.73)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 89If we do not subsample, we obtain an undeimated wavelets deomposition. It willmore omputational time as at eah level i we have ompute N = 2p points and not 2p�ipoints for the deimate ase. Although this deomposition is not orthonormal anymore butit has the advantage of being grid independent. We now do a reall on the Wavelet pakets2.3.3 Wavelet PaketsThe wavelets deomposition is obtained by projetion of eah subspae Vj�1 on the diretsum of two orthogonal spaes: Vj�1 = Vj�Wj. Instead of dividing only Vj�1 we an deideto operate the same division on the details spae Wj�1 to obtain a binary wavelet paketdeomposition. We then have a reursive symmetri splitting algorithm as opposed to thewavelet deomposition. For so we have to de�ne wlev;j , the �lter used for the jth spae atthe levth level to projet on Wlev;j . That enables to have Wlev�1;j = Wlev;2j �Wlev;2j+1.To obtain the two omponents, also alled hildren nodes, we onvolve our signal either bythe saling or the wavelet funtions. We obtain the two wavelet paket orthogonal basis: 2jlev = Xn h[n℄ �  jlev�1(:� 2lev�1n) (2.74)and  2j+1lev = Xn g[n℄ �  jlev�1(:� 2lev�1n) (2.75)We denote m0;m1 2 L2(IR), in the Fourier domain suh that:m0(�) = bh(�) and m1(�) = bg(�); (2.76)and we obtain wlev;j in the Fourier domain suh that:bwlev;j(�) = lev�1Yi=0 m�i(2�i�) (2.77)where � orresponds to the deomposition of j in the dyadi deomposition, j =Plev�1i=0 �i:2iAnd we have 8l 2 N �2l�1j=0 W lj = V0. We represent this tree for the one dimensional aseon �gure 2.13. This algorithm enables to build a large family of spaes that will be usedfor our preproessing.
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Figure 2.13: One dimensional Wavelet Pakets Deomposition2.4 Preproessing with Undeimated Wavelet TransformWe have de�ned multi-sale analysis based on the Orthogonal Wavelet Deomposition in theprevious hapter. But we want a segmentation to be grid independent and this propertyannot be obtained with deimated wavelets representation. Thus we are going to usethe undeimated wavelet representation, and more preisely the Wavelet pakets. Ourpreproessing will be based on this formalization, that will be done at di�erent sales.2.4.1 Undeimated Wavelet RepresentationLet's apply a one level deomposition to a disrete signal f 2 L2([0; 2N � 1℄), that weperiodize over IR. We have s(i) = hf; '(� � i)i and d(i) = hf; �(� � i)i. For a deimatedeomposition we have:f = 2N�1�1Xi=0 hf; '(� � 2i)i � '(� � 2i) + 2N�1�1Xi=0 hf; �(� � 2i)i�(� � 2i) (2.78)and by translation of the signal we easily obtain:f = 2N�1�1Xi=0 hf; '� � �(2i+ 2)�i � '� � �(2i+ 2)�+ 2N�1�1Xi=0 hf; �� � �(2i+ 2)�i � �� � �(2i + 2)) (2.79)And then we an write:f = 12(2N�1Xi=0 hf; '(� � i)i � '(� � i) + 2N�1Xi=0 hf; �(� � i)i�(� � i)) (2.80)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 91That means in the Fourier domain, we have the following deomposition:bs(�) = bh(�): bf(�) and bg(�) = bg(�) � bf(�) (2.81)And for the reonstrution:bf(�) = 12 hbh(�) � bs(�) + bg(�) � bd(�)i (2.82)We are using now the undeimated Wavelet Pakets deomposition to be free of any troublesrelated to the dyadi grid. We have ontinuity of the deomposition. Of ourse we do nothave anymore a basis, beause of the non-orthogonality of the deomposition. We apply thealgorithm developed by Roland Guglielmi in [16℄. In the ase of a three level deomposition,for a one dimensional signal we have shown before on �gure 2.13, the representation as anarray. In a similar way, we an represent the two-dimensional wavelet pakets deompositionas seen on �gure 2.14. But as we do not have any deimation in the wavelets and wavelets

Level:      1  2      3Figure 2.14: Two dimensional Wavelet Pakets Deomposition.pakets deomposition, we loose the property relatives to basis. And also instead of havingalways a onstant size for the data, we have a growing size of elements, to be more preisein IRn the data size is multiply by 2n at eah level. These representation has the advantages



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 92of reating \a more adapted partition" of the frequential domain than with a waveletsdeomposition.2.4.2 Wavelets Pakets PreproessingThe data set is omposed of one and two dimensional signals of di�erent lengths. We willnot work diretly on the raw data set, however, we will apply the following transformationto the data. For eah signal we subtrat the low frequenies, to do so, we applied anundeimated wavelet deomposition until level three or four depending on the size of thesignals. And we set to zero all the wavelets oeÆients but the low frequenies of the lastlevel. We show on �gure 2.15 the representation as an array for an one dimensional signal.For a two-dimensional signal, we obtain a omparable representation as seen on �gure 2.16.
00 0 0 0 00

