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Abstra
tPhase Evaluation and SegmentationMi
hel R. NahonYale University2000
This dissertation is organized in 3 parts. The �rst part is a study of instantaneous fre-quen
ies for one and two-dimensional signals. In 1946, Gabor proposed in [1℄ to analyze aone dimensional signal via its 
omplexi�
ation. We re�ne this idea and study the Blas
hkeFa
torization to separate frequential and amplitudal information. We demonstrate stabilityand invarian
e properties. We des
ribe an iterative algorithm to de
ompose a signal in anorthogonal basis of �nite Blas
hke produ
t. An extension of this algorithm is presented forthe two dimensional 
ase.In part II, we deal with the problem of textural segmentation. Many appli
ations in imageanalysis are based dire
tly or indire
tly on segmentation. Several algorithms give good re-sults. We study the properties of the pyramidal algorithm developed by J.-M. Morel (andhis 
ollaborators), that is based on the Mumford-Shah fun
tional, as its properties interestus. For textured images a prepro
essing is mandatory. In [19℄, a ve
tor image is obtainedafter �ltering with an unde
imated wavelet de
omposition by Koep
er et al.. The problemis now to segment a ve
tor image. The \good �lters" have to be 
hosen to obtain a rea-sonable segmentation, regions with 
omparable sizes. We propose an algorithm to sele
tthe useful �lters in a library for a 
hosen image. It enables to redu
e the 
omputationaliii



time and give a more eÆ
ient segmentation. We present an extension of the Mumford-Shahfun
tional and show how to redu
e the dimension of our ve
tor image. Di�erent results anda 
ounter-example, where the pyramidal algorithm is not optimal, are presented.The last part is devoted to the appli
ation of unde
imated wavelets. We believe that multi-s
ale analysis is an important tool for image and signal pro
essing. We represent our datawith the wavelets and wavelet pa
kets de
omposition. We work with unde
imated waveletssin
e they are grid's independent. We �rst summarize their properties before showing someappli
ations. The �rst appli
ation is de
onvolution, sharpening and smoothing signals us-ing the subspa
es obtained with the wavelet pa
kets. The se
ond one is about denoisingradar images using the separation of the stru
tures given by the wavelet representation, tosolve the troubles generated by the the targets. And �nally, by extra
ting the variations atvarious s
ales, we show results for the dete
tion of brain a
tivities in fun
tional-MRI.

iv
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Chapter 1
Phase Evaluation and Blas
hkeProdu
t
1.1 Introdu
tionWe develop an approa
h to signal analysis using instantaneous frequen
ies, for periodi
fun
tion. We exploit an idea of Gabor's developed in [1℄ to use the phase of the 
omplex-i�ed analyti
 signal to de�ne the instantaneous frequen
y. In [8℄ and [9℄, Voe
kler showedhow to understand the instantaneous frequen
ies and envelope, based on the \produ
t rep-resentation of signals" whi
h he modeled as polynomials or rational fun
tions. The Hilberttransform is used to 
ompute this analyti
 signal. In 
ase of a one-dimensional signal, itsamplitude gives an \envelope" of the signal. Computing the frequential information fromsu
h a fun
tion is unstable in the presen
e of noise. For the one-dimensional 
ase we willrefer to the Canoni
al Fa
torization (see [2℄) and the Blas
hke produ
t that gives us someinvarian
e properties. This fa
torization 
an be assimilate with Voe
kler idea of \produ
trepresentation signals". In [3℄, Kumaresan proposed an extension of this work. He men-tioned that the 'Min Phase', 'Max Phase' and 'All Phase' was not done by Voe
kler butby Oppenheim and 
olleagues in 
hapter 12 of [6℄. In the representation, the 'All-phase'is a Blas
hke produ
t and the 'Min-phase' is an outer fun
tion (that 
orresponds to our1



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 2fun
tion G, up to a 
onstant fa
tor, that we will des
ribe later). We observe, also shownby Loughin and Ta
er in [4℄, that the sum of the derivative of the phase and the amplitudemodulation 
an be interpreted as the instantaneous frequen
y.We begin with an overview of results about the Canoni
al Fa
torization. We de�nean iterative algorithm to de
ompose an analyti
 signal in an orthogonal basis of �niteBlas
hke produ
ts. We e�e
tively obtain the information 
ontents in a wide variety ofexamples. This algorithm 
onsists in the de
omposition of a signal into di�erent os
illatorymodes.In 
on
lusion of our study, we attempt to extend the notion of Blas
hke produ
t tothe two-dimensional 
ase in a 
onsistent way. We apply this algorithm to synthesized andreal images.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 31.2 Summary of results about Blas
hke Produ
tsIn this se
tion we de�ne Blas
hke produ
t. We follow Zygmund [12℄ and Garnett [2℄ in thispresentation.1.2.1 De�nitionsOur dis
ussion will require the following basi
 de�nitions and properties, 
f. [2℄ and [12℄ fordetails.Theorem 1.2.1. If z 7! F (z) is regular for jzj � 1, then log jF (z)j is dominated in jzj < 1by the Poisson integral of the fun
tion log ��F (eix)��, i.e.log ���F (�ei�)��� � 12� Z 2�0 log ���F (�ei�)��� 1� �21� 2� 
os(� � �) + �2d�: (1.1)Let �1; �2; �3; � � � ; �m; � � � be a sequen
e of points su
h that 0 < j�mj < 1, and thatQm j�mj 
onverges. Then the produ
tYm b(z; �m) =Ym (z � �m)(z � ��m) 1j�mj ; ��m = 1��m : (1.2)
onverges absolutely and uniformly in every dis
 jzj < r < 1 to a fun
tion �(z), regular andbounded above by 1 in jzj < r, whi
h has �1; �2; �3; � � � ; �m; � � � as its only zeros there.Given F 2 N , let �1; �2; �3; � � � ; �m; � � � be the zeros of F lo
ated in fz; jzj < 1g and�k 6= 0 for all k. If F has an additional zero of order N � 0 at z = 0 the expressionB(z) = ei
zN �Ym (z � �m)(z � ��m) 1j�mj (1.3)where 
 is any real number, is 
alled the Blas
hke produ
t of F . If F has no zero forfz; 0 < jzj < 1g , then B(z) = ei
zN for su
h F . We have jB(z)j � 1 for jzj < 1 and theratio G(z) = F (z)B(z) (1.4)is regular and has no zeros in fz; jzj < 1g. We shall always assume that 
 is sele
ted sothat G(0) is real and positive.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 4In [2℄ various properties of the Nevanlinna Class are des
ribed. In parti
ular, oneobtains the least harmoni
 upper bound of log jf(z)j of the form R Pz(�)d�(�), with theimportant relation: d�(�) = log jf(�)j d�2� + d�s(�) (1.5)with d�s singular i.e. orthogonal to d�. The 
anoni
al fa
torization theorem for fun
tions inN is given by writing d�s as the di�eren
e of two positive measures d�2 and d�1, orthogonalto d�. With the previous de�nitions, we have the outer fun
tion:G1(z) = exp�Z 2�0 ei� + zei� � z � log ���f(ei�)��� d�2�� (1.6)And the singular inner analyti
 fun
tions Sj are de�ned by:Sj(z) = exp�� Z 2�0 ei� + zei� � z d�j(�)�; j = 1; 2 (1.7)That enables us to state the Canoni
al Fa
torization theorem:Theorem 1.2.2. Let f 2 N; f 6� 0. ThenF (z) = C �B(z) �G1(z) � S1(z)S2(z) ; jCj = 1 (1.8)where B is a Blas
hke produ
t, G1 is an outer fun
tion and Si are singular fun
tions. Thefa
torization is unique ex
ept for the 
hoi
e of C.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 51.3 Elementary 
omputations of the phase of a signalThroughout the paper, the signal f will always be a trigonometri
 polynomial with valuesin IR. We will 
ompute an analyti
 fun
tion f+ su
h that Re(f+jIR) = f . This fun
tionexists and 
an be obtained by 
an
eling the negative frequen
ies of the signal f̂ , the FourierTransform of f , so that supp(f̂+) � [0;+1). The steps are the following:� We 
ompute f̂ , the Fourier transform of f , and preserve the positive frequen
ies:f̂+ = 2F(f) �1(0;+1)+ Æ0(F)(f). A multipli
ation by two is ne
essary to preserve thereal part and we have Re(f+jIR) = f� We 
ompute the inverse Fourier transform: f+ = F�1(f̂+)Thus we have 
onstru
ted a mapping from L2(IR) 7! L2(IC) that maps a real fun
tionf to an analyti
 fun
tion f+ using the Hilbert transform:f+jIR = f + iH(f) (1.9)Now we work on the unit 
ir
le, given a trigonometri
 polynomial f , we 
onstru
t onIC an analyti
 fun
tion f+ (su
h that Re(f+jIR) = f). We then have holomorphi
 fun
tionF su
h that the restri
tion to the unit 
ir
le has the following properties:for ea
h � 2 (��; �℄; F (ei�) = f+(�) (1.10)This notation for fun
tions will be kept throughout the paper. We have interests in theinstantaneous frequen
ies. Thus, we will now explain how to 
ompute it.1.3.1 Evaluation of the instantaneous frequen
iesWe 
an obtain the Blas
hke produ
t by extra
ting the roots �k of F , an analyti
 fun
tionon IC , with absolute value smaller or equal to 1 and denote N the order of zero as a root.We have the following identity:F (z) = B(z) �G(z)withB(z) = zN � MYk=0� z � �k1� ��kz � ��kj�kj� (1.11)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 6We have, on the unit 
ir
le, jBj = 1 and jGj = jF j. Thus there exists a fun
tion � :[��; �)! IR, su
h that ei�(�) = B(ei�) and we obtain:B(ei�) = B(1) � ei R �0 �0(t)dt with �0(�) = N + MXk=0 1� j�kj2jei� � �kj2 > 0: (1.12)The fa
t that the phase � is non-de
reasing means that B has the property of always turningaround the origin in the same dire
tion. The 
urve de�ned by B has a 
ounter-
lo
kwisetraje
tory. This property is not always veri�ed by analyti
 fun
tions even if by de�nitiontheir Fourier Transform has only positive frequen
ies.1.3.2 The 
lassi
al method to 
ompute the phase gradientGiven a trigonometri
 signal f+, we 
ompute its phase modulo (2�) and its amplitude.We \unwrap" the phase along the �-axis and 
ompute its derivative in order to obtain theinstantaneous frequen
y of f . We assume that the phase does not have any jumps greaterthan �, or otherwise the phase 
ould not be unique.1.3.3 An alternative way to 
ompute the phase gradientMany numeri
al artifa
ts are introdu
ed when F vanishes, making the phase 
omputationssensitive to noise, and its phase has a dis
ontinuity as supported on the interval (��; �℄ . Tosolve these problems, we begin by 
omputing dire
tly the phase derivative and determineafter the phase value by integration. As a 
omplex signal, F , 
an be written as that follows:F = jF jei� 2 IC;with � the phase that we are interested inWe have a determined � if only jF j > 0, indeed � = �i log FjF j . We noti
e that a segmen-tation of the signal 
an be obtained using this 
riterion, the regions Ki are separated bypoints where jF j 
an
els. When we have separated our 
onne
ted 
omponents Ki 
ontainedin K = fx 2 
 : jF (x)j > 0g, we 
ompute the derivative of F a

ording to � and obtain theexpression: F 0 = jF j0ei� + i�0jF jei�, where u0 
orresponds to ��u



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 7thus: F 0F = jF j0jF j + i�0 (1.13)To obtain a signal with a meaningful phase, in the sense that the phase has somevariations, we �rst extra
t the low frequen
ies from our original signal. The instantaneousfrequen
y is 
onsidered as un
hanged under this operation, sin
e signals with low frequen
ies
ontents have very small 
u
tuation of their phase by de�nition.Remark 1.3.1. In the preprint \Lifting in Sobolev Spa
es" the authors propose a multi-resolutions algorithm to determinate the phase of a \given fun
tion u : 
 7! S1 (i.e.,u : 
 7! IC and ju(x) = 1j a.e.) we may write pointwiseu(x) = ei (x)for some fun
tion  ; 
 7! IR. The obje
tive is to �nd a lifting  \as regular as u permits."This fun
tion  is obtained by an iterative pro
ess, that 
omputes the fun
tion atvarious s
ales from 
oarse to �ne.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 81.4 An algorithm to 
ompute the Blas
hke Produ
tLet f+ be a trigonometri
 polynomial of one variable, de�ned by the restri
tion of f to thepositive frequen
ies in the Fourier spa
e:f+ = 2 � FT�1�FT (f) � �[0;+1)�; thus Re(f+jIR) = f: (1.14)We write f+ as a Fourier series with only positive frequen
ies on the 
ir
le:f+(�) = k=MXk=0 akeik:� (1.15)And now on the unit dis
, we have:F+(z) = k=MXk=0 akzk (1.16)We have shown that F+ is analyti
 in IC. But F+ has some zeros inside the unit 
ir
le. Wewant to build a new analyti
 fun
tion G+ with same absolute value a F+ on the unit 
ir
leC but no zeros inside the unit 
ir
le. Let's denote l = log jF+j, and obtain L+ analyti
 su
hthat Re(L+jIR) = l. Denote further G+ = eL+ so that:jG+j = ��eL+�� = eRe(L+) = el = jF+j ; on C:Thus, we have now the following identity:F+ = B+ �G+ with jB+j = ����F+G+ ���� = 1 on the unit 
ir
le C: (1.17)We interpret now these two fun
tions and show that B+ 
orresponds to the Blas
hke prod-u
t. We will assume that F+ has no zeros on the unit 
ir
le through the paper.1.4.1 The interpretation of the \B �G" de
ompositionWe have de
omposed a holomorphi
 fun
tion F+ on the 
omplex plane as the produ
t oftwo holomorphi
 fun
tions B+ and G+. Just as F+ the fun
tion B+ has no zeros on theunit 
ir
le and G+ has the same modulus as F+ on the unit 
ir
le. We show now that



