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Abstract

Phase Evaluation and Segmentation

Michel R. Nahon
Yale University
2000

This dissertation is organized in 3 parts. The first part is a study of instantaneous fre-
quencies for one and two-dimensional signals. In 1946, Gabor proposed in [1] to analyze a
one dimensional signal via its complexification. We refine this idea and study the Blaschke
Factorization to separate frequential and amplitudal information. We demonstrate stability
and invariance properties. We describe an iterative algorithm to decompose a signal in an
orthogonal basis of finite Blaschke product. An extension of this algorithm is presented for
the two dimensional case.

In part II, we deal with the problem of textural segmentation. Many applications in image
analysis are based directly or indirectly on segmentation. Several algorithms give good re-
sults. We study the properties of the pyramidal algorithm developed by J.-M. Morel (and
his collaborators), that is based on the Mumford-Shah functional, as its properties interest
us. For textured images a preprocessing is mandatory. In [19], a vector image is obtained
after filtering with an undecimated wavelet decomposition by Koepfler et al.. The problem
is now to segment a vector image. The “good filters” have to be chosen to obtain a rea-
sonable segmentation, regions with comparable sizes. We propose an algorithm to select

the useful filters in a library for a chosen image. It enables to reduce the computational

iii



time and give a more efficient segmentation. We present an extension of the Mumford-Shah
functional and show how to reduce the dimension of our vector image. Different results and
a counter-example, where the pyramidal algorithm is not optimal, are presented.

The last part is devoted to the application of undecimated wavelets. We believe that multi-
scale analysis is an important tool for image and signal processing. We represent our data
with the wavelets and wavelet packets decomposition. We work with undecimated wavelets
since they are grid’s independent. We first summarize their properties before showing some
applications. The first application is deconvolution, sharpening and smoothing signals us-
ing the subspaces obtained with the wavelet packets. The second one is about denoising
radar images using the separation of the structures given by the wavelet representation, to
solve the troubles generated by the the targets. And finally, by extracting the variations at

various scales, we show results for the detection of brain activities in functional-MRI.
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Chapter 1

Phase Evaluation and Blaschke
Product

1.1 Introduction

We develop an approach to signal analysis using instantaneous frequencies, for periodic
function. We exploit an idea of Gabor’s developed in [1] to use the phase of the complex-
ified analytic signal to define the instantaneous frequency. In [8] and [9], Voeckler showed
how to understand the instantaneous frequencies and envelope, based on the “product rep-
resentation of signals” which he modeled as polynomials or rational functions. The Hilbert
transform is used to compute this analytic signal. In case of a one-dimensional signal, its
amplitude gives an “envelope” of the signal. Computing the frequential information from
such a function is unstable in the presence of noise. For the one-dimensional case we will
refer to the Canonical Factorization (see [2]) and the Blaschke product that gives us some
invariance properties. This factorization can be assimilate with Voeckler idea of “product
representation signals”. In [3], Kumaresan proposed an extension of this work. He men-
tioned that the 'Min Phase’, '"Max Phase’ and 'All Phase’ was not done by Voeckler but
by Oppenheim and colleagues in chapter 12 of [6]. In the representation, the ’All-phase’

is a Blaschke product and the 'Min-phase’ is an outer function (that corresponds to our
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function G, up to a constant factor, that we will describe later). We observe, also shown
by Loughin and Tacer in [4], that the sum of the derivative of the phase and the amplitude
modulation can be interpreted as the instantaneous frequency.

We begin with an overview of results about the Canonical Factorization. We define
an iterative algorithm to decompose an analytic signal in an orthogonal basis of finite
Blaschke products. We effectively obtain the information contents in a wide variety of
examples. This algorithm consists in the decomposition of a signal into different oscillatory
modes.

In conclusion of our study, we attempt to extend the notion of Blaschke product to
the two-dimensional case in a consistent way. We apply this algorithm to synthesized and

real images.
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1.2 Summary of results about Blaschke Products

In this section we define Blaschke product. We follow Zygmund [12] and Garnett [2] in this

presentation.

1.2.1 Definitions

Our discussion will require the following basic definitions and properties, cf. [2] and [12] for

details.

Theorem 1.2.1. If z — F(z) is regular for |z| < 1, then log |F(2)| is dominated in |z| < 1
by the Poisson integral of the function log ‘F(e”)‘, i.e.

1—p?
1 —2pcos(0 — &) + p?

) 1 27 )
1og‘F(per)‘ < 2—/ log‘F(pew)‘ do. (1.1)
T™Jo

Let &1,£2,83,+ ,&m, -+ be a sequence of points such that 0 < [£,,| < 1, and that

IL,, [&m| converges. Then the product

_ (z = &m) L x _ i
l;[b(z,ém)—gi(z_%) o s (1.2)

converges absolutely and uniformly in every disc |z| < r < 1 to a function 5(z), regular and
bounded above by 1 in |z| < r, which has &;,&2,&3,- -+ ,&n, -+ as its only zeros there.

Given F € N, let &1,&2,&3,-++ ,&m, -+ be the zeros of F' located in {z,|z| < 1} and
& # 0 for all k. If F has an additional zero of order N > 0 at z = 0 the expression

B(z) = 2N . H (z:igm)i (1.3)

where 7 is any real number, is called the Blaschke product of F. If F' has no zero for
{2,0 < |z| < 1}, then B(z) = ¢"2" for such F. We have |B(z)| < 1 for |z| < 1 and the
ratio

F(z)

G(z) = B(2)

(1.4)

is regular and has no zeros in {z,|z| < 1}. We shall always assume that v is selected so

that G(0) is real and positive.
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In [2] various properties of the Nevanlinna Class are described. In particular, one
obtains the least harmonic upper bound of log|f(z)| of the form [ P,(0)du(6), with the

important relation:

A(0) = 1og |1 (0)] 52 + dus(0) (15)

with dus singular i.e. orthogonal to df. The canonical factorization theorem for functions in
N is given by writing dus as the difference of two positive measures dug and duy, orthogonal
to df. With the previous definitions, we have the outer function:

2T il 4 o PR,
Grte) —exp ([ 552 og )] ) (16)

And the singular inner analytic functions S; are defined by:

S;(z) = exp ( - /027r e+ Zduj(9)>, j=1,2 (1.7)

e — 2

That enables us to state the Canonical Factorization theorem:

Theorem 1.2.2. Let f € N, f #0. Then

F(z) =C-B(2)-Gi(z) - C] =1 (1.8)

where B is a Blaschke product, Gy is an outer function and S; are singular functions. The

factorization is unique except for the choice of C.
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1.3 Elementary computations of the phase of a signal

Throughout the paper, the signal f will always be a trigonometric polynomial with values
in R. We will compute an analytic function fi such that Re(f;|r) = f. This function
exists and can be obtained by canceling the negative frequencies of the signal f , the Fourier

Transform of f, so that supp( f+) C [0, +00). The steps are the following:

e We compute f, the Fourier transform of f, and preserve the positive frequencies:

~

f+=2F(f) 10,+00) T 00(F)(f)- A multiplication by two is necessary to preserve the

real part and we have Re(fy|r) = f
e We compute the inverse Fourier transform: f, = F 1(f)

Thus we have constructed a mapping from L?(IR) — L?(C) that maps a real function

f to an analytic function f, using the Hilbert transform:

folw = f+iH(f) (1.9)

Now we work on the unit circle, given a trigonometric polynomial f, we construct on
C an analytic function fy (such that Re(fi|r) = f). We then have holomorphic function

F such that the restriction to the unit circle has the following properties:

for each 0 € (—m, ], F(e) = f,(0) (1.10)
This notation for functions will be kept throughout the paper. We have interests in the
instantaneous frequencies. Thus, we will now explain how to compute it.

1.3.1 Evaluation of the instantaneous frequencies

We can obtain the Blaschke product by extracting the roots aj of F', an analytic function
on C , with absolute value smaller or equal to 1 and denote N the order of zero as a root.

We have the following identity:

(1.11)
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We have, on the unit circle, |B| = 1 and |G| = |F|. Thus there exists a function ¢ :

[—m,7) — IR, such that €(®) = B(e’) and we obtain:

Mo 2
B’ = B)-¢ B0 wim o) =N+ 3 ML )
= e — ayl

The fact that the phase ¢ is non-decreasing means that B has the property of always turning
around the origin in the same direction. The curve defined by B has a counter-clockwise
trajectory. This property is not always verified by analytic functions even if by definition

their Fourier Transform has only positive frequencies.

1.3.2 The classical method to compute the phase gradient

Given a trigonometric signal f, we compute its phase modulo (27) and its amplitude.
We “unwrap” the phase along the #-axis and compute its derivative in order to obtain the
instantaneous frequency of f. We assume that the phase does not have any jumps greater

than 7, or otherwise the phase could not be unique.

1.3.3 An alternative way to compute the phase gradient

Many numerical artifacts are introduced when F' vanishes, making the phase computations
sensitive to noise, and its phase has a discontinuity as supported on the interval (—m, 7] . To
solve these problems, we begin by computing directly the phase derivative and determine

after the phase value by integration. As a complex signal, F', can be written as that follows:
F = |F|e"® € U, with ¢ the phase that we are interested in

We have a determined ¢ if only |F| > 0, indeed ¢ = —ilog % . We notice that a segmen-
tation of the signal can be obtained using this criterion, the regions K; are separated by
points where |F'| cancels. When we have separated our connected components K; contained
in K ={z € Q:|F(z)| >0}, we compute the derivative of F' according to # and obtain the

expression:

F' = |F|'e” + i¢|F|e'®, where u' corresponds to dyu
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thus:

Fl |F|I

F ~ |F|

+ i¢’ (1.13)

To obtain a signal with a meaningful phase, in the sense that the phase has some
variations, we first extract the low frequencies from our original signal. The instantaneous
frequency is considered as unchanged under this operation, since signals with low frequencies

contents have very small fluctuation of their phase by definition.

Remark 1.3.1. In the preprint “Lifting in Sobolev Spaces” the authors propose a multi-
resolutions algorithm to determinate the phase of a “given function u : Q — S' (i.e.,

u: Q= C and |u(z) = 1] a.e.) we may write pointwise
u(z) = @)

for some function ¥;Q — R. The objective is to find a lifting ¥ “as reqular as u permits.”
This function 1 is obtained by an iterative process, that computes the function at

various scales from coarse to fine.
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1.4 An algorithm to compute the Blaschke Product

Let f1 be a trigonometric polynomial of one variable, defined by the restriction of f to the

positive frequencies in the Fourier space:

f+=2-FT Y (FT(f) X0,+00))> thus Re(f+|r) = f. (1.14)

We write f, as a Fourier series with only positive frequencies on the circle:

k=M
F10) = et (1.15)
k=0
And now on the unit disc, we have:
k=M
Fi(z)= Z apz® (1.16)
k=0

We have shown that F. is analytic in €. But F; has some zeros inside the unit circle. We
want to build a new analytic function G4 with same absolute value a F; on the unit circle
C but no zeros inside the unit circle. Let’s denote [ = log|F |, and obtain L, analytic such

that Re(L,|r) = [. Denote further G = el+ so that:
G| = |elr| = efll+) = ¢! = |F,|, on C.
Thus, we have now the following identity:

F
F+ = B+ . G+ Wlth |B+| = —+

= 1 on the unit circle C. (1.17)
G,

We interpret now these two functions and show that B, corresponds to the Blaschke prod-

uct. We will assume that F, has no zeros on the unit circle through the paper.

1.4.1 The interpretation of the “B - G” decomposition

We have decomposed a holomorphic function F; on the complex plane as the product of
two holomorphic functions By and G. Just as Fy the function By has no zeros on the

unit circle and G4 has the same modulus as F; on the unit circle. We show now that
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this algorithm, based on the numerical values on the unit circle C, gives B equal to the
Blaschke product of Fy (to a multiplicative constant ¢, with |¢| = 1). We have a discrete

signal F;, with roots {a;} all distinct from zero. N is the order of zero as a root, thus:

Fi(z) = X2V J[ z=a)- [] (z—a) (1.18)

la;|<1 1<]a;]
Then it is obvious that:
log |[Fi(z)] = log|Al+ > loglz —ai|+ Y log|z — ajl (1.19)
|ai|<1 1<|ai|

But we know that z belongs to the unit circle C, thus we write:

log|Fy(2)] = log|Al+ Y log|l—z-a;|+ Y log|z — a4l (1.20)
\ai|<1 1<|ai\

And we know that inside the unit disc, for |a| > 1, we have z — log(z — a) analytic, thus

we have:
1 1
Re(log(z — —)) = log|z — —| for |a;| <1 (1.21)
a; a;
Re(log(z —a;)) = loglz —a;| for |a;| >1 (1.22)
We conclude that:
_ a;
Gi(z) = M- J] W=ai-2)- [] (ai—z)-ﬁ (1.23)
la;|<1 1<]a;] !
A (z—ai) -1 —a; 1
B = =N — —, wh == 1.24
A0 =y o=y I g wheesi=g 029

lail<1 1<]a;
We observe that this algorithm enables us to obtain the decomposition that conforms to
the Blaschke product defined previously. As we will see below, we have thus separated the

frequency and the amplitude contents of our signal F',. The factorization above yields:
Phase(Fy) = Phase(B) + Phase(G ) (1.25)

In [2], Garnett shows that the same decomposition can be obtained for functions with

infinitely many zeroes. After experimentation, we note that in some cases the phase of G
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is contained in (—7/2,7/2) but it is not a rule. Nevertheless, the curve defined by G has
the property of not surrounding the origin. On the other hand, B contains complementary
information. In fact its phase corresponds to the number of turns around the origin which
is a topological invariant. Computing the instantaneous frequencies of B is more stable as
it never vanishes since |B| = 1. Moreover its phase is non-decreasing as we have seen in
equation (1.12) and may lead to more stability to noise. The shortcoming of the algorithm
is that we note that numerical artifacts appear when the roots of F; are close to the unit

circle C, that corresponds to the limit case for a root to change from being a root of By or

G..

The absence of singular function

It is well known that an analytic function F' is the product of an Inner and Outer function.
The Inner function is composed of two factors: the Blaschke product and a ratio of two
singular functions (Theorem 5.5 in [2] ). Since we work with trigonometric polynomials,
the measure du, (that is the singular part of the weak limit of log |F(re?)| as r — 1) is
equal to zero. Moreover, the trigonometric polynomial can be written as a polynomial of
z = e, as its has a Fourier series with only positive frequencies. It means that it is the

product of B, with roots in the unit disc, and G with roots outside the unit disc. They are

respectively rational functions and polynomials.

1.4.2 Properties of the Blaschke Product

We notice that this decomposition is similar to the Local Trigonometric bases as both
decompositions enables us to have localized oscillations. For example, the local cosine
transform has its oscillations parametrized (it corresponds to the spatial and frequential

localization of the signal). Each term has a well defined support.

YV € [ag, ak4+1) T — cos <w> (1.26)
Af+1 — Ok

For the Blaschke product it will depend on the phase of the roots contained in the unit disc,

eiG 7A8i90

as 0 — T a7

(with A > 0). The oscillations are more or less concentrated depending on
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the distance of the root to the unit circle. The oscillations are around 6y and the frequencies
depend on (1 —A). If X is equal to zero we have a low frequency by opposition to A near one.
The frequencies will be affected too, localization and oscillations are forced at the same time
in both cases. We notice on figure 1.1, the localization properties of the Blaschke Product.

The factorization process obtained from the family of Blaschke products is a non-linear

Blaschke Product with 3 roots of radius = 0.8, 0.98, 0.8, and order 1, 1, 5
T T T T T T T

05 n

1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

40
301
20
101

1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

0.1

0.05F n

1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

Figure 1.1: An example of Blaschke product B = €'*B that has three roots of different
orders. The top graph shows the real part of B, while the second and third row show the
phase ¢p and its derivative ¢'y. We observe that the “spread” of the oscillations depends
on the distance of the root to the boundary (unit circle C'). The order of the root increases
the number of local oscillations.

approximation as it will generate a function B, the Blaschke product, that is adapted to
the signal. We observe that the oscillations, related to the derivative of ¢p (the phase of
B), will depend on the local frequencies of our signal. We also notice that the localizations

of the zeros can be obtained by observing the maxima of the derivative ¢p as shown in
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chapter 1.3.1. On the other hand, it has the drawback of being of absolute value equal to
one. We will show in the next chapters some numerical results and necessary corrections to

reduce the computational artifacts.

1.4.3 Numerical Experiments

In the previous algorithm, we apply the logarithm to the absolute value of F., It means
that in every region where |F | is close to zero the computations of G and therefore of B
are going to be unstable and artifacts will appear. We can also notice that in some cases

we loose analyticity of G4 even if it corresponds to the exponential of an analytic function.

Corrections for regions where F, vanishes

To prevent this numerical difficulty we apply a correction, we have tried two different kinds
of filtering. In the first case we smooth log |F;| by choosing a parameter e that we use as

a threshold. It can be written as follows:

Few| = 1P+ (e 1Py lo)? (1.27)

And we have now on the unit circle:

1By | = (1 + (e%f)_ (1.28)

M

We conclude that

|B_|_| << 1 for F_|_ << 6||F+||oo (129)

and |By| ~ 1for Fy >> €||Fi]l (1.30)

The result is then obvious on the left bottom graph of figure 1.2. Another possibility is
to filter the function |F| in order to “separate the function from zero”. The convolution
by a positive function will raise the values in the regions where |Fy| are equal to zero (as
|F'y| is a non-negative function), it has a similar effect to the heat kernel. We convolve |F, |

with the Poisson kernel at (1 — €), this corresponds to multiply by (1 — €)'/ each Fourier
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F on the real axis F in the complex domain Phase of F
2 2
100
1 1
0 0 50
-1 -1
-2 -2 0
200 400 600 800 1000 -2 0 2 200 400 600 800 1000
G on the real axis G (|G| > 0) in the complex domain Phase of G
2
1 2
1
0 0
0
1 -1 -2
200 400 600 800 1000 0 1 2 200 400 600 800 1000
B on the real axis B (|B| = 1) in the complex domain Phase of B
1
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Figure 1.2: The Blaschke decomposition for a “modulated Gaussian”, 0 — e~ (0=00) et
signal with an € raised to show that |B| = 1 only where F is significantly different from
zero.

coefficient |/F\| (7). The filtering effect is to “raise B4 to one” on regions where |F| is above
the threshold and to “lower By to zero” on the other regions. We observe this effect on
the example where we have chosen F; to be a “modulated Gaussian” shown on figure 1.2.
By choosing different values for € we decide to “raise a smaller or bigger region for B,”.
The effect of the first filtering is uniform everywhere by opposition to the application of
the Poisson kernel. It means that the value of B is fixed by equations (1.29) and (1.30)
everywhere by the same value for e. The second filtering is more adaptive as it corresponds
to the first filtering but with an adaptive e. Moreover, the first filtering enables us to keep
the property that |By| is smaller than one as opposed to the second filtering. The first
filtering will be used in the one-dimensional case and in two dimensional case we will use

the Poisson kernel.
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Figure 1.3: Numerical artifacts appearing for 6 — (€% —z1)P1- (e — 2)P2 - (¥ — 23)P3 . g1 (0),
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100 200 300 400 500

14

with g1 an outer function, since the roots z; are too close to the unit circle. We notice that
|B| # 1 and the ¢y, derivative of B’s phase, is not non-decreasing anymore.

We know G4 is an analytic function as the exponential of an analytic function.

Nevertheless artifacts appear in this computation. We observe on the example shown on

figure 1.3 the numerical artifacts that appear clearly in the phase of B, and modify the

relation |B4| = 1. A Fourier transform will confirm the loss of analyticity (we have high

negative frequencies different from zero) and also we easily notice that B has an absolute

value different from one in some points. This numerical errors interfere with our results

especially for the iterative decomposition that we apply later.
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Corrections to compute the logarithm and exponential

The Blaschke product is related to the roots of F.. living in the unit disc D. These two
functions have in common all the roots included in D. The poles of B, have an absolute
value greater than one. We want to see how accurate is the computation of B, knowing
F, . Since B, is a product, we restrict our study to a simple real root in the unit disc D,

and the problem is invariant by rotation so the root can be taken on the interval [0,1). We

F on the real axis F in the complex domain Phase of F
2 2 6
1 1 4
2
0 0 0
1 1 -2
200 400 600 800 1000 -1 0 1 2 3 200 400 600 800 1000
G on the real axis G (|G| > 0) in the complex domain Phase of G
2 1
6
0.5
1
0 4
0 -0.5 2
-1 -1
200 400 600 800 1000 0 1 2 200 400 600 800 1000
B on the real axis B (|B| = 1) in the complex domain Phase of B
6
1 | 1
4
0.5 0.5 2
0
0 2l i 2
200 400 600 800 1000 0 0.5 1 15 200 400 600 800 1000

Figure 1.4: The function 6 — € —r, with r close to one, and its By - G decomposition,
where it appears that |By| is not equal to one everywhere

are working on a simple example, shown on figure 1.4, the binomial defined by:
Fi(z)=z—7r, with0<r <1 (1.31)

We know that the decomposition “F; = B4 - G.” is obtained with:

By(z) = f:; and G4 (z)=1—rz (1.32)
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We notice that if 7 is close to one the function log |Fy| goes to minus infinity and
generates artifacts in the complexification process. It will create some high negative fre-
quencies that should be equal to zero as an analytic signal. In fact, the signal is suddenly
going to turn much faster around the origin and if the signal is not oversampled enough, it
will mean a jump greater than m for the phase. Some artifacts are obtained in the Fourier
decomposition of G4. As we know the exponential of an analytic function is also analytic,
so the non-zero coefficients appearing for the negatives frequencies are obviously artifacts.