Low3

Figure 2.15: One dimensional Preproessing using Undeimated Wavelet RepresentationWe extrat the low frequenies of our signal and we obtain Signal = Lowi+Highi,with Lowi = Vi and Highi = Signal � Lowi: Therefore the working data set is omposedof two signals, and we are going to work �rst on the high frequenies part. A diretsegmentation an be done on the low frequenies omponents with Mumford-Shah, but weare not interested by this part right now.Remark 2.4.1. We work with a one dimensional signal, as seen on �gure 2.17, omposedof a parabola and three di�erent subomponents: low frequeny sinusoid, a hirp and a highfrequeny sinusoid. And we add some noise to the whole signal.
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Figure 2.16: Two dimensional Preproessing with a Undeimated Wavelet Representation.Three levels of reonstrution are shown.When the �rst step has been applied, we an then start the omputation of the \CostSubspaes".2.4.3 \Cost Subspaes" omputationsWe know that a segmentation done diretly after wavelets or wavelet pakets deompositiondoes not work. In fat, all the subspaes but the low frequenies have an average equalsto zero. The Mumford-Shah algorithm has then a low probability to be eÆient. Koeper,Lopez and Morel [19℄ solve this trouble by separating the positive and negative part of thedeompositions and onvolving them. They obtain good results but this method presumea preseletion of the �lters. We want to have an automati seletion and a post-proessinghas to be done on the deomposition. We want to apply a ost funtion on eah subspae tobe able to determine either the �lter an \see the di�erent strutures" in the signal or not.And we will all \Cost Subspae" the subspae orresponding to a signal that has the samesize has this subspae and gives us loally the eÆieny of our �lter to \see strutures". Sofor eah subspae we are applying the same operations on every pixels. The steps are in
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Figure 2.17: Signal and Low omponentsthe one and two-dimensional ase:Step 1 Extration of neighborhood window for eah pixel i or (i; j).Step 2 Histogram of eah window.Step 3 Computation of the histogram ost and assoiation of the ost to the point i or pixel(i; j).Extration of neighborhood windowsWe ompare now the information ontained in di�erent regions of the signal (its size willbe denoted M and (M;M) for the one and two-dimensional ase) to apply a segmentation.We a�et to eah pixel a neighborhood of a determined size (N) or (N;N) (N � M)respetively for the one or two dimensional ase. This size will determine the sale of thesegmentation that interests us.If N is small, it will give a �ne segmentation (a high number of regions), else we willhave a oarse segmentation (only few regions). We an assimilateN with the segmentation'ssale. For a one dimensional ase we have an example on �gure 2.18. In the two dimensionalase an image of size (M;M), and hoosing some window of size (N;N), we have the �gure2.19. After extrating the neighborhood window, we ompute the histogram and try toselet the useful �lters.
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Figure 2.18: Three windows of size N represented on the signal used for the extrationneighborhood points.
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Figure 2.19: Window Extration for the pixel (i; j) in the two dimensional aseHistogram of eah windowAfter having extrated a window for eah pixel, we sort the values to be able to have anhistogram. This histogram is going to enable us to determine if the information ontainedin the neighborhood pixel is relevant or not. As a matter of fat if there is no informationontained in this subspae around this pixel, most of the oeÆients are going to be equalto zero. As we want to sort the �lter with their ability to disriminate textures, we arelooking for some partiular histograms. We will have as example three histograms, from aneighborhood window of size equals to 32, taken for three di�erent �lters at three di�erentpoints. We have hoose three harateristi points, eah of them �ltered by a spei� �lters.For eah point, we sort eah neighborhood window obtained after �ltering. We
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Figure 2.20: (point = 150, level = 1, position = 1), low frequeny �lter in a neighborhoodwith low energy, most of the oeÆients are onentrated in zero.obtained array with indies from 0 to 31, sorted by dereasing value, and we obtain thethree following graphs on �gures 2.20,2.21 and 2.22.
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Figure 2.21: point = 300, level = 2, position = 4), high frequeny �lter in a neighborhoodwhere a hirp is living, we almost have a uniform repartition over [�1; 1℄.We an onlude that the �rst histogram shows us that most of the window's oeÆ-ients are onentrated in zero. Our �lter is not sensitive to our signal in the neighborhoodof this point, the signal is living in a subspae orthogonal to the one spanned by this �lter.By ontrast, a �lter ontaining information will give us an histogram like the seond one.But the best result is obtained when the �ltering gives only two modes, as we an see onthird histogram. The goal of the next step is to haraterize signi�ant histogram, the two
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Figure 2.22: (point = 450, level = 2, position = 3), high frequeny �lter in a neighborhoodwhere high frequenies are in higher density than the others frequenies, onentration ofthe oeÆients in two modes.last one as opposed to the �rst one. We show now how to ompute some ost funtions todetermine how well a �lter \an see strutures".Cost ComputationWe have an histogram and we want to determine its signi�ane. A �rst and simple ostfuntion is the energy funtionPNi=1 xi2 . An histogram onentrated in zero will give us alow energy by opposition to one omposed of two modes far from zero. This ost funtionhas the onservation property. If we sum all the subspaes from a same level, we have foreah pixel equality of the energy ontained in the level zero. An example on �gure 2.23shows this property. We an see how the ost funtion evolves. On the �rst third of thesignal, there is almost no energy, beause in the preproessing we had extrated the lowfrequenies, so the two signals are almost equal to zero. On the seond part we have ahirp, so the frequenies domains is ontained in the low and high frequenies domains.Both signals are di�erent from zero. The last part ontaining mainly high frequenies, onlyone of the two signals (high pass) is obviously di�erent from zero. We loose the energyonservation property but we will see later the advantage of this ost funtion. We triedalso to ompute di�erent ost funtions using the density probability over the window.
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Figure 2.23: Loal Energy at the �rst level (low and high pass).
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Figure 2.24: Loal Cost at the �rst level (low and high pass).Another possibility is to determine the distane between the two modes when they exist.If the two modes exist, di�erent from zeros, we assume that eah of them ontains at leasta quarter of the data ontained in the histogram, if not it means that these two modes arenegligible. We are a�eting to this histogram the distane between the �rst quarter andthe last quarter. An histogram with onentration in zero will give us a ost almost equalto zero ompared to an histogram omposed of two separated modes. We have suh ostfuntion: Cost(x1; : : : ; xn) = sort(x) 3n4 � sort(x)n4 (2.83)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 99where sort(x) is the vetor ontaining the x's sorted values (non-dereasing sort). So forthe three previous examples, seen in hapter 2.4.3. We note � the value de�ned in equation2.83, we have N = 32 then � = jx23 � x7j (as our array is sorted by dereasing value from0 to 31). The value of � for the examples is then almost equal to zero, equals to one andbigger than one. And it orresponds to the fat that the �rst �lter is not as adapted anddoes not see as muh the strutures as the two others one.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 1002.5 Some OptionsWe present in this setion di�erent options to selet the eÆient �lters and a way to shortenthe omputational time for segmentation. We look at di�erent entropies of segmentedimages to determinate if a segmentation is reasonable based on our riterion. Then weselet the omponents of our vetor image that arry information. Furthermore, we shortenthe omputation time. We �nish this hapter by summarizing our algorithm on a single�gure.2.5.1 Best Filter Choie and Redution of DimensionFor eah subspae, we omputed a \Cost Subspae" aording to a ost funtion. Fromthese new subspaes, we have to deide whih one are the most adapted for segmentation,our riterion is to have no small regions and not too many. We will put a part the nonsigni�ant. Therefore we apply a global ost funtion on eah \Cost Subspae". We omputethe entropy of this subspae by using the following formula:Ent(X) = � qXi=1 pi � log2(pi) (2.84)where (p)qi=1 is the probability density funtion of the whole subspae, the interval of valuerange is divided in q regions. We ompute the ratio of the k:k1 and k:k2 that gives usinformation about the oeÆient repartition. These two global funtions have the drawbakto not give any spatial informations. In fat, they only give informations about the valuesrepartition. Therefore we do not know when a �lter is eÆient for segmentation. An idealost funtion may have to be global to make sense. The trouble that we have with theMumford-Shah Funtional is that it does not make any sense to look at its value for a �xednumber of regions. Heneforth we have:8(N1; N2) 2 N2; N1 < N2 ) EN1(u) > EN2(u) (2.85)with EN (u) equals to the ost of a segmentation in N regions, approximate by a pieewiseonstant funtion. We have seen that an extra term an be useful. We hoose another



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 101riterion to establish when a �ltered image is useful or not for our segmentation. In thesense that we are interested in �nding regions of equivalent sizes and not a segmentationwith small regions, that an be related to noisy regions or targets. We ompute a ostfuntion based on the entropy of the renormalized areas Ai (suh that the measure of theimage I is one) of the di�erent segmented regions i:Ent(I) = � NXi=1 Ai � log2(Ai) with NXi=1 Ai = 1 and Ai > 0: (2.86)We observe, in di�erent experiments, that there is a region i0 that is muh larger thanthe other regions. We assimilate it to a bakground in many ases. We onsider now twoases. For a given image, a part of \Barbara", that we have �ltered in two di�erent ways,We obtain the two segmentations, in eleven regions, shown on �gure 2.25. We onsider for

.Figure 2.25: Two segmentations obtained from di�erent �lters applied to \Barbara". Obvi-ously the right segmentation gives, with our riterion, a better result than the left one withits very small regions (related to small regions with high ontrast like noise or targets).our study that a segmentation is viable when the regions orrespond to the average sale.We mean that there are no small regions, and that they all have similar sizes. Sine smallregions, for this algorithm, are synonym of noise or targets, point or small region with ahigh ontrast, as they an be seen as targets on military images. Thus we prefer the rightimage to the left one. We now try to explain how to selet them.For the left image on �gure 2.25, we model an image with one main region and Nsmall regions of area A �xed (lose to the pixel size), suh that 1 >> N � A, and a main



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 102region i0 with Ai0 = 1�N �A . We have the following entropies funtion:
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Figure 2.26: Graph of Plot of the Entropies as a funtion of the areas segmented, renor-malized to one for the optimal segmentation in N regions of same size. The top graphorresponds to segmentations with many small regions, segmented on the left image of �g-ure 2.25, as opposed to the bottom ase that is obtained for a segmentation with \averagesize regions", right image of the �gure 2.25. The seond ase is the one that interests usas the entropy level is higher and there is a disontinuity in the derease for the number ofregions equals to 9, that orresponds to the \optimal number of regions" for the right image.Ent(I) = �(1�N � A) � log(1�N � A)�N �A � log(A) (2.87)Thus after simpli�ations, we have:Ent(I) � �N �A � log(A); with A �xed: (2.88)We onlude that N 7! Ent(I) is linear for value of N suh that 1 >> N �A, with A �xedorresponding a small region lose to the pixel size. This example is shown on �gure 2.26