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 9this algorithm, based on the numeri
al values on the unit 
ir
le C, gives B+ equal to theBlas
hke produ
t of F+ (to a multipli
ative 
onstant 
, with j
j = 1). We have a dis
retesignal F+ with roots faig all distin
t from zero. N is the order of zero as a root, thus:F+(z) = � � zN � Yjaij<1(z � ai) � Y1<jaij(z � ai) (1.18)Then it is obvious that:log jF+(z)j = log j�j+ Xjaij<1 log jz � aij+ X1<jaij log jz � aij (1.19)But we know that z belongs to the unit 
ir
le C, thus we write:log jF+(z)j = log j�j+ Xjaij<1 log j1� z � �aij+ X1<jaij log jz � aij (1.20)And we know that inside the unit dis
, for jaj > 1, we have z 7! log(z � a) analyti
, thuswe have: Re� log(z � 1�ai )� = log ����z � 1�ai ���� for jaij < 1 (1.21)Re� log(z � ai)� = log jz � aij for jaij > 1 (1.22)We 
on
lude that:G+(z) = j�j � Yjaij<1(1� �ai � z) � Y1<jaij(ai � z) � �aijaij (1.23)B+(z) = �j�j � zN � Yjaij<1 (z � ai)(z � a�i ) :�1�ai � Y1<jaij � �aijaij ; where a�i = 1�ai (1.24)We observe that this algorithm enables us to obtain the de
omposition that 
onforms tothe Blas
hke produ
t de�ned previously. As we will see below, we have thus separated thefrequen
y and the amplitude 
ontents of our signal F+. The fa
torization above yields:Phase(F+) = Phase(B+) + Phase(G+) (1.25)In [2℄, Garnett shows that the same de
omposition 
an be obtained for fun
tions within�nitely many zeroes. After experimentation, we note that in some 
ases the phase of G+
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ontained in (��=2; �=2) but it is not a rule. Nevertheless, the 
urve de�ned by G+ hasthe property of not surrounding the origin. On the other hand, B+ 
ontains 
omplementaryinformation. In fa
t its phase 
orresponds to the number of turns around the origin whi
his a topologi
al invariant. Computing the instantaneous frequen
ies of B+ is more stable asit never vanishes sin
e jB+j = 1. Moreover its phase is non-de
reasing as we have seen inequation (1.12) and may lead to more stability to noise. The short
oming of the algorithmis that we note that numeri
al artifa
ts appear when the roots of F+ are 
lose to the unit
ir
le C, that 
orresponds to the limit 
ase for a root to 
hange from being a root of B+ orG+.The absen
e of singular fun
tionIt is well known that an analyti
 fun
tion F is the produ
t of an Inner and Outer fun
tion.The Inner fun
tion is 
omposed of two fa
tors: the Blas
hke produ
t and a ratio of twosingular fun
tions (Theorem 5.5 in [2℄ ). Sin
e we work with trigonometri
 polynomials,the measure d�s (that is the singular part of the weak limit of log jF (rei�)j as r ! 1) isequal to zero. Moreover, the trigonometri
 polynomial 
an be written as a polynomial ofz = ei�, as its has a Fourier series with only positive frequen
ies. It means that it is theprodu
t of B, with roots in the unit dis
, and G with roots outside the unit dis
. They arerespe
tively rational fun
tions and polynomials.1.4.2 Properties of the Blas
hke Produ
tWe noti
e that this de
omposition is similar to the Lo
al Trigonometri
 bases as bothde
ompositions enables us to have lo
alized os
illations. For example, the lo
al 
osinetransform has its os
illations parametrized (it 
orresponds to the spatial and frequentiallo
alization of the signal). Ea
h term has a well de�ned support.8x 2 [ak; ak+1)x 7! 
os�j � (x� ak)ak+1 � ak � (1.26)For the Blas
hke produ
t it will depend on the phase of the roots 
ontained in the unit dis
,as � 7! ei���ei�01��ei(���0) (with � � 0). The os
illations are more or less 
on
entrated depending on
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e of the root to the unit 
ir
le. The os
illations are around �0 and the frequen
iesdepend on (1��). If � is equal to zero we have a low frequen
y by opposition to � near one.The frequen
ies will be a�e
ted too, lo
alization and os
illations are for
ed at the same timein both 
ases. We noti
e on �gure 1.1, the lo
alization properties of the Blas
hke Produ
t.The fa
torization pro
ess obtained from the family of Blas
hke produ
ts is a non-linear
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Figure 1.1: An example of Blas
hke produ
t B = ei�B that has three roots of di�erentorders. The top graph shows the real part of B, while the se
ond and third row show thephase �B and its derivative �0B. We observe that the \spread" of the os
illations dependson the distan
e of the root to the boundary (unit 
ir
le C). The order of the root in
reasesthe number of lo
al os
illations.approximation as it will generate a fun
tion B, the Blas
hke produ
t, that is adapted tothe signal. We observe that the os
illations, related to the derivative of �B (the phase ofB), will depend on the lo
al frequen
ies of our signal. We also noti
e that the lo
alizationsof the zeros 
an be obtained by observing the maxima of the derivative �B as shown in
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hapter 1.3.1. On the other hand, it has the drawba
k of being of absolute value equal toone. We will show in the next 
hapters some numeri
al results and ne
essary 
orre
tions toredu
e the 
omputational artifa
ts.1.4.3 Numeri
al ExperimentsIn the previous algorithm, we apply the logarithm to the absolute value of F+, It meansthat in every region where jF+j is 
lose to zero the 
omputations of G+ and therefore of B+are going to be unstable and artifa
ts will appear. We 
an also noti
e that in some 
aseswe loose analyti
ity of G+ even if it 
orresponds to the exponential of an analyti
 fun
tion.Corre
tions for regions where F+ vanishesTo prevent this numeri
al diÆ
ulty we apply a 
orre
tion, we have tried two di�erent kindsof �ltering. In the �rst 
ase we smooth log jF+j by 
hoosing a parameter � that we use asa threshold. It 
an be written as follows:��F new+ �� =qjF+j2 + (� � kF+k1)2 (1.27)And we have now on the unit 
ir
le:jB+j = �1 + ��kF+k1jF+j �2�� 12 (1.28)We 
on
lude that jB+j << 1 for F+ << �kF+k1 (1.29)and jB+j � 1 for F+ >> �kF+k1 (1.30)The result is then obvious on the left bottom graph of �gure 1.2. Another possibility isto �lter the fun
tion jF+j in order to \separate the fun
tion from zero". The 
onvolutionby a positive fun
tion will raise the values in the regions where jF+j are equal to zero (asjF+j is a non-negative fun
tion), it has a similar e�e
t to the heat kernel. We 
onvolve jF+jwith the Poisson kernel at (1 � �), this 
orresponds to multiply by (1 � �)jij ea
h Fourier
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Figure 1.2: The Blas
hke de
omposition for a \modulated Gaussian", � 7! e�(���0)2 � ein�,signal with an � raised to show that jBj = 1 only where F is signi�
antly di�erent fromzero.
oeÆ
ient 
jF j(i). The �ltering e�e
t is to \raise B+ to one" on regions where jF+j is abovethe threshold and to \lower B+ to zero" on the other regions. We observe this e�e
t onthe example where we have 
hosen F+ to be a \modulated Gaussian" shown on �gure 1.2.By 
hoosing di�erent values for � we de
ide to \raise a smaller or bigger region for B+".The e�e
t of the �rst �ltering is uniform everywhere by opposition to the appli
ation ofthe Poisson kernel. It means that the value of B+ is �xed by equations (1.29) and (1.30)everywhere by the same value for �. The se
ond �ltering is more adaptive as it 
orrespondsto the �rst �ltering but with an adaptive �. Moreover, the �rst �ltering enables us to keepthe property that jB+j is smaller than one as opposed to the se
ond �ltering. The �rst�ltering will be used in the one-dimensional 
ase and in two dimensional 
ase we will usethe Poisson kernel.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 14
100 200 300 400 500

-5

0

5

F on the real axis

-10 -5 0 5

-5

0

5

F in the complex domain

100 200 300 400 500
0

20

40

60
Phase of F

100 200 300 400 500

-5

0

5

G on the real axis

-2 0 2 4 6 8

-5

0

5

G (|G| > 0) in the complex domain

100 200 300 400 500

-4

-2

0

2

Phase of G 

100 200 300 400 500

-1

-0.5

0

0.5

1

B on the real axis

-1 0 1

-1

-0.5

0

0.5

1

B (|B| = 1) in the complex domain

100 200 300 400 500
0

20

40

60
Phase of B

Figure 1.3: Numeri
al artifa
ts appearing for � 7! (ei��z1)p1 �(ei��z2)p2 �(ei��z3)p3 �g1(�),with g1 an outer fun
tion, sin
e the roots zi are too 
lose to the unit 
ir
le. We noti
e thatjBj 6= 1 and the �0B, derivative of B's phase, is not non-de
reasing anymore.We know G+ is an analyti
 fun
tion as the exponential of an analyti
 fun
tion.Nevertheless artifa
ts appear in this 
omputation. We observe on the example shown on�gure 1.3 the numeri
al artifa
ts that appear 
learly in the phase of B+ and modify therelation jB+j = 1. A Fourier transform will 
on�rm the loss of analyti
ity (we have highnegative frequen
ies di�erent from zero) and also we easily noti
e that B has an absolutevalue di�erent from one in some points. This numeri
al errors interfere with our resultsespe
ially for the iterative de
omposition that we apply later.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 15Corre
tions to 
ompute the logarithm and exponentialThe Blas
hke produ
t is related to the roots of F+ living in the unit dis
 D. These twofun
tions have in 
ommon all the roots in
luded in D. The poles of B+ have an absolutevalue greater than one. We want to see how a

urate is the 
omputation of B+ knowingF+. Sin
e B+ is a produ
t, we restri
t our study to a simple real root in the unit dis
 D,and the problem is invariant by rotation so the root 
an be taken on the interval [0; 1). We
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Figure 1.4: The fun
tion � 7! ei� � r, with r 
lose to one, and its B+ � G+ de
omposition,where it appears that jB+j is not equal to one everywhereare working on a simple example, shown on �gure 1.4, the binomial de�ned by:F+(z) = z � r; with 0 � r < 1: (1.31)We know that the de
omposition \F+ = B+ �G+" is obtained with:B+(z) = z � r1� rz and G+(z) = 1� rz (1.32)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 16We noti
e that if r is 
lose to one the fun
tion log jF+j goes to minus in�nity andgenerates artifa
ts in the 
omplexi�
ation pro
ess. It will 
reate some high negative fre-quen
ies that should be equal to zero as an analyti
 signal. In fa
t, the signal is suddenlygoing to turn mu
h faster around the origin and if the signal is not oversampled enough, itwill mean a jump greater than � for the phase. Some artifa
ts are obtained in the Fourierde
omposition of G+. As we know the exponential of an analyti
 fun
tion is also analyti
,so the non-zero 
oeÆ
ients appearing for the negatives frequen
ies are obviously artifa
ts.And as a 
onsequen
e, we have jB+j 6= 1 and its phase will not be non-de
reasing We observe
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Figure 1.5: The fun
tion � 7! ei� � r and its B+ � G+ de
omposition, where the artifa
tsdisappear using an oversampling of four.on �gure 1.5 that oversampling the fun
tion, applying a zero padding in the Fourier spa
e,makes the negative frequen
ies tend to 
an
el. We keep the same trigonometri
 polynomialbut oversample the signal to avoid artifa
ts. We noti
e that G+ is a polynomial of degree
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ate the Fourier expansion of our signals L+ and G+at a rank R (that we denote by (�)R) to obtain (L+)R and (G+)R a

ording to the degreeof F+, and we have: (L+)R = F�1(F(L+) � 1[0;R℄) (1.33)
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Figure 1.6: The fun
tion F+ : � 7! (ei� � z1)p1 � (ei� � z2)p2 � (ei� � z3)p3 � g1(�), from �gure1.3, oversampled has now the desired de
omposition \B+ � G+": jB+j = 1 and B+ = ei�Band �B is non-de
reasing (bottom row). We observe that �B has jump of 2� where thedis
ontinuity was before on �gure 1.3.The degree of G+ is smaller or equal than the degree of F+. As we write the
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omposition of \F+ = B+ �G+", where we note N the order of zero (as a root):B+(z) = �zN � Y0<jaij<1 (z � ai)(1� �aiz) (1.34)and G+(z) = Yjaij>1(z � ai) � Y0<jaij<1(1� �aiz) (1.35)) deg(G+) = deg(F+)�N; with N � 0: (1.36)We trun
ate L+ and G+ at the same degree R. And we have:(G+)R = � exp �(log jF+j)+�R�R (1.37)We 
on
lude from this experien
e, �gure 1.6, that we obtain a better result byoversampling a trigonometri
 polynomial fun
tion to 
ompute L+. Trun
ate the signals inthe Fourier spa
e to the same order as the original signal F+, before and after applying theexponential to these two steps, is also ne
essary to keep the non-de
reasing phase of B+.But the possible presen
e of zeroes 
lose to boundary, the unit 
ir
le C, is a majorproblem for this algorithm. We have shown that oversampling solves it up to a point. Nomatter how mu
h we oversample, if the root is 
lose enough to the boundary, we will havealiasing (\
lose" of 
ourse depends on the amount of oversampling). So this \solution" tothe problem is merely a 
onvenien
e to allow 
omputations for signals having roots 
loserto the boundary than we 
ould with no oversampling, but it doesn't resolve the diÆ
ulty.Stability of the zeroes 
ontained in the unit dis
We 
hoose, as an example, an analyti
 fun
tion with three distin
t roots in the unit dis
.We apply di�erent bells (modifying the support of the signal) to quantify the stability ofthe positions of the zeroes. We have shown before that the derivative of B's phase is asum of Poisson kernels (related to the root of B+), in 
hapter 1.3.1. In 
hapter 1.4.2, weshowed that the phase of the roots is related to the maxima of �0B ,the �rst derivative ofthe phase. While we had the oversampling to eliminate artifa
ts, we observed that theposition of the zeroes was stable with the oversampling of the signal. We also observe thefollowing paradox: the 
omputation of B+ is global, as we use the Fourier transform, but
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Figure 1.7: The �rst row show the de
omposition of the F the 
omplexi�ed version of thefun
tion f . We have F : z 7! Q3i=1(z � zi), with three distin
t zeroes zi in the unit dis
,represented by the real part of its values on the unit 
ir
le C. The se
ond and third rowshow the de
omposition of the 
omplexi�
ation of � 7! f(�) � Bell(�), where the Bells arerepresented on the left 
olumns below the original signal. The three zero lo
ations appearobvious in the �rst graph representing the derivative of B's phase. We noti
e on the third
olumn that the lo
ation of the 
entral zero has not been a�e
ted by the bells.the information obtained on the phase is lo
al as it 
orresponds to the roots' lo
ation. Forexample, as shown on �gure 1.7, if we modify the support of a fun
tion by multiplying thesignal by bells of di�erent sizes (equal to zero outside and one in the 
enter part, as shownon the two left graphs below the fun
tion F+, for the �rst graph the bell is not shown aswe do not apply any one). We have new fun
tion � 7! f(�) �Bell(�). We then observe thatthe phase, and furthermore the roots of B+ are not very sensitive to the support of the bell(if the root o

urs where the bell is 1).



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 201.5 Properties of F+ = B+ �G+In the beginning of this 
hapter, ee look at the e�e
ts of an eventual �ltering of F+. Forsimpli�
ation we study the properties on the upper half plane that 
orresponds to anotherrepresentation, knowing that there exists a 
onformal mapping between the unit dis
 andthe upper half plane. After this study, we look at the properties of the numeri
al Blas
hkeprodu
t, de�ned as before, on some trigonometri
 polynomials to enable the reader todevelop an intuition about the \B �G" fa
torization. And we �nish the 
hapter by showingthe robustness of the algorithm and its property of invarian
e.1.5.1 Phase properties on the upper half planeLet f 2 L2(IR), we have 
onstru
ted f+ in the Fourier spa
e with the following formula:f+(x) = 2 � Z 10 eix�� f̂(�)d�; x 2 IR: (1.38)We 
an also de�ne F+ on the upper half plane as follows:F+(z) = 2 � Z 10 eiz��f̂(�)d�; z 2 IC (1.39)And we have Re(f+jIR) = f . Also we assume jF+(z)j > 0 for real z and we de�ne G+ asbefore: G+(z) = exp(log jF+(z)j)+ (1.40)It 
an be written as G+ = exp(L+) where L+(z) = l(z) + i � ~l(z) and l(z) = log jF+(z)j forreal z, and B+ = F+G+ . As B+ is de�ned as the Blas
hke produ
t for the de
omposition ofF+, we have: B+(z) = �z � iz + i�k �Yj z � ajz � �aj � ���a2j + 1���a2j + 1 (1.41)where aj = �j + i�j are the roots of F+ in the upper half plane. �, the phase of B+ veri�esthe relation i�0 = B0+B+ , with u0 = dud� , and a simple 
al
ulation shows that :�0(x) = 2Xj �jjx� aj j2 > 0 (1.42)
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tion:P�f(z) = F+(z + i�) (1.43)We note F�, l� and K� the respe
tive proje
tions of the fun
tions F , l and K = log jF j. Weobserve that we have: jF+(x+ i�)j = Yj ����x+ i�� ajx+ i�� �aj ���� � exp(l�(x)) (1.44)And also: K�(x) = 12Xj log �(x� �j)2 + (�� �j)2(x� �j)2 + (�+ �j)2�+ l�(x) (1.45)~K 0�(x) = H(K 0�)(x) (1.46)~K 0�(x) = Xj j�+ �j j(x� �j)2 + (�+ �j)2 � j�� �jj(x� �j)2 + (�� �j)2 + ~l�0(x) (1.47)Therefore we get that:Im�F 0(x+ i�)F (x+ i�) � = ~l0(x+ i�) +Xj (�j + �)(x� �j)2 + (�i + �)2 (1.48)� Xj j�j � �j(x� �j)2 + (�i � �)2+ 2Xj (�j � �)(x� �j)2 + (�i � �)2Sin
e F (z + i�) has zeroes (aj � i�)j , for �j > �.Im�F 0(x+ i�)F (x+ i�) � = ~l0(x+ i�) + X�j>� (�j + �)(x� �j)2 + (�j + �)2 (1.49)+ X�j>� (�j � �)(x� �j)2 + (�i � �)2� X�j<�" (�j + �)(x� �j)2 + (�j + �)2 � j�j � �j(x� �j)2 + (�i � �)2#And if we �-�lter the phase of B� we get :
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2X�j>� �j(x� �j)2 + �2j (1.50)We have shown that by �ltering we 
an eliminate the roots of B� that are to 
lose tothe real axis. They 
orrespond to the roots 
ontained in the unit dis
 D near the boundaryC.
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ompositionIn this 
hapter we present two examples showing the de
omposition des
ribed before. Theseexamples are 
reated to show properties linked to this study and to give to the reader anbetter intuition about the Blas
hke produ
t. The �rst example is given by �gure 1.8, thatrepresents the fa
torization of two trigonometri
 monomials with disjoint supports, di�erentamplitudes and frequen
ies. We easily see that the phase of B+ and F+ are similar but B+has the property of having a modulus equal to one.
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Figure 1.8: A simple signal 
omposed of two trigonometri
 monomials, � 7! ei2n1� � 1I1 +2ein1� � 1I2 , where I1 and I2 
orrespond to the �rst and se
ond half of the signal. On thebottom row, we observe that B+ is keeping the frequential information given by F+. Themiddle row shows G+ living in the right half plane.B+ 
an be 
ompared to F+jF+j but it has the parti
ularity of being an analyti
 fun
tion.Moreover we 
an observe on the �gure that G+ is living in the right half plane and has then



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 24it phase is in the small range [��=2; �=2℄ and is not surrounding the origin O as B+ does.The winding information is 
ontained by B+. The se
ond example, on �gure 1.9 shows two
hirps with distin
t support, amplitudes and frequen
ies range as before. We observe as
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Figure 1.9: A se
ond signal 
omposed of two 
hirps, � 7! ei2n1�2 � 1I1 +2ein1�2 � 1I2 , where I1and I2 
orrespond to the �rst and se
ond half of the signal. As the previous �gure showedB+ 
ontains all the frequential information while G+ lives in the right half plane.before that G+ is living in the right half plane and B+ is similar to F+jF+j . Using �gures 1.8and 1.9, as a �rst 
on
lusion we 
an say that the e�e
t of fa
torization on F+ to give B+ isquite intuitive, and we observe that the phases of F+ and B+ are similar in both 
ases.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 251.5.3 Examples of robustness to noiseWe show now on di�erent examples that the fa
torization is robust to noise in the sense thatthe Blas
hke produ
t is invariant. We apply the de
omposition algorithm on the examplespreviously shown on �gure 1.8 and 1.9 but we generate additive or multipli
ative noise. Weeasily noti
e, in the new �gures 1.10 and 1.11, that B+ stay the same while the noise a�e
tsF+ and G+. The fun
tion G+ seems to \attra
t the noise" and leave B+ 
lean. A possible
200 400 600 800 1000