And as a consequence, we have | By | # 1 and its phase will not be non-decreasing We observe

F on the real axis F in the complex domain Phase of F
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1 1 2
200 400 600 800 1000 -1 0 1 2 3 200 400 600 800 1000
G on the real axis G (|G| > 0) in the complex domain Phase of G
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0.5 1
-1 -1
200 400 600 800 1000 0 1 2 200 400 600 800 1000
B on the real axis B (|B| = 1) in the complex domain Phase of B
1 1 6
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0 0 _—] 2
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1 1 -2
200 400 600 800 1000 -1 0 1 200 400 600 800 1000

Figure 1.5: The function @ — € —r and its By - G decomposition, where the artifacts
disappear using an oversampling of four.

on figure 1.5 that oversampling the function, applying a zero padding in the Fourier space,
makes the negative frequencies tend to cancel. We keep the same trigonometric polynomial

but oversample the signal to avoid artifacts. We notice that G+ is a polynomial of degree
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smaller or equal than F., then we truncate the Fourier expansion of our signals L and G4

at a rank R (that we denote by (-)r) to obtain (L4 )r and (G4)r according to the degree

of F, and we have:

0.5

-0.5

(Ly)r =F H(F(L+) - 1po,m))

F on the real axis F in the complex domain Phase of F
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[y

100 200 300 400 500

(1.33)

Figure 1.6: The function Fy : 0+ (¥ — 21)Pt - (€9 — 29)P2 - (¥ — 23)P3 - g1(9), from figure
1.8, oversampled has now the desired decomposition “B, -G, ”7: |By| =1 and B, = %8
and ¢p is non-decreasing (bottom row). We observe that ¢p has jump of 2m where the
discontinuity was before on figure 1.3.

The degree of G4 is smaller or equal than the degree of Fl.

As we write the
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decomposition of “F, = By - G”, where we note N the order of zero (as a root):

Bi(z) = 2N ] (f_i“) (1.34)
0<\ai\<1( i)

and Gy(z) = [[(—a) [[ (1-aw) (1.35)
la;|>1 0<]ai|<1

= deg(Gy) = deg(Fy)— N, with N > 0. (1.36)

We truncate L and G at the same degree R. And we have:

(G = ((exp (o |F21)+) ) | (137)

We conclude from this experience, figure 1.6, that we obtain a better result by
oversampling a trigonometric polynomial function to compute L. Truncate the signals in
the Fourier space to the same order as the original signal F';, before and after applying the
exponential to these two steps, is also necessary to keep the non-decreasing phase of B .

But the possible presence of zeroes close to boundary, the unit circle C, is a major
problem for this algorithm. We have shown that oversampling solves it up to a point. No
matter how much we oversample, if the root is close enough to the boundary, we will have
aliasing (“close” of course depends on the amount of oversampling). So this “solution” to
the problem is merely a convenience to allow computations for signals having roots closer

to the boundary than we could with no oversampling, but it doesn’t resolve the difficulty.

Stability of the zeroes contained in the unit disc

We choose, as an example, an analytic function with three distinct roots in the unit disc.
We apply different bells (modifying the support of the signal) to quantify the stability of
the positions of the zeroes. We have shown before that the derivative of B’s phase is a
sum of Poisson kernels (related to the root of By), in chapter 1.3.1. In chapter 1.4.2, we
showed that the phase of the roots is related to the maxima of ¢/z,the first derivative of
the phase. While we had the oversampling to eliminate artifacts, we observed that the
position of the zeroes was stable with the oversampling of the signal. We also observe the

following paradox: the computation of B, is global, as we use the Fourier transform, but
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Function F and bells Function B Derivative of B phase
2 1
0.4
1 0.5
0 0 0.2
-0.5
1 0
-1
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
1
1 0.4
0.5
0 0.2
0.5
-0.5
0
0 -1
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
1
1 0.4
0.5
0 0.2
0.5
-0.5
0
-1
0

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Figure 1.7: The first row show the decomposition of the F' the complexified version of the
function f. We have F : z — H?Zl(z — 2;), with three distinct zeroes z; in the unit disc,
represented by the real part of its values on the unit circle C. The second and third row
show the decomposition of the complezification of 6 — f(0) - Bell(0), where the Bells are
represented on the left columns below the original signal. The three zero locations appear
obuvious in the first graph representing the derivative of B’s phase. We notice on the third
colummn that the location of the central zero has not been affected by the bells.

the information obtained on the phase is local as it corresponds to the roots’ location. For
example, as shown on figure 1.7, if we modify the support of a function by multiplying the
signal by bells of different sizes (equal to zero outside and one in the center part, as shown
on the two left graphs below the function F., for the first graph the bell is not shown as
we do not apply any one). We have new function 6 — f(6) - Bell(f). We then observe that
the phase, and furthermore the roots of B, are not very sensitive to the support of the bell

(if the root occurs where the bell is 1).
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1.5 Properties of I, = B, - G

In the beginning of this chapter, ee look at the effects of an eventual filtering of F,. For
simplification we study the properties on the upper half plane that corresponds to another
representation, knowing that there exists a conformal mapping between the unit disc and
the upper half plane. After this study, we look at the properties of the numerical Blaschke
product, defined as before, on some trigonometric polynomials to enable the reader to
develop an intuition about the “B - G” factorization. And we finish the chapter by showing

the robustness of the algorithm and its property of invariance.

1.5.1 Phase properties on the upper half plane

Let f € L?(IR), we have constructed fy in the Fourier space with the following formula:

f+(z) =2 /000 dEf()de, xR, (1.38)

We can also define F; on the upper half plane as follows:

Fi(z)=2- /000 dEf(E)de, 2T (1.39)

And we have Re(fi|r) = f. Also we assume |F(z)| > 0 for real z and we define G as

before:

G+(2) = exp(log | P (2)])+ (1.40)

It can be written as G+ = exp(Ly) where L (z) =1(z) +i-1(z) and I(z) = log |F (z)| for
real z, and By = ==. As B, is defined as the Blaschke product for the decomposition of

F, | we have:

V¢ ez [

z—1 Z — Q4 J
B = . . 1.41
+(2) <z+7l> gz—aj a?—i—l (1.41)

where a; = «; +if3; are the roots of F'; in the upper half plane. ¢, the phase of B, verifies

B’ . .
the relation i¢' = B with v/ = % , and a simple calculation shows that :

Z (1.42)

|=T_aj|
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We denote the following projection:

Pf(2) = Fi (2 + ie)

21

(1.43)

We note F, I, and K, the respective projections of the functions F', [ and K = log |F'|. We

observe that we have:

:v—l—ze—aj

Fo(z+ie)] = [] -exp(le(x))

T + 1€ — a;
And also:

o (o= 0y + (e - )’
e = 5%)%<u—éﬂ+@+éﬂ>+“”

K{(z) = H(K])(x)

le + Bl B e — Bl -1

B S (A T ey N

Therefore we get that:

F'(z + ie)) . (B +¢)

Flotio) = U@ +ie)+ Y

Im( - (z — a;)? 4 (B; + €)?

3 85 — €l
2 (# — ;) + (Bi — €)?

(Bj —¢€)

2
R A PR ERR (e

Since F(z + ie) has zeroes (a; — i€);, for ; > e.

(EUY iy e

F(m—l—ie) 6> (:L‘—aj)Z—I—(Bj +e)2
(Bj —¢)
D R N

And if we e-filter the phase of B, we get :

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)
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2y % (1.50)

— )2
Bj>€ (:I; O[])

We have shown that by filtering we can eliminate the roots of B, that are to close to

the real axis. They correspond to the roots contained in the unit disc D near the boundary

C.
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1.5.2 Examples of “B - G” decomposition

In this chapter we present two examples showing the decomposition described before. These
examples are created to show properties linked to this study and to give to the reader an
better intuition about the Blaschke product. The first example is given by figure 1.8, that
represents the factorization of two trigonometric monomials with disjoint supports, different
amplitudes and frequencies. We easily see that the phase of B, and F. are similar but B

has the property of having a modulus equal to one.

F on the real axis F in the complex domain Phase of F
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G on the real axis G (|G| > 0) in the complex domain Phase of G
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B on the real axis B (|B| = 1) in the complex domain Phase of B
1 1 0
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Figure 1.8: A simple signal composed of two trigonometric monomials, 0 — e2™% . 17 +
2¢19 . 1, where I and Iy correspond to the first and second half of the signal. On the
bottom row, we observe that By is keeping the frequential information given by Fy. The
middle row shows G4 liwing in the right half plane.

B, can be compared to % but it has the particularity of being an analytic function.

Moreover we can observe on the figure that G is living in the right half plane and has then
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it phase is in the small range [—7/2,7/2] and is not surrounding the origin O as By does.
The winding information is contained by By. The second example, on figure 1.9 shows two

chirps with distinct support, amplitudes and frequencies range as before. We observe as

F on the real axis F in the complex domain Phase of F
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B on the real axis B (|B| = 1) in the complex domain Phase of B
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Figure 1.9: A second signal composed of two chirps, 6 — ei2mt” . 17, + 2eini0” . 11,, where I
and Is correspond to the first and second half of the signal. As the previous figure showed
B, contains all the frequential information while G4 lives in the right half plane.

before that G4 is living in the right half plane and B is similar to % Using figures 1.8

and 1.9, as a first conclusion we can say that the effect of factorization on F to give B is

quite intuitive, and we observe that the phases of F; and B are similar in both cases.
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1.5.3 Examples of robustness to noise

We show now on different examples that the factorization is robust to noise in the sense that
the Blaschke product is invariant. We apply the decomposition algorithm on the examples
previously shown on figure 1.8 and 1.9 but we generate additive or multiplicative noise. We
easily notice, in the new figures 1.10 and 1.11, that B stay the same while the noise affects

F, and G4. The function G4 seems to “attract the noise” and leave B, clean. A possible

F on the real axis F in the complex domain Phase of F
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B on the real axis B (|B| = 1) in the complex domain Phase of B
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Figure 1.10: Decomposition of the two trigonometric monomials from figure 1.8 with additive
noise. B seems to not be affected by the noise while G is keeping all the noise.

explanation comes from the fact that the phase of B is non-decreasing. But no reasonable
explanation seems to be obvious. A possible interpretation is given by the fact that the

winding number is a topological invariant. Since the Blaschke product is directly related to
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it, its robustness to noise is the consequence. Similar results appear on the chirps, B, seems

F on the real axis F in the complex domain Phase of F
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Figure 1.11: Decomposition of the two chirps from figure 1.9 with additive noise. B seems
to be invariant to this noise.

to be without any noise. If we represent F' and B on the same graph we can observe that
B, is like a metronome. The rhythm seems to be not sensitive to the noise as it appears
on the following graphs that resume the study of the noise effect.

As a first conclusion, we can say that the effect of the noise is obvious on the functions
G4 by contrast to B that seems to be identical to the function obtained before without
noise. We conclude that B, obtained by factorization, is not sensitive to noise and so by

consequence its phase either.
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Figure 1.13: The Real parts of the Blaschke products and the first signal with and without
noise (shown in figures 1.9 and 1.11), and their phases.
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1.5.4 Examples of invariance
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After showing some properties of stability with noise for the phase, we are taking the

example of a family of deformed functions on the unit circle (parametrized by 6 € [—7, )

and z = €'%) such as 0 — sign(sin(k - 62)).
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Figure 1.14: The original real signal 6 — sign(sin(k-62)) and its three different perturbations

plotted separately with the real parts of the Blaschke products.

are also plotted below

The phase of the four signals

We can observe that each B, for this family of functions, is an invariant. B

corresponds to the metronome of a zero crossing counter.
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1.6 Orthogonal Decomposition into Blaschke products

In this section, we develop an idea to represent and understand analytic signals with a
finite orthogonal decomposition. In [7], Szabo et al. presents an “orthonormal basis on
L?(IR) generated by a finite Blaschke product”. Our decomposition is based on an iterative
method similar to the Gram-Schmidt orthogonal decomposition, some recalls and details
are given in [11] by Walsh. We use his remarks to develop a non-linear algorithm: construct
an orthonormal decomposition with Blaschke products. But the main difference is that the
examples given by Walsh are related to a basis construction and we are interested in an
orthonormal series, with a high rate of convergence and without interest in the completeness.
This method can be interpreted as a matching pursuit that differs from a classical best basis
approach. We present some simple examples to develop the intuition of the reader and
explain how the algorithm works (pealing the different layers of the signal). We then apply
the decomposition on a random trigonometric polynomial to show is effectiveness. For a
family of functions, with a uniform distribution on the unit sphere, we compute a lower
bound of the average projection on the Blaschke products family. We finish our examples

with a case for which our algorithm is not adapted at all and present an alternative.

1.6.1 Rational Orthogonal Basis
One can orthogonalize the set of rational polynomials, as shown in chapter IX of [11]:

1 1 1
. with |a;| > 1 (1.51)

’ ,
Z—Q1 Z—aQ zZ—ay

1,

We have to recall that the functions f analytic on and within the unit circle C, vanishing at
the point z = 1 with || > 1, are orthogonal on C to the function z — —1—. And the Gram-
Schmidt orthonormalisation process, in L?(|z| = 1, %), gives the following decomposition:

z z-(l-—a-2) z-(l-a-2)(1—0n1-2)

1 ’ (z—a1) (2 —ay)

z—a1 (z—a1) (7 —ag)’ (1.52)

We observe that the Blaschke Products are a key factor in this orthonormal decomposition.
We are developing this idea in the following chapter to construct matching pursuit with

Blaschke products.
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1.6.2 Informal description of the method

We want to decompose an analytical signal f in an orthogonal sum of Blaschke products,
with the factorization defined before. We develop an iterative algorithm that will extract

the main oscillations of our signal in different steps.

Remark 1.6.1. A good interpretation of this algorithm is given by looking at the rotation
of the Moon turning around the Sun. We manage to separate the two rotations, the Moon

around Earth and the Earth around the Sun, by running this iterative algorithm.

At the first iteration we subtract the constant part of f on C (that is to f(0) =

2

0 f(ei'g)%). We obtain f; = f — f(0) that has obviously zero has a root, it enables us to

decompose z — f1(z)/z (that is analytical) with the product of by and g;, where b; is the
Blaschke product and g; an outer function. We iterate the previous two steps on g; and so

forth. For notation reasons, we denote gy = f, and we have the following algorithm:

f=9 = 9g(0)+z-b1-g
g = g1(0) +z-by-go
gn—-1 = gn—1(0) +2z-by-gn (1'53)

Remark 1.6.2. As g; is an outer function, for all i > 0, we know that g;(0) # 0 (for all

i > 0) since g; is an outer function.
By summation we obtain:
go — 90(0) + 91(0) 2 bl +--+ gn,1(0) . Znil . bl . b2 T bn,1 (1.54)

Equation (1.54) is composed of a residual (the last right hand term) and an approximation
at the level (n—1) that is g9 minus the residual. We will now prove that the approximation,

just defined, is an orthonormal decomposition and that we have convergence in norm of the
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residual to zero. On the unit circle C', the scalar product of two terms of gy’s decomposition

is:
V(p,n) € (N*)*,p <, (1.55)

< 2P byeeeby, 2"y by, >=7{(z”-bl---bp)-(z”-bl---bn)d,u,
c

But we know that |b;| = 1, thus:

1 d
<P by by, 2 by by >:T-7§Cznl’-bp+1---bn§ (1.56)

Uy

We know that the poles are outside C' and n — p > 1, so it implies:
<2Pbyeoeby,2" by by >=0 (1.57)

The L%-norm is verified as we have:

1 d
Vn € IN* < 2% by by, 2" by by > = —7{ [
2m Jo z

= |2 by--bulla = 1 (1.58)
Therefore we have the orthonormality of the series. We are now interested in the evaluation
of the residual part of the decomposition. By construction we know that |b;| = 1 (where f
doesn’t vanish numerically), so ||b;|| = 1, and we want to show that ||g,| converges to zero
as n goes to infinity. And so if we denote approzx, the approximation of f with n vectors
we have :

n 7
approx,(z) = Zci . H z - b(z), where ,¢; = g;(0) >0
=0 k=1

n+1
S f = approsa(@lls = | ( I bk(z>) _—
k=1
o 1f —approza@lls = lgusill (1.59)

We have shown before the orthogonality of the decomposition it means that we can apply

Pythagore’s Theorem:

n
IF13 =" ¢ +llgn+1l3 (1.60)
1=0
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Remark 1.6.3. An alternative way to write this algorithm is to split the function f in two
parts using the low frequency content instead of just the constant term. And we observe that

the convergence rate is improved.

1.6.3 Properties of the iterative algorithm

We have shown in chapter 1.4.2 some of the properties of the Blaschke product and its
similarities to the local trigonometric basis. We observe that the iterative algorithm, that
we just described, produces a lacunary series. Since, each time a new term is computed
by induction, it contains the previous term and is multiplied by z and a Blaschke product.
And two consecutive terms, the p* and (p + 1) terms, of the decomposition are written

as follows:
2P by-b, and 22T by eeaby by (1.61)

The ratio is obviously z-b,,1, where by, corresponds to the roots inside the unit disc (bp+1
can be equal to one or corresponds to multiple roots inside the unit circle C'). By building
a lacunary series the algorithm creates a decomposition using fewer terms than what is
necessary to have an orthonormal basis. The fast convergence and non-completeness of the

algorithm are some of these consequences.

1.6.4 Some examples of decomposition

In this chapter we show the advantages and properties of such a decomposition for different
examples. We choose them to explain how this algorithm works and more precisely the
recursive algorithm that extracts the different signal layers. The three examples show how

the algorithm works.

Three elementary examples

The first example is composed of a trigonometric binomial where each term has a different

amplitude (6 — coe™0? +¢;e™). In the complex plane, the signal can be interpreted as the
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Function F Phase of B Function B
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Figure 1.15: Decomposition of Fy : z +— z-(1+0.2-2") with two main oscillations, B_I,_ and
Bi are two oscillating functions with different radius and speed. The main oscillation is
extracted at the first iteration (top row), while the second step extracts the minor amplitude
oscillation (bottom row).

rotation of the Moon around Earth around the Sun. The first decomposition corresponds to
the main oscillation (the one with the greatest amplitude). In the second step we obtain the
minor oscillation. It can be interpreted as the rotation of the Moon around Earth (minor
amplitude oscillation), the Earth turning around the Sun. The results are shown on figure
1.15 where we see the simplicity of the decomposition. Our signal is composed of only two
oscillant signals, and we have extracted them of our signal in two iterations. Each time we
iterate the decomposition, we peel one layer off our signal.

For the second case, we choose to study the decomposition on a simple function
composed of two trigonometric monomials with distinct support (as one of the example

used previously), shown on figure 1.16. The original signal has an average value equal
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Function F Phase of B Approximation
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Figure 1.16: Decomposition of the function F : 0 s 2™ .17 4 2¢™0 .11, and its approz-
imations (right column). By has a fized amplitude in the first step, and oscillates mostly
like F'y. After a few iterations the algorithm catches most of the signal energy

to zero, so ¢y = 0, and the signal B, contains, as expected, only the signal frequential
component. By this first approximation we manage to have more than half of the original
signal energy. After few iterations, less than ten, we obtain more than 95% of the signal
and the norm of g, is converging to zero as an exponential function.

The last function has been created by using directly the formula that gives F.. as
the sum of the product of three Blaschke products: z — Bi(z) - (5 + B2(z) - (2 + B3(2))).
Then we just verify that we find the same zeroes and obtain the decomposition in three
steps with the same terms. The figure 1.17 shows this obvious result. Under the condition
that the residual, at the step n, has a smaller amplitude than the approximation, at the

step n, we have unicity of the decomposition.
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Function F Phase of B Approximation
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Figure 1.17: An obvious decomposition of Fy = B} - (5+ B2 - (2+ BY)), with BL, B and
Bi which are three polynomials with roots included in the unit disc and absolute value equal
to one. It implies that they are Blaschke products. The oscillating functions are obtained
in three iterations with a residual equal to zero numerically

An extreme case

In this case we want to evaluate the “richness of our family of bases”. So we generate
random trigonometric polynomials (with an average value equal to zero) with degree N and
coefficients given by a normal distribution. And we apply the same algorithm to decompose
the function as before. We have the graphs on figure 1.18.