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 103(top graph). This possible segmentation does not interest us as we are looking for regionswith intermediate sizes. In the ase of the right image in �gure 2.25, we model our image asN regions of sizes Ai similar to A. Thus we have N � A = 1. After obvious simpli�ations,we have the following formula: Ent(I) = log(N) (2.89)We have an experimental result orresponding to this ase on �gure 2.26, bottom graph. Theoptimal number of regions found for this ase is nine, as we have hange in the derease ofthe entropy for this partiular value. Then the seond �lter will have a degree of signi�anehigher than the �rst one. Hene, we sort the subspaes, obtained after �ltering, based onthis riterion and the Mumford-Shah with Extra term. We de�ned a way to hoose thebest �lters and redue the dimensionality. We will apply the Mumford-Shah segmentationto a few number of subspaes. We now present a sub-sampling that enables to shortenomputation time before summarizing the global algorithm on �gure 2.28.2.5.2 Optional Speed ImprovementWe want to improve the speed of this algorithm by reduing the \ost subspae" ompu-tations. In fat, we subsample our \ost subspaes" and thus shorten omputational time.The \ost subspaes" are smaller than before, and will enable more and higher levels fordeomposition as they redue the omputational osts. The sub-sampling is shown on �gure2.27 The sub-sampling is possible as the ost subspae are obtained by using window of sizeat least (8; 8). Their sale is then greater than the pixel size, a ratio of two or four will nothange the result. In a �rst step, we ompute the \ost subspaes" by this fast algorithm.Then we apply our riterion to deide if the �ltering is good or not, we assimilate this asa preproessing to redue dimensionality problem. In the seond step we ompute only theinteresting \ost subspaes" at their full size and then apply the vetorial segmentation onthem.
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Figure 2.27: Subsample \Cost Subspae" with a ratio to improve speed. , and a neighborhoodwindow of size (N;N) with generally N = 8 or 16. A ratio of 4 is then aeptable2.5.3 Segmentation SummaryWe present on �gure 2.28 the main steps of our segmentation algorithm:� Wavelet Pakets Deomposition� \Cost Subspaes" Computation� Sorting of the Signi�ant Subspaes� Vetorial Segmentation
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Figure 2.28: The di�erent steps of our segmentation algorithm, seen in the previous hap-ters.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 1062.6 Results for two-dimensional segmentationWe present the di�erent versions of this algorithm that we tried. We �rst worked withman-made images that are easily segmented in the frequenies spae, thus a wavelets pre-proessing is well adapted. The �rst image is a two-dimensional signals omposed of onedimensional sine produts. After, we rotate our image by forty �ve degrees to have a realtwo dimensional problem. And we started to be onfronted with artifats, due to periodiityproblems at the boundaries. We solved them by using a mask (like a rown). The nexthapters also show the di�erent results on real images, some troubles and the way we solvedthem.2.6.1 Wave imageOur �rst trial is on an image omposed of four regions, eah region orresponding to aquarter. Eah one is omposed of sine produts. We hoose an easy image to start, sine itis almost having to segment a one dimensional signal. Moreover eah region has a spei�loal frequeny and a wavelet representation is obviously well adapted. The original imageand its segmentation are shown in �gure 2.29. We notie that the algorithm gives a good

.Figure 2.29: The original image (128; 128) and its segmentation in four regions obtainedafter wavelets preproessing. We obtain the desired segmentation in four regions.result but as it orresponds to an easy one-dimensional problem. In the next hapter, wewill rotate our image by an angle of forty �ve degrees to obtain a true two-dimensional



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 107problem.2.6.2 Wave image rotatedWe rotated of forty �ve degrees the previous image, shown on �gure 2.29 to have a real twodimensional problem. The new image is shown on �gure 2.30 with two possible segmenta-tions. We an see that we have artifats lose to the boundaries, there are related to the

.Figure 2.30: The original image (128; 128), obtained by rotation of 45 degrees of the imageshown on �gure 2.29, its segmentation in four and �ve regions.non-periodiity of the image. This trouble is due to the way we ompute the wavelet paketsdeomposition. Sine we assume that the image is periodi, some artifats will appear whenwe ompute the neighborhood window at the side of the images. We will now segment thewindow inluded in a rown, sine we deide to set to zero the pixels loser than (N2 ) to the



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 108boundaries where N is the size of the neighborhood window (for the ost omputation asde�ned in hapter 2.4.3) for eah \ost subspae". On �gure 2.31, we obtain a better resultfor the same image, by masking with a rown. We fore the algorithm segment separatelythe region where the points loser to N=2 pixels from the boundaries. The problem relatedto the non-periodiity of the image has then disappeared. We observe that the result is

. Figure 2.31: Original Image (128; 128), its segmentation in four regions and a rownsigni�antly better, as it orresponds now to what we are looking for, and the artifatsdisappear.2.6.3 A simple small real imageWe extrat a sub-image of \Barbara", seen on �gure 2.32. It ontains two major strutures:

. Figure 2.32: Original Image (128; 128), its segmentation in two regions and a rown



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 109a part of the arm and the bak of the hair. One part has almost a onstant value and theother part is omposed of high frequenies, due to the stripes on the hair. We have a goodresult in this ase. We lost as before the information in the boundaries neighborhood butthe result orresponds to our expetations. We observe that the omputations time an beimportant if the image is large. Thus we will use the improvement de�ned in hapter 2.5.2to shorten omputation time.2.6.4 Real images with \speed improvement"We work on a sub-image of \Barbara", shown on �gure 2.32, but this time we divide oursubspae by di�erent ratio: 1, 2, 4, 8. We divide \ost subspaes" time omputations by

.Figure 2.33: Results of the segmentations for four di�erent ratios: 1; 2; 4 and 8. They allfour orresponds to the ase where we have two regions and a rown for the image on �gure2.32



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 110the square of the orresponding ratio. Of ourse we loose preision in the segmentation,but we an see on the following results that we still have eÆieny of our algorithm. For aneasier omparison, we have deided to represent them at the same sale by using a zoomfator equal to the ratio used.In a �rst step, this ratio is used for a faster seletion of the signi�ant \ost sub-spaes". And after we have seleted the interesting �lter using the Mumford-Shah and extraterm, we then run the algorithm on the full size image.2.6.5 Real imagesWe ran our algorithm on a part of Barbara image. The preproessing obtained from the

Figure 2.34: A part of Barbara image (256; 256) segmented in four regions and a rown. Aratio of four has been used for speed improvement.wavelet pakets analysis and ost funtion ranks the �lter depending on their pratial worth



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 111for the onsidered image. In this ase, we segment our image based on the information givenby the best �lter. We obtain result on �gure 2.34 with a ratio of four for speed improvement.We an onlude that the hoie of the utility of �lter has been orretly found based onour riterion of segmented region sizes.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 1122.7 ConlusionWe have shown properties of the pyramidal algorithm designed by J.-M. Morel and hisollaborators for the Mumford-Shah funtional and how an extra term an be added to �ndan optimal number of regions for a given image. We have a preproessing based on theundeimated wavelet transform to build a vetor image. We reate a ost funtion thatshould orrespond to our riterion of having a segmentation with regions of similar sizes,as opposed to segmentation with very small regions orresponding to targets or noise. Wean then deide whih omponents are the most important and use them for our vetorialsegmentation with the pyramidal algorithm. The algorithm is modular and thus some of thesteps an be hanged as the algorithm used for the segmentation in itself. Some re�nementan be ertainly done in the hoie of the ost funtion or the preproessing, as using thetwo-dimensional extension of the Blashke produt.



Chapter 3
Undeimated Wavelets andAppliations
3.1 IntrodutionIn this paper, we propose to improve some traditional methods for image and signal pro-essing using the wavelets representation. In [28℄, Mallat presents new ideas on multi-saleanalysis, providing an approah to work and see the strutures at various sales. As op-posed to other methods that only work at the pixel level, this representation enables anorthogonal projetion on various subspaes at di�erent sales. In [26℄, the wavelet paketsare introdued by Coifman to enable a better representation using a binary wavelet pakettree. The deimated wavelets an be omputed with a fast algorithm but they have theobjetionable feature of being grid dependent. To solve this trouble, we use the algorithmsdeveloped by Guglielmi in [27℄. We will preproess our data using these di�erent tools.Our �rst appliation is deonvolution, smoothing and sharpening one and two-dimensional signals. By hoosing various subspaes of the signal, one an obtain simi-lar results on the signal to a sound equalizer, without artifats. Eah omponent an bemodi�ed separately. We apply this proess to one-dimensional hirps (sine frequential andspatial informations are linked, it is easier to observe the frequential e�et of the algorithm),113