-2

-1

0

1

2

F on the real axis

-2 0 2

-2

-1

0

1

2

F in the complex domain

200 400 600 800 1000

-80

-60

-40

-20

0
Phase of F

200 400 600 800 1000

-1

-0.5

0

0.5

1

B on the real axis

-1 0 1

-1

-0.5

0

0.5

1

B (|B| = 1) in the complex domain

200 400 600 800 1000

-80

-60

-40

-20

0
Phase of B

200 400 600 800 1000

0

1

2

G on the real axis

0 1 2

-0.5

0

0.5

G (|G| > 0) in the complex domain

200 400 600 800 1000

-0.5

0

0.5

Phase of G 

Figure 1.10: De
omposition of the two trigonometri
 monomials from �gure 1.8 with additivenoise. B seems to not be a�e
ted by the noise while G+ is keeping all the noise.explanation 
omes from the fa
t that the phase of B+ is non-de
reasing. But no reasonableexplanation seems to be obvious. A possible interpretation is given by the fa
t that thewinding number is a topologi
al invariant. Sin
e the Blas
hke produ
t is dire
tly related to
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onsequen
e. Similar results appear on the 
hirps, B+ seems
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Figure 1.11: De
omposition of the two 
hirps from �gure 1.9 with additive noise. B seemsto be invariant to this noise.to be without any noise. If we represent F and B on the same graph we 
an observe thatB+ is like a metronome. The rhythm seems to be not sensitive to the noise as it appearson the following graphs that resume the study of the noise e�e
t.As a �rst 
on
lusion, we 
an say that the e�e
t of the noise is obvious on the fun
tionsG+ by 
ontrast to B+ that seems to be identi
al to the fun
tion obtained before withoutnoise. We 
on
lude that B+, obtained by fa
torization, is not sensitive to noise and so by
onsequen
e its phase either.
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Figure 1.12: The Real parts of the Blas
hke produ
ts and the �rst signal with and withoutnoise (shown in �gures 1.8 and 1.10), and their phases.
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Figure 1.13: The Real parts of the Blas
hke produ
ts and the �rst signal with and withoutnoise (shown in �gures 1.9 and 1.11), and their phases.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 281.5.4 Examples of invarian
eAfter showing some properties of stability with noise for the phase, we are taking theexample of a family of deformed fun
tions on the unit 
ir
le (parametrized by � 2 [��; �)and z = ei��) su
h as � 7! sign(sin(k � �2)).
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Figure 1.14: The original real signal � 7! sign(sin(k��2)) and its three di�erent perturbationsplotted separately with the real parts of the Blas
hke produ
ts. The phase of the four signalsare also plotted belowWe 
an observe that ea
h B+, for this family of fun
tions, is an invariant. B+
orresponds to the metronome of a zero 
rossing 
ounter.
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omposition into Blas
hke produ
tsIn this se
tion, we develop an idea to represent and understand analyti
 signals with a�nite orthogonal de
omposition. In [7℄, Szabo et al. presents an \orthonormal basis onL2(IR) generated by a �nite Blas
hke produ
t". Our de
omposition is based on an iterativemethod similar to the Gram-S
hmidt orthogonal de
omposition, some re
alls and detailsare given in [11℄ by Walsh. We use his remarks to develop a non-linear algorithm: 
onstru
tan orthonormal de
omposition with Blas
hke produ
ts. But the main di�eren
e is that theexamples given by Walsh are related to a basis 
onstru
tion and we are interested in anorthonormal series, with a high rate of 
onvergen
e and without interest in the 
ompleteness.This method 
an be interpreted as a mat
hing pursuit that di�ers from a 
lassi
al best basisapproa
h. We present some simple examples to develop the intuition of the reader andexplain how the algorithm works (pealing the di�erent layers of the signal). We then applythe de
omposition on a random trigonometri
 polynomial to show is e�e
tiveness. For afamily of fun
tions, with a uniform distribution on the unit sphere, we 
ompute a lowerbound of the average proje
tion on the Blas
hke produ
ts family. We �nish our exampleswith a 
ase for whi
h our algorithm is not adapted at all and present an alternative.1.6.1 Rational Orthogonal BasisOne 
an orthogonalize the set of rational polynomials, as shown in 
hapter IX of [11℄:1; 1z � �1 ; 1z � �2 ; � � � ; 1z � �n with j�ij > 1 (1.51)We have to re
all that the fun
tions f analyti
 on and within the unit 
ir
le C, vanishing atthe point z = 1�� with j�j > 1, are orthogonal on C to the fun
tion z 7! 1z�� . And the Gram-S
hmidt orthonormalisation pro
ess, in L2(jzj = 1; d�2� ), gives the following de
omposition:1; zz � �1 ; z � (1� ��1 � z)(z � �1) � (z � �2) ; � � � ; z � (1� ��1 � z) � � � (1� ��n�1 � z)(z � �1) � � � (z � �n) (1.52)We observe that the Blas
hke Produ
ts are a key fa
tor in this orthonormal de
omposition.We are developing this idea in the following 
hapter to 
onstru
t mat
hing pursuit withBlas
hke produ
ts.
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ription of the methodWe want to de
ompose an analyti
al signal f in an orthogonal sum of Blas
hke produ
ts,with the fa
torization de�ned before. We develop an iterative algorithm that will extra
tthe main os
illations of our signal in di�erent steps.Remark 1.6.1. A good interpretation of this algorithm is given by looking at the rotationof the Moon turning around the Sun. We manage to separate the two rotations, the Moonaround Earth and the Earth around the Sun, by running this iterative algorithm.At the �rst iteration we subtra
t the 
onstant part of f on C (that is to f(0) =R 2�0 f(ei��) d�2� ). We obtain f1 = f � f(0) that has obviously zero has a root, it enables us tode
ompose z 7! f1(z)=z (that is analyti
al) with the produ
t of b1 and g1, where b1 is theBlas
hke produ
t and g1 an outer fun
tion. We iterate the previous two steps on g1 and soforth. For notation reasons, we denote g0 = f , and we have the following algorithm:f = g0 = g0(0) + z � b1 � g1g1 = g1(0) + z � b2 � g2� � �gn�1 = gn�1(0) + z � bn � gn (1.53)Remark 1.6.2. As gi is an outer fun
tion, for all i > 0, we know that gi(0) 6= 0 (for alli > 0) sin
e gi is an outer fun
tion.By summation we obtain:g0 = g0(0) + g1(0) � z � b1 + � � �+ gn�1(0) � zn�1 � b1 � b2 � � � bn�1 (1.54)+ zn � b1 � b2 � � � bn � gnEquation (1.54) is 
omposed of a residual (the last right hand term) and an approximationat the level (n�1) that is g0 minus the residual. We will now prove that the approximation,just de�ned, is an orthonormal de
omposition and that we have 
onvergen
e in norm of the
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ir
le C, the s
alar produ
t of two terms of g0's de
ompositionis: 8(p; n) 2 (IN�)2; p < n; (1.55)< zp � b1 � � � bp; znb1 � � � bn >= IC(�zp � �b1 � � � �bp) � (zn � b1 � � � bn)d�;But we know that jbj j = 1, thus:< zp � b1 � � � bp; zn � b1 � � � bn >= 12�i � IC zn�p � bp+1 � � � bndzz (1.56)We know that the poles are outside C and n� p � 1, so it implies:< zp � b1 � � � bp; zn � b1 � � � bn >= 0 (1.57)The L2-norm is veri�ed as we have:8n 2 IN� < zn � b1 � � � bn; zn � b1 � � � bn > = 12�i IC jb1 � � � bnj2 dzz) kzn � b1 � � � bnk2 = 1 (1.58)Therefore we have the orthonormality of the series. We are now interested in the evaluationof the residual part of the de
omposition. By 
onstru
tion we know that jbij = 1 (where fdoesn't vanish numeri
ally), so kbik = 1, and we want to show that kgnk 
onverges to zeroas n goes to in�nity. And so if we denote approxn the approximation of f with n ve
torswe have : approxn(z) = nXi=0 
i � iYk=1 z � bk(z); where ; 
i = gi(0) > 0) kf � approxn(z)k2 = k� n+1Yk=1 z � bk(z)� � gn+1k2) kf � approxn(z)k2 = kgn+1k2 (1.59)We have shown before the orthogonality of the de
omposition it means that we 
an applyPythagore's Theorem: kfk22 = nXi=0 
2i + kgn+1k22 (1.60)



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 32Remark 1.6.3. An alternative way to write this algorithm is to split the fun
tion f in twoparts using the low frequen
y 
ontent instead of just the 
onstant term. And we observe thatthe 
onvergen
e rate is improved.1.6.3 Properties of the iterative algorithmWe have shown in 
hapter 1.4.2 some of the properties of the Blas
hke produ
t and itssimilarities to the lo
al trigonometri
 basis. We observe that the iterative algorithm, thatwe just des
ribed, produ
es a la
unary series. Sin
e, ea
h time a new term is 
omputedby indu
tion, it 
ontains the previous term and is multiplied by z and a Blas
hke produ
t.And two 
onse
utive terms, the pth and (p + 1)th terms, of the de
omposition are writtenas follows: zp � b1 � � � bp and zp+1 � b1 � � � bp � bp+1 (1.61)The ratio is obviously z �bp+1, where bp+1 
orresponds to the roots inside the unit dis
 (bp+1
an be equal to one or 
orresponds to multiple roots inside the unit 
ir
le C). By buildinga la
unary series the algorithm 
reates a de
omposition using fewer terms than what isne
essary to have an orthonormal basis. The fast 
onvergen
e and non-
ompleteness of thealgorithm are some of these 
onsequen
es.1.6.4 Some examples of de
ompositionIn this 
hapter we show the advantages and properties of su
h a de
omposition for di�erentexamples. We 
hoose them to explain how this algorithm works and more pre
isely there
ursive algorithm that extra
ts the di�erent signal layers. The three examples show howthe algorithm works.Three elementary examplesThe �rst example is 
omposed of a trigonometri
 binomial where ea
h term has a di�erentamplitude (� 7! 
0eim0�+
1eim1�). In the 
omplex plane, the signal 
an be interpreted as the
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Figure 1.15: De
omposition of F+ : z 7! z � (1+0:2 � zn) with two main os
illations, B1+ andB2+ are two os
illating fun
tions with di�erent radius and speed. The main os
illation isextra
ted at the �rst iteration (top row), while the se
ond step extra
ts the minor amplitudeos
illation (bottom row).rotation of the Moon around Earth around the Sun. The �rst de
omposition 
orresponds tothe main os
illation (the one with the greatest amplitude). In the se
ond step we obtain theminor os
illation. It 
an be interpreted as the rotation of the Moon around Earth (minoramplitude os
illation), the Earth turning around the Sun. The results are shown on �gure1.15 where we see the simpli
ity of the de
omposition. Our signal is 
omposed of only twoos
illant signals, and we have extra
ted them of our signal in two iterations. Ea
h time weiterate the de
omposition, we peel one layer o� our signal.For the se
ond 
ase, we 
hoose to study the de
omposition on a simple fun
tion
omposed of two trigonometri
 monomials with distin
t support (as one of the exampleused previously), shown on �gure 1.16. The original signal has an average value equal
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Figure 1.16: De
omposition of the fun
tion F : � 7! ei2n1� � 1I1 + 2ein1� � 1I2 and its approx-imations (right 
olumn). B+ has a �xed amplitude in the �rst step, and os
illates mostlylike F+. After a few iterations the algorithm 
at
hes most of the signal energyto zero, so 
0 = 0, and the signal B+ 
ontains, as expe
ted, only the signal frequential
omponent. By this �rst approximation we manage to have more than half of the originalsignal energy. After few iterations, less than ten, we obtain more than 95% of the signaland the norm of gn is 
onverging to zero as an exponential fun
tion.The last fun
tion has been 
reated by using dire
tly the formula that gives F+ asthe sum of the produ
t of three Blas
hke produ
ts: z 7! B1+(z) � (5 +B2+(z) � (2 +B3+(z))).Then we just verify that we �nd the same zeroes and obtain the de
omposition in threesteps with the same terms. The �gure 1.17 shows this obvious result. Under the 
onditionthat the residual, at the step n, has a smaller amplitude than the approximation, at thestep n, we have uni
ity of the de
omposition.
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Figure 1.17: An obvious de
omposition of F+ = B1+ � (5 +B2+ � (2 +B3+)), with B1+, B2+ andB3+ whi
h are three polynomials with roots in
luded in the unit dis
 and absolute value equalto one. It implies that they are Blas
hke produ
ts. The os
illating fun
tions are obtainedin three iterations with a residual equal to zero numeri
allyAn extreme 
aseIn this 
ase we want to evaluate the \ri
hness of our family of bases". So we generaterandom trigonometri
 polynomials (with an average value equal to zero) with degree N and
oeÆ
ients given by a normal distribution. And we apply the same algorithm to de
omposethe fun
tion as before. We have the graphs on �gure 1.18.On �gure 1.19, we 
an observe that the 
onvergen
e rate is exponential as before.We 
an observe that the residual norm de
reases as an exponential fun
tion. We 
an noti
ethat G+ is a always polynomial with a degree smaller than F+. If we write f+ as a Fourierseries of order N on �℄�; �℄, it 
orresponds to write F+ as a polynomial of degree N with
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Figure 1.18: Approximations of F+ a random trigonometri
 polynomial of degree N = 200using the orthogonal de
omposition, F : z 7!PNj=1 ajzj, aj 2 N(0; �)the same 
oeÆ
ients. So the previous de
omposition 
an be written as follow:F+(z) = F+(0) + �1:zk: Yjaij<1 (z � ai)(1� �aiz) : Yjaij>1(z � ai): Yjaij<1(1� �aiz) (1.62)Let's denote �i = 1�ai for jaij < 1 and �i = ai for ai > 1, we have:F+(z) = F+(0) + �1:zk: Yjaij<1 (z � ai)(1� �aiz) :Y(z � �i), with j�ij > 0 (1.63)So G+ has all its roots outside the unit dis
 and has a smaller degree than F+as k > 0. And we �nally have, by letting B1+ and G1+ the terms 
oming from the �rst
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Figure 1.19: Fast 
onvergen
e of the residual (G) norm obtained from the de
omposition ofF+, a random trigonometri
 polynomial of degree N = 200. On a logarithmi
 s
ale, thisnorm appears to be a linear fun
tion of the number of iterationsde
omposition: F+(z) = F+(0) + �1 �B1+(z) �G1+(z)with G1+(z) = Yj�ij>1(z � �i); and deg(G+) = deg(F+)� k: (1.64)The same algorithm is applied to G1+, we let Bj+ and Gj+ be the terms 
oming from thede
omposition of Gj�1+ . Bj++ is the ratio polynomial obtained by extra
ting zkj from Bj+,we have: F+(z) = F+(0) + zk1 :B1++(z)��1 + zk2 :B2++(�2 + zk3 � � � )� (1.65)We have to �lter the Fourier transform of ea
h Gi+ to obtain a trigonometri
 polyno-mial of same degree and be sure to not have any artifa
ts that 
an make the de
ompositionunstable. We treated in this 
hapter analyti
 fun
tions without 
aring of the numeri
al val-ues of the fun
tion on the unit 
ir
le. Analyti
ity on the unit 
ir
le means that the fun
tionwill not vanish on a set of measure di�erent from zero. But numeri
ally, the fun
tion mayhave a 
ompa
t support. We treat this 
ase in the following 
hapter.