On figure 1.19, we can observe that the convergence rate is exponential as before.
We can observe that the residual norm decreases as an exponential function. We can notice
that G4 is a always polynomial with a degree smaller than F. . If we write f, as a Fourier

series of order N on —|m, 7|, it corresponds to write F; as a polynomial of degree N with
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Function F Phase of B Approximation
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Figure 1.18: Approximations of F a random trigonometric polynomial of degree N = 200
using the orthogonal decomposition, F : z +— E;VZI a;z’, a; € N(0,0)

the same coefficients. So the previous decomposition can be written as follow:

Fiy(2) = Fy (0) + A2 H

\a1|<1

I (z—ad). T] (1 —a:z) (1.62)

la;|>1 la;|<1

a;z )

Let’s denote 3; = a% for |a;| < 1 and B; = a; for a; > 1, we have:

Fo(2) = F(0) 4+ A.25. H l—az H(z—ﬂi),with 1Bi| >0 (1.63)

|al|<1
So G4 has all its roots outside the unit disc and has a smaller degree than F,

as k > 0. And we finally have, by letting Bi and G1+ the terms coming from the first
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Norm(G) (renormalized to one) for each iteration Log of Norm(G) (renormalized to one) for each iteration
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Figure 1.19: Fast convergence of the residual (G) norm obtained from the decomposition of
F,, a random trigonometric polynomsial of degree N = 200. On a logarithmic scale, this
norm appears to be a linear function of the number of iterations

decomposition:

Fiz) = Fu(0)+A - BL(z) -G (2)
with GL(2) = [ (#—8), and deg(G) = deg(Fy) — k. (1.64)
1Bi[>1
The same algorithm is applied to G}H we let Bi and Gi be the terms coming from the
decomposition of Gfl. Bi . is the ratio polynomial obtained by extracting 2k from Bi,

we have:
Fi(z) = Fi(0)+2M.BL (2)(\1 +22.B2 (02 + 25 ...)) (1.65)

We have to filter the Fourier transform of each Gi+ to obtain a trigonometric polyno-
mial of same degree and be sure to not have any artifacts that can make the decomposition
unstable. We treated in this chapter analytic functions without caring of the numerical val-
ues of the function on the unit circle. Analyticity on the unit circle means that the function
will not vanish on a set of measure different from zero. But numerically, the function may

have a compact support. We treat this case in the following chapter.
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Function F Phase of B Approximation
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Figure 1.20: Orthogonal decomposition of the modulated Gaussian signal F' : 0 — e (
e in three steps. The right column shows the evolution of the approzimation.
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0—60)*

An analytic function with a numerical compact support different from the whole

unit circle

We treat in this paragraph some special cases: analytical functions on the unit circle C' with
a “numerical compact support”. It means that the functions have numerical values close to
zero on a set of non-null measure. With a representation using the phase 6, it means that
numerically the function vanishes numerically on an interval strictly included in | — 7, 7].

On figure 1.20, we have the case of a modulated Gaussian:

£(0) = exp(—=X- (0 — 6p)?) - cos(n(6 — 6p)) (1.66)

= f1(0) = exp(=A(0 — 0))? + in(0 — 6))) (1.67)
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In this case, we know that we have to e—filter the function F' to be able to compute B.
We observe that “support(B)” can be adapted to F as it depends on the e—threshold. We
observe that the norm of G as a Gaussian distribution and converges to zero very fast on

figure 1.21.

|Giter || = [|F|| - exp(—v - iter”) (1.68)
Norm(G) (renormalized to one) for each iteration Log of Norm(G) (renormalized to one) for each iteration
o
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b ]
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s osr 1 g 57 7
g g
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Figure 1.21: Fast Convergence rate of the Gaussian approximation shown in figure 1.20

1.6.5 Density of Blaschke product in the class of analytic functions

In the informal description of the method, we have written any signal f as a sum of Blaschke
products were the coefficients ¢,, correspond to the scalar product of g, and the family of
Blaschke products. So once renormalized with the g, and g,_1 norms, it gives the cosines

of the angle between our library and the function.

A good approximation on average

Experiments ran on random trigonometric polynomials have been done, the coefficients of
our polynomials have a Normal distribution centered in zero. We stored the value go(0)
obtained by the iterative decomposition algorithm. A mean value of 0.75 for the value of

g1(0) (with gy renormalised to one) with a standard deviation of 0.03 is obtained for our
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data. The following theorem gives us a lower bound for this value.For simplicity we use a

uniform distribution of the Fourier coefficients on the unit sphere.

Theorem 1.6.1. Let HY = {F(0) = E,ivzo ap - € lag|l2 = 1} equipped with denoted
dop Lebesque surface measure of Yon_1 in TN normalized to one. There exists a universal

constant ¢ such that:

27
E(exp [/log|F|d9]> :/2 exp [/0 log|F|d9}daF >c (1.69)
2N—-1

s log(2)

5 ), and v 1s the Euler constant.

where ¢ = exp (

Proof: See Appendix .1

Remark 1.6.4. ¢ corresponds to the scalar product between F' and our family of Blaschke
products. It corresponds to an angle around 58 degrees. We have shown a result that

corresponds to an average value.

The next chapter will show that the basis can be inappropriate in some cases.

A basis not adapted for polynomials

We show in this chapter that the polynomials z — (z — @)™ are not well represented in the
basis using the family of Blaschke products. In this case, we observe on figure 1.22 that the
Blaschke Product is unadapted to this polynomial. We show that using a variant rational
function we considerably improve our basis, this idea is coming from the previous chapter
1.6.1. We study two cases to overcome this problem. We construct a polynomial f,, with
the order-n root « in the unit disc. By rotation we simplify the study to the real positive

case. If a = 0 the case is trivial as B, = F},. We normalize f,, with ¢, for the £2(IR)-norm.

fu(z) =cp - <i _T_ Z) , with 0 < «, and ¢, ~ v/n. (1.70)

We split our study in two main cases depending on the value of «.

e First case a < 1
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Polynom Pn (z -> (z- a)™) and Blaschke Product Bn, with a =0.3 and n =10

! ! ! ! ! ! ! ! ! !

100 200 300 400 500 600 700 800 900 1000

Figure 1.22: The Real parts of the polynomial P, (z — (z — )", |a| < 1) and its Blaschke
product By,

We have f,(0) = (35)" < 2 << 1, and as the scalar product is linear, in this

case we write < fp,- >~< f, — fn(0),- >. Thus, the iterative algorithm gives its Blaschke

product B,, associated:

n
Bn(z)200-< S ) , with |co| = 1. (1.71)

l—a-z

We compute the scalar product on the unit circle C' between these two unit vectors:

< fu,Bn > = Co(l—ic-ina)"'%m' C(z_a)n(lz—_a;z>n%
< fuyBn> = Co(liinayl-%m C(l—az)”%
|< fnsBn > ~ % <1 )

The scalar product decreases exponentially to zero as n tends to infinity and corresponds to
the cosine of the minimum angle between f,, and any vectors from our family. We conclude

that our family of functions is not very well adapted to this case. We generate a new family,
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more concentrated spatially (most of the energy is within a small region of C') to obtain a

better result:

L with B € €. (1.73)

B 1-1p5? 1 (l—az\" 1 dz
<t > = ot —ﬁ(z—a) ( ) T

211 zZ—«
1= 1 (1 —az)"
(1+a)” i Jo z—B

(1 —ap)" (1.74)

<fna'¢n> = CoCp - dz

<fn7"/}n> = CoCp - (

We observe that 8 = 0 gives ¢, = B,. We use 8 to maximize this scalar product in order
to obtain a better approximation. Thus, our iterative algorithm will be optimize as it gets
more energy at each iteration of the decomposition. We observe that this scalar product

can be written in a different way by using the B - G decomposition as follow:

(L1812
< fna'l;bn >=< F(z),Bn(z) i e (1'75)
1-8-2
And we can compute the Blaschke product on the unit circle C':
_ 1 5 (. L= 1B 2 dz
< fna"/’n > = 2—7” C’B ( ) Gn(z) Bn(z) 1_752?
_ 1 (1= 181"
<> = g Gale) S e
< fusthn > = 1Ga(B)]- (118" (1.76)

In this case, we know that f,, has « for only root, with order n, G,,(2) = (1 — a- z)™.
We have to maximize the right term of 1.76: 8 — ‘(1 —a-B)"(1 - |ﬂ|)1/2‘. We suppose
a € [0,1], as a rotation will leave the problem unchanged, and we obtain a [ real defined

as:

1+«
5:_1+m (177)
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Polynom P (z -> (z- a)"), Blaschke Product B, and W with a = 0.3 and n = 10
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Figure 1.23: The Real parts of the polynomial P, (z — (z — a)" (|a| < 1)), its Blaschke
product By, and 1,

We have the following scalar product:

/1
"ﬁ 1—|—a)>n

1+«
a- e

We observe on figure 1.23 that the function %), is more localized than B, and obviously a

numerical computation confirms that the second scalar product is greater.
e Second case a > 1

We have f,,(0) = (13%)" that is not necessarily small. One can verifies easily that
the roots of fp, — fr(0) = 0 are z; = a - (1 — wg) with wy = exp(i2knw/n). The roots
of B, belong to the unit disc. Thus, we are only interested in the value of z; such that

|zix| < 1. zp = 0, thus 0 is a root of B,,. We then have two sub-cases depending on the
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Polynom P (z -> (z- a)"), Blaschke Product B, and W with a = 1.3 and n = 10
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Figure 1.24: The Real parts of the polynomial P, (z — (z — a)", |a| > 1), its Blaschke
product By, and 1,

value of r = min,, 21 (1 — wy)|, there is only zero as a root or not. A short calculation
gives r = 2asin(m/n). But we know that if & > 1, the signal is not really oscillant. Thus
we are just computing a lower bound of our projection. We consider that 0 is the only root

of By,,. Then we have B, (z) = z and G, (z) = (F,(z) — F,(0))/z. The scalar product is the

following;:
Cn 1 _ dz
B - "™ - — ) — () . 5. 22
< fn, By > (1 n a)n o fC ((z a) ( a) ) z >
B ni t o1 1.79
< fuo B >| ~ a \l+a << (1.79)
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Polynom P (z -> (z- a)"), Blaschke Product B, and ., with a =3 and n =10

3.5 b
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Figure 1.25: The Real parts of the polynomial P, (z — (z — )" |a| > 1), its Blaschke
product By, and 1,

This scalar product is small and we construct another family more concentrated spatially

/ 2
to obtain a better result. We have 1, (z) = =B with B € €. The scalar product is:

1-8-z
/ 2
Cn 1 -8 dz

1 n n
< ot > = m-ﬁfc((z—a) - (-a)")- -8z ~ %

— ‘n 1 n n (1_|5|2)1/2 dz
R e A
_ Co - ()" ! — B — a\r
<Jwtn > = W'(Z( _a)>'v1—|ﬂ|2

< Foythy > = M. ((1 _ é)n _ 1) 7\/1_|B|2 (1.80)

(1+a)m « 6]
That corresponds as shown before to G, (6) - (1 — |8]?)"/2. Then we study the extrema of
2
B 7\/1;’% . ((ﬂ_aa)n — 1>. And for a > 1, we approximate S:

B = —1+%+0(%) (1.81)
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The scalar product is then:

Lo +1 1\n 2
<t >l = s (Mt = 5) 1) g

(14 o) a  2n 2n
a n o
It~ e (1Y [
< Ju > n (a+1)-2n n
(8]
1< frrthn >| ~ a1 (1.82)
ea

And we conclude that in this case the family (¢,,), is more adapted to our function than

(By)n as observed on figure 1.25 and 1.24 that correspond to the two sub-cases for a > 1.

Improvement of the iterative algorithm

We have shown that we obtain a much better projection by changing our projecting s-
pace. The iterative algorithm given by equation (1.53) is modified. We are now using new

notations and the iterative algorithm is the following:

V1= 1Bal’ V1= 1Bl

— > by — 1.83
[=fz T (59

Where b,,_; is the Blaschke Product of r,,_1 = by, - gp—1. 7y is orthogonal to r,_;. We can

Tn(z) = Tn—l(z)_ < Tp—t1,bp—1 -

notice also that

1—|Bnl?
< Tty by - & S— _9n-1(Bn) (1.84)

Fohez -
Br has been chosen such that the absolute value of equation (1.84) is maximum. The
previous algorithm based on the Blaschke product only corresponds to 8, = 0. And we

have obviously r,(5,) = 0. We then have the following iterative orthogonal decomposition.

1
= b - 1.85
ro(2) co - bo(2) - 1 57 (1.85)
Z—,Bl 1
cer b RN s S X e
+ co-c1-bo(2) T 1(2) 52
+
1— B
with ¢; = <g¢,b¢-M>

1 —Bin1
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We still have an orthogonal decomposition, since we have a process similar to the Gram-
Schmidt algorithm describes for rational functional in chapter 1.6.1 and each successive

term of equation (1.85) are orthogonal to each other.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 48

1.7 Application to Sound Signals

In this section, we want to study sound signals using the “F' = B-G” factorization properties.
We record sounds on a microphone, that contain many times the word “Michel” for different
speakers, as real one dimensional signals. We separate each word and compute the analytic
signal corresponding and the “B - G” product. We show that the Blaschke product gives a

reasonable way to discriminate the different speakers.

1.7.1 Study of the word “Michel”

Different words 'Michel' from the same speaker

B ! ! ! ! ! ! ! =
500 1000 1500 2000 2500 3000 3500 4000
T T

-1t ! ! ! ! ! ! ! =
500 1000 1500 2000 2500 3000 3500 4000

-1k ! ! ! ! ! ! ! =

500 1000 1500 2000 2500 3000 3500 4000

1F T T T T T T T ™
0

-1k ! ! ! ! ! ! ! 11

500 1000 1500 2000 2500 3000 3500 4000

1F T T T T T T T =

0 M«WWMWWMWMMMMNMWMNMMMMMMW

-1t ! ! ! ! ! ! ! =

500 1000 1500 2000 2500 3000 3500 4000

-1t ! ! ! ! ! ! ! =
500 1000 1500 2000 2500 3000 3500 4000

Figure 1.26: The time series of the word “Michel” pronounced siz times by the same speaker

Different segments “Michel”, from the same speaker, have been extracted from the
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complexified extension of our original one dimensional signal, each of them are denoted
F;. 1t is difficult to observe and study the signal as is. We observe that these signals can
be segmented in three regions. We apply a post-treatment on our signal, as any analysis
on them seems to be far from obvious as we can observe in figure 1.26. We decompose
these signals, indexed with i, using the Blaschke product. We have for each signal the
decomposition F; = B; - G;.

Plots representing F (signal number 1), B and its phase
T T T T T

05 b

-05 b

1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000

1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000

3000

2000

1000 -

1 1 1 1
2000 2500 3000 3500 4000

1 1
500 1000 1500

Figure 1.27: Decomposition of the word “Michel”: real part of F', B and the non-decreasing
phase ¢p.

We know that any Blaschke product B; has a non-decreasing phase ¢p, as seen
previously, this characteristic is false for the signal F;. The family of ¢p, seems easier to
study and classify than the F; as we can observe on the figure 1.27. One can observe the
three distinct intervals of ¢p, plotted on the bottom row of figure 1.27.

We now represent six phases ¢p, corresponding to the Blaschke product B; of the
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decomposition for the words “Michel” pronounced by the same speaker. It gives the inter-

esting figure 1.28.

Phases of different B
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Figure 1.28: Siz phases ¢p,, corresponding to the Blaschke product of the word “Michel”.
One can look the slope of ¢, and separate the signal in three intervals. We also notice that
this representation may be stable.

We observe that the ¢p, have a simple structure. At first sight, we note three regions,
each of them characterized by a different slope. The slopes are linked to the syllables. It
gives us the main frequencies or pitches of the word, and corresponds to the melody of the
word. We obtain a basic segmentation of “Michel” using a polygonal line, by splitting F;
where ¢p, has the same main frequency. These three parts have different lengths for each
¢B; and correspond to the syllables of “Michel”. Figure 1.29 show the graphs for six words
“Michel” pronounced by another speaker.

Surprisingly, if the word is pronounced more or less slowly we still have three intervals

with slope of similar value. As a consequence the length of each interval will be obviously
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Phases of different B
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Figure 1.29: Siz phases ¢p, (obtained from the Blaschke product) of “Michel”, said by
another speaker, showing the influence of the speech speed. One can obuviously see that the
length of each interval is not a stable parameter, as supposed in figure 1.28, but one can
notice that the slopes on each interval may be quite stable.

modified and the “winding number”, as the phase will vary accordingly. We can also observe
that the slopes are slightly different from one speaker to another. The same word “Michel”
pronounced by two different persons has the same structure: one very slow slope at the
beginning, one faster in the middle and a slow one at the end. Thus, we can think that
for the fixed word “Michel”, the three slopes depend on the speaker only and the three
lengths on the speed of the speech. To determine if this property is true we represent now
five different speakers using the two last slopes (and not three for an easier visualization)
as parameters for the graphical representation. We obtain the figure 1.30. We observe that
with only two parameters, in some cases, we can start to evaluate which speaker corresponds

to the word “Michel”.
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Different words 'Michel' for five different speakers caractherized by two slopes of(pB
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Figure 1.30: The word “Michel” represented for five different speakers, who pronounced the
word siz times each, using the two last slopes of ¢pp for five different speakers

We observe that some speakers have their six points more or less concentrated. The
main reason is that two of the five speakers have done variations of their tone and speech
speed, as we observe the difference between the figures 1.28 and 1.29, that represent two
different speakers. It makes their representation more difficult by contrast to the three
others speakers. We compare now the instantaneous frequencies given by a classical phase-
plane analysis with best basis (figure 1.31)on the signal F' and the derivative of ¢ and ¢p
(figure 1.32).
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rl

Figure 1.31: The instantaneous frequencies of the word “Michel” using the phase plane
analysis

A change of variables between two different phases doesn’t give too much result!

And the registration should be done first!!

1.7.2 Application to compression

We observed previously that in the factorization “F = B - G” a form of noise is mostly
contained in the phase of G. We decide to study F* = |F|- B, than can be also written
as F - e "9¢, and use the properties of B. The sound of Re(F*) doesn’t seem to be
different from Re(F'). It means that the ear has difficulty to compare |F| - cos(¢p) and
|F'| - cos(¢r). Reducing ¢p to lines on each segment, as observed before, corresponds to a
major compression and what we hear has lost most of the information. Having the main
frequency gives us just a whispering by itself, it corresponds to the melody of the word. We
need to have information on the instantaneous frequency at every point. But if we combine
the polygonal phase with F' amplitude we can almost guess the sound “Michel”, but we still
have a lot of noise even if it sounds better than just the F' amplitude. Furthermore, we have

to keep the smaller oscillations of the phase that contains the instantaneous frequencies of
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Graph of q)'F and (p'B ( for the word 'Michel")
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Figure 1.32: First derivative of the F' and B phases for the same sound “Michel”.

the signal. We compressed the amplitude of F' and the phase of B, using a Best Basis
decomposition. And we observe that both signals have more than 99.9% of their energy
with only one percent of the signal as opposed to Re(F') that needs around five percent of
the signal to keep the same amount of energy. But we observe the following paradox that
the second compression, that retains a lower percentage of energy, gives us a better result.
This paradox can be explained as we approximate ¢ and not B, thus we do not have any

control on the approximations.
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1.8 A two-dimensional extension of the Blaschke Product

In the previous chapters, we computed the Blaschke product for the one-dimensional case.
We complexified a real function defined on the unit circle C, using the Hilbert transform,
to extend it to the whole complex plane €. The Blaschke product is known to only exist
in the one dimensional case, but we want to extend this approach to the two-dimensional
case by developing a similar algorithm, knowing that the canonical factorization associated
is obtained without searching for the zeroes. We will would like for example to re-normalize

the “three circles” on figure 1.33. Where each circle is defined by the center, the radius, the

Original Image F with Multiplicative Noise (1 + & . Unif[0,1] , 3= 0)

Figure 1.33: Three circles with different frequencies, amplitudes and radii. The amplitudes
are proportional to 1,5,10. We use this ezample to show later on how we can re-normalize
to the same amplitude these three circles.

amplitude, frequency modulation and the variance of the Gaussian that supports it. These
four variables are noted (z;, r;, a;, A;) and thus the equations of each circle Circle; and the

image I are as follows:

(Jz==il-r:)*

Circlej(z) = «;-sin(\j|z —z])-e i (1.86)
3

I = Z Circle; (1.87)
i=1

For this example, we chose the amplitude «; proportional to 1,5, 10.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 56

1.8.1 Artifact related to the two dimensional case

During the complexification process of f in the one-dimensional case, we apply the Hilbert
transform and thus the Fourier transform. For the two-dimensional case, this step is sensi-
tive as there is not a canonical extension. But we are interested in the different structures
contained in images using the oscillatory contents (as many structures seem to be related to
the oscillations). The extraction of the oscillations is obtained by a division of the Fourier

space with “cones” (we keep the regions in the Fourier space that corresponds to a common

Window in the Fourier Space Image REAL(Fana) with cone orientation = -45 aperture = 45

Figure 1.34: A possible cone defined for a partition of the Fourier Space, left figure, and
Fg¢,, right image, obtained after filtering of the “three circles” shown on figure 1.33. We
notice that the present oscillations of Fc, are obviously contained in the cone defined in the
Fourier space.

main oscillation direction), using a partition of unity. For each cone “C;”, we note F,
the subimage obtained after filtering in the Fourier space. The division is obtained to give
priority to the direction and not to the frequency. One of the partition of unity functions

can be chosen with a Cj as seen on the figure 1.34.