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 114two-dimensional man-made signals, deonvolution of one-dimensional signal before showinghow to remove the stripes of Barbara's vest without erasing the shadows of her arms.The seond appliation is the denoising for radar images. There are some diÆultiessine these images have a high ontrast due to the targets and also thre are variations inthe bakground (strutures at various sales). We extrat the bakground with a multi-resolution approah, the targets are extrated with a threshold and a \-orretion" isapplied to enhane the ontrast before denoising, with a multipass algorithm as implementedby L. Woog in [30℄. This algorithm has been inserted in a platform.The third appliation is within the medial �eld, we work on brain images obtainedwith the funtional-MRI. We have two datasets orresponding to an ative task and abaseline. We are interesting in the regions of the brain that have a distint ativation inthe two datasets. We do not only mean a variation of the average value but muh more twodistint probability density funtions. The relative entropy is omputed at various sales todeterminate the dissimilarities between the two states. After reonstrution, we then havefor eah sale the level of ativation at every points.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1153.2 Continuous Wavelets ReapitulatoryIn this setion, we present some of the main properties and theorems about the waveletsdeomposition. We follow Mallat [29℄ in his study, show the di�erene between undeimatedand deimated wavelets. We introdue also the onept of wavelet pakets deomposition�rst developed by Coifman in [26℄.3.2.1 Theorems and Properties on WaveletsTheorem 3.2.1. In the ase of a wavelet multi-resolution approximation, we have a se-quene of losed subspaes fVjgj2ZZ � L2(IR), that veri�es the following properties8(j; k) 2 ZZ2; f(�) 2 Vj , f(� � 2jk) 2 Vj (3.1)8j 2 ZZ; f(�) 2 Vj , f( �2) 2 Vj+1 (3.2): : : V2 � V1 � V0 � V�1 � V�2 : : : (3.3)limj!�1Vj = [j2ZVj = L2(IR) (3.4)limj!+1Vj = \j2ZVj = f0g (3.5)And we know that there exists � suh that f�(:� n)gn2Z is a Riesz basis of V0. Forexample in the Haar ase, it orresponds to the pieewise onstant approximation. We have� = �[0;1℄. And so Vj represents the funtions f suh that f is onstant on [k � 2j ; (k + 1) �2(j+1)).Theorem 3.2.2. Let fVjgj2ZZ be a multi-resolution approximation and � a saling funtionsuh that: b�(�) = b�(�)�P+1�1 jb�(� + 2k�)j2� 12 (3.6)And we note �j;n(�) = 12j �( � � 2jn2j ) (3.7)For all j 2 ZZ; f�j;ngn2Z is an orthonormal basis of Vj



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 116Remark 3.2.1. We de�ne an approximation, at a level j, over Vj by using an expansionin the saling orthogonal basis: PVjf = +1X�1h�j;n; fi�j;n (3.8)We an easily see that h�j;n; fi = f � �j(2jn), where � represents the onvolution.Theorem 3.2.3. (Mallat, Meyer)Let � 2 L2(IR) be an integrable saling funtion. The Fourier series of h[n℄ =h 1p2�( �2 ; �(� � n)i satis�es:8� 2 IR; jbh(�)j2 + jbh(� + �)j2 = 2 (3.9)and jbh(0)j2 = 2: (3.10)Conversely, if bh is a 2�-periodi and ontinuously di�erentiable in a neighborhoodof zero, if it satis�es the two preedent properties and ifinf�2[��2 ;�2 ℄ jbh(�)j > 0 (3.11)and b�(�) = +1Yp=1 bh(2�p�)p2 (3.12)is the Fourier transform of a saling funtion � 2 L2(IR).Remark 3.2.2. For pieewise onstant approximations, � = �[0;1℄. Sine h[n℄ = h 1p2�( �2 ); �(��n)i it follows that h[n℄ = 8<: 1p2 if n = 0; 10 otherwise (3.13)



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 117With the approximations of f , at the sales 2j and 2j�1, that are equal to theirorthogonal projetions on Vj and Vj�1. We know that Vj � Vj�1. Let Wj be the orthogonalomplement of Vj in Vj�1, i.e. Vj�1 = Vj �Wj: (3.14)So the orthogonal projetion of f on Vj�1 an be deomposed as the sum of twoorthogonal projetions: PVj�1f = PVjf + PWjf: (3.15)PWjf provides the \details" of f that appear at the sale 2j�1 but whih disappearat the oarser sale 2j . Furthermore from the previous relations we an easily show that�j2ZZWj = L2(IR).Theorem 3.2.4. (Mallat, Meyer):Let � be a saling funtion and h the orresponding onjugate mirror �lter. Let ' bethe funtion whose Fourier transform is:b'(�) = 1p2bg��2�b'��2�; (3.16)with bg(�) = e�i�bh(� + �); (3.17)And we note 'j;n(�) = 12j '( � � 2jn2j ) (3.18)for any sale 2j, f'j;ngn2Z is an orthonormal basis ofWj. For all sales, f'j;ngj;n2Z2is an orthonormal basis of L2(IR).We desribe now a fast algorithm to ompute the wavelets deomposition.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1183.2.2 Fast AlgorithmWe are going to desribe a fast �lter bank algorithm designed by S. Mallat. This algorithmomputes the orthogonal wavelet oeÆients of a disrete signal (a0[n℄)n. That orrespondsto a deimate wavelets deomposition. Let us de�ne:f = +1Xn=�1a0[n℄�(:� n) 2 V0: (3.19)Sine f�(:� n)gn2Z is orthonormal, we have:a0[n℄ = hf(:); �(: � n)i (3.20)Eah a0[n℄ is thus a weighted average of f in the neighborhood of n. The disretewavelet oeÆients of a0 are de�ned to be the wavelet oeÆients of f :dj [n℄ = hf; 'j;ni (3.21)And we denote �x[n℄ = x[�n℄ and�x[n℄ = 8<: x[p℄ if n = 2p0 otherwise (3.22)So the following theorem shows how to ompute the wavelet deomposition andreonstrution with disrete onvolutions.Theorem 3.2.5. (Mallat) For the deomposition we have:aj+1[p℄ = +1Xn=�1aj [n℄h[n� 2p℄ = aj � �h[2p℄; (3.23)and dj+1[p℄ = +1Xn=�1aj [n℄g[n� 2p℄ = aj � �g[2p℄: (3.24)Conerning the reonstrution we have:aj = +1Xn=�1aj+1 � h[:� n℄ + +1Xn=�1 dj+1 � g[: � n℄= �aj+1 � h+ �dj+1 � g (3.25)The perfet deomposition is ensured by the next theorem.
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zeros insertionsubsamplingFigure 3.1: A signal f is �ltered by a low-pass and high-pass �lter respetively to give s andd after sub-sampling, while an insertion of zero with dual �lters reonstrut fTheorem 3.2.6. (Vetterli)The �lter bank performs an exat reonstrution for any input signal if and only if :bh(� + �) � b~h(�) + bg(� + �) � b~g(�) = 0 (3.26)and bh(�) � b~h(�) + bg(�) � b~g(�) = 2 (3.27)We obtain a perfet deomposition reonstrution by using onvolutions and dei-mations as we an see on the �gure 3.1.By sub-sampling, we modify the relations between our wavelet deomposition oef-�ients and the original signal. Sine we have bx(�) = P1n=�1 x[n℄e�in, the Fourier seriesof the subsampled signal, y[n℄ = x[2n℄, is going to be suh that:by(�) = 1Xn=�1x[2n℄e�in�) by(2�) = 1Xn=�1x[2n℄e�2in�) by(2�) = 1Xn=�1(1 + (�1)n2 )x[n℄e�in�) by(2�) = 12(bx(�) + bx(� + �)) (3.28)And by interpolating with zero, for reonstrution we have a similar relation. The



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 120insertion is de�ned by: �y[n℄ = 8<: x[p℄ if n = 2p0 otherwise (3.29)whose gives us : by(�) = 1Xn=�1x[p℄e�2ip�) by(�) = bx(2�) (3.30)For a �rst level deomposition, we denote s and d the wavelet deomposition oeÆients.We obtain bs(�) = 12 �bh � bf ��2�+ bh � bf �� + 2�2 �� (3.31)and bd(�) = 12 �bg � bf ��2�+ bg � bf �� + 2�2 �� (3.32)and for the reonstrution we have:bf(�) = 12 hbh � bs(2�) + bh � bd(2� + �)i (3.33)If we do not subsample, we obtain an undeimated wavelets deomposition. It will inreaseomputational time, for a signal of length N = 2p, sine at eah level i we have ompute2p points and not 2p�i points for the deimate ase. Although this deomposition is notorthonormal anymore but it has the advantage of being grid's independent. We now do areall on the Wavelet pakets deomposition.3.2.3 Wavelet Pakets RepresentationThe wavelets deomposition is obtained by projetion of eah subspae Vj�1 on the diretsum of two orthogonal spaes: Vj�1 = Vj�Wj. Instead of dividing only Vj�1 we an deideto operate also the same division on the details spae Wj�1 to obtain a binary waveletpakets deomposition sine there is symmetry now. We then have a reursive symmetri