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 38
-2 0 2

-1

0

1

 Function F

200 400 600 800 1000
0

50

100

 Phase of B

200 400 600 800 1000

-2

-1

0

1

2

 Approximation

-1 0 1 2

-1

-0.5

0

0.5

1

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

-1

0

1

2

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

-1

0

1

2

Figure 1.20: Orthogonal de
omposition of the modulated Gaussian signal F : � 7! e�(���0)2 �ein� in three steps. The right 
olumn shows the evolution of the approximation.An analyti
 fun
tion with a numeri
al 
ompa
t support di�erent from the wholeunit 
ir
leWe treat in this paragraph some spe
ial 
ases: analyti
al fun
tions on the unit 
ir
le C witha \numeri
al 
ompa
t support". It means that the fun
tions have numeri
al values 
lose tozero on a set of non-null measure. With a representation using the phase �, it means thatnumeri
ally the fun
tion vanishes numeri
ally on an interval stri
tly in
luded in ℄ � �; �℄.On �gure 1.20, we have the 
ase of a modulated Gaussian:f(�) = exp(�� � (� � �0)2) � 
os(n(� � �0)) (1.66)) f+(�) = exp(��(� � �0)2 + in(� � �0)) (1.67)
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ase, we know that we have to ���lter the fun
tion F to be able to 
ompute B.We observe that \support(B)" 
an be adapted to F as it depends on the ��threshold. Weobserve that the norm of G+ as a Gaussian distribution and 
onverges to zero very fast on�gure 1.21. kGiterk = kFk � exp(�� � iter2) (1.68)
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Figure 1.21: Fast Convergen
e rate of the Gaussian approximation shown in �gure 1.201.6.5 Density of Blas
hke produ
t in the 
lass of analyti
 fun
tionsIn the informal des
ription of the method, we have written any signal f as a sum of Blas
hkeprodu
ts were the 
oeÆ
ients 
n 
orrespond to the s
alar produ
t of gn�1 and the family ofBlas
hke produ
ts. So on
e renormalized with the gn and gn�1 norms, it gives the 
osinesof the angle between our library and the fun
tion.A good approximation on averageExperiments ran on random trigonometri
 polynomials have been done, the 
oeÆ
ients ofour polynomials have a Normal distribution 
entered in zero. We stored the value g0(0)obtained by the iterative de
omposition algorithm. A mean value of 0:75 for the value ofg1(0) (with g0 renormalised to one) with a standard deviation of 0:03 is obtained for our



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 40data. The following theorem gives us a lower bound for this value.For simpli
ity we use auniform distribution of the Fourier 
oeÆ
ients on the unit sphere.Theorem 1.6.1. Let H2N = fF (�) = PNk=0 ak � eik�; jjakjj2 = 1g equipped with denotedd�F Lebesgue surfa
e measure of �2N�1 in ICN normalized to one. There exists a universal
onstant 
 su
h that:E� exp � Z log jF j d��� = Z�2N�1 exp h Z 2�0 log jF j d�id�F � 
 (1.69)where 
 = exp�� 
 + log(2)2 �; and 
 is the Euler 
onstant.Proof: See Appendix .1Remark 1.6.4. 
 
orresponds to the s
alar produ
t between F and our family of Blas
hkeprodu
ts. It 
orresponds to an angle around 58 degrees. We have shown a result that
orresponds to an average value.The next 
hapter will show that the basis 
an be inappropriate in some 
ases.A basis not adapted for polynomialsWe show in this 
hapter that the polynomials z 7! (z � �)n are not well represented in thebasis using the family of Blas
hke produ
ts. In this 
ase, we observe on �gure 1.22 that theBlas
hke Produ
t is unadapted to this polynomial. We show that using a variant rationalfun
tion we 
onsiderably improve our basis, this idea is 
oming from the previous 
hapter1.6.1. We study two 
ases to over
ome this problem. We 
onstru
t a polynomial fn withthe order-n root � in the unit dis
. By rotation we simplify the study to the real positive
ase. If � = 0 the 
ase is trivial as Bn = Fn. We normalize fn with 
n for the L2(IR)-norm.fn(z) = 
n � �z � �1 + ��n; with 0 < �; and 
n � pn: (1.70)We split our study in two main 
ases depending on the value of �.� First 
ase � < 1
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Figure 1.22: The Real parts of the polynomial Pn (z 7! (z � �)n, j�j < 1) and its Blas
hkeprodu
t BnWe have fn(0) = ( �1+�)n < 12n << 1, and as the s
alar produ
t is linear, in this
ase we write < fn; � >�< fn � fn(0); � >. Thus, the iterative algorithm gives its Blas
hkeprodu
t Bn asso
iated:Bn(z) = 
0 �� z � �1� �� � z�n; with j
0j = 1: (1.71)We 
ompute the s
alar produ
t on the unit 
ir
le C between these two unit ve
tors:< fn; Bn > = 
0 
n(1 + �)n � 12�i IC(z � �)n� �z � ��1� � � �z�ndzz< fn; Bn > = 
0 
n(1 + �)n � 12�i IC(z � �)n�1� ��zz � � �ndzz< fn; Bn > = 
0 
n(1 + �)n � 12�i IC(1� ��z)n dzzj< fn; Bn >j � pn(1 + �)n << 1 (1.72)The s
alar produ
t de
reases exponentially to zero as n tends to in�nity and 
orresponds tothe 
osine of the minimum angle between fn and any ve
tors from our family. We 
on
ludethat our family of fun
tions is not very well adapted to this 
ase. We generate a new family,
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on
entrated spatially (most of the energy is within a small region of C) to obtain abetter result:  n(z) = Bn(z) � (1� j�j2) 121� �� � z ; with � 2 IC: (1.73)We then 
ompute, in a similar way as before, the s
alar produ
t:< fn;  n > = 
0
n � (1� j�j2)1=2(1 + �)n � 12�i IC(z � �)n�1� ��zz � � �n � 11� ��z dzz< fn;  n > = 
0
n � (1� j�j2)1=2(1 + �)n � 12�i IC (1� ��z)nz � � dz< fn;  n > = 
0
n � (1� j�j2)1=2(1 + �)n (1� ��)n (1.74)We observe that � = 0 gives  n = Bn. We use � to maximize this s
alar produ
t in orderto obtain a better approximation. Thus, our iterative algorithm will be optimize as it getsmore energy at ea
h iteration of the de
omposition. We observe that this s
alar produ
t
an be written in a di�erent way by using the B �G de
omposition as follow:< fn;  n >=< F (z); Bn(z) � (1� j�j2)1=21� �� � z > (1.75)And we 
an 
ompute the Blas
hke produ
t on the unit 
ir
le C:< fn;  n > = 12�i IC Bn(z) �Gn(z) � �Bn(z) � (1� j�j2)1=21� � � �z dzz< fn;  n > = 12�i IC Gn(z) � (1� j�j2)1=2z � � dzj< fn;  n >j = jGn(�)j � (1� j�j2)1=2 (1.76)In this 
ase, we know that fn has � for only root, with order n, Gn(z) = (1 � �� � z)n.We have to maximize the right term of 1.76: � 7! ��(1� �� � �)n(1� j�j)1=2��. We suppose� 2 [0; 1℄, as a rotation will leave the problem un
hanged, and we obtain a � real de�nedas: � = �1 + 1 + �� � (2n+ 1) (1.77)
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Figure 1.23: The Real parts of the polynomial Pn (z 7! (z � �)n (j�j < 1)), its Blas
hkeprodu
t Bn and  nWe have the following s
alar produ
t:j< fn;  n >j � qn � 1+���n(1 + �)n �1 + �(1� 1 + �� � 2n)�nj< fn;  n >j � r1 + �� � e � 1 (1.78)We observe on �gure 1.23 that the fun
tion  n is more lo
alized than Bn and obviously anumeri
al 
omputation 
on�rms that the se
ond s
alar produ
t is greater.� Se
ond 
ase � > 1We have fn(0) = ( ��1+�)n that is not ne
essarily small. One 
an veri�es easily thatthe roots of fn � fn(0) = 0 are zk = � � (1 � !k) with !k = exp(i2k�=n). The rootsof Bn belong to the unit dis
. Thus, we are only interested in the value of zk su
h thatjzkj < 1. z0 = 0, thus 0 is a root of Bn. We then have two sub-
ases depending on the
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Figure 1.24: The Real parts of the polynomial Pn (z 7! (z � �)n, j�j > 1), its Blas
hkeprodu
t Bn and  nvalue of r = min!k 6=1 j�(1 � !k)j, there is only zero as a root or not. A short 
al
ulationgives r = 2� sin(�=n). But we know that if � > 1, the signal is not really os
illant. Thuswe are just 
omputing a lower bound of our proje
tion. We 
onsider that 0 is the only rootof Bn. Then we have Bn(z) = z and Gn(z) = (Fn(z)� Fn(0))=z. The s
alar produ
t is thefollowing: < fn; Bn > = 
n(1 + �)n � 12�i IC �(z � �)n � (��)n� � �z � dzzj< fn; Bn >j � n 32� �� �1 + ��n << 1 (1.79)
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Figure 1.25: The Real parts of the polynomial Pn (z 7! (z � �)n j�j > 1), its Blas
hkeprodu
t Bn and  nThis s
alar produ
t is small and we 
onstru
t another family more 
on
entrated spatiallyto obtain a better result. We have  n(z) = p1�j�j21����z , with � 2 IC. The s
alar produ
t is:< fn;  n > = 
n(1 + �)n � 12�i IC �(z � �)n � (��)n� � q1� j�j21� � � �z � �z � dzz< fn;  n > = 
n(1 + �)n � 12�i IC �(z � �)n � (��)n� � (1� j�j2)1=2z � � � dzz< fn;  n > = 
n � (��)n�1(1 + �)n �� n�1Xp=0 �� � ��� �p� �q1� j�j2< fn;  n > = 
n � (��)n(1 + �)n ���1� ���n � 1� � q1� j�j2� (1.80)That 
orresponds as shown before to Gn(�) � (1 � j�j2)1=2. Then we study the extrema of� 7! p1�j�j2� � ������� �n � 1�. And for � > 1, we approximate �:� = �1 + �2n + o� 1n� (1.81)
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alar produ
t is then:j< fn;  n >j � 
n � �n(1 + �)n � ���+ 1� � 12n�n � 1� �r1� ���1� �2n ���2j< fn;  n >j � 
n � �1� �(�+ 1) � 2n�n �r�nj< fn;  n >j � r �e �(�+1) � 1 (1.82)And we 
on
lude that in this 
ase the family ( n)n is more adapted to our fun
tion than(Bn)n as observed on �gure 1.25 and 1.24 that 
orrespond to the two sub-
ases for � > 1.Improvement of the iterative algorithmWe have shown that we obtain a mu
h better proje
tion by 
hanging our proje
ting s-pa
e. The iterative algorithm given by equation (1.53) is modi�ed. We are now using newnotations and the iterative algorithm is the following:rn(z) = rn�1(z)� < rn�1; bn�1 � q1� j�nj21� ��n � z > �bn�1(z) � q1� j�nj21� ��n � z (1.83)Where bn�1 is the Blas
hke Produ
t of rn�1 = bn1 � gn�1. rn is orthogonal to rn�1. We 
annoti
e also that < rn�1; bn�1 � q1� j�nj21� ��n � z >= gn�1(�n)q1� j�nj2 (1.84)�n has been 
hosen su
h that the absolute value of equation (1.84) is maximum. Theprevious algorithm based on the Blas
hke produ
t only 
orresponds to �n = 0. And wehave obviously rn(�n) = 0. We then have the following iterative orthogonal de
omposition.r0(z) = 
0 � b0(z) � 11� ��1 � z (1.85)+ 
0 � 
1 � b0(z) � z � �11� ��1 � z � b1(z) � 11� ��2 � z+ � � �with 
i = < gi; bi � 1� j�i+1j21� ��i+1 >
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omposition, sin
e we have a pro
ess similar to the Gram-S
hmidt algorithm des
ribes for rational fun
tional in 
hapter 1.6.1 and ea
h su

essiveterm of equation (1.85) are orthogonal to ea
h other.
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ation to Sound SignalsIn this se
tion, we want to study sound signals using the \F = B�G" fa
torization properties.We re
ord sounds on a mi
rophone, that 
ontain many times the word \Mi
hel" for di�erentspeakers, as real one dimensional signals. We separate ea
h word and 
ompute the analyti
signal 
orresponding and the \B �G" produ
t. We show that the Blas
hke produ
t gives areasonable way to dis
riminate the di�erent speakers.1.7.1 Study of the word \Mi
hel"
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Figure 1.26: The time series of the word \Mi
hel" pronoun
ed six times by the same speakerDi�erent segments \Mi
hel", from the same speaker, have been extra
ted from the
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omplexi�ed extension of our original one dimensional signal, ea
h of them are denotedFi. It is diÆ
ult to observe and study the signal as is. We observe that these signals 
anbe segmented in three regions. We apply a post-treatment on our signal, as any analysison them seems to be far from obvious as we 
an observe in �gure 1.26. We de
omposethese signals, indexed with i, using the Blas
hke produ
t. We have for ea
h signal thede
omposition Fi = Bi �Gi.
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Figure 1.27: De
omposition of the word \Mi
hel": real part of F , B and the non-de
reasingphase �B.We know that any Blas
hke produ
t Bi has a non-de
reasing phase �Bi as seenpreviously, this 
hara
teristi
 is false for the signal Fi. The family of �Bi seems easier tostudy and 
lassify than the Fi as we 
an observe on the �gure 1.27. One 
an observe thethree distin
t intervals of �B , plotted on the bottom row of �gure 1.27.We now represent six phases �Bi 
orresponding to the Blas
hke produ
t Bi of the
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omposition for the words \Mi
hel" pronoun
ed by the same speaker. It gives the inter-esting �gure 1.28.
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Figure 1.28: Six phases �Bi , 
orresponding to the Blas
hke produ
t of the word \Mi
hel".One 
an look the slope of �Bi and separate the signal in three intervals. We also noti
e thatthis representation may be stable.We observe that the �Bi have a simple stru
ture. At �rst sight, we note three regions,ea
h of them 
hara
terized by a di�erent slope. The slopes are linked to the syllables. Itgives us the main frequen
ies or pit
hes of the word, and 
orresponds to the melody of theword. We obtain a basi
 segmentation of \Mi
hel" using a polygonal line, by splitting Fiwhere �Bi has the same main frequen
y. These three parts have di�erent lengths for ea
h�Bi and 
orrespond to the syllables of \Mi
hel". Figure 1.29 show the graphs for six words\Mi
hel" pronoun
ed by another speaker.Surprisingly, if the word is pronoun
ed more or less slowly we still have three intervalswith slope of similar value. As a 
onsequen
e the length of ea
h interval will be obviously
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Figure 1.29: Six phases �Bi (obtained from the Blas
hke produ
t) of \Mi
hel", said byanother speaker, showing the in
uen
e of the spee
h speed. One 
an obviously see that thelength of ea
h interval is not a stable parameter, as supposed in �gure 1.28, but one 
annoti
e that the slopes on ea
h interval may be quite stable.modi�ed and the \winding number", as the phase will vary a

ordingly. We 
an also observethat the slopes are slightly di�erent from one speaker to another. The same word \Mi
hel"pronoun
ed by two di�erent persons has the same stru
ture: one very slow slope at thebeginning, one faster in the middle and a slow one at the end. Thus, we 
an think thatfor the �xed word \Mi
hel", the three slopes depend on the speaker only and the threelengths on the speed of the spee
h. To determine if this property is true we represent now�ve di�erent speakers using the two last slopes (and not three for an easier visualization)as parameters for the graphi
al representation. We obtain the �gure 1.30. We observe thatwith only two parameters, in some 
ases, we 
an start to evaluate whi
h speaker 
orrespondsto the word \Mi
hel".
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Figure 1.30: The word \Mi
hel" represented for �ve di�erent speakers, who pronoun
ed theword six times ea
h, using the two last slopes of �B for �ve di�erent speakersWe observe that some speakers have their six points more or less 
on
entrated. Themain reason is that two of the �ve speakers have done variations of their tone and spee
hspeed, as we observe the di�eren
e between the �gures 1.28 and 1.29, that represent twodi�erent speakers. It makes their representation more diÆ
ult by 
ontrast to the threeothers speakers. We 
ompare now the instantaneous frequen
ies given by a 
lassi
al phase-plane analysis with best basis (�gure 1.31)on the signal F and the derivative of �F and �B(�gure 1.32).
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Figure 1.31: The instantaneous frequen
ies of the word \Mi
hel" using the phase planeanalysisA 
hange of variables between two di�erent phases doesn't give too mu
h result!And the registration should be done �rst!!1.7.2 Appli
ation to 
ompressionWe observed previously that in the fa
torization \F = B � G" a form of noise is mostly
ontained in the phase of G. We de
ide to study F � = jF j � B, than 
an be also writtenas F � e�i��G , and use the properties of B. The sound of Re(F �) doesn't seem to bedi�erent from Re(F ). It means that the ear has diÆ
ulty to 
ompare jF j � 
os(�B) andjF j � 
os(�F ). Redu
ing �B to lines on ea
h segment, as observed before, 
orresponds to amajor 
ompression and what we hear has lost most of the information. Having the mainfrequen
y gives us just a whispering by itself, it 
orresponds to the melody of the word. Weneed to have information on the instantaneous frequen
y at every point. But if we 
ombinethe polygonal phase with F amplitude we 
an almost guess the sound \Mi
hel", but we stillhave a lot of noise even if it sounds better than just the F amplitude. Furthermore, we haveto keep the smaller os
illations of the phase that 
ontains the instantaneous frequen
ies of
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Figure 1.32: First derivative of the F and B phases for the same sound \Mi
hel".the signal. We 
ompressed the amplitude of F and the phase of B, using a Best Basisde
omposition. And we observe that both signals have more than 99:9% of their energywith only one per
ent of the signal as opposed to Re(F ) that needs around �ve per
ent ofthe signal to keep the same amount of energy. But we observe the following paradox thatthe se
ond 
ompression, that retains a lower per
entage of energy, gives us a better result.This paradox 
an be explained as we approximate �B and not B, thus we do not have any
ontrol on the approximations.
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hke Produ
tIn the previous 
hapters, we 
omputed the Blas
hke produ
t for the one-dimensional 
ase.We 
omplexi�ed a real fun
tion de�ned on the unit 
ir
le C, using the Hilbert transform,to extend it to the whole 
omplex plane IC. The Blas
hke produ
t is known to only existin the one dimensional 
ase, but we want to extend this approa
h to the two-dimensional
ase by developing a similar algorithm, knowing that the 
anoni
al fa
torization asso
iatedis obtained without sear
hing for the zeroes. We will would like for example to re-normalizethe \three 
ir
les" on �gure 1.33. Where ea
h 
ir
le is de�ned by the 
enter, the radius, the
Original Image F with Multiplicative Noise ( 1 + δ . Unif[0,1] , δ = 0)
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120Figure 1.33: Three 
ir
les with di�erent frequen
ies, amplitudes and radii. The amplitudesare proportional to 1; 5; 10. We use this example to show later on how we 
an re-normalizeto the same amplitude these three 
ir
les.amplitude, frequen
y modulation and the varian
e of the Gaussian that supports it. Thesefour variables are noted (zi; ri; �i; �i) and thus the equations of ea
h 
ir
le Cir
lei and theimage I are as follows:Cir
lei(z) = �i � sin(�i jz � zij) � e� (jz�zij�ri)2�i (1.86)I = 3Xi=1 Cir
lei (1.87)For this example, we 
hose the amplitude �i proportional to 1; 5; 10.
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t related to the two dimensional 
aseDuring the 
omplexi�
ation pro
ess of f in the one-dimensional 
ase, we apply the Hilberttransform and thus the Fourier transform. For the two-dimensional 
ase, this step is sensi-tive as there is not a 
anoni
al extension. But we are interested in the di�erent stru
tures
ontained in images using the os
illatory 
ontents (as many stru
tures seem to be related tothe os
illations). The extra
tion of the os
illations is obtained by a division of the Fourierspa
e with \
ones" (we keep the regions in the Fourier spa
e that 
orresponds to a 
ommon