1.8.2 Analytic extension with cone

We divide the Fourier space in “cones” centered in the origin, and isolated the low frequen-
cies for a separate study, as seen on figure 1.34. The number of cones has to be adapted to

the image composition, we choose usually eight cones and the low frequencies as the parti-
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tion of the Fourier space. We use the classic Cartesian Fourier transform. We start from a
real signal F from IR? to IR, we compute F¢,, that corresponds to the frequencies living in
the region Cj, letting Cy be the central region containing the low frequencies component.
Each F¢; is analytic on C} zIR?, where C; is the dual cone of C;. An example is shown on

figure 1.34. We have the following formulae:

Vi>0,Fy, = FT7'(FT(f)-1l¢;) and Y 1¢ =1 (1.88)
i
f = Re() Fc) (1.89)
C;

To avoid artifacts, the regions C; can be defined using smooth bells. The functions F¢; are
comparable to the brushlets developed by F. Meyer [5]. The similarity is due to the fact that
we have a partition of the Fourier space and separate the oscillations in different directions,
but we do not fold the projection since the orthogonality is not our concern. We present now

the factorization process for the two-dimensional case. After the first step corresponding to

Image Re(B) (B = Fana / G) with cone orientation = -45 aperture = 45

/ F,‘" .’

100

20 40 60 80 100 120

Figure 1.35: Two B¢, obtained for the “three circles” (shown on figure 1.33) with two
different e-filtering. The € on the left is smaller than the right one. Then the right figure
shows an “upper B” than on the left.

the complexification, explained in the previous chapter, we obtain I; = log|F(,|. We have
to extend [; to L; 4, to obtain an analytic function. We compute L; ; using the same cone

C; in the Fourier space and obtain the equivalent of the one dimensional outer function
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that we note G, ;. We lose the properties on B, obtained in the one dimensional case,
shown before as we do not preserve |G¢, c,| = |Fc;| (we use the double notation “Cj, C;”,
for index, as we use the cone C; for the Fourier transform at each iteration). It means that
|Bc, c;| is not equal anymore to one. An alternative way presents to us, filtering in the

Fourier space using the half plane H; centered with the angle chosen before. In this case,
Fo,
G, m;

we have by construction |Bg, u,| = ‘ ‘ = 1 since the filtering in the Fourier space gives
\Gc, 1| = |Fc,|. For figure 1.33, we obtain B as shown on figure 1.35. This transformation
has the particularity to make |B¢, g, = 1. But unfortunately it is not necessarily an
advantage as oscillations appear all over the image.

We filter our signal with the e-threshold, as defined in the one dimensional case in

the chapter 1.4.3, to obtain with a new notation G¢, g, (for e = 0, we omit the parameter

€ in our notation), to lower to zero the regions where |Fc;| is smaller than €||F¢;||o. And

Fi
Geoy ;e

we obtain B, g, = . In the other regions of the image, where |F¢,| >> €||F¢;||00s
the absolute value is then re-normalized to one as seen in the one-dimensional case. For
the two-dimensional case we have choose the Poisson filtering as defined previously. By
decreasing, the value of € we only keep the oscillations in the regions where F, has more
energy.

The main difference between the one-dimensional and two-dimensional case is coming
from the fact that Fo, has numerically a compact support in most of the case as opposed
to F. in the one-dimensional case. It comes from the fact that by selecting a cone Cj in the
Fourier space, instead of the half plane H;, to compute Fg, we lose a main part of the energy
of f. Therefore it does not make sense to raise |Bc; ;.| to one everywhere by lowering the

value of €. A solution that one can choose is to set to zero B¢, g, in the regions where

Fo, > €||F¢,||so- From the decomposition we obtain:

f = Re (FCO + Z BCizHize : GCi,Hi,G) (]‘90)
C;,t>0
Since by construction of Be, m,. = GCF.O:I. . If we use an e-threshold we have:

12

Vi > 0,|Bc;,n;| = 1if |Fg,| > €, and |Bg; u,| =0 else. (1.91)
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Image NEW Re(B) (B = Fana / G) with cone orientation = -45 aperture = 45 Image REAL(Fana) with cone orientation = -45 aperture = 45

Figure 1.36: The left figure represents Be, obtained for the “three circles” (shown on figure
1.35) with an e-threshold. We observe the extension from the right figure Fc,

We represent on figure 1.36 the function B¢, g, with an e-threshold and set to zero for
|Fc,| < €||Fc,||lco. We observe that with this new B¢, g,  (with a threshold to set to zero)
we have extended in some sense the function F¢; shown on figure 1.34, the region where
the oscillations are visible is now greater than previously. The value of the €, chose for the
e-filtering, will affect much more our two-dimensional signal during the extension, than in

the one-dimensional case.

1.8.3 Image enhancement of “the three circles”

| Bc;, ;.| has the particularity to be similar to 1 Fo,» a8 we apply a e-threshold, renormalizing
the function to one where F, >> €||F¢, ||, and setting to zero the regions where F, <
€|lFe;lloo- Bey m,,e and Fg, have similar oscillations but a different amplitude. We can
interpret B¢, ;. as a re-normalization of Fg, such that all its oscillations have the same
amplitude one.

It can be in some cases an advantage as seen in the example of the three “circles”,
each one them have a different frequency and amplitude. So by using the “B - G” factor-
ization we manage to restore the three circles with the same contrast. On figure 1.37, we

present two results with a different e-filtering. If the € is chosee quite small it gives a much
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Image NEW Re(B) (B = Fana / G) with cone orientation = -45 aperture = 175 Image NEW Re(B) (B = Fana / G) with cone orientation = -45 aperture = 175

Figure 1.37: Two B obtained for the “three circles” (shown on figure 1.33) with two different
e-filterings. The left image has a smaller € and then a better contrast than the right image.
But we can observe that some artifacts appear when € starts to be too small as on the left

figure.

better contrast. We also observe that the more we gain on the contrast the more we loose
on the spatial localization of the oscillations. There, we can conclude that a trade-off has

to be done.

1.9 Stability to noise

In this chapter, we test the algorithm with a similar image as before except that we made
modifications to transform the circles on ellipses, to avoid rotation symmetries in the image.
We also add a multiplicative noise to observe the stability of the transform as we see on figure
1.38. We are interested in the gradient phase of the signal, and we observe that we increased
the regions where we compute it. We observe that a large value for the multiplicative noise
is not a main problem for the process. We still have an efficient result. Artifacts appear in

region where |Fy,| is small.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 61

Noise (1+3. Uniff-L,1], 5= 0.9)

Angle of the gradient of the Phase of F

Image NEW Re(8) (B = Fana | G) with Angle of the gradient of the Phase of new

Image NEW Re(8) (B = Fana | G) with

Angle of the gradient of the Phase of n

Figure 1.38: The top row shows the original image Re(Fy,) (on the left) “one circle and
two ellipses” and the corresponding angle of V¢r, . The second and third rows represent
By, 1, e with two e-filtering and the angle of the ngS]lg. The value of € is lower for the bottom
row, thus it raises |Bu, ;.| to one in wider regions than the second row
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1.9.1 Real Images

We can observe the result on a real image. Figure 1.39 shows the improvement between
the analytic image that contains half of the Fourier information and the extension to the

Blaschke product.

Original Image F Image REAL(Fana) with cone orientation = -45 aperture = 175

\a;:
A \
N
N

Figure 1.39: The top row shows the original fingerprint and the real part of the complexified
signal without high and low frequencies. We mainly keep the frequencies corresponding to the
“stripes oscillations”. On the bottom row, the left figure represents the “Blaschke Product”
while the right one is its signum. We observe that the contrast has been increased from the
top to the bottom.

1.9.2 Eventual segmentation

As observed in the one dimensional case, B¢, p; enables us to compute the instantaneous

frequencies of our signal that belongs to a region C;. After thresholding, we compute the
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gradient of the phase of B¢, u; on the region C; selected on wider regions than for F¢, as we

have seen before. For each point, pixel, we can then attribuate its V¢ F¢, and VoBc, m, .

Amplitude of the gradient of the Phase of F Amplitude of the gradient of the Phase of news

Figure 1.40: The amplitude of the gradient of the phase of Fy, and By, u, obtained for
the “three circles” (shown on figure 1.33) with an half plane centered at —45 degres and an
e-threshold. We observe artifact due to the fact that there exist no analytic signal with a
symmetry of rotation. The right image, obtained from B, has obviously extended the domain
where the phase’s gradient can be computed.

related to each ;. As we have seen before we have increased the area of the regions where
the phase gradient exists or has a meaningful value. Using these different gradients and
the low frequencies components we obtain a vector image that can be used for vectorial

segmentation
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1.10 Conclusion

In the one dimsenional case, we have shown invariance and stability properties of the
Blaschke product using our factorization representation. We have shown how to work with
“numerical compact” signal by adapting of € for the e-threshold. We presented an orthog-

onal decomposition based on the Blaschke products can be done and gives good results in

V1-18?

1-B-z

many cases. An optimisation obtained by extension with a localized factor, z —
is also possible but need an algorithm to find the optimal 3.

The two dimensional extension of the Blaschke product, based on the same steps,
enables a similar representation. It renormalizes our function to an absolute value equals
to one, in the regions containing the oscillations that have frequencies in the region selected
in the Fourier space. More has to be studiedin the two dimensional case, especially to test
the stability to noise and how to choose the partition of the Fourier space for the two steps.
The pseudo polar Fourier transform, described and implemented in [10], is also an option
to the cartesian Fourier transform as it may give a representation more adapted, depending

on which filter has to be created.
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.1 A rich class

In this chapter, we provide a detailed proof of the Theorem 1.6.1. The Jensen inequality

enables us to write:

1 2
E(exp [/1og(|F|)d9}) > exp —/ do - / 1og(|F|)da] (92)
2m Jo Yon—1
As we know that F' is a random trigonometric polynomial, we can write:
N .
F(O)=> a-¢* = F(@O)=A EVN (93)
k=0
1 .
where By = {—=¢ %} k=0---N, and A= {a

Ey is a unit vector which can be rotated to the first coordinate axis without changing

E(log|F|). So we have:

E(log|F|) = E(log|A-Eg|+lOg(N)>

(94)
log(NV)

2

E(log|F|) = E(log|A- Ey|) + (95)

The Lebesgue measure on Yon_1 = {z : |z1|> + -+ + |z5|* = 1} can be written as the

following:
B, yon)) = [ o ()b, (96)
. N
where z; = r; - €%, r; >0, Zr? =1.
i=0

don_1(r) is renormalized to 1 on Yoy _1 to have E(1) = 1. We obtain:

Bllog|4- Byl) = ey [ log |cos(h)]sin " () (97)
0
_ VEI($) : .
Where cy = (&R - And if we let y be the Euler constant we have:
2
F/( 1+N)
E(log|A - Ey|) = —(”y—i—log(él) +I‘(17+2N)>/2 (98)
2
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There is an asymptotic formula for the digamma function:

I;(]]VV)) = log(N) + o(1)
= ) = log(N) — log(2) + o(1)
D(%3)
Finally we have
Blog F)) = ~THEE )
= ¢ = exp(—(y+1log(2))/2)
= ¢ = 052...

66

(101)
(102)

(103)



Chapter 2

A Vectorial Segmentation

Algorithm

2.1 Introduction

Segmentation is a key factor for image processing, it enables “to extract in homogeneous
regions separated by edges”. The term homogeneous has to be understood in a very broad
sense. The regions can be piecewise constant, have a repetitive pattern or texture as seen
in Brodatz book [13]. Works on the subject have led to a better understanding: Textons by
Julesz [17], Wavelets representation with Mallat [21], Functional with Mumford and Shah
[25]. These different theories generated recently many algorithms. We know the efficiency of
the pyramidal algorithm presented by J.-M. Morel, and the CEREMADE (University Paris
IX-Dauphine). This algorithm is based on the Mumford-Shah functional, a decreasing
function of the number of regions, and is part of the Megawave platform [15]. We study
the pyramidal algorithm that gives a segmentation for a predetermined number of regions.
Some properties of convexity are shown for this algorithm. We use these properties to
introduce an extra term, related to the number of regions, in the functional. This new
functional has now a minima depending on the number of regions. We also show a counter

example for the non-optimality of the algorithm. The algorithm approximates regions by

67
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a constant, so it implies that for textured images a preprocessing has to be done. Koepfler
et al. showed some good results in [19] for textural image using a vectorial segmentation
after a wavelets preprocessing. A summary of wavelets properties is then given as we will
use them for our multi-scale representation, we also show the fast decomposition done by
Mallat and present the Wavelet packets. These algorithms use decimation. But we want a
grid independent algorithm so we introduce the notion of undecimated wavelets and present
different preprocessing. A cost function is then applied to evaluate the usefulness of the
filtering, we want to avoid “uninteresting filters” to shorten computations time and improve
efficiency. We obtain the “Cost Subspaces” on which the segmentation algorithm will run.
Our aim is to find a criterion to determinate the number of regions and the efficiency of the
segmentation for each subspace. This approach is based on the fact that we are interested in
finding a segmentation with regions of reasonable sizes and we are not looking, for example,
for “targets” that are typical of small regions. Thus we create a criterion of “segmentation
efficiency” for each component and discard the insignificant filtered images. We run the

pyramidal algorithm on synthetic and real images, applying different improvements.
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2.2 Segmentation Algorithm

J.-M. Morel and his collaborators from the CEREMADE developed Megawave [15], a soft-
ware that works as a platform containing C programs, essentially for image processing.
For segmentation, a pyramidal algorithm has been developed, it is based on Mumford-Shah
functional. This merging algorithm is very efficient in the case of piecewise constant images.
For textured images, a vector image is obtained after preprocessing before evaluating the
cost function that enables to select the useful filters. Then we can reduce computational
time and errors by choosing the appropriate component of our vector image. We describe
the pyramidal algorithm and explain its advantages and show problems that can occur.

This description is done with the purpose to find a criterion for a good segmentation.

2.2.1 Mumford-Shah Functional

There is an obvious relation between the piecewise constant approximation on each region
and the region itself. Therefore, we define Mumford-Shah functional with a parameter A,
that can be compared to the scale, by using the regions (the function corresponding is then
defined by the average value on the region). To determinate the regions is equivalent to
obtain the piecewise constant functions. We define P({2) partition of €2, and N(\) number
of regions for a fixed A\. And we obtain VK C P(Q), with K = Uf\;(l)‘ >K¢ where the domains

K; are connected, a segmentation similar to figure 2.1.

K1
K2

K3

5 /

Figure 2.1: Ezample of a segmentation in five regions for an image.
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And we have the following representation:

1
Vu € L3(Q), 3lg € L*(Q),such that 9K, = UK; = T /K u (2.1)
4 i

And we denote 0K = Uf\;(l)‘)BKi

By(u,K) = / u — glI? + Adength(IK) (2.2)
Q
N

E\wK) = 3 / lu — g, || + Mength(9K) (2.3)
i=1 Y Ki

We note the optimal result:
E = in EF K 2.4
() i Mu, K) (2.4)
And we want to find K such that E)(u, K) is minimum. We now present the characteristics

of a pyramidal algorithm developed and programmed by J.-M. Morel and his team.

2.2.2 A pyramidal algorithm

We know that a way to solve Mumford-Shah functional, with piecewise constant function,
is to use an iterative algorithm. This algorithm has been developed by J.-M. Morel and his
team the CEREMADE. They define this algorithm by recursion in Koepfler’s thesis [18].
This algorithm starts with a segmentation at the pixel level (we obviously have N? regions
for a image of size (N, N)) and X is equal to zero. A merging algorithm runs until the
desired number of regions A is reached. The pyramidal algorithm constructing 2-normal
affine segmentations is defined as followed in [18]:

“We now consider the problem of defining and computing a 2-normal segmentation.
Notice that not all 2-normal segmentation are interesting: for instance, the empty segmenta-
tion, where § is the single region is clearly o 2-normal segmentation. If the scale parameter
A s very large, it is also a reasonable segmentation since one “pays” a too large energy
amount for having any boundary. However, it is obvious from the definition that the emp-

ty segmentation is 2-normal for every X, which certainly proves that the assertion that a
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segmentation is 2-normal s not enough to ensure that it is “good”. But if we follow the
main idea of the region growing methods, we shall see that what they compute is precisely a
2-normal sub-segmentation of a fine initial segmentation, obtained by recursive merging.
Assume that the datum g is defined on a rectangle. This rectangle is divided in
small squares of constant size (the pizels) and g is assumed to be constant on each pizel.
Here are the properties which we require for the segmentation computed by a region growing

algorithm, defined as an application associating to g and X a segmentation (u, K).

a) “correctedness”(Fized point property): Assume that g is piecewise constant on some
areas of the rectangle. Then there exists a value \y of the parameter A such for that
for every A < Ao, the segmentation (u, K) obtained by the algorithm verifies u = g and
K is the union of the boundaries of the areas where g is constant. This property has
been proved to be asymptotically true for the segmentations which are global minima of

the energy E as X\ tends to zero. But we impose it here as a non-asymptotic property.

b) 7Causality” (Pyramidal segmentation property): If X > X, then the boundaries pro-
vided by the algorithm for X are contained in those obtained for X and the areas of

segmentation associated to A are the unions of some the areas obtained for M.

The last Property ensures that a fast pyramidal algorithm can be implemented, computing
a hierarchy of segmentations from fine to coarse scales. Moreover the coarser segmentation
will be deduced from the finer by “merging” operations, with a pyramidal structure for the
computation. Note that, as a consequence of the fized point property, if A is very small, the
computed segmentation is attained with (ug, Ko) where Uy = u and Ky consists of all the
boundaries of all the pizels and therefore coincides with the global minimum as A is zero.
We shall call this segmentation, where each pizel is a region, the “trivial segmentation”. It
1s easy to see that recursive merging algorithm which we present now verifies all the above
mentioned properties.” We believe that the algorithm does not define the segmentation
that we are looking for as the number of regions is not inserted in the functional. We will

define later a new functional with an extra term. But before we present the concavity and
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convexity characteristics of the algorithm.