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 121splitting algorithm as opposed to the wavelet deomposition. For so we have to de�ne wlev;j ,the �lter used for the jth spae at the levth level to projet on Wlev;j. That enables to havethe new iteration relation for the projetion Wlev�1;j = Wlev;2j �Wlev;2j+1. To obtain thetwo omponents, also alled hildren nodes, we onvolve our signal either by the saling orthe wavelet funtions. We obtain the two wavelet paket orthogonal basis: 2jlev = Xn h[n℄ �  jlev�1(:� 2lev�1n) (3.34)and  2j+1lev = Xn g[n℄ �  jlev�1(:� 2lev�1n) (3.35)We denote m0;m1 2 L2(IR), in the Fourier domain suh that:m0(�) = bh(�)p2 and m1(�) = bg(�)p2 ; (3.36)and we obtain wlev;j in the Fourier domain suh that:bwlev;j(�) = lev�1Yi=0 m�i(2�i�) (3.37)where � orresponds to the deomposition of j in the dyadi deomposition, j =Plev�1i=0 �i:2i.And we have 8l 2 IN, �2l�1j=0 W lj = V0.We represent this tree for the one dimensional ase on�gure 3.2. This algorithm enables to build a large family of spaes that will be used for our
Figure 3.2: One dimensional Wavelet Pakets Deompositionpreproessing.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1223.3 Deonvolutions, sharpening and smoothingIn this hapter, we present various appliations to deonvolve, sharpen or smooth one andtwo-dimensional signals. All these examples are based on the wavelets representation anditerative algorithms. In the �rst example, we are interested in restoring signals that havebeen blurred beause of a lost of informations. Instead of having a signal f , for examplewe only have is low pass deomposition s. The seond example is about sharpening andsmoothing signal omponents. And �nally, we present numerial results of these examplesfor one and two-dimensional data, inluding the removing of Barbara's vest stripes.3.3.1 Appliations to deonvolutionWe used in this hapter the notations used before. We start from an original signal forigwhih we only have a blurred version f as only the low pass deomposition \s" has beenkept. It an be written as bf = �m0 � bs, with bs = m0 � dforig and bd = m1 � dforig, where\d information" has been removed. We have to ompute the high pass deompositionoeÆients d to reonstrut forig. We an apply a division in the Fourier domain but it willimply instability problems. Let's de�ne f1 = f; s1 = s and d1 = d. We will use theapital letter to de�ne the Fourier transform of a signal, F = bf .
. s1 d1 = 0Figure 3.3: Initial state, virtual tree showing high pass oeÆients set to zeroRemark 3.3.1. The term \virtual" and \real" are used to de�ne the di�erent trees on-strut for the undeimated wavelet pakets representation. \Real trees" orrespond to therepresentation that have a true meaning like any deimated representations. Some waveletpakets trees do not orrespond to a real tree. This feature is due to the fat that we donot have anymore an orthogonal deomposition by using undeimated wavelets. Thought,



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 123the low and high frequenies omponents are not anymore independent as in the deimatedase. There now exists some onditions linking these two subspaes and at eah level of thedeomposition the dimension subspaes are redued by one instead of being divided by twolike in the deimated ase.Presentation of the algorithmFor our example, we have by onstrution d1 = 0 and reompose the signal to obtain thesignal f1:
. f1s1 0����* HHHHYFigure 3.4: Virtual tree showing reonstrution of f1 = f from s1 and d1 = 0F1(�) = bf1(�) = S1(�):m0(�) + 0:m1(�) (3.38)) F1(�) = F (�) � jm0(�)j2 (3.39)We iterate a proess that we explain now to obtain f2. We obtain s2 and d2 bydeomposition of f1 suh that S2(�) = m0(�) � F1(�) and D2(�) = m1(�) � F2(�) in theFourier domain.
. f1s2 d2����� HHHHjFigure 3.5: Real tree for the deomposition of f1 in s2 and d2We set s2 = s1, and we reonstrut f2:F2(�) = S1(�):m0(�) +D2(�):m1(�) (3.40)
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. f2s1 d2����* HHHHYFigure 3.6: Virtual tree showing reonstrution of f2 from s1 and d2We iterate this step. For eah n, we deompose fn in sn and dn and reonstrutfn+1 , setting sn = s1, we obtain the following trees:

.

fnsn+1 dn+1����� HHHHj
fn+1s1 dn+1����* HHHHYFigure 3.7: Real and virtual trees showing deomposition of fn in sn and dn, and reon-strution of fn+1 setting sn+1 = s1

8n � 2 Fn+1(�) = S1(�):m0(�) +Dn+1(�):m1(�) (3.41)with S1(�) = m0(�) � F (�) and Dn+1(�) = m1(�) � Fn(�). We an write the followingrelation: 8n � 2 Fn+1(�) = F (�) � jm0(�)j2 + Fn(�) � jm1(�)j2 (3.42)



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 125As we know that F1(�) = F (�) � jmo(�)j2, by indution we easily show that:8n � 2 Fn(�) = F (�) � jm0(�)j2 � ( nXi=0 jm1(�)j2)8n � 2 Fn(�) = F (�) � jm0(�)j2 � (1� jm1(�)j2n+21� jm1(�)j2 ) (3.43)As we have jm0(�)j2 + jm1(�)j2 = 1, then8n � 2 Fn+1(�) = F1(�) � (1� jm1(�)j2n+2) (3.44)We assume that the omportment ofm0 around zero is suh that jm0(�)j2 = 1��j�j+o(�),we have limn!1Fn(�) = 0 (3.45)And we an onlude:8� > 0;9Æ < 1=8� 2 [�� + �; � � �℄ jm1(�)j < Æ (3.46)) 8� 2 [�� + �; � � �℄; limn!1Fn(�) = F1(�) (3.47)And we also have Fn(�) = 0. By letting Æx0 be the Dira funtion in x0 we an write that:limn!1Fn = F1 � (1� Æ�): (3.48)The onvergene of this algorithm is given by the �xed point theorem.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1263.3.2 Appliation to sharpening and smoothingIn this hapter we show how to apply our algorithm to enhane or smooth some frequenybands without reating artifats. We are working with disrete signal living in L2([0; N�1℄).At eah level lev, for all �lters !lev;�, O � � < 2lev, we an write its Fourier transform as:b!lev;�(�) = lev�1Yi=0 m�i(2�i�) where � = 1Xi=0 �i:2(lev�1)�i; �i = 0 or 1 (3.49)

.
�0 = 0 �0 = 1�1 = 0 �1 = 1 �1 = 0 �1 = 1�2 = 0 �2 = 1 �2 = 0 �2 = 1 �2 = 0 �2 = 1 �2 = 0 �2 = 1Figure 3.8: Tree Classi�ation on p levels with � = (�0; �1; � � � ; �p)For a given signal f we ompute its projetions on the di�erent subspae given byits wavelet pakets deomposition, and obtain the following formula:f!lev;� = N�1Xi=0 h!ilev;�; fi!ilev;� where !ilev;� = !lev;�(:� i): (3.50)Similarly at the previous hapter, we an write in the Fourier spae the relation given bythe \onstrution-deomposition" of the wavelet pakets !lev;�.We obtain f1 by using itswavelet pakets deomposition until the level lev, we set to zero all the wavelet pakets but!lev;�: bf1(�) = jb!lev;�(�)j2: bf(�) (3.51)And then we reonstrut our virtual tree to obtain f2. By indution we obtain fn with the
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.
f20 00 0 0 00 0 0 0 !3;4 0 0 0Figure 3.9: Virtual tree with all omponents set to zero but !3;4same proedure. And we have:fn(�) = jb!lev;�(�)j2n: bf(�) (3.52)So if we have  2 IRp+1, we an onstruthp(�) = pXi=0 i � fi(x) (3.53)that we an write in the Fourier spae:bfp(�) = pXi=0 i � bfi(�)) bfp(�) = [ pXi=0 ijb!lev;�j2i℄ � bf(�) (3.54)We �x 0 = 1 and we obtain) bfp(�) = [1 + pXi=1 ijb!lev;�j2i℄ bf(�) (3.55)By using the limited development of x 7! (1 + x)� in zero:(1 + x)� = 1 + � � x+ �(� � 1)2 � x2 + : : :+0� �n 1A � xn + o(xn) (3.56)And we also have for x 7! (1� x)� a similar result:(1� x)� = 1� � � x+ �(� � 1)2 � x2 + : : : + (�1)n0� �n 1A � xn + o(xn) (3.57)