.
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Image REAL(Fana)  with cone orientation = -45  aperture = 45 
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120Figure 1.34: A possible 
one de�ned for a partition of the Fourier Spa
e, left �gure, andFCi , right image, obtained after �ltering of the \three 
ir
les" shown on �gure 1.33. Wenoti
e that the present os
illations of FCi are obviously 
ontained in the 
one de�ned in theFourier spa
e.main os
illation dire
tion), using a partition of unity. For ea
h 
one \Ci", we note FCithe subimage obtained after �ltering in the Fourier spa
e. The division is obtained to givepriority to the dire
tion and not to the frequen
y. One of the partition of unity fun
tions
an be 
hosen with a Ci as seen on the �gure 1.34.1.8.2 Analyti
 extension with 
oneWe divide the Fourier spa
e in \
ones" 
entered in the origin, and isolated the low frequen-
ies for a separate study, as seen on �gure 1.34. The number of 
ones has to be adapted tothe image 
omposition, we 
hoose usually eight 
ones and the low frequen
ies as the parti-
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e. We use the 
lassi
 Cartesian Fourier transform. We start from areal signal F from IR2 to IR, we 
ompute FCi , that 
orresponds to the frequen
ies living inthe region Ci, letting C0 be the 
entral region 
ontaining the low frequen
ies 
omponent.Ea
h FCi is analyti
 on C�i xIR2, where C�i is the dual 
one of Ci. An example is shown on�gure 1.34. We have the following formulae:8i > 0; FCi = FT�1�FT (f) � 1Ci� and Xi 1Ci = 1 (1.88)f = Re�XCi FCi� (1.89)To avoid artifa
ts, the regions Ci 
an be de�ned using smooth bells. The fun
tions FCi are
omparable to the brushlets developed by F. Meyer [5℄. The similarity is due to the fa
t thatwe have a partition of the Fourier spa
e and separate the os
illations in di�erent dire
tions,but we do not fold the proje
tion sin
e the orthogonality is not our 
on
ern. We present nowthe fa
torization pro
ess for the two-dimensional 
ase. After the �rst step 
orresponding to

.

Image Re(B) (B = Fana / G) with cone orientation = -45  aperture = 45 
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Image Re(B) (B = Fana / G) with cone orientation = -45  aperture = 45 
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120Figure 1.35: Two BCi obtained for the \three 
ir
les" (shown on �gure 1.33) with twodi�erent �-�ltering. The � on the left is smaller than the right one. Then the right �gureshows an \upper B" than on the left.the 
omplexi�
ation, explained in the previous 
hapter, we obtain li = log jFCi j. We haveto extend li to Li;+, to obtain an analyti
 fun
tion. We 
ompute Li;+ using the same 
oneCi in the Fourier spa
e and obtain the equivalent of the one dimensional outer fun
tion



CHAPTER 1. PHASE EVALUATION AND BLASCHKE PRODUCT 58that we note GCi;Ci . We lose the properties on B+, obtained in the one dimensional 
ase,shown before as we do not preserve jGCi;Ci j = jFCi j (we use the double notation \Ci; Ci",for index, as we use the 
one Ci for the Fourier transform at ea
h iteration). It means thatjBCi;Ci j is not equal anymore to one. An alternative way presents to us, �ltering in theFourier spa
e using the half plane Hi 
entered with the angle 
hosen before. In this 
ase,we have by 
onstru
tion jBCi;Hi j = ��� FCiGCi;Hi ��� = 1 sin
e the �ltering in the Fourier spa
e givesjGCi;Hi j = jFCi j. For �gure 1.33, we obtain B as shown on �gure 1.35. This transformationhas the parti
ularity to make jBCi;Hi j = 1. But unfortunately it is not ne
essarily anadvantage as os
illations appear all over the image.We �lter our signal with the �-threshold, as de�ned in the one dimensional 
ase inthe 
hapter 1.4.3, to obtain with a new notation GCi;Hi;� (for � = 0, we omit the parameter� in our notation), to lower to zero the regions where jFCi j is smaller than �kFCik1. Andwe obtain BCi;Hi;� = FiGCi;Hi;� . In the other regions of the image, where jFCi j >> �kFCik1,the absolute value is then re-normalized to one as seen in the one-dimensional 
ase. Forthe two-dimensional 
ase we have 
hoose the Poisson �ltering as de�ned previously. Byde
reasing, the value of � we only keep the os
illations in the regions where FCi has moreenergy.The main di�eren
e between the one-dimensional and two-dimensional 
ase is 
omingfrom the fa
t that FCi has numeri
ally a 
ompa
t support in most of the 
ase as opposedto F+ in the one-dimensional 
ase. It 
omes from the fa
t that by sele
ting a 
one Ci in theFourier spa
e, instead of the half plane Hi, to 
ompute FCi we lose a main part of the energyof f . Therefore it does not make sense to raise jBCi;Hi;�j to one everywhere by lowering thevalue of �. A solution that one 
an 
hoose is to set to zero BCi;Hi;� in the regions whereFCi > �kFCik1. From the de
omposition we obtain:f = Re�FC0 + XCi;i>0BCi;Hi;� �GCi;Hi;�� (1.90)Sin
e by 
onstru
tion of BCi;Hi;� = FCiGCi;Hi;� . If we use an �-threshold we have:8i > 0; jBCi;Hi j = 1 if jFCi j > �; and jBCi;Hi j = 0 else: (1.91)
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Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 45 
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Image REAL(Fana)  with cone orientation = -45  aperture = 45 
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120Figure 1.36: The left �gure represents BCi obtained for the \three 
ir
les" (shown on �gure1.35) with an �-threshold. We observe the extension from the right �gure FCiWe represent on �gure 1.36 the fun
tion BCi;Hi;� with an �-threshold and set to zero forjFCi j < �kFCik1. We observe that with this new BCi;Hi;� (with a threshold to set to zero)we have extended in some sense the fun
tion FCi shown on �gure 1.34, the region wherethe os
illations are visible is now greater than previously. The value of the �, 
hose for the�-�ltering, will a�e
t mu
h more our two-dimensional signal during the extension, than inthe one-dimensional 
ase.1.8.3 Image enhan
ement of \the three 
ir
les"jBCi;Hi;�j has the parti
ularity to be similar to 1FCi , as we apply a �-threshold, renormalizingthe fun
tion to one where FCi >> �kFCik1, and setting to zero the regions where FCi <�kFCik1. BCi;Hi;� and FCi have similar os
illations but a di�erent amplitude. We 
aninterpret BCi;Hi;� as a re-normalization of FCi su
h that all its os
illations have the sameamplitude one.It 
an be in some 
ases an advantage as seen in the example of the three \
ir
les",ea
h one them have a di�erent frequen
y and amplitude. So by using the \B � G" fa
tor-ization we manage to restore the three 
ir
les with the same 
ontrast. On �gure 1.37, wepresent two results with a di�erent �-�ltering. If the � is 
hosee quite small it gives a mu
h
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.

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 

Figure 1.37: Two B obtained for the \three 
ir
les" (shown on �gure 1.33) with two di�erent�-�lterings. The left image has a smaller � and then a better 
ontrast than the right image.But we 
an observe that some artifa
ts appear when � starts to be too small as on the left�gure.better 
ontrast. We also observe that the more we gain on the 
ontrast the more we looseon the spatial lo
alization of the os
illations. There, we 
an 
on
lude that a trade-o� hasto be done.1.9 Stability to noiseIn this 
hapter, we test the algorithm with a similar image as before ex
ept that we mademodi�
ations to transform the 
ir
les on ellipses, to avoid rotation symmetries in the image.We also add a multipli
ative noise to observe the stability of the transform as we see on �gure1.38. We are interested in the gradient phase of the signal, and we observe that we in
reasedthe regions where we 
ompute it. We observe that a large value for the multipli
ative noiseis not a main problem for the pro
ess. We still have an eÆ
ient result. Artifa
ts appear inregion where jFHi j is small.
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.

Original Image F with Multiplicative Noise ( 1 + δ . Unif[-1,1] , δ = 0.9) Angle of the gradient of the Phase of F

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Angle of the gradient of the Phase of newB

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 Angle of the gradient of the Phase of newB

Figure 1.38: The top row shows the original image Re(FHi) (on the left) \one 
ir
le andtwo ellipses" and the 
orresponding angle of r�FHi . The se
ond and third rows representBHi;Hi;� with two �-�ltering and the angle of the r�B. The value of � is lower for the bottomrow, thus it raises jBHi;Hi;�j to one in wider regions than the se
ond row
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an observe the result on a real image. Figure 1.39 shows the improvement betweenthe analyti
 image that 
ontains half of the Fourier information and the extension to theBlas
hke produ
t.

.

Original Image F Image REAL(Fana)  with cone orientation = -45  aperture = 175 

Image NEW Re(B) (B = Fana / G) with cone orientation = -45  aperture = 175 

Figure 1.39: The top row shows the original �ngerprint and the real part of the 
omplexi�edsignal without high and low frequen
ies. We mainly keep the frequen
ies 
orresponding to the\stripes os
illations". On the bottom row, the left �gure represents the \Blas
hke Produ
t"while the right one is its signum. We observe that the 
ontrast has been in
reased from thetop to the bottom.1.9.2 Eventual segmentationAs observed in the one dimensional 
ase, BCi;Hi enables us to 
ompute the instantaneousfrequen
ies of our signal that belongs to a region Ci. After thresholding, we 
ompute the
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ted on wider regions than for FCi as wehave seen before. For ea
h point, pixel, we 
an then attribuate its r�FCi and r�BCi;Hi;�

.
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Amplitude of the gradient of the Phase of newB
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120Figure 1.40: The amplitude of the gradient of the phase of FHi and BHi;Hi obtained forthe \three 
ir
les" (shown on �gure 1.33) with an half plane 
entered at �45 degres and an�-threshold. We observe artifa
t due to the fa
t that there exist no analyti
 signal with asymmetry of rotation. The right image, obtained from B, has obviously extended the domainwhere the phase's gradient 
an be 
omputed.related to ea
h Ci. As we have seen before we have in
reased the area of the regions wherethe phase gradient exists or has a meaningful value. Using these di�erent gradients andthe low frequen
ies 
omponents we obtain a ve
tor image that 
an be used for ve
torialsegmentation
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lusionIn the one dimsenional 
ase, we have shown invarian
e and stability properties of theBlas
hke produ
t using our fa
torization representation. We have shown how to work with\numeri
al 
ompa
t" signal by adapting of � for the �-threshold. We presented an orthog-onal de
omposition based on the Blas
hke produ
ts 
an be done and gives good results inmany 
ases. An optimisation obtained by extension with a lo
alized fa
tor, z 7! p1�j�j21����z ,is also possible but need an algorithm to �nd the optimal �.The two dimensional extension of the Blas
hke produ
t, based on the same steps,enables a similar representation. It renormalizes our fun
tion to an absolute value equalsto one, in the regions 
ontaining the os
illations that have frequen
ies in the region sele
tedin the Fourier spa
e. More has to be studiedin the two dimensional 
ase, espe
ially to testthe stability to noise and how to 
hoose the partition of the Fourier spa
e for the two steps.The pseudo polar Fourier transform, des
ribed and implemented in [10℄, is also an optionto the 
artesian Fourier transform as it may give a representation more adapted, dependingon whi
h �lter has to be 
reated.
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h 
lassIn this 
hapter, we provide a detailed proof of the Theorem 1.6.1. The Jensen inequalityenables us to write:E(exp h Z log(jF j)d�i) � exp" 12� Z 2�0 d� � Z�2N�1 log(jF j)d�i (92)As we know that F is a random trigonometri
 polynomial, we 
an write:F (�) = NXk=0 ak � eik� ) F (�) = A � E�pN (93)where E� = f 1pN e�ik�g; k = 0 � � �N; and A = fakgE� is a unit ve
tor whi
h 
an be rotated to the �rst 
oordinate axis without 
hangingE(log jF j). So we have: E(log jF j) = E� log jA � E�j+ log(N)2 � (94)E(log jF j) = E(log jA � E�j) + log(N)2 (95)The Lebesgue measure on �2N�1 = fz : jz1j2 + � � � + jzN j2 = 1g 
an be written as thefollowing: E(�(z1; � � � ; zN )) = Z �d�N�1(r)d�1 � � � d�1; (96)where zi = ri � ei�i ; ri � 0; NXi=0 r2i = 1:d�N�1(r) is renormalized to 1 on �2N�1 to have E(1) = 1. We obtain:E(log jA � E�j) = 
N � Z �0 log j
os( )j sinN�1( )d (97)Where 
N = p���(N2 )�( 1+N2 ) . And if we let 
 be the Euler 
onstant we have:E(log jA �E�j) = ��
 + log(4) + �0(1+N2 )�(1+N2 ) �=2 (98)
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 formula for the digamma fun
tion:�0(N)�(N) = log(N) + o(1) (99)) �0(N+12 )�(N+12 ) = log(N)� log(2) + o(1) (100)Finally we have E(log jF j) = �
 + log(2)2 + o(1) (101)) 
 = exp �� (
 + log(2))=2� (102)) 
 = 0:52 : : : (103)



Chapter 2
A Ve
torial SegmentationAlgorithm
2.1 Introdu
tionSegmentation is a key fa
tor for image pro
essing, it enables \to extra
t in homogeneousregions separated by edges". The term homogeneous has to be understood in a very broadsense. The regions 
an be pie
ewise 
onstant, have a repetitive pattern or texture as seenin Brodatz book [13℄. Works on the subje
t have led to a better understanding: Textons byJulesz [17℄, Wavelets representation with Mallat [21℄, Fun
tional with Mumford and Shah[25℄. These di�erent theories generated re
ently many algorithms. We know the eÆ
ien
y ofthe pyramidal algorithm presented by J.-M. Morel, and the CEREMADE (University ParisIX-Dauphine). This algorithm is based on the Mumford-Shah fun
tional, a de
reasingfun
tion of the number of regions, and is part of the Megawave platform [15℄. We studythe pyramidal algorithm that gives a segmentation for a predetermined number of regions.Some properties of 
onvexity are shown for this algorithm. We use these properties tointrodu
e an extra term, related to the number of regions, in the fun
tional. This newfun
tional has now a minima depending on the number of regions. We also show a 
ounterexample for the non-optimality of the algorithm. The algorithm approximates regions by67
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onstant, so it implies that for textured images a prepro
essing has to be done. Koep
eret al. showed some good results in [19℄ for textural image using a ve
torial segmentationafter a wavelets prepro
essing. A summary of wavelets properties is then given as we willuse them for our multi-s
ale representation, we also show the fast de
omposition done byMallat and present the Wavelet pa
kets. These algorithms use de
imation. But we want agrid independent algorithm so we introdu
e the notion of unde
imated wavelets and presentdi�erent prepro
essing. A 
ost fun
tion is then applied to evaluate the usefulness of the�ltering, we want to avoid \uninteresting �lters" to shorten 
omputations time and improveeÆ
ien
y. We obtain the \Cost Subspa
es" on whi
h the segmentation algorithm will run.Our aim is to �nd a 
riterion to determinate the number of regions and the eÆ
ien
y of thesegmentation for ea
h subspa
e. This approa
h is based on the fa
t that we are interested in�nding a segmentation with regions of reasonable sizes and we are not looking, for example,for \targets" that are typi
al of small regions. Thus we 
reate a 
riterion of \segmentationeÆ
ien
y" for ea
h 
omponent and dis
ard the insigni�
ant �ltered images. We run thepyramidal algorithm on syntheti
 and real images, applying di�erent improvements.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 692.2 Segmentation AlgorithmJ.-M. Morel and his 
ollaborators from the CEREMADE developed Megawave [15℄, a soft-ware that works as a platform 
ontaining C programs, essentially for image pro
essing.For segmentation, a pyramidal algorithm has been developed, it is based on Mumford-Shahfun
tional. This merging algorithm is very eÆ
ient in the 
ase of pie
ewise 
onstant images.For textured images, a ve
tor image is obtained after prepro
essing before evaluating the
ost fun
tion that enables to sele
t the useful �lters. Then we 
an redu
e 
omputationaltime and errors by 
hoosing the appropriate 
omponent of our ve
tor image. We des
ribethe pyramidal algorithm and explain its advantages and show problems that 
an o

ur.This des
ription is done with the purpose to �nd a 
riterion for a good segmentation.2.2.1 Mumford-Shah Fun
tionalThere is an obvious relation between the pie
ewise 
onstant approximation on ea
h regionand the region itself. Therefore, we de�ne Mumford-Shah fun
tional with a parameter �,that 
an be 
ompared to the s
ale, by using the regions (the fun
tion 
orresponding is thende�ned by the average value on the region). To determinate the regions is equivalent toobtain the pie
ewise 
onstant fun
tions. We de�ne P (
) partition of 
, and N(�) numberof regions for a �xed �. And we obtain 8K � P (
), with K = [N(�)i=1 Ki where the domainsKi are 
onne
ted, a segmentation similar to �gure 2.1.
.