2.2.3 Convexity and Concavity

In this section we consider the case of the pyramidal algorithm where only two regions
merge at a time. We will show later that this detail has its importance. Let’s show some

properties of our initial cost function F)(u, K) We have a pyramidal algorithm to segment

Number of regions:

1 2 3 4 ... p p+l p+2 ...\
S R [ E—
- ——
0 N N3 N b 1 P2 M=0
Value of A:

Figure 2.2: Diagram showing relations between X\ and N (M) (the corresponding number of
regions for the image segmentation)

our image, and we start from a fine grid and merge neighborhood regions two by two in
order to satisfy our criterion. For each couple of regions, we have a different value for A that
enables us to merge. The pyramidal algorithm merges, at each step, the couple of regions
that needs the smallest A over all the possible values, we note it \; at the step k. Then the
number of regions is a decreasing function of A\, and stay constant between two consecutive

An:
Vn e N*, VA€ [MAt1,An) NA)=n+1. (2.5)

We have N(\) < n only for A > )\, as showed on the figure 2.3. And ), is the critical
value to pass from the segmentation K to K'. Let’s define the two variations:
AE = E)\n+1 (u) - E)\n (u) <0 (26)

AXN = Aps1—An <O (2.7)
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K1 K’ 1
K2

5/ '4/

Figure 2.3: Constructing K from K by merging two regions for A = A4

Thus,

OF
—_— > .
5 20 (2.8)

By construction we have Ap4; < A, and the number of regions is constant on each interval

[Ans1,An) then

on
— < 2
o — 0 (2.9)

We note K and K’ the two segmentations that minimize our functional for their respective
Ant+1 and A,. We note K; and K; the two regions merging, for A = A, in order to obtain
K;J = K; U Kj (in the figure 2.3, the indices are 1 = 2, j =4, p = 2 and n = 4). F, and
E, 41 have terms in common, we define, for the merging region couple (K;, K;) related to

the value of A, the integral term corresponding to the difference:
16,5 = [ e-uglP = [ [ lu- el + [ u-ugl] @)
K, P K; K;
I(Ki, Kj) = / Mo =g 2 = lu = (ure, X, +we; x| (2.11)
KP
By definition of ug,, we have u = (u — ug,) ® ug,, Pythagoras theorem enables to write:
lo =g |2 = = s 2 + s, = g |2
=>I(Ki,Kj) = / ||UK1 —uK/||2+/ “qu _U’K'H2 >0 (2.12)
K; P K; P
with KI; = K; U K;. After simplification, we easily obtain the relation:

AE = I(K;, Kj) + Api1 - length(OK) — A, - length(0K ) (2.13)
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The pyramidal algorithm constructs K " from K, by merging two regions, K; and K sepa-

rated by a common boundary 0K; N 0Kj, that disappears in the merging process:
AFE = I(K;, Kj) + AX - length(OK) + A, - length(0K; N 0Kj) (2.14)

For A € [Ay41,A,) we have n regions, K; and K; merge at A = \,. Then we have the

following properties:

1. A = Ej\(u,K) is strictly increasing on [A,41, A\n[, as Ey(u, K) evolves linearly like

A = A-length(OK) on the interval.
2. For A = \,,, K' minimizes K — E), (u,K), as there are n regions.
3. For X € [A\y41, A\n[, K minimizes K — E)(u, K) for (n + 1) regions.

We deduce from these previous properties that YA € [A,41, Ap):

Ex(u,K) = Ey, ., (u, K) + (A = Apq1) - length(OK) (2.15)

But Vn € N*, A\, > Apq1 and By, (u, K) > Ey ., (u, K). We also have:
By, (u,K) > Ej (u,K)

= Ay length(BKz N BKJ) > I(Kz,KJ)
length(0K; N 0K})

= Ay 2 )\Ki,Kj (2.16)

But for A € [Ay41,A\n), we have a segmentation with (n 4 1) regions. We can conclude that

36> 0,0 < e <6 :

=
>

3

N

=
=
IV

E(/\nfe) (U’J K)

>\Tl — € S AKi,K]'
I(K;, Kj)

2.1
length(0K; N 0K}) (2.17)

4
s
|

We obtain then the following formula that determines the A necessary for two regions to

merge:

Sl =g 1P Sl = e |1
" length(0K; N 0Kj)

(2.18)
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The energy’s variation between two consecutive merging is then:

AE = AMX-length(0K)

AE
= AN - length(0K) (2.19)

We know that length(0K) > length(OK'), as one boundary between two regions has dis-
appeared. So ﬁ—? is a decreasing function of the number of regions. It means that we have

a graph similar to figure 2.4:

A B

% length( %K)

A

Figure 2.4: Graph of the theoretical X\ — E)(u)

We compare this result to our experiments (image + different levels of noise) on
figure 2.5, and we observe that experimentally we also have concavity of A — FE)(u) as
shown on the theoretical figure 2.4. We observe that the slopes of the asymptote are the
same for the different images. We deduce that the length of the boundaries for the image

at the last segmentation are similar.

AFE AFE
A—/\(An-l—l) > A—/\(An) (2.20)

and A — FE)(u) is piecewise linear on each interval [A\,4+1,A,]. The concavity of E) is then

obvious as:

*E)\(u)
B 2.21
B\ <0 (2.21)
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Figure 2.5: Graphs of experimental A — FE\(u), an image with different Gaussian noises

added.

We showed some properties for A — E)(u) and we would like to have a similar relation for

n — By, (u).

We can first look at the graph of this function. The experiments seem to

1.2e+07

1e+07 [
8e+06 -
6e+06 -
26406 |\

2e+06

‘plot_reg.2’'

plot_reg.4' ----

plot_reg.8
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.
40
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80

100

Figure 2.6: Graph of experimental n — Ey(u) = E), (u), an image with different Gaussian

noises added

agree on the convexity of n — £ (u). But we have to verify this property more carefully.

Especially the way the first derivate evolves when the regions merge.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 77

AA\E W

AE = length( K)

N S ! >
2345678 Nb. of regions

Figure 2.7: Graph of the theoretical n — Ey(u) = E) (u)

We have an obvious property coming from the study of A — F) (u):

AE = AX-length(0K) < 0, thus 88—15 <0 (2.22)

We know that n — length(0K,) is increasing and A\ < 0. We would like to have
a convexity property for n — E) (u). We will see later that this property is linked to the

structure of the image.

2.2.4 Mumford-Shah and Extra Term

We note that the Mumford-Shah functional does not depend on the number of regions, but
only on the length of these boundaries. It means that there will be no penalties for a large
number of small regions. But we are mostly interested in segmented images with a small
number of regions, for example three to a dozen of regions seems like a reasonable number.
We add an extra term to the Mumford-Shah functional that will take care of the complexity
of the image. This idea is similar to the compression problem. We want, for a fixed budget,
to define a fixed number of regions, with a certain complexity, and a minimal error. We

define an extension of Mumford-Shah functional with an extra term, in this case we force
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our functional to minimize the number of regions also.

By, (wK) = /Q lu — g|I? + Mlength(9K) + v.N()) (2.23)

E;\yl,(u,K) = Z / |u —ug,||> + X - length(OK) +v - N()\) (2.24)

We can notice that by increasing the value of A, we indirectly decrease the number of regions

. Our new functional is the sum of a concave and convex functions.

Al
b

Figure 2.8: Four images coming from the same image after filtering

Let’s apply this algorithm on the four filtered images showed on figure 2.8, coming
from a “wave image” described in chapter 2.6.2. We added to these filtered images a crown
for some boundaries problem, the reason will be explained in the same chapter. We want to

know which one can give a reasonable segmentation. We mean by that reasonable: no small
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region, average values in each regions not too close. And we obtain the graph on figure 2.9,
it gives us two informations. The first one is that “Imagel” and “Image4” should be better
for segmentation since they have a minima . The five regions can be seen on the four images
but we observe that the contrast is much better in these two images. The second remark is
that the canonical segmentation should be done with five or six regions as the minima are

obtained for these number of regions.

24 T T T T T T T T T
‘Image_2' ---—-

22 ‘Image_3’ ----- 7
'Image_4’

20 A

18 | e N

16 | 7 g

,/(

14 - // B

12 + o i

10 F g

8 -

6 - -

4 4

2 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20

Figure 2.9: Graphs of the “Mumford Shah + Extra Term?” for the Images on figure 2.8.
Two of the four images seem to give an optimal segmentation for five or siz regions. It
confirms our visual impression.

2.2.5 Counter-example for the pyramidal algorithm

We ran the pyramidal segmentation algorithm on different examples to test its robustness
to noise. In some cases, we note that the function Ny — E) is not decreasing or A — E)
is only piecewise non-decreasing and concave, as some discontinuity appear and make the
function not globally non-decreasing. It would mean that the pyramidal algorithm is maybe
not optimal. In this chapter, we build a simple example to understand what is happening.

Let’s take an image (N by N pixels), containing three regions. A disk A; with a

crown Ap around of respective radius r; and ro with o = r1v?2, obviously mes(A4;) =
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mes(Az). We decide to have mes(A3) = (47 —2) -mes(As), that implies N2 = (47 —2+1+
1)mes(A;1). And we obtain N = 27r;. Each region A; can be characterized by a piecewise
constant function. We represent the function on the figure 2.10 and we have the intensity

of the pixel value that define the function I:

I(z) = —14,(x) + 1a,(x) —v-1as(z), with y > 0. (2.25)

Figure 2.10: Image containing three regions for our counter-example

We run the Pyramidal algorithm on our image (figure 2.10). For \ equals to zero

we have the “trivial segmentation”, with N? regions, and we obtain:
E0:/0+0-(2-N2—4-N) (2.26)
Q
Since we have N? regions, the error on each region is equal to zero, and we don’t count
the outside boundaries of the image. When X starts to be greater than zero, if there is no
regions merging we have:

Ex=X-(2-N*-4-N) (2.27)

But we observe that by merging most of the regions we obtain our three regions without
increasing the term corresponding to the approximations error for each region (the integral

term) in the functional. We then have a new relation for E) :

= E\, = A2 (1+V2) (2.28)
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We conclude that the region merging will appear as soon as A # 0. This segmentation will
be valid until merging two of the three regions. If we merge A; and As, it is obvious that
the average value on AU As is y1_s = 0. Formula 2.18 enables us to compute the threshold

value for \:

12.mes(Ay) + 12.mes(As)
9 = 2.2
A1—2 1(OA) (2.29)

= )\1_2 = 7 (2.30)

In the case where Ay and Ajs merge, the average value v, 3 on the new region As U A3 and

the Ao_3 necessary for merging As and Aj are easily obtained:

Yy = f:__f) i (2.31)
(v+1)° (4r = 2)

2v/2(41 — 1)

We observe that if v is close enough to zero (0 < v < 0.5), Ao_3 < Aj_2, it means that

)\2,3 = T1- (232)

we have to merge A; and Az before merging A; and As. Until A < Ay 3, we then have
three regions as a result of our segmentation, and E) defined by the relation 2.28. And for

A = Aa_3 we have the following equation for the functional:

+1)%. (47 - 2) 1

By, =m?. O 1+ — 2.33
)\273 7T7”1 (47T_ 1) ( + \/i) ( )
We now compute the functional for only one region (A; U As U A3), we easily have that the

v(2r—1)
27

average value y; 9 3 = — . And then we obtain the value of our functional, knowing

that the second term corresponding to the boundaries term is equal to zero:

(2m — 1)2
Ex 5= 71'7”% ’ (1 + VZW) (2'34)
To obtain an interesting example, we set v = i and obtain:
25(1 +v/2) 4r -2
E = mr}. : 2.35
)\273 7TT]. 16\/§ 471_ _ 1 ( )
2m — 1)2
E)\1—2—3 = WT% ’ (1 + ( _) ) (2.36)

(87)?



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 82

Since N — Ej is increasing, as we have seen before, it means that the merging of the
three regions should have been done before the merging of any two regions individually.
We deduce from this experience that in some case where a given value of A make merge

more than one region at a time, the pyramidal algorithm is not optimal anymore. We now

E=2m(3v2)r1 . A

PA1(GTVP) P O E
anert | L . i

Figure 2.11: Graph showing the non-optimality of the pyramidal algorithm, Energy as a
function of A

summarize the properties of the wavelet representation.
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2.3 Continuous Wavelets Recapitulatory

In this section, we present some of the main properties and theorems about the wavelets
decomposition. We follow Mallat [22] in his study, show the difference between undecimated
and decimated wavelets. We introduce also the concept of wavelet packets decomposition

[14].

2.3.1 Theorems and Properties on Wavelets

Theorem 2.3.1. In the case of a wavelet multi-resolution approzimation, we have a se-

quence of closed subspaces {V;};jez C L*(R), that verifies the followings properties

[\
w
-~

V(j.k) e #?, f() € Vie f(-—-2k) eV

—~ —~ —~ —~ —~
w w
N=) o

~ ~ ~— ~ ~

i€k, f() € Vief3)€Vin

VoWV Vg CV_iCVg...

lim V; = UjesV; = L*(R) 2.40
Jj——00

lim V; = NjesVj= 2.41
j;irlww NjezV; = {0}

And we know that there exists 6 such that {0(. — n)}nez is a Riesz basis of Vy. For
example in the Haar case, it corresponds to the piecewise constant approximation. We have

0 = x[0,1]- And so V; represents the functions f such that f is constant on [k - 27 (k+1) -
2(j+1>),

Theorem 2.3.2. Let {V;};cz be a multi-resolution approzimation and ¢ a scaling function

such that:
(&) = IR ) T (2.42)
(750 10(& + 2km)[2) 2
And we let
._9J
Binl) = b ) (243

Forallj € Z, {¢jn}necz is an orthonormal basis of V;
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Remark 2.3.1. We define an approzimation, at a level j, over V; by using an expansion

in the scaling orthogonal basis:
+oo
Py f = ($ins [)bin (2.44)
—0o0

We can easily see that ($jn, f) = f * ¢;(27n), where * represents the convolution.

Theorem 2.3.3. (Mallat, Meyer)
Let ¢ € L2(R)(IR) be an integrable scaling function. The Fourier series of h[n] =

(J58(3), @(- —n)) satisfies:
VEER, [R(OP +[h(E+m) =2 (2.45)
and
1h(0)]* = 2. (2.46)

Conversely, zfﬁ is a 2m-periodic and continuously differentiable in o neighborhood

of zero, if it satisfies the two precedent properties and if

ge[iin%f%] |h(§)] >0 (2.47)
and
(&) = ﬁo hz 7g) (2.48)
p=1 \/5

Then ;ﬁ\ is the Fourier transform of a scaling function ¢ € L>(IR).

Remark 2.3.2. For piecewise constant approzimations, ¢ = X[o,1). Since h[n] = (%QS(?), o(-—

n)) it follows that

hin] = ¥ n=01 (2.49)

0 otherwise

S
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With the approximations of f, at the scales 2/ and 277!, that are equal to their
orthogonal projections on V; and V;_1. We know that V; C V;_1. Let W; be the orthogonal

complement of V; in V;_q, i.e.
Via=V;e W, (2.50)

So the orthogonal projection of f on V; ;1 can be decomposed as the sum of two

orthogonal projections:

PV]-,lf = PV].f + PW].f. (2.51)

Py, f provides the “details” of f that appear at the scale 291 but which disappear
at the coarser scale 2/. Furthermore from the previous relations we can easily show that

Theorem 2.3.4. (Mallat, Meyer):
Let ¢ be a scaling function and h the corresponding conjugate mirror filter. Let ¢ be

the function whose Fourier transform is:

B(6) = %@(%)A(g), (2.52)

with

G(€) = e ER(E + ), (2.53)
And we note
1 =9
@in() = o) (2:54)

Jor any scale 27, {; n}nez is an orthonormal basis of W;. For all scales, {0} nez

is an orthonormal basis of L*>(R).

We describe now a fast algorithm to compute the wavelets decomposition.
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2.3.2 Fast Algorithm

We are going to describe a fast filter bank algorithm designed by S. Mallat. This algorithm
computes the orthogonal wavelet coefficients of a discrete signal (ag[n]),. That corresponds
to a decimate wavelets decomposition. Let us define:

+o00o

f=Y_ aon]p(. —n) € V. (2.55)

n—=-—oo

Since {¢(. — n)}nez is orthonormal, we have:

ag[n] = (f(-); #(. —n)) (2.56)

Each ag[n] is thus a weighted average of f in the neighborhood of n. The discrete

wavelet coefficients of ag are defined to be the wavelet coefficients of f:

dj[n] = (f,jn) (2.57)
And we denote z[n] = z[—n| and

i) <4 TP n=2p (2.58)

0 otherwise

So the following theorem shows how to compute the wavelet decomposition and

reconstruction with discrete convolutions.

Theorem 2.3.5. (Mallat)

For the decomposition we have:

+o00
ajilpl = Y ajlnlhln —2p) = a; * Fl2p), (2.59)
and
+oo
dilpl= 3 ajnlgln — 20] = a; * 3l2p). (2.60)

n=—oo
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h_2°V2 A*h
N AN

subsampling A . .
chch v zeros insertion

@

Figure 2.12: A signal f is filtered by a low-pass and high-pass filter respectively to give s
and d after subsampling, while an insertion of zero with dual filters reconstruct f

Concerning the reconstruction we have:

+oo +oo
ail)) = > ajulplhlp—nl+ Y djsilnlglp — n]
= dj41 % h[n] + dj1 * g[n]. (2.61)

The perfect decomposition is ensured by the next theorem.

Theorem 2.3.6. (Vetterli)

The filter bank performs an exact reconstruction for any input signal if and only if :
h(€ +m).h(€) +G(E+m).5(6) =0 (2:62)

and

R(E).7(€) +5(6)5(6) =2 (2.63)

So we obtain a perfect decomposition reconstruction by using convolutions and
decimations as we can see on the figure 2.12. By sub-sampling, we modify the relation-
s between our wavelet decomposition coefficients and the original signal. Since we have

(&) =X w[n]e™™, the Fourier series of the subsampled signal, y[n] = z[2n), is going
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to be such that:

i = nﬁiwxP"kME (2.64)
= 726 = n_ij:ooar;pn]e21'"g (2.65)
S ) = nfifliéEQZMMPi“ (2.66)
= G20 = @O +E+m) (2.67)

And by interpolating with zero, for reconstruction we have a similar relation. The

insertion is defined by:

yln] = { ol on=2p (2.68)

0 otherwise

whose gives us :

9 = Y wlnle (2.69)
= §6) =820 (2.70)

For a first level decomposition, we denote s and d the wavelet decomposition coefficients.

We have
S P A W e
s =5 |87 (5) +5-7 (557 .11

and

d(¢) = % [ﬁ-f(%) +§-f<§+727r>] (2.72)

and for the reconstruction we have:

Fe) =5 [p-520) + 5 2t + )] (2.73)
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If we do not subsample, we obtain an undecimated wavelets decomposition. It will
more computational time as at each level i we have compute N = 2P points and not 2P~*
points for the decimate case. Although this decomposition is not orthonormal anymore but

it has the advantage of being grid independent. We now do a recall on the Wavelet packets

2.3.3 Wavelet Packets

The wavelets decomposition is obtained by projection of each subspace V;_1 on the direct
sum of two orthogonal spaces: V;_1 = V; @ W;. Instead of dividing only V;_; we can decide
to operate the same division on the details space W;_; to obtain a binary wavelet packet
decomposition. We then have a recursive symmetric splitting algorithm as opposed to the
wavelet decomposition. For so we have to define wy,, j, the filter used for the §" space at
the lev™ level to project on Wy, j. That enables to have Wie, 1 = Wiey2j @ Wiep 2j41-
To obtain the two components, also called children nodes, we convolve our signal either by

the scaling or the wavelet functions. We obtain the two wavelet packet orthogonal basis:

wlev = Zh wlev 1 2lev—1n) (2'74)

and ¢/t = Z g[n] - ), (. — 2" tn) (2.75)
We denote mg, m; € L%(IR), in the Fourier domain such that:

mo(€) = h(€) and mi(€) = G(£), (2.76)

and we obtain wy, ; in the Fourier domain such that:

lev—1

Wrew,j (€) H M, (27°€) (2.77)

where a corresponds to the decomposition of j in the dyadic decomposition, j = Zﬁi’o_l ;.2

And we have VI € N @2 e Wl Vo. We represent this tree for the one dimensional case
on figure 2.13. This algorithm enables to build a large family of spaces that will be used

for our preprocessing.
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Figure 2.13: One dimensional Wavelet Packets Decomposition
2.4 Preprocessing with Undecimated Wavelet Transform

We have defined multi-scale analysis based on the Orthogonal Wavelet Decomposition in the
previous chapter. But we want a segmentation to be grid independent and this property
cannot be obtained with decimated wavelets representation. Thus we are going to use
the undecimated wavelet representation, and more precisely the Wavelet packets. Our

preprocessing will be based on this formalization, that will be done at different scales.

2.4.1 Undecimated Wavelet Representation

Let’s apply a one level decomposition to a discrete signal f € L2([0,2 — 1]), that we
periodize over IR. We have s(i) = (f, (- — 7)) and d(i) = (f,¢(- — i)). For a decimate

decomposition we have:

2N-1-1 2N-1-1
f= > (fe(=20)) o(—2)+ (f, o = 20))(- —2i) (2.78)
i=0 i=0

and by translation of the signal we easily obtain:

oN-1_1
Fo=Y (fe(--2i+2)) ¢(-—(2i+2)
i=0
2N-1_1
+ > (fo(-—(2i+2) ¢ —(2i +2)) (2.79)
i=0
And then we can write:
1 2V 1 N _q
f=5( (el =)ol =i)+ D> (0 —D))( —i)) (2:80)
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That means in the Fourier domain, we have the following decomposition:

~ ~

8(6) =h(€)-F(¢) and §(&) =3(©) - F(&) (2.81)

And for the reconstruction:

f&) = 5 [fe) 56+ 3t¢) - o) (2.82)

We are using now the undecimated Wavelet Packets decomposition to be free of any troubles
related to the dyadic grid. We have continuity of the decomposition. Of course we do not
have anymore a basis, because of the non-orthogonality of the decomposition. We apply the
algorithm developed by Roland Guglielmi in [16]. In the case of a three level decomposition,
for a one dimensional signal we have shown before on figure 2.13, the representation as an
array. In a similar way, we can represent the two-dimensional wavelet packets decomposition

as seen on figure 2.14. But as we do not have any decimation in the wavelets and wavelets

Level: 1 2 3
Figure 2.14: Two dimensional Wavelet Packets Decomposition.
packets decomposition, we loose the property relatives to basis. And also instead of having

always a constant size for the data, we have a growing size of elements, to be more precise

in IR" the data size is multiply by 2" at each level. These representation has the advantages
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of creating “a more adapted partition” of the frequential domain than with a wavelets

decomposition.