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 128And then, when we hoose i = (�1)i0� �i 1A we obtain:fn(�) = bf(�):(1 � jb!lev;�j2)� +O(jb!lev;�(�)j2n) (3.58)As we saw in the preedent hapter, we have onvergene everywhere but at � = �. Itorresponds to the Nyquist frequeny. In the Haar ase, it's the vetorial spae [ 1 �1 1�1 � � � 1 �1℄ �IR that is orthogonal to the subspae spanned by the low frequeny omponent.And it is the reason why we annot reover it. We observe that � = 1 is a key fator. And�'s value will determinate if we enhane or blur the orresponding wavelet pakets.3.3.3 Numerial Examples of one dimensional deonvolutionWe have shown in the previous hapters that for a given one-dimensional signal f , with noenergy at the Nyquist frequeny, we an deonvolve it using the algorithm de�ned before.We start with a periodi hirp (N = 128 points) x 7! sin(x � (N � x)) that does not haveany high frequenies. This hirp has been hosen to have low frequenies onentrated inthe enter of the signal as �gure 3.10 shows. We iterate the deblurred algorithm desribed
20 40 60 80 100 120

-1

-0.5

0

0.5

1
Signal chirp(128)  &  its FFT Absolute value 

Amp
litud

e

10 20 30 40 50 60
0

5

10

15

20

25

30

Frequency       (Nyquist = 64)

Abs
olut

e va
lue Figure 3.10: A �rst hirp and its Fourier transformbefore, and observe the evolution of the signal on �gure 3.11. The onvergene is quite fastas planned, as support( bf) is limited (no high frequenies). After an hundred iterations,there is almost no variations. We observe that the di�erenes only appear where we havehigh frequenies as expeted, as jm0j has more energy in the low frequenies than amongthe high frequenies.
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Figure 3.11: A �rst signal, starting from a blurred version onverging to the originalWe onstrut a seond example with more energy in the high frequenies, as wean now notie on �gure 3.12. We observe that the blurred signal has lost muh more
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Figure 3.13: Starting from a blurred version onverging to the original3.3.4 Numerial examples of sharpening and smoothingIn this hapter we present numerial results for one and two-dimensional man made signalsand also for a real image. For the one-dimensional ase, we reate hirps that allow a betterunderstanding of the algorithm, sine spatial and frequential loations are linked. We thenshow result for two-dimensional signals made of hirp and sine produts. And we �nishwith the removing of Barbara's vest stripes.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 131Examples in the one-dimensional aseTo visualize our sharpening or smoothing we are going to use our previous hirp (1024points) and we are going to enhane or smooth eah frequeny band on the seond level.So we obtain two examples for eah sub-band. We an see on �gure 3.14 and 3.15 the
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Figure 3.14: Sharpening and smoothing of !2;0 and !2;1 on a hirp of length N = 1024suessive e�ets of the sharpening and smoothing. In eah ase, we manage to modifythe energy level without reating any artifats. The e�ets on the signal is more or less



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 132important depending on how muh energy is ontained in the sub-band.
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Figure 3.15: Sharpening and smoothing of !2;2 and !2;3 on a hirp of length N = 1024Examples on two dimensional signalWe reate a two-dimensional signal whih is the sum of two funtions: a produt onedimensional hirp that allows loalization of the frequenies (as we have with the one-dimensional hirp) for a better understanding, the produt of two one-dimensional low



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 133frequeny osines. For (x; y) 2 [1; N ℄2, the intensity I of the signal an be written as follow:I(x; y) = �50 + �80� ����N2 � x���� � � os��x � (N � x)64 ��� �50 + �80� ����N2 � y���� � � os��y � (N � y)32 ��+ 5000 � os(�x32 ) � os(�y64 ); (3.59)The two dimensional signal is represented on �gure 3.16, the upper left image.

.

Sharp from Original ( quad[128 , 128] ) with γ = -5 , Lev = 2, PosX = 1, PosY = 1Original ( quad[128 , 128] )

Sharp from Original ( quad[128 , 128] ) with γ = -5 , Lev = 2, PosX = 2, PosY = 1
Sharp from Original ( quad[128 , 128] ) with γ = -10 , Lev = 2, PosX = 2, PosY = 2

Figure 3.16: Sharpening and smoothing of the image given by equation 3.59 for di�erentsubspaes and values of �



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 134Example on a real imageWe now work on a real image and we present result obtained with Barbara, an image(512; 512) showed on �gure 3.17. We want to remove the vertial lines appearing on \Bar-

Figure 3.17: Original Image \Barbara" (512; 512)bara's vest", just below her left arm without erasing the shadows. The stripes orrespondto the wavelets of the �rst level, with low frequeny in the vertial diretion and high fre-queny in the horizontal diretion. The wavelet representation is adapted for suh kind ofsignals. The result an be observed on �gure 3.18. We deonvolved only a small part of thevest and left the other part as it was. We an observe that the arm's shadow is still on the
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Figure 3.18: Image \Barbara" (512; 512) partially deonvolved, the stripes of the vest havebeen removedvest, it didn't disappear with the algorithm. We observe that we do not loose resolutionand sharpness as in the heat equation proess or with a onvolution.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1363.4 Appliations to DenoisingS.A.R. images with targets have some partiular properties, more preisely the range ofvalue (due to the targets) ompresses the strutures. We apply a preproessing to be ableto have a better denoising. In this report, we develop an algorithm to denoise radar imagesin four steps:� Deomposition on Wavelets Pakets Undeimated and Preproessing,� Applying a Threshold for targets separation and a  orretion,� Denoising using multi-pass wavelet pakets deomposition,� Reonstrution of the omplete signalThis algorithm has been implemented inside an existing platform for image and signalproessing.3.4.1 Preproessing and GoalsWavelets have been used for denoising. But we know that the results are not always good.Too many artifats are introdued due to the data struture. In the ase of S.A.R. images,we have a bad representation, as we an see on the �gure 3.19 their statistial representation.Targets an be assimilate to Dira funtions or noise. To avoid the artifats generated bythis repartition, that essentially ompress the strutures and gives disontinuities due tothe targets, we apply a preproessing to our data set. In the �rst part we are going toextrat the low frequenies, using undeimated wavelets. We know that the noise is almostinexistent in this omponent. When we have done this, we re-normalize our data. Andin the seond step we are extrating the targets, assimilated as high values. These targetsmodify the range and make impossible most of the denoising based on wavelet analysis.Sine they ompress the other data in a small range, by renormalisation. So we deide toextrat them before denoising. But we have to be areful to not add artifats to our data.And we are able to apply an optional \ orretion".



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 137

0
Min Med Max

Probabilty Density

Figure 3.19: Probability density funtion of a radar image with targets, showing the rangeof data.3.4.2 Extration of Low frequeniesFor eah signal we subtrat the low frequenies. We apply an undeimated wavelet de-omposition until level three or four depending on the size of the signals. And we set tozero all the wavelets oeÆients but the low frequenies omponents. And we rebuild oursignal. This algorithm enables us to apply a soft threshold on our data. It orresponds toa multipliation by a bell in the Fourier spae. We have extration of low frequenies (at a�xed level) that is obtained by keeping the oeÆients of the left box of the orrespondinglevel and setting the other elements to zero. The reonstrution of the signal will give asignal ontaining the low frequeny omponents. This sheme an be understood with the�gure 3.20
00 0 0 0 00

Low3

Figure 3.20: One dimensional preproessing using wavelet pakets reonstrution.Remark 3.4.1. After Wavelet Pakets Deomposition undeimated, for a one dimensional



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 138signal (size N) we obtain (2level � N) oeÆients at eah level. So we have (�2level �N) elements, it means ((2(maxlevel+1) � 1) � N) oeÆients if we have deomposition untillevel maxlevel. Instead of the N oeÆients with deimated deomposition. For a twodimensional signal, the amount of data is even bigger as we have (4(maxlevel+1) � 1) � Nelements.We have shown in the previous hapter that a similar omputation an be done bykeeping any wavelet pakets subspae and setting to zero the others elements. We subtratthis omponent to the original signal and the working data set is therefore omposed of twoomponents. We are keeping a side the low pass part and proess the high pass part. Wehave a similar result for two-dimensional signals, like images that we will denoise later. Thesheme for the deomposition-reonstrution is shown on �gure 3.21. After the extration of
         0 
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     V1     0       0               0

      0  0           0  0
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Figure 3.21: Two-dimensional preproessing using the wavelet pakets reonstrution.the low frequenies, we obtain two omponents as previously. The low frequeny omponentis kept as is, its omplementary part needs proessing. We apply a renormalisation usingthe a linear renormalisation that proeeds the \-orretion".