       K1
               K2

             

   K3      K4

                K5Figure 2.1: Example of a segmentation in �ve regions for an image.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 70And we have the following representation:8u 2 L2(
); 9!g 2 L2(
); su
h that gjKi = uKi = 1jKij � ZKi u (2.1)And we denote �K = [N(�)i=1 �KiE�(u;K) = Z
ku� gk2 + �:length(�K) (2.2)E�(u;K) = N(�)Xi=1 ZKiku� uKik2 + �:length(�K) (2.3)We note the optimal result: E�(u) = minK�P (
)E�(u;K) (2.4)And we want to �nd K su
h that E�(u;K) is minimum. We now present the 
hara
teristi
sof a pyramidal algorithm developed and programmed by J.-M. Morel and his team.2.2.2 A pyramidal algorithmWe know that a way to solve Mumford-Shah fun
tional, with pie
ewise 
onstant fun
tion,is to use an iterative algorithm. This algorithm has been developed by J.-M. Morel and histeam the CEREMADE. They de�ne this algorithm by re
ursion in Koep
er's thesis [18℄.This algorithm starts with a segmentation at the pixel level (we obviously have N2 regionsfor a image of size (N;N)) and � is equal to zero. A merging algorithm runs until thedesired number of regions � is rea
hed. The pyramidal algorithm 
onstru
ting 2-normalaÆne segmentations is de�ned as followed in [18℄:\We now 
onsider the problem of de�ning and 
omputing a 2-normal segmentation.Noti
e that not all 2-normal segmentation are interesting: for instan
e, the empty segmenta-tion, where 
 is the single region is 
learly a 2-normal segmentation. If the s
ale parameter� is very large, it is also a reasonable segmentation sin
e one \pays" a too large energyamount for having any boundary. However, it is obvious from the de�nition that the emp-ty segmentation is 2-normal for every �, whi
h 
ertainly proves that the assertion that a



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 71segmentation is 2-normal is not enough to ensure that it is \good". But if we follow themain idea of the region growing methods, we shall see that what they 
ompute is pre
isely a2-normal sub-segmentation of a �ne initial segmentation, obtained by re
ursive merging.Assume that the datum g is de�ned on a re
tangle. This re
tangle is divided insmall squares of 
onstant size (the pixels) and g is assumed to be 
onstant on ea
h pixel.Here are the properties whi
h we require for the segmentation 
omputed by a region growingalgorithm, de�ned as an appli
ation asso
iating to g and � a segmentation (u;K).a) \
orre
tedness"(Fixed point property): Assume that g is pie
ewise 
onstant on someareas of the re
tangle. Then there exists a value �0 of the parameter � su
h for thatfor every � < �0, the segmentation (u;K) obtained by the algorithm veri�es u = g andK is the union of the boundaries of the areas where g is 
onstant. This property hasbeen proved to be asymptoti
ally true for the segmentations whi
h are global minima ofthe energy E as � tends to zero. But we impose it here as a non-asymptoti
 property.b) "Causality"(Pyramidal segmentation property): If � > �0, then the boundaries pro-vided by the algorithm for � are 
ontained in those obtained for �0and the areas ofsegmentation asso
iated to � are the unions of some the areas obtained for �0 .The last Property ensures that a fast pyramidal algorithm 
an be implemented, 
omputinga hierar
hy of segmentations from �ne to 
oarse s
ales. Moreover the 
oarser segmentationwill be dedu
ed from the �ner by \merging" operations, with a pyramidal stru
ture for the
omputation. Note that, as a 
onsequen
e of the �xed point property, if � is very small, the
omputed segmentation is attained with (u0;K0) where U0 = u and K0 
onsists of all theboundaries of all the pixels and therefore 
oin
ides with the global minimum as � is zero.We shall 
all this segmentation, where ea
h pixel is a region, the \trivial segmentation". Itis easy to see that re
ursive merging algorithm whi
h we present now veri�es all the abovementioned properties." We believe that the algorithm does not de�ne the segmentationthat we are looking for as the number of regions is not inserted in the fun
tional. We willde�ne later a new fun
tional with an extra term. But before we present the 
on
avity and
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onvexity 
hara
teristi
s of the algorithm.2.2.3 Convexity and Con
avityIn this se
tion we 
onsider the 
ase of the pyramidal algorithm where only two regionsmerge at a time. We will show later that this detail has its importan
e. Let's show someproperties of our initial 
ost fun
tion E�(u;K) We have a pyramidal algorithm to segment
Number of regions:

2

     1  2  3  4         p  p+1 p+2      N2

Value of λ:

   1  2  3  4  ...   p  p+1 p+2   ...N    
    |  |  |  |         |  |  |

    |  |  |  |         |  |  |             

+∝   λ   λ   λ    λ                λ    λ     λ              λ    = 0Figure 2.2: Diagram showing relations between � and N(�) (the 
orresponding number ofregions for the image segmentation)our image, and we start from a �ne grid and merge neighborhood regions two by two inorder to satisfy our 
riterion. For ea
h 
ouple of regions, we have a di�erent value for � thatenables us to merge. The pyramidal algorithm merges, at ea
h step, the 
ouple of regionsthat needs the smallest � over all the possible values, we note it �k at the step k. Then thenumber of regions is a de
reasing fun
tion of �, and stay 
onstant between two 
onse
utive�n: 8n 2 N�; 8� 2 [�n+1; �n) N(�) = n+ 1: (2.5)We have N(�) � n only for � � �n as showed on the �gure 2.3. And �n is the 
riti
alvalue to pass from the segmentation K to K 0. Let's de�ne the two variations:�E = E�n+1(u)�E�n(u) < 0 (2.6)�� = �n+1 � �n < 0 (2.7)
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       K1
               K2

             

   K3      K4

                K5

       K’ 1
              

             
             K’ 2

   K’ 3   

                K’4Figure 2.3: Constru
ting K 0 from K by merging two regions for � = �4Thus, �E�� � 0 (2.8)By 
onstru
tion we have �n+1 � �n and the number of regions is 
onstant on ea
h interval[�n+1; �n) then �n�� � 0 (2.9)We note K and K 0 the two segmentations that minimize our fun
tional for their respe
tive�n+1 and �n. We note Ki and Kj the two regions merging, for � = �n, in order to obtainK 0p = Ki [Kj (in the �gure 2.3, the indi
es are i = 2, j = 4, p = 2 and n = 4). En andEn+1 have terms in 
ommon, we de�ne, for the merging region 
ouple (Ki;Kj) related tothe value of �, the integral term 
orresponding to the di�eren
e:I(Ki;Kj) = ZK0pku� uK0pk2 � h ZKiku� uKik2 + ZKjku� uKjk2i (2.10)I(Ki;Kj) = ZK0pku� uK0pk2 � ku� (uKi :�Ki + uKj :�Kj )k2: (2.11)By de�nition of uKi , we have u = (u� uKi)� uKi , Pythagoras theorem enables to write:ku� uK0pk2 = ku� uKik2 + kuKi � uK0pk2) I(Ki;Kj) = ZKikuKi � uK0pk2 + ZKjkuKj � uK0pk2 > 0 (2.12)with K 0p = Ki [Kj. After simpli�
ation, we easily obtain the relation:�E = I(Ki;Kj) + �n+1 � length(�K)� �n � length(�K 0) (2.13)
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onstru
ts K 0 from K, by merging two regions, Ki and Kj sepa-rated by a 
ommon boundary �Ki \ �Kj , that disappears in the merging pro
ess:�E = I(Ki;Kj) + �� � length(�K) + �n � length(�Ki \ �Kj) (2.14)For � 2 [�n+1; �n) we have n regions, Ki and Kj merge at � = �n. Then we have thefollowing properties:1. � 7! E�(u;K) is stri
tly in
reasing on [�n+1; �n[, as E�(u;K) evolves linearly like� 7! � � length(�K) on the interval.2. For � = �n, K 0 minimizes K 7! E�n(u;K), as there are n regions.3. For � 2 [�n+1; �n[, K minimizes K 7! E�(u;K) for (n+ 1) regions.We dedu
e from these previous properties that 8� 2 [�n+1; �n):E�(u;K) = E�n+1(u;K) + (�� �n+1) � length(�K) (2.15)But 8n 2 N�; �n > �n+1 and E�n(u;K) > E�n+1(u;K). We also have:E�n(u;K) � E�n(u;K 0)) �n � length(�Ki \ �Kj) � I(Ki;Kj)) �n � �Ki;Kj = I(Ki;Kj)length(�Ki \ �Kj) (2.16)But for � 2 [�n+1; �n), we have a segmentation with (n+1) regions. We 
an 
on
lude that9Æ > 0;80 < � < Æ : E(�n��)(u;K 0) � E(�n��)(u;K)�n � � � �Ki;Kj) �n = I(Ki;Kj)length(�Ki \ �Kj) (2.17)We obtain then the following formula that determines the � ne
essary for two regions tomerge: �n = RKikuKi � uK0pk2 + RKjkuKj � uK0pk2length(�Ki \ �Kj) (2.18)
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onse
utive merging is then:�E = �� � length(�K)) �E�� = length(�K) (2.19)We know that length(�K) > length(�K 0), as one boundary between two regions has dis-appeared. So �E�� is a de
reasing fun
tion of the number of regions. It means that we havea graph similar to �gure 2.4:

. λ    λ  λ   λ       λ                       λ                                                  λ
7  6  5    4              3                              2

∆Ε
∆λ   = length( δK)

E (u)λ

Figure 2.4: Graph of the theoreti
al � 7! E�(u)We 
ompare this result to our experiments (image + di�erent levels of noise) on�gure 2.5, and we observe that experimentally we also have 
on
avity of � 7! E�(u) asshown on the theoreti
al �gure 2.4. We observe that the slopes of the asymptote are thesame for the di�erent images. We dedu
e that the length of the boundaries for the imageat the last segmentation are similar.�E�� (�n+1) > �E�� (�n) (2.20)and � 7! E�(u) is pie
ewise linear on ea
h interval [�n+1; �n℄. The 
on
avity of E� is thenobvious as: �2E�(u)�2� < 0 (2.21)
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Figure 2.5: Graphs of experimental � 7! E�(u), an image with di�erent Gaussian noisesadded.We showed some properties for � 7! E�(u) and we would like to have a similar relation forn 7! E�n(u). We 
an �rst look at the graph of this fun
tion. The experiments seem to
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Figure 2.6: Graph of experimental n 7! En(u) = E�n(u), an image with di�erent Gaussiannoises addedagree on the 
onvexity of n 7! E�n(u). But we have to verify this property more 
arefully.Espe
ially the way the �rst derivate evolves when the regions merge.
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.
     = length( K)

  E  (u)

∆Ε

 N

 2   3   4    5   6   7   8                       Nb. of regionsFigure 2.7: Graph of the theoreti
al n 7! En(u) = E�n(u)We have an obvious property 
oming from the study of � 7! E�(u):�E = �� � length(�K) < 0; thus �E�� < 0 (2.22)We know that n 7! length(�Kn) is in
reasing and �� < 0. We would like to havea 
onvexity property for n 7! E�n(u). We will see later that this property is linked to thestru
ture of the image.2.2.4 Mumford-Shah and Extra TermWe note that the Mumford-Shah fun
tional does not depend on the number of regions, butonly on the length of these boundaries. It means that there will be no penalties for a largenumber of small regions. But we are mostly interested in segmented images with a smallnumber of regions, for example three to a dozen of regions seems like a reasonable number.We add an extra term to the Mumford-Shah fun
tional that will take 
are of the 
omplexityof the image. This idea is similar to the 
ompression problem. We want, for a �xed budget,to de�ne a �xed number of regions, with a 
ertain 
omplexity, and a minimal error. Wede�ne an extension of Mumford-Shah fun
tional with an extra term, in this 
ase we for
e
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tional to minimize the number of regions also.E0�;�(u;K) = Z
ku� gk2 + �:length(�K) + �:N(�) (2.23)E0�;�(u;K) = N(�)Xi=1 ZKiku� uKik2 + � � length(�K) + � �N(�) (2.24)We 
an noti
e that by in
reasing the value of �, we indire
tly de
rease the number of regions(N(�)). Our new fun
tional is the sum of a 
on
ave and 
onvex fun
tions.

. Figure 2.8: Four images 
oming from the same image after �lteringLet's apply this algorithm on the four �ltered images showed on �gure 2.8, 
omingfrom a \wave image" des
ribed in 
hapter 2.6.2. We added to these �ltered images a 
rownfor some boundaries problem, the reason will be explained in the same 
hapter. We want toknow whi
h one 
an give a reasonable segmentation. We mean by that reasonable: no small
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h regions not too 
lose. And we obtain the graph on �gure 2.9,it gives us two informations. The �rst one is that \Image1" and \Image4" should be betterfor segmentation sin
e they have a minima . The �ve regions 
an be seen on the four imagesbut we observe that the 
ontrast is mu
h better in these two images. The se
ond remark isthat the 
anoni
al segmentation should be done with �ve or six regions as the minima areobtained for these number of regions.
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Figure 2.9: Graphs of the \Mumford Shah + Extra Term" for the Images on �gure 2.8.Two of the four images seem to give an optimal segmentation for �ve or six regions. It
on�rms our visual impression.2.2.5 Counter-example for the pyramidal algorithmWe ran the pyramidal segmentation algorithm on di�erent examples to test its robustnessto noise. In some 
ases, we note that the fun
tion N� 7! E� is not de
reasing or � 7! E�is only pie
ewise non-de
reasing and 
on
ave, as some dis
ontinuity appear and make thefun
tion not globally non-de
reasing. It would mean that the pyramidal algorithm is maybenot optimal. In this 
hapter, we build a simple example to understand what is happening.Let's take an image (N by N pixels), 
ontaining three regions. A disk A1 with a
rown A2 around of respe
tive radius r1 and r2 with r2 = r1p2, obviously mes(A1) =
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ide to have mes(A3) = (4��2) �mes(A2), that implies N2 = (4��2+1+1)mes(A1). And we obtain N = 2�r1. Ea
h region Ai 
an be 
hara
terized by a pie
ewise
onstant fun
tion. We represent the fun
tion on the �gure 2.10 and we have the intensityof the pixel value that de�ne the fun
tion I:I(x) = �1A1(x) + 1A2(x)� 
 � 1A3(x); with 
 > 0: (2.25)
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A1       A 2      

       A 3Figure 2.10: Image 
ontaining three regions for our 
ounter-exampleWe run the Pyramidal algorithm on our image (�gure 2.10). For � equals to zerowe have the \trivial segmentation", with N2 regions, and we obtain:E0 = Z
 0 + 0 � (2 �N2 � 4 �N) (2.26)Sin
e we have N2 regions, the error on ea
h region is equal to zero, and we don't 
ountthe outside boundaries of the image. When � starts to be greater than zero, if there is noregions merging we have: E� = � � (2 �N2 � 4 �N) (2.27)But we observe that by merging most of the regions we obtain our three regions withoutin
reasing the term 
orresponding to the approximations error for ea
h region (the integralterm) in the fun
tional. We then have a new relation for E� :E� = 0 + � � (l(�A1) + l(�A2))) E� = � � 2�r1(1 +p2) (2.28)
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on
lude that the region merging will appear as soon as � 6= 0. This segmentation willbe valid until merging two of the three regions. If we merge A1 and A2, it is obvious thatthe average value on A1[A2 is 
1�2 = 0. Formula 2.18 enables us to 
ompute the thresholdvalue for �: �1�2 = 12:mes(A1) + 12:mes(A2)l(�A1) (2.29)) �1�2 = r1 (2.30)In the 
ase where A2 and A3 merge, the average value 
2�3 on the new region A2 [A3 andthe �2�3 ne
essary for merging A2 and A3 are easily obtained:
2�3 = 1� (4� � 2) � 
4� � 1 (2.31)�2�3 = r1 � (
 + 1)2 � (4� � 2)2p2(4� � 1) (2.32)We observe that if 
 is 
lose enough to zero (0 < 
 < 0:5), �2�3 < �1�2, it means thatwe have to merge A2 and A3 before merging A1 and A2. Until � � �2�3, we then havethree regions as a result of our segmentation, and E� de�ned by the relation 2.28. And for� = �2�3 we have the following equation for the fun
tional:E�2�3 = �r21 � (
 + 1)2 � (4� � 2)(4� � 1) (1 + 1p2) (2.33)We now 
ompute the fun
tional for only one region (A1 [A2 [A3), we easily have that theaverage value 
1�2�3 = �
(2��1)2� . And then we obtain the value of our fun
tional, knowingthat the se
ond term 
orresponding to the boundaries term is equal to zero:E�1�2�3 = �r21 � (1 + 
2 (2� � 1)2(2�)2 ) (2.34)To obtain an interesting example, we set 
 = 14 and obtain:E�2�3 = �r21 � 25(1 +p2)16p2 � 4� � 24� � 1 (2.35)E�1�2�3 = �r21 � (1 + (2� � 1)2(8�)2 ) (2.36)
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e N 7! EN is in
reasing, as we have seen before, it means that the merging of thethree regions should have been done before the merging of any two regions individually.We dedu
e from this experien
e that in some 
ase where a given value of � make mergemore than one region at a time, the pyramidal algorithm is not optimal anymore. We now