2.4.2 Wavelets Packets Preprocessing

The data set is composed of one and two dimensional signals of different lengths. We will
not work directly on the raw data set, however, we will apply the following transformation
to the data. For each signal we subtract the low frequencies, to do so, we applied an
undecimated wavelet decomposition until level three or four depending on the size of the
signals. And we set to zero all the wavelets coefficients but the low frequencies of the last
level. We show on figure 2.15 the representation as an array for an one dimensional signal.

For a two-dimensional signal, we obtain a comparable representation as seen on figure 2.16.

Low3
-

~ | o~

0 0 0 0

Figure 2.15: One dimensional Preprocessing using Undecimated Wavelet Representation

We extract the low frequencies of our signal and we obtain Signal = Low; + High;,
with Low; = V; and High; = Signal — Low;. Therefore the working data set is composed
of two signals, and we are going to work first on the high frequencies part. A direct
segmentation can be done on the low frequencies components with Mumford-Shah, but we

are not interested by this part right now.

Remark 2.4.1. We work with a one dimensional signal, as seen on figure 2.17, composed
of a parabola and three different subcomponents: low frequency sinusoid, a chirp and a high

frequency sinusoid. And we add some noise to the whole signal.
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Figure 2.16: Two dimensional Preprocessing with a Undecimated Wavelet Representation.
Three levels of reconstruction are shown.

When the first step has been applied, we can then start the computation of the “Cost

Subspaces”.

2.4.3 “Cost Subspaces” computations

We know that a segmentation done directly after wavelets or wavelet packets decomposition
does not work. In fact, all the subspaces but the low frequencies have an average equals
to zero. The Mumford-Shah algorithmn has then a low probability to be efficient. Koepfler,
Lopez and Morel [19] solve this trouble by separating the positive and negative part of the
decompositions and convolving them. They obtain good results but this method presume
a preselection of the filters. We want to have an automatic selection and a post-processing
has to be done on the decomposition. We want to apply a cost function on each subspace to
be able to determine either the filter can “see the different structures” in the signal or not.
And we will call “Cost Subspace” the subspace corresponding to a signal that has the same
size has this subspace and gives us locally the efficiency of our filter to “see structures”. So

for each subspace we are applying the same operations on every pixels. The steps are in
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Figure 2.17: Signal and Low components

the one and two-dimensional case:
Step 1 Extraction of neighborhood window for each pixel i or (i, 7).
Step 2 Histogram of each window.

Step 3 Computation of the histogram cost and association of the cost to the point ¢ or pixel

(2,4)-

Extraction of neighborhood windows

We compare now the information contained in different regions of the signal (its size will
be denoted M and (M, M) for the one and two-dimensional case) to apply a segmentation.
We affect to each pixel a neighborhood of a determined size (N) or (N,N) (N < M)
respectively for the one or two dimensional case. This size will determine the scale of the
segmentation that interests us.

If N is small, it will give a fine segmentation (a high number of regions), else we will
have a coarse segmentation (only few regions). We can assimilate N with the segmentation’s
scale. For a one dimensional case we have an example on figure 2.18. In the two dimensional
case an image of size (M, M), and choosing some window of size (N, N), we have the figure
2.19. After extracting the neighborhood window, we compute the histogram and try to

select the useful filters.
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Figure 2.18: Three windows of size N represented on the signal used for the extraction
neighborhood points.
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Figure 2.19: Window Extraction for the pizel (i,7) in the two dimensional case

Histogram of each window

After having extracted a window for each pixel, we sort the values to be able to have an
histogram. This histogram is going to enable us to determine if the information contained
in the neighborhood pixel is relevant or not. As a matter of fact if there is no information
contained in this subspace around this pixel, most of the coefficients are going to be equal
to zero. As we want to sort the filter with their ability to discriminate textures, we are
looking for some particular histograms. We will have as example three histograms, from a
neighborhood window of size equals to 32, taken for three different filters at three different
points. We have choose three characteristic points, each of them filtered by a specific filters.

For each point, we sort each neighborhood window obtained after filtering. We
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Figure 2.20: (point = 150, level = 1, position = 1), low frequency filter in a neighborhood
with low energy, most of the coefficients are concentrated in zero.

obtained array with indices from 0 to 31, sorted by decreasing value, and we obtain the

three following graphs on figures 2.20,2.21 and 2.22.
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Figure 2.21: point = 300, level = 2, position = 4), high frequency filter in a neighborhood
where a chirp is living, we almost have a uniform repartition over [—1, 1].

We can conclude that the first histogram shows us that most of the window’s coethi-
cients are concentrated in zero. Our filter is not sensitive to our signal in the neighborhood
of this point, the signal is living in a subspace orthogonal to the one spanned by this filter.
By countrast, a filter containing information will give us an histogram like the second one.
But the best result is obtained when the filtering gives only two modes, as we can see on

third histogram. The goal of the next step is to characterize significant histogram, the two
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Figure 2.22: (point = 450, level = 2, position = 3), high frequency filter in a neighborhood
where high frequencies are in higher density than the others frequencies, concentration of
the coefficients in two modes.

last one as opposed to the first one. We show now how to compute some cost functions to

determine how well a filter “can see structures”.

Cost Computation

We have an histogram and we want to determine its significance. A first and simple cost
function is the energy function Zl]\i L ;% . An histogram concentrated in zero will give us a
low energy by opposition to one composed of two modes far from zero. This cost function
has the conservation property. If we sum all the subspaces from a same level, we have for
each pixel equality of the energy contained in the level zero. An example on figure 2.23
shows this property. We can see how the cost function evolves. On the first third of the
signal, there is almost no energy, because in the preprocessing we had extracted the low
frequencies, so the two signals are almost equal to zero. On the second part we have a
chirp, so the frequencies domains is contained in the low and high frequencies domains.
Both signals are different from zero. The last part containing mainly high frequencies, only
one of the two signals (high pass) is obviously different from zero. We loose the energy
conservation property but we will see later the advantage of this cost function. We tried

also to compute different cost functions using the density probability over the window.
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Figure 2.23: Local Energy at the first level (low and high pass).
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Figure 2.24: Local Cost at the first level (low and high pass).

Another possibility is to determine the distance between the two modes when they exist.
If the two modes exist, different from zeros, we assume that each of them contains at least
a quarter of the data contained in the histogram, if not it means that these two modes are
negligible. We are affecting to this histogram the distance between the first quarter and
the last quarter. An histogram with concentration in zero will give us a cost almost equal
to zero compared to an histogram composed of two separated modes. We have such cost

function:

Cost(xy,... ,x,) = sort(:r)%n — sort(z)zs (2.83)
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where sort(z) is the vector containing the z’s sorted values (non-decreasing sort). So for
the three previous examples, seen in chapter 2.4.3. We note A the value defined in equation
2.83, we have N = 32 then A = |z93 — 7| (as our array is sorted by decreasing value from
0 to 31). The value of A for the examples is then almost equal to zero, equals to one and
bigger than one. And it corresponds to the fact that the first filter is not as adapted and

does not see as much the structures as the two others one.
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2.5 Some Options

We present in this section different options to select the efficient filters and a way to shorten
the computational time for segmentation. We look at different entropies of segmented
images to determinate if a segmentation is reasonable based on our criterion. Then we
select the components of our vector image that carry information. Furthermore, we shorten
the computation time. We finish this chapter by summarizing our algorithm on a single

figure.

2.5.1 Best Filter Choice and Reduction of Dimension

For each subspace, we computed a “Cost Subspace” according to a cost function. From
these new subspaces, we have to decide which one are the most adapted for segmentation,
our criterion is to have no small regions and not too many. We will put a part the non
significant. Therefore we apply a global cost function on each “Cost Subspace”. We compute

the entropy of this subspace by using the following formula:

q

Ent(X) = =Y _ pi-loga(p;) (2.84)
i=1

where (p)7_, is the probability density function of the whole subspace, the interval of value
range is divided in ¢ regions. We compute the ratio of the ||.||; and .||z that gives us
information about the coefficient repartition. These two global functions have the drawback
to not give any spatial informations. In fact, they only give informations about the values
repartition. Therefore we do not know when a filter is efficient for segmentation. An ideal
cost function may have to be global to make sense. The trouble that we have with the
Mumford-Shah Functional is that it does not make any sense to look at its value for a fixed

number of regions. Henceforth we have:
V(Ni,N;) € N2, Ny <Ny = Epy,(u)> Ey,(u) (2.85)

with Fn(u) equals to the cost of a segmentation in N regions, approximate by a piecewise

constant function. We have seen that an extra term can be useful. We choose another
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criterion to establish when a filtered image is useful or not for our segmentation. In the
sense that we are interested in finding regions of equivalent sizes and not a segmentation
with small regions, that can be related to noisy regions or targets. We compute a cost
function based on the entropy of the renormalized areas A; (such that the measure of the

image I is one) of the different segmented regions i:

N N
Ent(I) = =) A;-loga(A;) with > A; =1 and 4; > 0. (2.86)
i=1 =1

We observe, in different experiments, that there is a region i¢ that is much larger than
the other regions. We assimilate it to a background in many cases. We consider now two
cases. For a given image, a part of “Barbara”, that we have filtered in two different ways,

We obtain the two segmentations, in eleven regions, shown on figure 2.25. We consider for

I_LLLE"%E

£

Figure 2.25: Two segmentations obtained from different filters applied to “Barbara”. Obvi-
ously the right segmentation gives, with our criterion, a better result than the left one with
its very small regions (related to small regions with high contrast like noise or targets).

our study that a segmentation is viable when the regions correspond to the average scale.
We mean that there are no small regions, and that they all have similar sizes. Since small
regions, for this algorithm, are synonym of noise or targets, point or small region with a
high contrast, as they can be seen as targets on military images. Thus we prefer the right
image to the left one. We now try to explain how to select them.

For the left image on figure 2.25, we model an image with one main region and N

small regions of area A fixed (close to the pixel size), such that 1 >> N - A, and a main
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region ¢ with A;;, =1 — N - A . We have the following entropies function:
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Figure 2.26: Graph of Plot of the Entropies as a function of the areas segmented, renor-

malized to one for the optimal segmentation in N regions of same size.

The top graph

corresponds to segmentations with many small regions, segmented on the left image of fig-
ure 2.25, as opposed to the bottom case that is obtained for a segmentation with “average
size regions”, right image of the figure 2.25. The second case is the one that interests us
as the entropy level is higher and there is a discontinuity in the decrease for the number of
regions equals to 9, that corresponds to the “optimal number of regions” for the right image.

Ent(I)=—(1—-N-A)-log(l1-N-A)—N-A-log(A)

Thus after simplifications, we have:

Ent(I) ~ —N - A-log(A), with A fixed.

(2.87)

(2.88)

We conclude that N — Ent(I) is linear for value of N such that 1 >> N - A, with A fixed

corresponding a small region close to the pixel size. This example is shown on figure 2.26
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(top graph). This possible segmentation does not interest us as we are looking for regions
with intermediate sizes. In the case of the right image in figure 2.25, we model our image as
N regions of sizes A; similar to A. Thus we have N - A = 1. After obvious simplifications,

we have the following formula:
Ent(I) = log(N) (2.89)

We have an experimental result corresponding to this case on figure 2.26, bottom graph. The
optimal number of regions found for this case is nine, as we have change in the decrease of
the entropy for this particular value. Then the second filter will have a degree of significance
higher than the first one. Hence, we sort the subspaces, obtained after filtering, based on
this criterion and the Mumford-Shah with Extra term. We defined a way to choose the
best filters and reduce the dimensionality. We will apply the Mumford-Shah segmentation
to a few number of subspaces. We now present a sub-sampling that enables to shorten

computation time before summarizing the global algorithm on figure 2.28.

2.5.2 Optional Speed Improvement

We want to improve the speed of this algorithm by reducing the “cost subspace” compu-
tations. In fact, we subsample our “cost subspaces” and thus shorten computational time.
The “cost subspaces” are smaller than before, and will enable more and higher levels for
decomposition as they reduce the computational costs. The sub-sampling is shown on figure
2.27 The sub-sampling is possible as the cost subspace are obtained by using window of size
at least (8,8). Their scale is then greater than the pixel size, a ratio of two or four will not
change the result. In a first step, we compute the “cost subspaces” by this fast algorithm.
Then we apply our criterion to decide if the filtering is good or not, we assimilate this as
a preprocessing to reduce dimensionality problem. In the second step we compute only the
interesting “cost subspaces” at their full size and then apply the vectorial segmentation on

them.
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Figure 2.27: Subsample “Cost Subspace” with a ratio to improve speed. , and a neighborhood
window of size (N, N) with generally N =8 or 16. A ratio of 4 is then acceptable

2.5.3 Segmentation Summary

We present on figure 2.28 the main steps of our segmentation algorithm:
e Wavelet Packets Decomposition
e “Cost Subspaces” Computation
e Sorting of the Significant Subspaces

e Vectorial Segmentation



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 105

Original Image —

Undecimated
Wavelet Packets
Decomposition

Level: 1 2 3

Window Cost
Computation

for each

Subspace "Cost

Subspace”

| Vectorial Segmen tation

using Mumford-Shah Functional

_q

"Cost Subspaces"
Ranked by
— Importance

Figure 2.28: The different steps of our segmentation algorithm, seen in the previous chap-
ters.
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2.6 Results for two-dimensional segmentation

We present the different versions of this algorithm that we tried. We first worked with
man-made images that are easily segmented in the frequencies space, thus a wavelets pre-
processing is well adapted. The first image is a two-dimensional signals composed of one
dimensional sine products. After, we rotate our image by forty five degrees to have a real
two dimensional problem. And we started to be confronted with artifacts, due to periodicity
problems at the boundaries. We solved them by using a mask (like a crown). The next
chapters also show the different results on real images, some troubles and the way we solved

them.

2.6.1 Wave image

Our first trial is on an image composed of four regions, each region corresponding to a
quarter. Each one is composed of sine products. We choose an easy image to start, since it
is almost having to segment a one dimensional signal. Moreover each region has a specific
local frequency and a wavelet representation is obviously well adapted. The original image

and its segmentation are shown in figure 2.29. We notice that the algorithm gives a good

FARANARED B
AR B D B

HINENRAE B D B
il E B R R B

Figure 2.29: The original image (128,128) and its segmentation in four regions obtained
after wavelets preprocessing. We obtain the desired segmentation in four regions.

result but as it corresponds to an easy one-dimensional problem. In the next chapter, we

will rotate our image by an angle of forty five degrees to obtain a true two-dimensional
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problem.

2.6.2 Wave image rotated

We rotated of forty five degrees the previous image, shown on figure 2.29 to have a real two
dimensional problem. The new image is shown on figure 2.30 with two possible segmenta-

tions. We can see that we have artifacts close to the boundaries, there are related to the

Figure 2.30: The original image (128,128), obtained by rotation of 45 degrees of the image
shown on figure 2.29, its segmentation in four and five regions.

non-periodicity of the image. This trouble is due to the way we compute the wavelet packets
decomposition. Since we assume that the image is periodic, some artifacts will appear when
we compute the neighborhood window at the side of the images. We will now segment the

window included in a crown, since we decide to set to zero the pixels closer than (%) to the
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boundaries where N is the size of the neighborhood window (for the cost computation as
defined in chapter 2.4.3) for each “cost subspace”. On figure 2.31, we obtain a better result
for the same image, by masking with a crown. We force the algorithm segment separately
the region where the points closer to N/2 pixels from the boundaries. The problem related

to the non-periodicity of the image has then disappeared. We observe that the result is

Figure 2.31: Original Image (128,128), its segmentation in four regions and a crown

significantly better, as it corresponds now to what we are looking for, and the artifacts

disappear.

2.6.3 A simple small real image

We extract a sub-image of “Barbara”, seen on figure 2.32. It contains two major structures:

%
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Figure 2.32: Original Image (128,128), its segmentation in two regions and a crown
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a part of the arm and the back of the chair. One part has almost a constant value and the
other part is composed of high frequencies, due to the stripes on the chair. We have a good
result in this case. We lost as before the information in the boundaries neighborhood but
the result corresponds to our expectations. We observe that the computations time can be
important if the image is large. Thus we will use the improvement defined in chapter 2.5.2

to shorten computation time.

2.6.4 Real images with “speed improvement”

We work on a sub-image of “Barbara”, shown on figure 2.32, but this time we divide our

subspace by different ratio: 1, 2, 4, 8. We divide “cost subspaces” time computations by

Figure 2.33: Results of the segmentations for four different ratios: 1,2,4 and 8. They all
four corresponds to the case where we have two regions and a crown for the image on figure
2.32
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the square of the corresponding ratio. Of course we loose precision in the segmentation,
but we can see on the following results that we still have efficiency of our algorithm. For an
easier comparison, we have decided to represent them at the same scale by using a zoom
factor equal to the ratio used.

In a first step, this ratio is used for a faster selection of the significant “cost sub-
spaces”. And after we have selected the interesting filter using the Mumford-Shah and extra

term, we then run the algorithm on the full size image.

2.6.5 Real images

We ran our algorithm on a part of Barbara image. The preprocessing obtained from the

Figure 2.34: A part of Barbara image (256,256) segmented in four regions and a crown. A
ratio of four has been used for speed improvement.

wavelet packets analysis and cost function ranks the filter depending on their pratical worth
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for the considered image. In this case, we segment our image based on the information given
by the best filter. We obtain result on figure 2.34 with a ratio of four for speed improvement.
We can conclude that the choice of the utility of filter has been correctly found based on

our criterion of segmented region sizes.
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2.7 Conclusion

We have shown properties of the pyramidal algorithm designed by J.-M. Morel and his
collaborators for the Mumford-Shah functional and how an extra term can be added to find
an optimal number of regions for a given image. We have a preprocessing based on the
undecimated wavelet transform to build a vector image. We create a cost function that
should correspond to our criterion of having a segmentation with regions of similar sizes,
as opposed to segmentation with very small regions corresponding to targets or noise. We
can then decide which components are the most important and use them for our vectorial
segmentation with the pyramidal algorithm. The algorithm is modular and thus some of the
steps can be changed as the algorithm used for the segmentation in itself. Some refinement
can be certainly done in the choice of the cost function or the preprocessing, as using the

two-dimensional extension of the Blaschke product.



Chapter 3

Undecimated Wavelets and

Applications

3.1 Introduction

In this paper, we propose to improve some traditional methods for image and signal pro-
cessing using the wavelets representation. In [28], Mallat presents new ideas on multi-scale
analysis, providing an approach to work and see the structures at various scales. As op-
posed to other methods that only work at the pixel level, this representation enables an
orthogonal projection on various subspaces at different scales. In [26], the wavelet packets
are introduced by Coifman to enable a better representation using a binary wavelet packet
tree. The decimated wavelets can be computed with a fast algorithm but they have the
objectionable feature of being grid dependent. To solve this trouble, we use the algorithms
developed by Guglielmi in [27]. We will preprocess our data using these different tools.
Our first application is deconvolution, smoothing and sharpening one and two-
dimensional signals. By choosing various subspaces of the signal, one can obtain simi-
lar results on the signal to a sound equalizer, without artifacts. Each component can be
modified separately. We apply this process to one-dimensional chirps (since frequential and

spatial informations are linked, it is easier to observe the frequential effect of the algorithm),

113
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two-dimensional man-made signals, deconvolution of one-dimensional signal before showing
how to remove the stripes of Barbara’s vest without erasing the shadows of her arms.

The second application is the denoising for radar images. There are some difficulties
since these images have a high contrast due to the targets and also thre are variations in
the background (structures at various scales). We extract the background with a multi-
resolution approach, the targets are extracted with a threshold and a “y-correction” is
applied to enhance the contrast before denoising, with a multipass algorithm as implemented
by L. Woog in [30]. This algorithm has been inserted in a platform.