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1393.4.3 RenormalisationWe want to apply a renormalisation that keep some properties of our signal f to applydi�erent operators. We re-normalize our signal between -1 and 1, and we also fore themedian to have a value equal to zero. To be able to apply a  funtion on eah side of themedian. We apply a linear transformation, that we de�ne as follows:min = mini2[1:::N ℄ f(i) (3.60)med = mediani2[1:::N ℄f(i) (3.61)max = maxi2[1:::N ℄ f(i) (3.62)And we have the following aÆne transformations:ifx 2 [min;med℄) f(x) = x�medmed�min (3.63)ifx 2 [med;max℄) f(x) = x�medmax�med (3.64)We represent the linear transformation on �gure 3.22
Max   −−−                −−−   1.

Med   −−−                −−−   0.

Min   −−−                −−−  −1.Figure 3.22: AÆne renormalisation on eah side of the median value, that will enableto apply the \-orretion", x 7! sign(x) jxj , without lost of symmetry. The median isinvariant by this transformation.3.4.4 Targets extrationWe are now working on the high amplitude part of the signal, as opposed to the previous partthat was entered on the frequenies domain. This part is onstituted of small strutures,targets (high values that we ompare to Dira or harateristi funtion) and noise. Targetsare represented by high positive values. We are extrating them to denoise the small



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 140strutures without being inuened by the targets. We have di�erent possibility to doso. But many artifats an be introdued. The �rst and the easiest way is to apply a
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Figure 3.23: Inuene of regularity on vision. The entral graph show two one-dimensionalsignals. One is C1 while the other is pieewise C1. We generate two-dimensional signalsfrom them to observe the importane of the C1 property in vision.hard threshold. We separate the signal in two parts by assimilating targets to the highestfew pour-ents. By iteration we an extrat one, two, three or more pour-ents. And theseparation between targets and simple strutures is done but it is a manual proedure. Theseond method is based on the probability density. We know that our data streth the rangeof value and we assimilate it to a bi-modal density. Computing the quantiles will enableus to �nd the separation of these two modes. As a matter of fat, there is a big jump ofvalue between the two modes and that is going to generate a jump in our quantiles. Thesetwo methods have the drawbaks of applying hard threshold. The last possibility that weonsider is based on the same idea at the extration of the low frequenies. We want toapply an operator without adding artifats. As we know image regularity is important as�gure 3.23 shows. As the matter of fat, when we extrat our data by hard threshold weobtain signal without enough regularity. Our signal an be assimilate to a \hat funtion",and we know that it implies artifats. We want to apply a soft threshold to separate targetsfrom the small strutures. Moreover, we know that targets have positive values so we onlyapply this soft threshold to [0; 1℄, that orresponds to the value range ontains between themedian and maximal values. Our funtion should be in C2(IR), as the one proposed on thegraph on �gure 3.24. We apply now a \-orretion" that will help to onentrate or spread
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Figure 3.24: Target extration using soft threshold to avoid artifats as shown on �gure 3.23the di�erent probability densities.3.4.5 -Corretion
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Figure 3.25: Three di�erent  funtions, x 7! x , to emphasize or redue the variousdi�erent strutures by modifying the probability density funtions. A value of  between 0and 1 will reate a funtion above the identity funtion and then will \push" the data togreater value as opposed to  > 1 that will \pull" the data to zeroAfter renormalisation and extration of the targets, we an apply a -funtion,x 7!x , to emphasize the strutures ompared to the noise. On eah side of origin we apply the\gamma-funtions" with di�erent values for . We show their graphs on �gure 3.25. We



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 142apply this transformation on [�1; 0℄ and [0; 1℄ separately. Denoising an now be runningon this preproessed signal. The median is not modi�ed with the \-funtion", as it is anon-dereasing funtion. We present a reapitulatory of our proessing before applying adenoising.3.4.6 Preproessing reapitulatoryWe have shown in the last few hapters how to extrat parts of our data to be able tohave favorable onditions for denoising. We represent this summary as a diagram on �gure3.26. We have separated our data in three parts: low frequenies, high amplitudes alled

   0.        Thresh old        Nyquist999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999
999999999

1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111

Amplitude

Frequency

       1.

Threshold

       0.

Region to Denoise

Soft Threshold

High Amplitude

L
O
W

P
A
S
S

Figure 3.26: Diagram showing the preproessing steps before denoisingtargets and small strutures to denoise. We know that the low frequenies do not ontainany noise, we keep this apart and add it later. The targets are onsidered as high positivevalues, white dots, the noise does not have a veritable inuene on their values. Targets willbe added later too. We have to onentrate our denoising work on the small strutures thatorrespond to the last part. The next hapter is going to show how to apply a multi-passdenoising using wavelet pakets.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1433.4.7 Denoising using multi-pass wavelet pakets deomposition.We apply here an algorithm developed by Lionel Woog, in his Ph.D. thesis [30℄, to denoiseour data. Deimated wavelet pakets are used for this step for fast omputations. Thisalgorithm is omposed of :� Multi-pass wavelet pakets deomposition-reomposition with a hard threshold (asshown on �gure 3.27)� Spatial Spin Cyle� Spin Cyle on the �ltersSpin Cyle is used to ompensate the dependene on dyadi grid or on the �lter with anaverage of the results. To do so, we translate the data. For the spatial spin yle, weshift the data of one pixel in eah diretion and repeat the algorithm, and take the averagevalue. While the for the �lters, we repeat the algorithm with various �lters, before average.Usually four spatial translations and four �lters are adequate. The Multi-pass algorithm
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Denoised  = Coherent( 1) + Coherent(2)Figure 3.27: Two-passes algorithm for denoising using a hard thresholdis omposed of the following steps (the �rst three orresponds to the one pass best basisthresholding):



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 144� Wavelet Pakets deompositions and searh of Best Basis.� Appliation of a hard threshold after data sorting by absolute values.� Wavelet pakets reonstrution to obtain the oherent part.� Iterations of these three steps on the residue, until the residue is onsidered as onlynoise.� Summation of the oherent partsA two pass algorithm is represented on �gure 3.27. The advantage of this algorithm is thatit enables to \see" strutures in di�erent steps. The seond and third pass enable to aththe small strutures living in eah respetive residues.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1453.4.8 Summary and ResultsOur algorithm an be seen as a separation of our image in three parts and a denoising ofone of them. This summary an be seen as the diagram shown on �gure 3.28. The om-
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Figure 3.28: Diagram showing the di�erent steps of the global algorithm used for denoisingbined algorithm has been implemented on a platform that ontains others image proessingprograms. The anvas orresponding to this struture is shown on �gure 3.29. And byapplying the algorithm to the original image, shown on the left of �gure 3.30, we obtain ainteresting result on the right of �gure 3.30.
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Figure 3.29: Canvas of the algorithm implemented in the platform

.Figure 3.30: Original and denoised SAR image, with our preproessing and multi-pass al-gorithm



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1473.5 Appliation to brain ativation detetionIn this hapter, we are onfronted to the following medial problem: detetion and loaliza-tion of ativation regions in human brain using funtional MRI. Two di�erent MRI sanswere aquired: one baseline during whih the subjet was not performing any task, andanother set during whih the subjet was performing a motor task. We would like to detetregions of ativation. We will represent the data as two three dimensional data sets. Theimages should have the same spatial size but their respetive number may di�er. The thirddimension orresponds to the temporal dimension, di�erent realizations of the same state(ative task or baseline). Eah data set is a temporal sequene of one single slie of thebrain. We assume that the slies in the ativated data set and baseline are registered in thez-dimension as shown on �gure 3.31.
N1 N2Figure 3.31: Two data sets of brain given by the funtional MRI, baseline and ative task.The steps of the algorithm are the following:� Deomposition at various sales of eah image using the undeimated wavelets deom-position.� For eah wavelet oeÆient loation, estimation of the two probability density fun-tions.� Computation of a \Cost Subspae" for eah subspae, that interprets the dissimilarityof the two probability density funtions.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 148� Reonstrution of the \Cost Subspaes" to obtain the dissimilarity at a �xed leveland merging of the various levels.3.5.1 Preproessing with Wavelets DeompositionWe represent our data with the multi sale analysis obtained with undeimated wavelets asexplained before to have representation grid's independent. We use the algorithm developedby Roland Guglielmi. We represent this deomposition as a table. Eah box has thesame size as there is no deimation. But for an easier visualization we show them as adeimated deomposition on �gure 3.32. The �rst raw is the original signal and the followingorrespond to the di�erent levels of deomposition. We represent our deomposition on
Figure 3.32: One dimensional wavelets deomposition�gure 3.33 for our two datasets. We apply this deomposition. For a �xed sale and a

N1 N2Figure 3.33: Two dimensional wavelets deomposition of the two setsgiven loation, we will ompute for eah subspae data set (that has the same size), the