.   0 λ λ

E

0

 λ

λ       

2π(1+√2)r1†
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 2−3 1−2Figure 2.11: Graph showing the non-optimality of the pyramidal algorithm, Energy as afun
tion of �summarize the properties of the wavelet representation.
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apitulatoryIn this se
tion, we present some of the main properties and theorems about the waveletsde
omposition. We follow Mallat [22℄ in his study, show the di�eren
e between unde
imatedand de
imated wavelets. We introdu
e also the 
on
ept of wavelet pa
kets de
omposition[14℄.2.3.1 Theorems and Properties on WaveletsTheorem 2.3.1. In the 
ase of a wavelet multi-resolution approximation, we have a se-quen
e of 
losed subspa
es fVjgj2Z � L2(IR), that veri�es the followings properties8(j; k) 2 ZZ2; f(�) 2 Vj , f(� � 2jk) 2 Vj (2.37)8j 2 ZZ; f(�) 2 Vj , f( �2) 2 Vj+1 (2.38): : : V2 � V1 � V0 � V�1 � V�2 : : : (2.39)limj!�1Vj = [j2ZVj = L2(IR) (2.40)limj!+1Vj = \j2ZVj = f0g (2.41)And we know that there exists � su
h that f�(:� n)gn2Z is a Riesz basis of V0. Forexample in the Haar 
ase, it 
orresponds to the pie
ewise 
onstant approximation. We have� = �[0;1℄. And so Vj represents the fun
tions f su
h that f is 
onstant on [k � 2j ; (k + 1) �2(j+1)).Theorem 2.3.2. Let fVjgj2Z be a multi-resolution approximation and � a s
aling fun
tionsu
h that: b�(�) = b�(�)�P+1�1 jb�(� + 2k�)j2� 12 (2.42)And we let �j;n(�) = 12j �( � � 2jn2j ) (2.43)For all j 2 Z; f�j;ngn2Z is an orthonormal basis of Vj



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 84Remark 2.3.1. We de�ne an approximation, at a level j, over Vj by using an expansionin the s
aling orthogonal basis: PVjf = +1X�1h�j;n; fi�j;n (2.44)We 
an easily see that h�j;n; fi = f � �j(2jn), where � represents the 
onvolution.Theorem 2.3.3. (Mallat, Meyer)Let � 2 L2(IR)(IR) be an integrable s
aling fun
tion. The Fourier series of h[n℄ =h 1p2�( �2 ); �(� � n)i satis�es:8� 2 IR; jbh(�)j2 + jbh(� + �)j2 = 2 (2.45)and jbh(0)j2 = 2: (2.46)Conversely, if bh is a 2�-periodi
 and 
ontinuously di�erentiable in a neighborhoodof zero, if it satis�es the two pre
edent properties and ifinf�2[��2 ;�2 ℄ jbh(�)j > 0 (2.47)and b�(�) = +1Yp=1 bh(2�p�)p2 (2.48)Then b� is the Fourier transform of a s
aling fun
tion � 2 L2(IR).Remark 2.3.2. For pie
ewise 
onstant approximations, � = �[0;1℄. Sin
e h[n℄ = h 1p2�( �2 ); �(��n)i it follows that h[n℄ = 8<: 1p2 if n = 0; 10 otherwise (2.49)



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 85With the approximations of f , at the s
ales 2j and 2j�1, that are equal to theirorthogonal proje
tions on Vj and Vj�1. We know that Vj � Vj�1. Let Wj be the orthogonal
omplement of Vj in Vj�1, i.e. Vj�1 = Vj �Wj: (2.50)So the orthogonal proje
tion of f on Vj�1 
an be de
omposed as the sum of twoorthogonal proje
tions: PVj�1f = PVjf + PWjf: (2.51)PWjf provides the \details" of f that appear at the s
ale 2j�1 but whi
h disappearat the 
oarser s
ale 2j . Furthermore from the previous relations we 
an easily show that�j2ZZWj = L2(IR).Theorem 2.3.4. (Mallat, Meyer):Let � be a s
aling fun
tion and h the 
orresponding 
onjugate mirror �lter. Let ' bethe fun
tion whose Fourier transform is:b'(�) = 1p2bg��2�b'��2�; (2.52)with bg(�) = e�i�bh(� + �); (2.53)And we note 'j;n(�) = 12j '( � � 2jn2j ) (2.54)for any s
ale 2j, f'j;ngn2Z is an orthonormal basis ofWj. For all s
ales, f'j;ngj;n2Z2is an orthonormal basis of L2(IR).We des
ribe now a fast algorithm to 
ompute the wavelets de
omposition.
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ribe a fast �lter bank algorithm designed by S. Mallat. This algorithm
omputes the orthogonal wavelet 
oeÆ
ients of a dis
rete signal (a0[n℄)n. That 
orrespondsto a de
imate wavelets de
omposition. Let us de�ne:f = +1Xn=�1a0[n℄�(:� n) 2 V0: (2.55)Sin
e f�(:� n)gn2Z is orthonormal, we have:a0[n℄ = hf(:); �(: � n)i (2.56)Ea
h a0[n℄ is thus a weighted average of f in the neighborhood of n. The dis
retewavelet 
oeÆ
ients of a0 are de�ned to be the wavelet 
oeÆ
ients of f :dj [n℄ = hf; 'j;ni (2.57)And we denote �x[n℄ = x[�n℄ and�x[n℄ = 8<: x[p℄ if n = 2p0 otherwise (2.58)So the following theorem shows how to 
ompute the wavelet de
omposition andre
onstru
tion with dis
rete 
onvolutions.Theorem 2.3.5. (Mallat)For the de
omposition we have:aj+1[p℄ = +1Xn=�1aj [n℄h[n� 2p℄ = aj � �h[2p℄; (2.59)and dj+1[p℄ = +1Xn=�1aj [n℄g[n� 2p℄ = aj � �g[2p℄: (2.60)
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zeros insertionsubsamplingFigure 2.12: A signal f is �ltered by a low-pass and high-pass �lter respe
tively to give sand d after subsampling, while an insertion of zero with dual �lters re
onstru
t fCon
erning the re
onstru
tion we have:aj [p℄ = +1Xn=�1aj+1[n℄h[p� n℄ + +1Xn=�1dj+1[n℄g[p� n℄= �aj+1 � h[n℄ + �dj+1 � g[n℄: (2.61)The perfe
t de
omposition is ensured by the next theorem.Theorem 2.3.6. (Vetterli)The �lter bank performs an exa
t re
onstru
tion for any input signal if and only if :bh(� + �):b~h(�) + bg(� + �):b~g(�) = 0 (2.62)and bh(�):b~h(�) + bg(�):b~g(�) = 2 (2.63)So we obtain a perfe
t de
omposition re
onstru
tion by using 
onvolutions andde
imations as we 
an see on the �gure 2.12. By sub-sampling, we modify the relation-s between our wavelet de
omposition 
oeÆ
ients and the original signal. Sin
e we havebx(�) =P1n=�1 x[n℄e�in, the Fourier series of the subsampled signal, y[n℄ = x[2n℄, is going
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h that: by(�) = 1Xn=�1x[2n℄e�in� (2.64)) by(2�) = 1Xn=�1x[2n℄e�2in� (2.65)) by(2�) = 1Xn=�1(1 + (�1)n2 )x[n℄e�in� (2.66)) by(2�) = 12(bx(�) + bx(� + �)) (2.67)And by interpolating with zero, for re
onstru
tion we have a similar relation. Theinsertion is de�ned by: �y[n℄ = 8<: x[p℄ if n = 2p0 otherwise (2.68)whose gives us : by(�) = 1Xn=�1x[n℄e�2in� (2.69)) by(�) = bx(2�) (2.70)For a �rst level de
omposition, we denote s and d the wavelet de
omposition 
oeÆ
ients.We have bs(�) = 12 �bh � bf ��2�+ bh � bf �� + 2�2 �� (2.71)and bd(�) = 12 �bg � bf ��2�+ bg � bf �� + 2�2 �� (2.72)and for the re
onstru
tion we have:bf(�) = 12 hbh � bs(2�) + bh � bd(2� + �)i (2.73)
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imated wavelets de
omposition. It willmore 
omputational time as at ea
h level i we have 
ompute N = 2p points and not 2p�ipoints for the de
imate 
ase. Although this de
omposition is not orthonormal anymore butit has the advantage of being grid independent. We now do a re
all on the Wavelet pa
kets2.3.3 Wavelet Pa
ketsThe wavelets de
omposition is obtained by proje
tion of ea
h subspa
e Vj�1 on the dire
tsum of two orthogonal spa
es: Vj�1 = Vj�Wj. Instead of dividing only Vj�1 we 
an de
ideto operate the same division on the details spa
e Wj�1 to obtain a binary wavelet pa
ketde
omposition. We then have a re
ursive symmetri
 splitting algorithm as opposed to thewavelet de
omposition. For so we have to de�ne wlev;j , the �lter used for the jth spa
e atthe levth level to proje
t on Wlev;j . That enables to have Wlev�1;j = Wlev;2j �Wlev;2j+1.To obtain the two 
omponents, also 
alled 
hildren nodes, we 
onvolve our signal either bythe s
aling or the wavelet fun
tions. We obtain the two wavelet pa
ket orthogonal basis: 2jlev = Xn h[n℄ �  jlev�1(:� 2lev�1n) (2.74)and  2j+1lev = Xn g[n℄ �  jlev�1(:� 2lev�1n) (2.75)We denote m0;m1 2 L2(IR), in the Fourier domain su
h that:m0(�) = bh(�) and m1(�) = bg(�); (2.76)and we obtain wlev;j in the Fourier domain su
h that:bwlev;j(�) = lev�1Yi=0 m�i(2�i�) (2.77)where � 
orresponds to the de
omposition of j in the dyadi
 de
omposition, j =Plev�1i=0 �i:2iAnd we have 8l 2 N �2l�1j=0 W lj = V0. We represent this tree for the one dimensional 
aseon �gure 2.13. This algorithm enables to build a large family of spa
es that will be usedfor our prepro
essing.
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Figure 2.13: One dimensional Wavelet Pa
kets De
omposition2.4 Prepro
essing with Unde
imated Wavelet TransformWe have de�ned multi-s
ale analysis based on the Orthogonal Wavelet De
omposition in theprevious 
hapter. But we want a segmentation to be grid independent and this property
annot be obtained with de
imated wavelets representation. Thus we are going to usethe unde
imated wavelet representation, and more pre
isely the Wavelet pa
kets. Ourprepro
essing will be based on this formalization, that will be done at di�erent s
ales.2.4.1 Unde
imated Wavelet RepresentationLet's apply a one level de
omposition to a dis
rete signal f 2 L2([0; 2N � 1℄), that weperiodize over IR. We have s(i) = hf; '(� � i)i and d(i) = hf; �(� � i)i. For a de
imatede
omposition we have:f = 2N�1�1Xi=0 hf; '(� � 2i)i � '(� � 2i) + 2N�1�1Xi=0 hf; �(� � 2i)i�(� � 2i) (2.78)and by translation of the signal we easily obtain:f = 2N�1�1Xi=0 hf; '� � �(2i+ 2)�i � '� � �(2i+ 2)�+ 2N�1�1Xi=0 hf; �� � �(2i+ 2)�i � �� � �(2i + 2)) (2.79)And then we 
an write:f = 12(2N�1Xi=0 hf; '(� � i)i � '(� � i) + 2N�1Xi=0 hf; �(� � i)i�(� � i)) (2.80)
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omposition:bs(�) = bh(�): bf(�) and bg(�) = bg(�) � bf(�) (2.81)And for the re
onstru
tion:bf(�) = 12 hbh(�) � bs(�) + bg(�) � bd(�)i (2.82)We are using now the unde
imated Wavelet Pa
kets de
omposition to be free of any troublesrelated to the dyadi
 grid. We have 
ontinuity of the de
omposition. Of 
ourse we do nothave anymore a basis, be
ause of the non-orthogonality of the de
omposition. We apply thealgorithm developed by Roland Guglielmi in [16℄. In the 
ase of a three level de
omposition,for a one dimensional signal we have shown before on �gure 2.13, the representation as anarray. In a similar way, we 
an represent the two-dimensional wavelet pa
kets de
ompositionas seen on �gure 2.14. But as we do not have any de
imation in the wavelets and wavelets

Level:      1  2      3Figure 2.14: Two dimensional Wavelet Pa
kets De
omposition.pa
kets de
omposition, we loose the property relatives to basis. And also instead of havingalways a 
onstant size for the data, we have a growing size of elements, to be more pre
isein IRn the data size is multiply by 2n at ea
h level. These representation has the advantages
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reating \a more adapted partition" of the frequential domain than with a waveletsde
omposition.2.4.2 Wavelets Pa
kets Prepro
essingThe data set is 
omposed of one and two dimensional signals of di�erent lengths. We willnot work dire
tly on the raw data set, however, we will apply the following transformationto the data. For ea
h signal we subtra
t the low frequen
ies, to do so, we applied anunde
imated wavelet de
omposition until level three or four depending on the size of thesignals. And we set to zero all the wavelets 
oeÆ
ients but the low frequen
ies of the lastlevel. We show on �gure 2.15 the representation as an array for an one dimensional signal.For a two-dimensional signal, we obtain a 
omparable representation as seen on �gure 2.16.
00 0 0 0 00

Low3

Figure 2.15: One dimensional Prepro
essing using Unde
imated Wavelet RepresentationWe extra
t the low frequen
ies of our signal and we obtain Signal = Lowi+Highi,with Lowi = Vi and Highi = Signal � Lowi: Therefore the working data set is 
omposedof two signals, and we are going to work �rst on the high frequen
ies part. A dire
tsegmentation 
an be done on the low frequen
ies 
omponents with Mumford-Shah, but weare not interested by this part right now.Remark 2.4.1. We work with a one dimensional signal, as seen on �gure 2.17, 
omposedof a parabola and three di�erent sub
omponents: low frequen
y sinusoid, a 
hirp and a highfrequen
y sinusoid. And we add some noise to the whole signal.
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         0 

     V2  0 0 0 0    
     V1     0       0               0

      0  0           0  0

      0     0        0     0        0      0

V3

LOW1   LOW2    LOW3

Figure 2.16: Two dimensional Prepro
essing with a Unde
imated Wavelet Representation.Three levels of re
onstru
tion are shown.When the �rst step has been applied, we 
an then start the 
omputation of the \CostSubspa
es".2.4.3 \Cost Subspa
es" 
omputationsWe know that a segmentation done dire
tly after wavelets or wavelet pa
kets de
ompositiondoes not work. In fa
t, all the subspa
es but the low frequen
ies have an average equalsto zero. The Mumford-Shah algorithm has then a low probability to be eÆ
ient. Koep
er,Lopez and Morel [19℄ solve this trouble by separating the positive and negative part of thede
ompositions and 
onvolving them. They obtain good results but this method presumea presele
tion of the �lters. We want to have an automati
 sele
tion and a post-pro
essinghas to be done on the de
omposition. We want to apply a 
ost fun
tion on ea
h subspa
e tobe able to determine either the �lter 
an \see the di�erent stru
tures" in the signal or not.And we will 
all \Cost Subspa
e" the subspa
e 
orresponding to a signal that has the samesize has this subspa
e and gives us lo
ally the eÆ
ien
y of our �lter to \see stru
tures". Sofor ea
h subspa
e we are applying the same operations on every pixels. The steps are in
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Figure 2.17: Signal and Low 
omponentsthe one and two-dimensional 
ase:Step 1 Extra
tion of neighborhood window for ea
h pixel i or (i; j).Step 2 Histogram of ea
h window.Step 3 Computation of the histogram 
ost and asso
iation of the 
ost to the point i or pixel(i; j).Extra
tion of neighborhood windowsWe 
ompare now the information 
ontained in di�erent regions of the signal (its size willbe denoted M and (M;M) for the one and two-dimensional 
ase) to apply a segmentation.We a�e
t to ea
h pixel a neighborhood of a determined size (N) or (N;N) (N � M)respe
tively for the one or two dimensional 
ase. This size will determine the s
ale of thesegmentation that interests us.If N is small, it will give a �ne segmentation (a high number of regions), else we willhave a 
oarse segmentation (only few regions). We 
an assimilateN with the segmentation'ss
ale. For a one dimensional 
ase we have an example on �gure 2.18. In the two dimensional
ase an image of size (M;M), and 
hoosing some window of size (N;N), we have the �gure2.19. After extra
ting the neighborhood window, we 
ompute the histogram and try tosele
t the useful �lters.
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Figure 2.18: Three windows of size N represented on the signal used for the extra
tionneighborhood points.
M