The third application is within the medical field, we work on brain images obtained
with the functional-MRI. We have two datasets corresponding to an active task and a
baseline. We are interesting in the regions of the brain that have a distinct activation in
the two datasets. We do not only mean a variation of the average value but much more two
distinct probability density functions. The relative entropy is computed at various scales to
determinate the dissimilarities between the two states. After reconstruction, we then have

for each scale the level of activation at every points.
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3.2 Continuous Wavelets Recapitulatory

In this section, we present some of the main properties and theorems about the wavelets
decomposition. We follow Mallat [29] in his study, show the difference between undecimated
and decimated wavelets. We introduce also the concept of wavelet packets decomposition

first developed by Coifman in [26].

3.2.1 Theorems and Properties on Wavelets

Theorem 3.2.1. In the case of a wavelet multi-resolution approzimation, we have a se-

quence of closed subspaces {V;}jez C L*(R), that verifies the following properties

w
—

V(j.k) € Z?, f() € Vie f(-—-2k) eV

w
[\

~—~ o~ o~ o~ o~
w
w

—_—  ~— ~—  ~—

VieZ, f() € Vief3)€Vin

VoWV Vg CViCVg...

lim V; = UjesV; = L*(R) 3.4
J—>—00
j;irlww NjezV; = {0} 3.5

And we know that there exists 6 such that {0(. — n)}nez is a Riesz basis of Vy. For
example in the Haar case, it corresponds to the piecewise constant approximation. We have

0 = x[0,1]- And so V; represents the functions f such that f is constant on [k - 27 (k+1) -
2(j+1>),

Theorem 3.2.2. Let {V;}jcz be a multi-resolution approzimation and ¢ a scaling function

such that:
:(@ (36)
(XEZ 166 + 2km)?)

$(&) =

(NI

And we note

1, -—2n

Pjn() ) (3.7)

For all j € 7, {¢jn}nez is an orthonormal basis of V;
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Remark 3.2.1. We define an approzimation, at a level j, over V; by using an expansion

in the scaling orthogonal basis:
+0o0
Py, f = {jm f)din (3:8)

We can easily see that ($jn, f) = f * ¢;(27n), where * represents the convolution.

Theorem 3.2.3. (Mallat, Meyer)
Let ¢ € L*(R) be an integrable scaling function. The Fourier series of hn] =

<%¢(§= d(- —n)) satisfies:
VEER, [R(E)*+ (€ +m)* =2 (3.9)

and

h(0)2 = 2. (3.10)

Conversely, zfﬁ is a 2m-periodic and continuously differentiable in o neighborhood

of zero, if it satisfies the two precedent properties and if

§€[iin%f%] |h(§)] >0 (3.11)
and
(&) = ﬁo he7g) (3.12)
p=1 \/i

is the Fourier transform of a scaling function ¢ € L*(IR).
Remark 3.2.2. For piecewise constant approzimations, ¢ = X[o,1)- Since h[n] = (%QS(?), o(-—
n)) it follows that

1, —
hln] ={ V2 7 =01 (3.13)

0 otherwise
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With the approximations of f, at the scales 2/ and 277!, that are equal to their
orthogonal projections on V; and V;_1. We know that V; C V;_1. Let W; be the orthogonal

complement of V; in V;_q, i.e.
Via=V;eW;. (3.14)

So the orthogonal projection of f on V; ; can be decomposed as the sum of two

orthogonal projections:

PV]-,lf = PV]f + Pij. (3.15)

Py, f provides the “details” of f that appear at the scale 291 but which disappear
at the coarser scale 27. Furthermore from the previous relations we can easily show that

Theorem 3.2.4. (Mallat, Meyer):
Let ¢ be a scaling function and h the corresponding conjugate mirror filter. Let ¢ be

the function whose Fourier transform is:

2(6) = Z=3(3)2(3), (3.16)

with

G(€) = e ER(E + ), (3.17)
And we note
1 =9
@in() = o) (3.18)

Jor any scale 27, {; n}nez is an orthonormal basis of W;. For all scales, {0} nez

is an orthonormal basis of L*>(R).

We describe now a fast algorithm to compute the wavelets decomposition.
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3.2.2 Fast Algorithm

We are going to describe a fast filter bank algorithm designed by S. Mallat. This algorithm
computes the orthogonal wavelet coefficients of a discrete signal (ag[n]),. That corresponds

to a decimate wavelets decomposition. Let us define:
+00

=Y aon]p(. —n) € V. (3.19)

n—=—-—oo

Since {¢(. — n)}pez is orthonormal, we have:

ap[n] = (f(), o(. = n)) (3.20)

Each ag[n] is thus a weighted average of f in the neighborhood of n. The discrete

wavelet coefficients of ay are defined to be the wavelet coefficients of f:

dj[n] = (f, pjn) (3.21)
And we denote Z[n| = z[—n] and

x if n=2
i) = 4 P (3.22)
0 otherwise

So the following theorem shows how to compute the wavelet decomposition and

reconstruction with discrete convolutions.

Theorem 3.2.5. (Mallat) For the decomposition we have:

+o0
ajalpl = Y ajlnlhin — 2p] = a; * Af2p), (3.23)

n=—0oo

and
+00
di+1lp] = Z aj[nlgln — 2p] = a; * g[2p). (3.24)

n—=—-—oo

Concerning the reconstruction we have:

+o0 +0o0
aj = > ajp-hl.—n]+ Y djyr-gl —n]
= a1 xh+dji1*g (3.25)

The perfect decomposition is ensured by the next theorem.
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h_2°V2 A*h
N AN

subsampling A . .
chch v zeros insertion

@

Figure 3.1: A signal f s filtered by a low-pass and high-pass filter respectively to give s and
d after sub-sampling, while an insertion of zero with dual filters reconstruct f

Theorem 3.2.6. (Vetterli)

The filter bank performs an exact reconstruction for any input signal if and only if :

h(E+m) - h(€) +T(E+7) - 5() =0 (3.26)

and

h(€) - h(€) +3(6) - 5(6) =2 (3.27)

We obtain a perfect decomposition reconstruction by using convolutions and deci-
mations as we can see on the figure 3.1.

By sub-sampling, we modify the relations between our wavelet decomposition coef-
ficients and the original signal. Since we have Z(¢) = Y.°° ___ z[n]e™", the Fourier series

of the subsampled signal, y[n| = z[2n], is going to be such that:

y&) = nféooﬂ’f‘[Qn]e_WE
SR = 3 e
.o = Y (D pppgemins
= Y2 = %(5?\(5)+5?\(5+7T)) (3.28)

And by interpolating with zero, for reconstruction we have a similar relation. The
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insertion is defined by:

3 z[p] if n=2p
yln] = (3.29)
0 otherwise

whose gives us :

g = Y alple *#
= §6) =829 (3.30)

For a first level decomposition, we denote s and d the wavelet decomposition coefficients.

3(¢) = % [ﬁf(g) +E-f(£+227r>] (3.31)

d(¢) = % [ﬁ-f(%) +§-f<5+227r>] (3.32)

We obtain

and

Fle) = 5 [A-320) + 5 2t + )] (3.3

If we do not subsample, we obtain an undecimated wavelets decomposition. It will increase
computational time, for a signal of length N = 2P, since at each level ¢ we have compute
2P points and not 2P~¢ points for the decimate case. Although this decomposition is not
orthonormal anymore but it has the advantage of being grid’s independent. We now do a

recall on the Wavelet packets decomposition.

3.2.3 Wavelet Packets Representation

The wavelets decomposition is obtained by projection of each subspace V;_; on the direct
sum of two orthogonal spaces: V; 1 = V; @ W;. Instead of dividing only V; ; we can decide
to operate also the same division on the details space W;_; to obtain a binary wavelet

packets decomposition since there is symmetry now. We then have a recursive symmetric
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splitting algorithm as opposed to the wavelet decomposition. For so we have to define wje, j,
the filter used for the j'* space at the lev'” level to project on Wiev,j- That enables to have
the new iteration relation for the projection Wicy_1; = Wiey2j ® Wiep2j4+1. To obtain the
two components, also called children nodes, we convolve our signal either by the scaling or

the wavelet functions. We obtain the two wavelet packet orthogonal basis:

lzeju = Zh lev 1 _2lev—1n) (334)

and Q,blze];lﬂ = Zg 1/1lev 1 Zlev_ln) (3.35)

We denote mg, m; € L?(IR), in the Fourier domain such that:

mo(§) = ;i and my(§) = &52), (3.36)

r&;lev,j(g) = H mai(2_i§) (337)

where « corresponds to the decomposition of j in the dyadic decomposition, j = Eif& D20,
And we have V] € IN, 69?1:_01 W]l = Vp.We represent this tree for the one dimensional case on

figure 3.2. This algorithm enables to build a large family of spaces that will be used for our

LN - BN

I AR YEARYNEABRYNESAR)

Figure 3.2: One dimensional Wavelet Packets Decomposition

preprocessing.
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3.3 Deconvolutions, sharpening and smoothing

In this chapter, we present various applications to deconvolve, sharpen or smooth one and
two-dimensional signals. All these examples are based on the wavelets representation and
iterative algorithms. In the first example, we are interested in restoring signals that have
been blurred because of a lost of informations. Instead of having a signal f, for example
we only have is low pass decomposition s. The second example is about sharpening and
smoothing signal components. And finally, we present numerical results of these examples

for one and two-dimensional data, including the removing of Barbara’s vest stripes.

3.3.1 Applications to deconvolution

We used in this chapter the notations used before. We start from an original signal f,;q
which we only have a blurred version f as only the low pass decomposition “s” has been
kept. It can be written as f = 1ng -8, with s = mg - ﬁr\ig and d = my - ﬁr\ig, where
“d information” has been removed. We have to compute the high pass decomposition
coefficients d to reconstruct f,.;4. We can apply a division in the Fourier domain but it will

imply instability problems. Let’s define fj = f, s1 =s and d; = d. We will use the

capital letter to define the Fourier transform of a signal, F' = f

S1 di =0

Figure 3.3: Initial state, virtual tree showing high pass coefficients set to zero

Remark 3.3.1. The term “virtual” and “real” are used to define the different trees con-
struct for the undecimated wavelet packets representation. “Real trees” correspond to the
representation that have a true meaning like any decimated representations. Some wavelet
packets trees do not correspond to a real tree. This feature is due to the fact that we do

not have anymore an orthogonal decomposition by using undecimated wavelets. Thought,
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the low and high frequencies components are not anymore independent as in the decimated
case. There now exists some conditions linking these two subspaces and at each level of the
decomposition the dimension subspaces are reduced by one instead of being divided by two

like in the decimated case.

Presentation of the algorithm

For our example, we have by construction d; = 0 and recompose the signal to obtain the

signal fi:

S1 0

Figure 3.4: Virtual tree showing reconstruction of fi1 = f from s1 and dy =0

P& =F(&) = Si(&).mu(€) + 0mr(€) (3.38)
= Fi(€) = F() - |mo(6)? (3.39)

We iterate a process that we explain now to obtain fo. We obtain ss and do by

decomposition of fi such that S3(§) = mg(§) - F1(§) and D9(&) = my(&) - F»(€) in the

Fourier domain.

J1
o S

52 dy

Figure 3.5: Real tree for the decomposition of f1 in so and ds

We set so = s1, and we reconstruct fo:

F(8) = 51()-mo (&) + D2(§) mi(§) (3.40)
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f2
el ™~

51 dy

Figure 3.6: Virtual tree showing reconstruction of fo from s1 and do

We iterate this step. For each n, we decompose f, in s, and d, and reconstruct

fnt1 , setting s, = s1, we obtain the following trees:

fn
— S

Sn+1 dnt1

fn+1

51 dn+1

Figure 3.7: Real and virtual trees showing decomposition of f, in s, and dy, and recon-
struction of fn41 setting sp41 = S1

Vn =2 Fp(€) = 51(6)mo(§) + Dnia(§) mi(§) (3.41)

with S1(&) = mo(§) - F(§) and Dpi1(§) = mi(€) - F,(§). We can write the following

relation:

V22 Fpya(6) = F(E) - lmo(&)]” + Fu(€) - [ma(€) (3.42)
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As we know that F (&) = F(£) - |mo(€)|?, by induction we easily show that:

n

Vn>2  Fu(&) = F(€)-|mo&) O Imi(&)?)

i=0
) ey L m O
W2 RO = PO @ (Tl 0s) (3.43)
As we have |mg(€)]? + |m1(€)]? =1, then
V22 () = Fi() - (1— lma(6) ) (3.44)

We assume that the comportment of mg around zero is such that [mg(£)|? = 1—A|¢]7+0(£7),

we have

nlg{)lo Fo(m) = (3.45)
And we can conclude:
Ve> 0,30 <1/Vée[-m+em—¢ [mi(§)] <9 (3.46)
=Vée[-m+em—¢], lim F,(§) = F1(§) (3.47)
n—oo

And we also have F,(m) = 0. By letting d,, be the Dirac function in zy we can write that:

lim F, = F - (1 —6;). (3.48)

n—00

The convergence of this algorithm is given by the fixed point theorem.
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3.3.2 Application to sharpening and smoothing

In this chapter we show how to apply our algorithm to enhance or smooth some frequency
bands without creating artifacts. We are working with discrete signal living in L2 ([0, N —1]).

At each level lev, for all filters wiey o, O < a < 2¢v we can write its Fourier transform as:

lev—1 00
Wiew,a H M, (2 15 where o = Z ai.Z(le”_l)_i, o; =0or1 (3.49)
1=0
ag =10 ag =1
011:0 011:1 011:0 011:1
a2:0a2:1a2:0a2:1a2:0a2:1a2:0a2:1

Figure 3.8: Tree Classification on p levels with o = (o, o1, , @)

For a given signal f we compute its projections on the different subspace given by
its wavelet packets decomposition, and obtain the following formula:

N-—

fwleu,a Z wlev a0 f wlev Ne! where wllev,a = wl@U,Oé(' - Z) (350)
1=0

Similarly at the previous chapter, we can write in the Fourier space the relation given by
the “construction-decomposition” of the wavelet packets wie, o.We obtain fi by using its

wavelet packets decomposition until the level lev, we set to zero all the wavelet packets but

Wiewv,ot
F1(E) = |Breva () 2-F(6) (3.51)

And then we reconstruct our virtual tree to obtain fo. By induction we obtain f, with the
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[

0 0 0 0 w3,4 0 0 0

Figure 3.9: Virtual tree with all components set to zero but w34

same procedure. And we have:
Ful8) = Breval&)*" F(€)
So if we have v € RPT!, we can construct
p
hp(€) =i+ fil)
i=0
that we can write in the Fourier space:
—~ p —~ —~ p . —~
Fo(&) =Y - fi€) = Fo(&) = [ vilbien.al™] - F(6)
i=0 i=0
We fix 79 = 1 and we obtain
-~ p . AN
= [p(€) =L+ D 7ilBiewal17(6)
i=1

By using the limited development of z — (1 + z)? in zero:

(1+$)5:1+5'$+@-$2+...+ ( P ) -z 4 o(z™)

And we also have for z — (1 — )% a similar result:

BB —-1)

1-z)f=1-p-2+ 5

ol S S B L -z +o(z")

127

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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And then, when we choose y; = (—1)° we obtain:
1

— ~

Fa(&) = F(9).(1 = [Breval®)’ + O(|Brev,a (§)™) (3.58)

As we saw in the precedent chapter, we have convergence everywhere but at & = w. It
corresponds to the Nyquist frequency. In the Haar case, it’s the vectorial space [ 1 —1 1
—1---1 —1] ‘R that is orthogonal to the subspace spanned by the low frequency component.
And it is the reason why we cannot recover it. We observe that § =1 is a key factor. And

B’s value will determinate if we enhance or blur the corresponding wavelet packets.

3.3.3 Numerical Examples of one dimensional deconvolution

We have shown in the previous chapters that for a given one-dimensional signal f, with no
energy at the Nyquist frequency, we can deconvolve it using the algorithm defined before.
We start with a periodic chirp (N = 128 points) z +— sin(cz - (N — z)) that does not have
any high frequencies. This chirp has been chosen to have low frequencies concentrated in

the center of the signal as figure 3.10 shows. We iterate the deblurred algorithm described

Signal chirp (128> & its FET Absolute value

ES

o.s

o

Amlte

Absolte vlie

B ENN
omnonmon
é ‘

I I B |

EX=) =0 EC) a0 S0 o
Frequency (Nyquist = 64>

Figure 3.10: A first chirp and its Fourier transform

before, and observe the evolution of the signal on figure 3.11. The convergence is quite fast
as planned, as support(ﬂ is limited (no high frequencies). After an hundred iterations,
there is almost no variations. We observe that the differences only appear where we have
high frequencies as expected, as |mg| has more energy in the low frequencies than among

the high frequencies.
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Evolution from blurred to sharp for chirp(128)

129

-

F T & F 5 7 7 T L T T =

-1k +w+++"*+\+ ++4:l-+++++ -

20 40 60 80 100
T

120
T

1F T T T T =
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-1 L | | | | -

1 20 40 60 80 100 120
E T T T T T =
© 0
e | o
1 20 40 60 80 100 120
F T T T T T =
30
-1e | I 1 .
1 20 40 60 80 100 120
E T T T T T =
g o
-1 L | | 1 -
’ 20 40 60 80 100 120
E T T T T T =
B 0
ol

500

20 40 60 80 100

Figure 3.11: A first signal, starting from a blurred version converging to the original

We construct a second example with more energy in the high frequencies, as we

can now notice on figure 3.12. We observe that the blurred signal has lost much more

Signal chirpa(128) & its FET Absolute value

=0 PYe) =) 20 100 1z0

Absolte vlue

so o

1o =0 EC) Ao
Frequency (Nyquist = 64>

Figure 3.12: A second chirp and its Fourier transform

informations and we see the same kind of result but with a much slower

convergence.
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Evolution from blurred to sharp for chirpd(128)
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Figure 3.13: Starting from a blurred version converging to the original

3.3.4 Numerical examples of sharpening and smoothing

In this chapter we present numerical results for one and two-dimensional man made signals
and also for a real image. For the one-dimensional case, we create chirps that allow a better
understanding of the algorithm, since spatial and frequential locations are linked. We then
show result for two-dimensional signals made of chirp and sine products. And we finish

with the removing of Barbara’s vest stripes.
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Examples in the one-dimensional case

To visualize our sharpening or smoothing we are going to use our previous chirp (1024
points) and we are going to enhance or smooth each frequency band on the second level.

So we obtain two examples for each sub-band. We can see on figure 3.14 and 3.15 the

0 B N W MO

Too =oo =oco Soo sSoo soo oo =oo Soco Tooco

Too =oo =oco Soo sSoo soo oo =00 Soco Tooco

Too =oo =oco Soo sSoo soo oo =oo Soco Tooco

Too =oo =oco Soo sSoo soo oo =oo Soco Tooco

Figure 3.14: Sharpening and smoothing of woo and wo1 on a chirp of length N = 1024

successive effects of the sharpening and smoothing. In each case, we manage to modify

the energy level without creating any artifacts. The effects on the signal is more or less
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important depending on how much energy is contained in the sub-band.

ER=Y=)

Zoo

E=EY=Y=Y

aoco

sSoo

[=Y=Y=

ER=Y=)

Zoo

=oco

aoo

sSoo

[=Y=Y=

Zoo

F=Y=Y=Y [=Y=Y=Y 1ooco

ER=Y=)

Zoo

E=EY=Y=Y

aoco

sSoo

[=Y=Y=

Zoo

F=Y=Y=Y Ssoco 1ooco

ER=Y=)

Figure 3.15: Sharpening and smoothing of wa 2 and wa 3

Examples on two dimensional signal

Zoo

=oco

aoo

sSoo

[=Y=Y=

Zoo

F=Y=Y=Y [=Y=Y=Y 1ooco

on a chirp of length N = 1024

We create a two-dimensional signal which is the sum of two functions: a product one

dimensional chirp that allows localization of the frequencies (as we have with the one-

dimensional chirp) for a better understanding, the product of two one-dimensional low
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frequency cosines. For (z,v) € [1, N]?, the intensity I of the signal can be written as follow:

) oo (222 =2))]
)_COS (wy-(é\;—y)ﬂ

) COS(Z—Z); (3.59)

N
I(z,y) = [50+ (80— ‘5—:1:

N
[504—(80—‘5—3/
E

32

+ 5000 - cos(

The two dimensional signal is represented on figure 3.16, the upper left image.