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 149probability density funtion given by the respetive N1 and N2 terms. We then determinatethe dissimilarity of these two funtions to ompute the \ost subspaes" that will allow thereonstrution of an image that orresponds to the di�erene between our two data sets atthis �xed sale.Remark 3.5.1. During the wavelet deomposition, we have a growing size of our data, forhigh level of deomposition, that is a real problem for two dimensional signals. It is thereason why our study does not use the wavelet paket deomposition as previously.3.5.2 Computations on eah subspae

Level = i

N1 N2

Cost Subspace V’i

    Subspace Vi

Figure 3.34: Cost Subspaes omputed for a �xed level (level = i).We want to determine if we an disriminate loally di�erent ativations between this



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 150two modes. We make a disrimination at eah sale. We have four subspaes orrespondingto eah level, as we do not use the wavelet pakets representation. We work in eah �xedsubspae, and we have respetively N1 and N2 realizations for eah mode. For eah levelwe ompute the four ost subspaes as seen on �gure 3.34. Therefore we have to ompute aloal ost aording to the dissimilarity behavior of our data. We will all \Cost Subspae",the subspae orresponding to a signal (it has same dimension as this subspae) and givesus the loal di�erene between our two data sets. For eah pixel, of eah subspae, we applythe same operations. The following steps are applied:Step 1 Extration of the N1 and N2 realizations with idential pixel loation and Estimationof the two probability density funtionsStep 2 Cost Computation using the di�erential entropy:E(X1;X2) = i=NXi=1 (pi � qi) � log(piqi ) � 0 (3.65)Step 3 Creation of the Cost Subspae and reonstrution.We give details of these steps in the next few hapters.Estimation of the probability density funtionWe look for ativation zones using a bin probability for eah sale. We have now N1 andN2 set of images, and their respetive undeimated wavelet deompositions. Therefore, weare interested in ativation di�erene in the brain and not in the bakground. So later,when we build our probability density we will use this knowledge to ompare the data. Anoisy bakground will not a�et our study. We want to detet the ative parts of our data.We are working at various sales meaning, in our ontext, di�erent levels of deomposition.Our study is done at eah level separately. We work on the deomposition oeÆients at�xed levels before reonstrution. We have two data sets, eah ontaining images withidential sizes. These images are 256 by 128, and they have been obtained by M.D. KevinJohnson (Shool of Mediine, Yale University). They orrespond to slies of the brain in a
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Min               M axFigure 3.35: Preproessing of measure for the ost omputationnoisy bakground. We are only interested in what happens inside the brain. Therefore weonsider the smallest retangular region that ontained the brain. Within this region, weestimate the probability density funtion using the �rst image of eah data set, to obtaina global measure. The probability density is approximated with an histogram. We analulate the histogram based on quantiles or linear distribution as shown on �gure 3.35.This probability density funtion is omputed to establish the dissimilarity between the twosets of realizations.Extration of data with idential spatial loalization.

N1

N2Figure 3.36: Extration of the two realizations sets for eah pixel



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 152We have two di�erent realizations of our data, baseline and ativated. For eah pixel(i; j), we reate two sets orresponding to the N1 and N2 realizations, as seen on �gure 3.36.These realizations do not have any temporal relations, and we are only interested in thestatistial properties of our data. We then ompute their respetive histograms, using themeasure omputed previously during the preproessing. For eah subspae, the size andloation of the bins (shown on �gure 3.37) have been estimated previously using all the pixelsof the subspae. Then we use the same bin sizes for every pixel of this subspae, related tothe measure previously, to estimate the histogram of the time series. The di�erent measurehave been hosen globally, they depends on the pixel values of the whole subspae. In order
| |

MaxMin

Max

| | | | | | | | | |

MinFigure 3.37: Probability density funtion omputed with the measure de�ned with the pre-proessingto ompare the two time series we ompute their relative entropy. A \Cost subspae" isobtained by alloation to every pixel of this value.Cost Computation and a�etation of this valueFor eah pixel (i; j), we estimated the probability density funtions using the two histograms.We deide to ompare them by omputing the di�erential entropy E as follow:E(X1;X2) = n=NXn=1 (pn � qn) � log(pnqn ) � 0 (3.66)where pn and qn represent the probability ofX1 andX2 in the interval In, with [Min;Max℄ =[Nl=nIn, for a given pixel (i; j). We ompute the di�erential entropy using probability densityfuntions and not the values. It give a better idea about how di�erent are the probabilities,



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 153as seen on �gure 3.38. We then a�et this value ost to the spatial loation (i; j) to reate
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Figure 3.38: Di�erential Entropy as an estimation of the disrimination of two probabilitydensity funtionsthe ost subspae. For eah level (or sale), we have obtained four \Cost subspaes" thatenables us to reonstrut an image orresponding to the di�erene at this �xed level. Thisstep is now follow by the reonstrution.ReonstrutionFor eah deomposition level we have four subspaes (exept at the pixel level). We rebuiltas many images as we have levels of deomposition, as represented on �gure 3.39. Eahreonstrution gives us a di�erent sale for lassi�ation. We are then able to visualize thedi�erenes between our two data sets for di�erent sales. We note on �gure 3.39 by Vi theost subspae at the level i. We then are able to multiply these result to visualize only thepixels seen as important at every sale. Sine our ost funtion is positive, multiplying thevarious values is equivalent to a smooth version of the logi operator \AND".3.5.3 ResultsWe present a result for the funtional MRI data on �gure 3.41. From these experiments,we note some important properties. First, we have onsisteny through the various sales.In fat, after only two levels the produts obtained by this algorithm is almost the same.
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Figure 3.39: Wavelet reonstrution from various levelsWe have a onvergene of our algorithm through the sale whih allows us to think thatthe result is stable. The seond property is due to the multi-sale approah. We ombinethe result of di�erent sales, we re�ne our result. By multiplying the various at di�erentsales we go from oarse to �ne, and so by iteration we disard the invalid \ativated pixels"(informal onversation with Franois G. Meyer). For easier omprehension, we explain thisproperty on a one dimensional example shown on �gure 3.40.
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         *                   *       *           ***      Figure 3.40: Multi-sale property of the algorithm. At eah sale, ativation is deteted.The produt of the result of the various sales enable a better loalization



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 155We observe on this result the onsisteny of the multi-resolution analysis. After twolevels, the produt of the reonstruted images does not have signi�ant hanges.
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Figure 3.41: Result of the brain ativation detetion at various sale. The left row shows theativation at level 0 (pixel level) to 3, while the left row shows the produts of the variouslevels starting at 0.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1563.6 ConlusionThe three appliations developed in our reports were based multi-resolution. Sine weworked at di�erent sale and not only at the pixel sale, we obtain a better analysis andresult. We have shown in this report how to preproess data with undeimated wavelets.Non-deimation is ruial as it gives grid independene as opposed to the lassi deimatedwavelets representation. Our preproessing is followed by lassial engineering methods. Italso means that most of the steps, as the ost funtion or -orretion are examples, of ouralgorithm an be modi�ed. Improvement an be done in many diretions sine the variousparts of the algorithms are independent.



Chapter 4
Conlusion
In this thesis, we have presented properties and results about the fatorization representa-tion based on the Blashke Produt. Stability to noise and invariane have been shown forthe phase of the Blashke produt. The non-linear approximation gives good results andfast onvergene. Further work have to be done to optimize the algorithm with the loal-ized term z 7! p1�j�j21���z . The two dimensional extension, that we develop, has properties ofstability to noise to but many parameters, suh as the partition unity of the Fourier spaeor the value of � for the threshold, have to be tested to improve the algorithm. It also givesan alternative for omputing phase for segmentation.In the seond part we have worked on segmentation using preproessing based on the waveletpakets representation. the hoie of a ost funtion and the addition of an extra term to theMumford-Shah funtional gave us the anonial number of regions, based on our riterionof regions of similar size, for segmentation. EÆient segmentation an then be obtainedby keeping only the useful �lters. By oneption this algorithm is modular and then manyimprovement an be done on eah blo, as the hoie of the ost funtion or the �lters usedin the preproessing.In the third part, we worked with mutli-resolution algorithms. We have shown appliationof the undeimated wavelets and more preisely how to reate an equalizer for one and twodimensional signal that does not su�er of artifats. An implementation on Matlab has been157



CHAPTER 4. CONCLUSION 158started but more an be done to make the tool more operational. The detetion of brainativities has good results as it uses standard engineering tehniques with the multi-saleanalysis. Improvement an be done at various steps sine the algorithm is also modular.
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