Original ( quad[128 , 128] ) Sharp from Original ( quad[128 , 128] ) with y="-5 , Lev = 2, PosX = 1, PosY = 1

Sharp from Original ( quad[128 , 128] ) with y= -10 , Lev = 2, PosX = 2, PosY = 2 Sharp from Original ( quad[128 , 128] ) with y="-5 , Lev = 2, PosX = 2, PosY = 1

Figure 3.16: Sharpening and smoothing of the image given by equation 3.59 for different
subspaces and values of A
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Example on a real image

We now work on a real image and we present result obtained with Barbara, an image

(512,512) showed on figure 3.17. We want to remove the vertical lines appearing on “Bar-

Figure 3.17: Original Image “Barbara” (512,512)

bara’s vest”, just below her left arm without erasing the shadows. The stripes correspond
to the wavelets of the first level, with low frequency in the vertical direction and high fre-
quency in the horizontal direction. The wavelet representation is adapted for such kind of
signals. The result can be observed on figure 3.18. We deconvolved only a small part of the

vest and left the other part as it was. We can observe that the arm’s shadow is still on the
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Figure 3.18: Image “Barbara” (512,512) partially deconvolved, the stripes of the vest have
been removed

vest, it didn’t disappear with the algorithm. We observe that we do not loose resolution

and sharpness as in the heat equation process or with a convolution.
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3.4 Applications to Denoising

S.A.R. images with targets have some particular properties, more precisely the range of
value (due to the targets) compresses the structures. We apply a preprocessing to be able
to have a better denoising. In this report, we develop an algorithm to denoise radar images

in four steps:
e Decomposition on Wavelets Packets Undecimated and Preprocessing,
e Applying a Threshold for targets separation and a « correction,
e Denoising using multi-pass wavelet packets decomposition,
e Reconstruction of the complete signal

This algorithm has been implemented inside an existing platform for image and signal

processing.

3.4.1 Preprocessing and Goals

Wavelets have been used for denoising. But we know that the results are not always good.
Too many artifacts are introduced due to the data structure. In the case of S.A.R. images,
we have a bad representation, as we can see on the figure 3.19 their statistical representation.
Targets can be assimilate to Dirac functions or noise. To avoid the artifacts generated by
this repartition, that essentially compress the structures and gives discontinuities due to
the targets, we apply a preprocessing to our data set. In the first part we are going to
extract the low frequencies, using undecimated wavelets. We know that the noise is almost
inexistent in this component. When we have done this, we re-normalize our data. And
in the second step we are extracting the targets, assimilated as high values. These targets
modify the range and make impossible most of the denoising based on wavelet analysis.
Since they compress the other data in a small range, by renormalisation. So we decide to
extract them before denoising. But we have to be careful to not add artifacts to our data.

And we are able to apply an optional “y correction”.
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Probabilty Density

o
Min Med Max

Figure 3.19: Probability density function of a radar image with targets, showing the range
of data.

3.4.2 Extraction of Low frequencies

For each signal we subtract the low frequencies. We apply an undecimated wavelet de-
composition until level three or four depending on the size of the signals. And we set to
zero all the wavelets coefficients but the low frequencies components. And we rebuild our
signal. This algorithm enables us to apply a soft threshold on our data. It corresponds to
a multiplication by a bell in the Fourier space. We have extraction of low frequencies (at a
fixed level) that is obtained by keeping the coefficients of the left box of the corresponding
level and setting the other elements to zero. The reconstruction of the signal will give a
signal containing the low frequency components. This scheme can be understood with the

figure 3.20

Low3
A NN

-~

Figure 3.20: One dimensional preprocessing using wavelet packets reconstruction.

Remark 3.4.1. After Wavelet Packets Decomposition undecimated, for a one dimensional
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signal (size N) we obtain (2'"¢! x N) coefficients at each level. So we have (32'U¢ «
N) elements, it means ((2(mezleveltl) _ 1)« N) coefficients if we have decomposition until
level maxlevel. Instead of the N coefficients with decimated decomposition. For a two
dimensional signal, the amount of data is even bigger as we have (4(ma$level+1> —1)*x N

elements.

We have shown in the previous chapter that a similar computation can be done by
keeping any wavelet packets subspace and setting to zero the others elements. We subtract
this component to the original signal and the working data set is therefore composed of two
components. We are keeping a side the low pass part and process the high pass part. We
have a similar result for two-dimensional signals, like images that we will denoise later. The

scheme for the decomposition-reconstruction is shown on figure 3.21. After the extraction of

V3 0
v2] 0 ojgq o
V1 0 0 0
0] 0 0]0
0 0 0 0 0 0
LOWl LOW2 LOW3

Figure 3.21: Two-dimensional preprocessing using the wavelet packets reconstruction.

the low frequencies, we obtain two components as previously. The low frequency component
is kept as is, its complementary part needs processing. We apply a renormalisation using

the a linear renormalisation that proceeds the “y-correction”.
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3.4.3 Renormalisation

We want to apply a renormalisation that keep some properties of our signal f to apply
different operators. We re-normalize our signal between -1 and 1, and we also force the
median to have a value equal to zero. To be able to apply a v function on each side of the

median. We apply a linear transformation, that we define as follows:

n = i ) 3.60
min oin f(@) (3.60)
med = medianc. nif (i) (3.61)

= ; 3.62
maz e f(@) (3.62)

And we have the following affine transformations:

T — med

ifr € [min,med| = f(z) = (3.63)

med — min

— med
ifr € [med, maz] = f(x) = % (3.64)

We represent the linear transformation on figure 3.22

Max ——- -—

Med —- -

Min ——- -—

Figure 3.22: Affine renormalisation on each side of the median value, that will enable
to apply the “y-correction”, x — sign(z)|z|”, without lost of symmetry. The median is
invariant by this transformation.

3.4.4 Targets extraction

We are now working on the high amplitude part of the signal, as opposed to the previous part
that was centered on the frequencies domain. This part is constituted of small structures,
targets (high values that we compare to Dirac or characteristic function) and noise. Targets

are represented by high positive values. We are extracting them to denoise the small
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structures without being influenced by the targets. We have different possibility to do

so. But many artifacts can be introduced. The first and the easiest way is to apply a

Figure 3.23: Influence of regularity on vision. The central graph show two one-dimensional
signals. One is C™ while the other is piecewise C'. We generate two-dimensional signals
from them to observe the importance of the C' property in vision.

hard threshold. We separate the signal in two parts by assimilating targets to the highest
few pour-cents. By iteration we can extract one, two, three or more pour-cents. And the
separation between targets and simple structures is done but it is a manual procedure. The
second method is based on the probability density. We know that our data stretch the range
of value and we assimilate it to a bi-modal density. Computing the quantiles will enable
us to find the separation of these two modes. As a matter of fact, there is a big jump of
value between the two modes and that is going to generate a jump in our quantiles. These
two methods have the drawbacks of applying hard threshold. The last possibility that we
consider is based on the same idea at the extraction of the low frequencies. We want to
apply an operator without adding artifacts. As we know image regularity is important as
figure 3.23 shows. As the matter of fact, when we extract our data by hard threshold we
obtain signal without enough regularity. Our signal can be assimilate to a “hat function”,
and we know that it implies artifacts. We want to apply a soft threshold to separate targets
from the small structures. Moreover, we know that targets have positive values so we only
apply this soft threshold to [0, 1], that corresponds to the value range contains between the
median and maximal values. Our function should be in C2?(IR), as the one proposed on the

graph on figure 3.24. We apply now a “y-correction” that will help to concentrate or spread
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Figure 3.24: Target extraction using soft threshold to avoid artifacts as shown on figure 3.23

the different probability densities.

3.4.5 ~-Correction
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Figure 3.25: Three different v functions, x — x7, to emphasize or reduce the various
different structures by modifying the probability density functions. A wvalue of v between 0
and 1 will create a function above the identity function and then will “push” the data to
greater value as opposed to v > 1 that will “pull” the data to zero

After renormalisation and extraction of the targets, we can apply a y-function,z —
27, to emphasize the structures compared to the noise. On each side of origin we apply the

“gamma-functions” with different values for v. We show their graphs on figure 3.25. We
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apply this transformation on [—1,0] and [0, 1] separately. Denoising can now be running

on this preprocessed signal. The median is not modified with the “

~v-function”, as it is a
non-decreasing function. We present a recapitulatory of our processing before applying a

denoising.

3.4.6 Preprocessing recapitulatory

We have shown in the last few chapters how to extract parts of our data to be able to
have favorable conditions for denoising. We represent this summary as a diagram on figure

3.26. We have separated our data in three parts: low frequencies, high amplitudes called

AAmpIitude
1.
\
Threshold N /. /.
k\\\\
\\ \4— Soft Threshold
N
N
Q\ [ Region to Denoise J
\\ Frequenc
NN e
0} Thresh old Nyquist

Figure 3.26: Diagram showing the preprocessing steps before denoising

targets and small structures to denoise. We know that the low frequencies do not contain
any noise, we keep this apart and add it later. The targets are considered as high positive
values, white dots, the noise does not have a veritable influence on their values. Targets will
be added later too. We have to concentrate our denoising work on the small structures that
correspond to the last part. The next chapter is going to show how to apply a multi-pass

denoising using wavelet packets.
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3.4.7 Denoising using multi-pass wavelet packets decomposition.

We apply here an algorithm developed by Lionel Woog, in his Ph.D. thesis [30], to denoise

our data. Decimated wavelet packets are used for this step for fast computations. This

algorithm is composed of :

e Multi-pass wavelet packets decomposition-recomposition with a hard threshold (as

shown on figure 3.27)
e Spatial Spin Cycle
e Spin Cycle on the filters

Spin Cycle is used to compensate the dependence on dyadic grid or on the filter with an
average of the results. To do so, we translate the data. For the spatial spin cycle, we
shift the data of one pixel in each direction and repeat the algorithm, and take the average
value. While the for the filters, we repeat the algorithm with various filters, before average.
Usually four spatial translations and four filters are adequate. The Multi-pass algorithm

Best Basis Decompos ition Best Basis Decompos ition
of the S ignal of the R esidu(l )

A ¥ A ¥

Coherent(1) . Coherent(2 )

Residu(1) / / Residu(2)

1\N

Threshold Threshold

Denoised = Coherent( 1) + Coherent(2)

Figure 3.27: Two-passes algorithm for denoising using a hard threshold

is composed of the following steps (the first three corresponds to the one pass best basis

thresholding):
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Wavelet Packets decompositions and search of Best Basis.

Application of a hard threshold after data sorting by absolute values.

Wavelet packets reconstruction to obtain the coherent part.

Iterations of these three steps on the residue, until the residue is considered as only

noise.
e Summation of the coherent parts

A two pass algorithm is represented on figure 3.27. The advantage of this algorithm is that
it enables to “see” structures in different steps. The second and third pass enable to catch

the small structures living in each respective residues.
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3.4.8 Summary and Results

Our algorithm can be seen as a separation of our image in three parts and a denoising of

one of them. This summary can be seen as the diagram shown on figure 3.28. The com-
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Figure 3.28: Diagram showing the different steps of the global algorithm used for denoising

bined algorithm has been implemented on a platform that contains others image processing
programs. The canvas corresponding to this structure is shown on figure 3.29. And by
applying the algorithm to the original image, shown on the left of figure 3.30, we obtain a

interesting result on the right of figure 3.30.
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Figure 3.29: Canvas of the algorithm implemented in the platform

Figure 3.30: Original and denoised SAR image, with our preprocessing and multi-pass al-
gorithm
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3.5 Application to brain activation detection

In this chapter, we are confronted to the following medical problem: detection and localiza-
tion of activation regions in human brain using functional MRI. Two different MRI scans
were acquired: one baseline during which the subject was not performing any task, and
another set during which the subject was performing a motor task. We would like to detect
regions of activation. We will represent the data as two three dimensional data sets. The
images should have the same spatial size but their respective number may differ. The third
dimension corresponds to the temporal dimension, different realizations of the same state
(active task or baseline). Each data set is a temporal sequence of one single slice of the
brain. We assume that the slices in the activated data set and baseline are registered in the

z-dimension as shown on figure 3.31.

“N1

N2

Figure 3.31: Two data sets of brain given by the functional MRI, baseline and active task.

The steps of the algorithm are the following:

e Decomposition at various scales of each image using the undecimated wavelets decom-

position.

e For each wavelet coefficient location, estimation of the two probability density func-

tions.

e Computation of a “Cost Subspace” for each subspace, that interprets the dissimilarity

of the two probability density functions.
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e Recounstruction of the “Cost Subspaces” to obtain the dissimilarity at a fixed level

and merging of the various levels.

3.5.1 Preprocessing with Wavelets Decomposition

We represent our data with the multi scale analysis obtained with undecimated wavelets as
explained before to have representation grid’s independent. We use the algorithm developed
by Roland Guglielmi. We represent this decomposition as a table. Each box has the
same size as there is no decimation. But for an easier visualization we show them as a
decimated decomposition on figure 3.32. The first raw is the original signal and the following

correspond to the different levels of decomposition. We represent our decomposition on

Z 1 X

Figure 3.32: One dimensional wavelets decomposition

figure 3.33 for our two datasets. We apply this decomposition. For a fixed scale and a

v v

Ll N L1 7 N2

e Ve

Figure 3.33: Two dimensional wavelets decomposition of the two sets

given location, we will compute for each subspace data set (that has the same size), the
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probability density function given by the respective N; and Na terms. We then determinate
the dissimilarity of these two functions to compute the “cost subspaces” that will allow the
reconstruction of an image that corresponds to the difference between our two data sets at

this fixed scale.

Remark 3.5.1. During the wavelet decomposition, we have a growing size of our data, for
high level of decomposition, that is a real problem for two dimensional signals. It is the

reason why our study does not use the wavelet packet decomposition as previously.

3.5.2 Computations on each subspace

Subspace Vi

Level =i

Cost Subspace V'i

Figure 3.34: Cost Subspaces computed for a fized level (level =i).

We want to determine if we can discriminate locally different activations between this
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two modes. We make a discrimination at each scale. We have four subspaces corresponding
to each level, as we do not use the wavelet packets representation. We work in each fixed
subspace, and we have respectively N1 and N> realizations for each mode. For each level
we compute the four cost subspaces as seen on figure 3.34. Therefore we have to compute a
local cost according to the dissimilarity behavior of our data. We will call “Cost Subspace”,
the subspace corresponding to a signal (it has same dimension as this subspace) and gives
us the local difference between our two data sets. For each pixel, of each subspace, we apply

the same operations. The following steps are applied:

Step 1 Extraction of the N7 and Ny realizations with identical pixel location and Estimation

of the two probability density functions

Step 2 Cost Computation using the differential entropy:
i=N

B(X1, X2) = 3 (i = ) - og() 2 0 (3.65)
i=1 !

Step 3 Creation of the Cost Subspace and reconstruction.

We give details of these steps in the next few chapters.

Estimation of the probability density function

We look for activation zones using a bin probability for each scale. We have now N; and
N3y set of images, and their respective undecimated wavelet decompositions. Therefore, we
are interested in activation difference in the brain and not in the background. So later,
when we build our probability density we will use this knowledge to compare the data. A
noisy background will not affect our study. We want to detect the active parts of our data.
We are working at various scales meaning, in our context, different levels of decomposition.
Our study is done at each level separately. We work on the decomposition coefficients at
fixed levels before reconstruction. We have two data sets, each containing images with
identical sizes. These images are 256 by 128, and they have been obtained by M.D. Kevin

Johnson (School of Medicine, Yale University). They correspond to slices of the brain in a
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Figure 3.35: Preprocessing of measure for the cost computation

noisy background. We are only interested in what happens inside the brain. Therefore we
consider the smallest rectangular region that contained the brain. Within this region, we
estimate the probability density function using the first image of each data set, to obtain
a global measure. The probability density is approximated with an histogram. We can
calculate the histogram based on quantiles or linear distribution as shown on figure 3.35.
This probability density function is computed to establish the dissimilarity between the two

sets of realizations.

Extraction of data with identical spatial localization.
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Figure 3.36: Extraction of the two realizations sets for each pixel



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 152

We have two different realizations of our data, baseline and activated. For each pixel
(i,7), we create two sets corresponding to the N; and N, realizations, as seen on figure 3.36.
These realizations do not have any temporal relations, and we are only interested in the
statistical properties of our data. We then compute their respective histograms, using the
measure computed previously during the preprocessing. For each subspace, the size and
location of the bins (shown on figure 3.37) have been estimated previously using all the pixels
of the subspace. Then we use the same bin sizes for every pixel of this subspace, related to
the measure previously, to estimate the histogram of the time series. The different measure

have been chosen globally, they depends on the pixel values of the whole subspace. In order

A A

": "“ /,\ ::
N \ Y ——
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Figure 3.37: Probability density function computed with the measure defined with the pre-
processing

Max

Min

to compare the two time series we compute their relative entropy. A “Cost subspace” is

obtained by allocation to every pixel of this value.

Cost Computation and affectation of this value

For each pixel (i, j), we estimated the probability density functions using the two histograms.
We decide to compare them by computing the differential entropy £ as follow:

n=N
B(X1,X0) = 3 (pn = 4a) - 08(;") 2 0 (3.66)

n=1
where p,, and ¢, represent the probability of X; and Xy in the interval I,,, with [Min, Maz] =
UZJ\L In, for a given pixel (i, j). We compute the differential entropy using probability density

functions and not the values. It give a better idea about how different are the probabilities,
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as seen on figure 3.38. We then affect this value cost to the spatial location (7, ) to create

A

[

. B
Min Max

Figure 3.38: Differential Entropy as an estimation of the discrimination of two probability
density functions

the cost subspace. For each level (or scale), we have obtained four “Cost subspaces” that
enables us to reconstruct an image corresponding to the difference at this fixed level. This

step is now follow by the reconstruction.

Reconstruction

For each decomposition level we have four subspaces (except at the pixel level). We rebuilt
as many images as we have levels of decomposition, as represented on figure 3.39. Each
reconstruction gives us a different scale for classification. We are then able to visualize the
differences between our two data sets for different scales. We note on figure 3.39 by V; the
cost subspace at the level :. We then are able to multiply these result to visualize only the
pixels seen as important at every scale. Since our cost function is positive, multiplying the

various values is equivalent to a smooth version of the logic operator “AND”.

3.5.3 Results

We present a result for the functional MRI data on figure 3.41. From these experiments,
we note some important properties. First, we have consistency through the various scales.

In fact, after only two levels the products obtained by this algorithm is almost the same.
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Figure 3.39: Wavelet reconstruction from wvarious levels
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We have a convergence of our algorithm through the scale which allows us to think that

the result is stable. The second property is due to the multi-scale approach. We combine

the result of different scales, we refine our result. By multiplying the various at different

scales we go from coarse to fine, and so by iteration we discard the invalid “activated pixels”

(informal conversation with Francois G. Meyer). For easier comprehension, we explain this

property on a one dimensional example shown on figure 3.40.
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Figure 3.40: Multi-scale property of the algorithm.

Spatial position

The product of the result of the various scales enable a better localization

At each scale, activation is detected.
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We observe on this result the consistency of the multi-resolution analysis. After two

levels, the product of the reconstructed images does not have significant changes.

Activation Products
at different level S

rm<mr

=

Figure 3.41: Result of the brain activation detection at various scale. The left row shows the
activation at level O (pizel level) to 3, while the left row shows the products of the various
levels starting at 0.
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3.6 Conclusion

The three applications developed in our reports were based multi-resolution. Since we
worked at different scale and not only at the pixel scale, we obtain a better analysis and
result. We have shown in this report how to preprocess data with undecimated wavelets.
Non-decimation is crucial as it gives grid independence as opposed to the classic decimated
wavelets representation. Our preprocessing is followed by classical engineering methods. It
also means that most of the steps, as the cost function or y-correction are examples, of our
algorithm can be modified. Improvement can be done in many directions since the various

parts of the algorithms are independent.



Chapter 4

Conclusion

In this thesis, we have presented properties and results about the factorization representa-
tion based on the Blaschke Product. Stability to noise and invariance have been shown for
the phase of the Blaschke product. The non-linear approximation gives good results and
fast convergence. Further work have to be done to optimize the algorithm with the local-

Vi-|81°
Bz

5, The two dimensional extension, that we develop, has properties of

ized term 2z —
stability to noise to but many parameters, such as the partition unity of the Fourier space
or the value of e for the threshold, have to be tested to improve the algorithm. It also gives
an alternative for computing phase for segmentation.

In the second part we have worked on segmentation using preprocessing based on the wavelet
packets representation. the choice of a cost function and the addition of an extra term to the
Mumford-Shah functional gave us the canonical number of regions, based on our criterion
of regions of similar size, for segmentation. Efficient segmentation can then be obtained
by keeping only the useful filters. By conception this algorithm is modular and then many
improvement can be done on each bloc, as the choice of the cost function or the filters used
in the preprocessing.

In the third part, we worked with mutli-resolution algorithms. We have shown application

of the undecimated wavelets and more precisely how to create an equalizer for one and two

dimensional signal that does not suffer of artifacts. An implementation on Matlab has been

157
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started but more can be done to make the tool more operational. The detection of brain
activities has good results as it uses standard engineering techniques with the multi-scale

analysis. Improvement can be done at various steps since the algorithm is also modular.
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