MN

N(i,j)

Figure 2.19: Window Extra
tion for the pixel (i; j) in the two dimensional 
aseHistogram of ea
h windowAfter having extra
ted a window for ea
h pixel, we sort the values to be able to have anhistogram. This histogram is going to enable us to determine if the information 
ontainedin the neighborhood pixel is relevant or not. As a matter of fa
t if there is no information
ontained in this subspa
e around this pixel, most of the 
oeÆ
ients are going to be equalto zero. As we want to sort the �lter with their ability to dis
riminate textures, we arelooking for some parti
ular histograms. We will have as example three histograms, from aneighborhood window of size equals to 32, taken for three di�erent �lters at three di�erentpoints. We have 
hoose three 
hara
teristi
 points, ea
h of them �ltered by a spe
i�
 �lters.For ea
h point, we sort ea
h neighborhood window obtained after �ltering. We
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Figure 2.20: (point = 150, level = 1, position = 1), low frequen
y �lter in a neighborhoodwith low energy, most of the 
oeÆ
ients are 
on
entrated in zero.obtained array with indi
es from 0 to 31, sorted by de
reasing value, and we obtain thethree following graphs on �gures 2.20,2.21 and 2.22.
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Figure 2.21: point = 300, level = 2, position = 4), high frequen
y �lter in a neighborhoodwhere a 
hirp is living, we almost have a uniform repartition over [�1; 1℄.We 
an 
on
lude that the �rst histogram shows us that most of the window's 
oeÆ-
ients are 
on
entrated in zero. Our �lter is not sensitive to our signal in the neighborhoodof this point, the signal is living in a subspa
e orthogonal to the one spanned by this �lter.By 
ontrast, a �lter 
ontaining information will give us an histogram like the se
ond one.But the best result is obtained when the �ltering gives only two modes, as we 
an see onthird histogram. The goal of the next step is to 
hara
terize signi�
ant histogram, the two
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Figure 2.22: (point = 450, level = 2, position = 3), high frequen
y �lter in a neighborhoodwhere high frequen
ies are in higher density than the others frequen
ies, 
on
entration ofthe 
oeÆ
ients in two modes.last one as opposed to the �rst one. We show now how to 
ompute some 
ost fun
tions todetermine how well a �lter \
an see stru
tures".Cost ComputationWe have an histogram and we want to determine its signi�
an
e. A �rst and simple 
ostfun
tion is the energy fun
tionPNi=1 xi2 . An histogram 
on
entrated in zero will give us alow energy by opposition to one 
omposed of two modes far from zero. This 
ost fun
tionhas the 
onservation property. If we sum all the subspa
es from a same level, we have forea
h pixel equality of the energy 
ontained in the level zero. An example on �gure 2.23shows this property. We 
an see how the 
ost fun
tion evolves. On the �rst third of thesignal, there is almost no energy, be
ause in the prepro
essing we had extra
ted the lowfrequen
ies, so the two signals are almost equal to zero. On the se
ond part we have a
hirp, so the frequen
ies domains is 
ontained in the low and high frequen
ies domains.Both signals are di�erent from zero. The last part 
ontaining mainly high frequen
ies, onlyone of the two signals (high pass) is obviously di�erent from zero. We loose the energy
onservation property but we will see later the advantage of this 
ost fun
tion. We triedalso to 
ompute di�erent 
ost fun
tions using the density probability over the window.
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Figure 2.23: Lo
al Energy at the �rst level (low and high pass).
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Figure 2.24: Lo
al Cost at the �rst level (low and high pass).Another possibility is to determine the distan
e between the two modes when they exist.If the two modes exist, di�erent from zeros, we assume that ea
h of them 
ontains at leasta quarter of the data 
ontained in the histogram, if not it means that these two modes arenegligible. We are a�e
ting to this histogram the distan
e between the �rst quarter andthe last quarter. An histogram with 
on
entration in zero will give us a 
ost almost equalto zero 
ompared to an histogram 
omposed of two separated modes. We have su
h 
ostfun
tion: Cost(x1; : : : ; xn) = sort(x) 3n4 � sort(x)n4 (2.83)
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tor 
ontaining the x's sorted values (non-de
reasing sort). So forthe three previous examples, seen in 
hapter 2.4.3. We note � the value de�ned in equation2.83, we have N = 32 then � = jx23 � x7j (as our array is sorted by de
reasing value from0 to 31). The value of � for the examples is then almost equal to zero, equals to one andbigger than one. And it 
orresponds to the fa
t that the �rst �lter is not as adapted anddoes not see as mu
h the stru
tures as the two others one.
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tion di�erent options to sele
t the eÆ
ient �lters and a way to shortenthe 
omputational time for segmentation. We look at di�erent entropies of segmentedimages to determinate if a segmentation is reasonable based on our 
riterion. Then wesele
t the 
omponents of our ve
tor image that 
arry information. Furthermore, we shortenthe 
omputation time. We �nish this 
hapter by summarizing our algorithm on a single�gure.2.5.1 Best Filter Choi
e and Redu
tion of DimensionFor ea
h subspa
e, we 
omputed a \Cost Subspa
e" a

ording to a 
ost fun
tion. Fromthese new subspa
es, we have to de
ide whi
h one are the most adapted for segmentation,our 
riterion is to have no small regions and not too many. We will put a part the nonsigni�
ant. Therefore we apply a global 
ost fun
tion on ea
h \Cost Subspa
e". We 
omputethe entropy of this subspa
e by using the following formula:Ent(X) = � qXi=1 pi � log2(pi) (2.84)where (p)qi=1 is the probability density fun
tion of the whole subspa
e, the interval of valuerange is divided in q regions. We 
ompute the ratio of the k:k1 and k:k2 that gives usinformation about the 
oeÆ
ient repartition. These two global fun
tions have the drawba
kto not give any spatial informations. In fa
t, they only give informations about the valuesrepartition. Therefore we do not know when a �lter is eÆ
ient for segmentation. An ideal
ost fun
tion may have to be global to make sense. The trouble that we have with theMumford-Shah Fun
tional is that it does not make any sense to look at its value for a �xednumber of regions. Hen
eforth we have:8(N1; N2) 2 N2; N1 < N2 ) EN1(u) > EN2(u) (2.85)with EN (u) equals to the 
ost of a segmentation in N regions, approximate by a pie
ewise
onstant fun
tion. We have seen that an extra term 
an be useful. We 
hoose another
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riterion to establish when a �ltered image is useful or not for our segmentation. In thesense that we are interested in �nding regions of equivalent sizes and not a segmentationwith small regions, that 
an be related to noisy regions or targets. We 
ompute a 
ostfun
tion based on the entropy of the renormalized areas Ai (su
h that the measure of theimage I is one) of the di�erent segmented regions i:Ent(I) = � NXi=1 Ai � log2(Ai) with NXi=1 Ai = 1 and Ai > 0: (2.86)We observe, in di�erent experiments, that there is a region i0 that is mu
h larger thanthe other regions. We assimilate it to a ba
kground in many 
ases. We 
onsider now two
ases. For a given image, a part of \Barbara", that we have �ltered in two di�erent ways,We obtain the two segmentations, in eleven regions, shown on �gure 2.25. We 
onsider for

.Figure 2.25: Two segmentations obtained from di�erent �lters applied to \Barbara". Obvi-ously the right segmentation gives, with our 
riterion, a better result than the left one withits very small regions (related to small regions with high 
ontrast like noise or targets).our study that a segmentation is viable when the regions 
orrespond to the average s
ale.We mean that there are no small regions, and that they all have similar sizes. Sin
e smallregions, for this algorithm, are synonym of noise or targets, point or small region with ahigh 
ontrast, as they 
an be seen as targets on military images. Thus we prefer the rightimage to the left one. We now try to explain how to sele
t them.For the left image on �gure 2.25, we model an image with one main region and Nsmall regions of area A �xed (
lose to the pixel size), su
h that 1 >> N � A, and a main



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 102region i0 with Ai0 = 1�N �A . We have the following entropies fun
tion:
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Figure 2.26: Graph of Plot of the Entropies as a fun
tion of the areas segmented, renor-malized to one for the optimal segmentation in N regions of same size. The top graph
orresponds to segmentations with many small regions, segmented on the left image of �g-ure 2.25, as opposed to the bottom 
ase that is obtained for a segmentation with \averagesize regions", right image of the �gure 2.25. The se
ond 
ase is the one that interests usas the entropy level is higher and there is a dis
ontinuity in the de
rease for the number ofregions equals to 9, that 
orresponds to the \optimal number of regions" for the right image.Ent(I) = �(1�N � A) � log(1�N � A)�N �A � log(A) (2.87)Thus after simpli�
ations, we have:Ent(I) � �N �A � log(A); with A �xed: (2.88)We 
on
lude that N 7! Ent(I) is linear for value of N su
h that 1 >> N �A, with A �xed
orresponding a small region 
lose to the pixel size. This example is shown on �gure 2.26



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 103(top graph). This possible segmentation does not interest us as we are looking for regionswith intermediate sizes. In the 
ase of the right image in �gure 2.25, we model our image asN regions of sizes Ai similar to A. Thus we have N � A = 1. After obvious simpli�
ations,we have the following formula: Ent(I) = log(N) (2.89)We have an experimental result 
orresponding to this 
ase on �gure 2.26, bottom graph. Theoptimal number of regions found for this 
ase is nine, as we have 
hange in the de
rease ofthe entropy for this parti
ular value. Then the se
ond �lter will have a degree of signi�
an
ehigher than the �rst one. Hen
e, we sort the subspa
es, obtained after �ltering, based onthis 
riterion and the Mumford-Shah with Extra term. We de�ned a way to 
hoose thebest �lters and redu
e the dimensionality. We will apply the Mumford-Shah segmentationto a few number of subspa
es. We now present a sub-sampling that enables to shorten
omputation time before summarizing the global algorithm on �gure 2.28.2.5.2 Optional Speed ImprovementWe want to improve the speed of this algorithm by redu
ing the \
ost subspa
e" 
ompu-tations. In fa
t, we subsample our \
ost subspa
es" and thus shorten 
omputational time.The \
ost subspa
es" are smaller than before, and will enable more and higher levels forde
omposition as they redu
e the 
omputational 
osts. The sub-sampling is shown on �gure2.27 The sub-sampling is possible as the 
ost subspa
e are obtained by using window of sizeat least (8; 8). Their s
ale is then greater than the pixel size, a ratio of two or four will not
hange the result. In a �rst step, we 
ompute the \
ost subspa
es" by this fast algorithm.Then we apply our 
riterion to de
ide if the �ltering is good or not, we assimilate this asa prepro
essing to redu
e dimensionality problem. In the se
ond step we 
ompute only theinteresting \
ost subspa
es" at their full size and then apply the ve
torial segmentation onthem.
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Figure 2.27: Subsample \Cost Subspa
e" with a ratio to improve speed. , and a neighborhoodwindow of size (N;N) with generally N = 8 or 16. A ratio of 4 is then a

eptable2.5.3 Segmentation SummaryWe present on �gure 2.28 the main steps of our segmentation algorithm:� Wavelet Pa
kets De
omposition� \Cost Subspa
es" Computation� Sorting of the Signi�
ant Subspa
es� Ve
torial Segmentation
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Figure 2.28: The di�erent steps of our segmentation algorithm, seen in the previous 
hap-ters.



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 1062.6 Results for two-dimensional segmentationWe present the di�erent versions of this algorithm that we tried. We �rst worked withman-made images that are easily segmented in the frequen
ies spa
e, thus a wavelets pre-pro
essing is well adapted. The �rst image is a two-dimensional signals 
omposed of onedimensional sine produ
ts. After, we rotate our image by forty �ve degrees to have a realtwo dimensional problem. And we started to be 
onfronted with artifa
ts, due to periodi
ityproblems at the boundaries. We solved them by using a mask (like a 
rown). The next
hapters also show the di�erent results on real images, some troubles and the way we solvedthem.2.6.1 Wave imageOur �rst trial is on an image 
omposed of four regions, ea
h region 
orresponding to aquarter. Ea
h one is 
omposed of sine produ
ts. We 
hoose an easy image to start, sin
e itis almost having to segment a one dimensional signal. Moreover ea
h region has a spe
i�
lo
al frequen
y and a wavelet representation is obviously well adapted. The original imageand its segmentation are shown in �gure 2.29. We noti
e that the algorithm gives a good

.Figure 2.29: The original image (128; 128) and its segmentation in four regions obtainedafter wavelets prepro
essing. We obtain the desired segmentation in four regions.result but as it 
orresponds to an easy one-dimensional problem. In the next 
hapter, wewill rotate our image by an angle of forty �ve degrees to obtain a true two-dimensional



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 107problem.2.6.2 Wave image rotatedWe rotated of forty �ve degrees the previous image, shown on �gure 2.29 to have a real twodimensional problem. The new image is shown on �gure 2.30 with two possible segmenta-tions. We 
an see that we have artifa
ts 
lose to the boundaries, there are related to the

.Figure 2.30: The original image (128; 128), obtained by rotation of 45 degrees of the imageshown on �gure 2.29, its segmentation in four and �ve regions.non-periodi
ity of the image. This trouble is due to the way we 
ompute the wavelet pa
ketsde
omposition. Sin
e we assume that the image is periodi
, some artifa
ts will appear whenwe 
ompute the neighborhood window at the side of the images. We will now segment thewindow in
luded in a 
rown, sin
e we de
ide to set to zero the pixels 
loser than (N2 ) to the



CHAPTER 2. A VECTORIAL SEGMENTATION ALGORITHM 108boundaries where N is the size of the neighborhood window (for the 
ost 
omputation asde�ned in 
hapter 2.4.3) for ea
h \
ost subspa
e". On �gure 2.31, we obtain a better resultfor the same image, by masking with a 
rown. We for
e the algorithm segment separatelythe region where the points 
loser to N=2 pixels from the boundaries. The problem relatedto the non-periodi
ity of the image has then disappeared. We observe that the result is

. Figure 2.31: Original Image (128; 128), its segmentation in four regions and a 
rownsigni�
antly better, as it 
orresponds now to what we are looking for, and the artifa
tsdisappear.2.6.3 A simple small real imageWe extra
t a sub-image of \Barbara", seen on �gure 2.32. It 
ontains two major stru
tures:

. Figure 2.32: Original Image (128; 128), its segmentation in two regions and a 
rown
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k of the 
hair. One part has almost a 
onstant value and theother part is 
omposed of high frequen
ies, due to the stripes on the 
hair. We have a goodresult in this 
ase. We lost as before the information in the boundaries neighborhood butthe result 
orresponds to our expe
tations. We observe that the 
omputations time 
an beimportant if the image is large. Thus we will use the improvement de�ned in 
hapter 2.5.2to shorten 
omputation time.2.6.4 Real images with \speed improvement"We work on a sub-image of \Barbara", shown on �gure 2.32, but this time we divide oursubspa
e by di�erent ratio: 1, 2, 4, 8. We divide \
ost subspa
es" time 
omputations by

.Figure 2.33: Results of the segmentations for four di�erent ratios: 1; 2; 4 and 8. They allfour 
orresponds to the 
ase where we have two regions and a 
rown for the image on �gure2.32
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orresponding ratio. Of 
ourse we loose pre
ision in the segmentation,but we 
an see on the following results that we still have eÆ
ien
y of our algorithm. For aneasier 
omparison, we have de
ided to represent them at the same s
ale by using a zoomfa
tor equal to the ratio used.In a �rst step, this ratio is used for a faster sele
tion of the signi�
ant \
ost sub-spa
es". And after we have sele
ted the interesting �lter using the Mumford-Shah and extraterm, we then run the algorithm on the full size image.2.6.5 Real imagesWe ran our algorithm on a part of Barbara image. The prepro
essing obtained from the

Figure 2.34: A part of Barbara image (256; 256) segmented in four regions and a 
rown. Aratio of four has been used for speed improvement.wavelet pa
kets analysis and 
ost fun
tion ranks the �lter depending on their prati
al worth
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onsidered image. In this 
ase, we segment our image based on the information givenby the best �lter. We obtain result on �gure 2.34 with a ratio of four for speed improvement.We 
an 
on
lude that the 
hoi
e of the utility of �lter has been 
orre
tly found based onour 
riterion of segmented region sizes.
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lusionWe have shown properties of the pyramidal algorithm designed by J.-M. Morel and his
ollaborators for the Mumford-Shah fun
tional and how an extra term 
an be added to �ndan optimal number of regions for a given image. We have a prepro
essing based on theunde
imated wavelet transform to build a ve
tor image. We 
reate a 
ost fun
tion thatshould 
orrespond to our 
riterion of having a segmentation with regions of similar sizes,as opposed to segmentation with very small regions 
orresponding to targets or noise. We
an then de
ide whi
h 
omponents are the most important and use them for our ve
torialsegmentation with the pyramidal algorithm. The algorithm is modular and thus some of thesteps 
an be 
hanged as the algorithm used for the segmentation in itself. Some re�nement
an be 
ertainly done in the 
hoi
e of the 
ost fun
tion or the prepro
essing, as using thetwo-dimensional extension of the Blas
hke produ
t.



Chapter 3
Unde
imated Wavelets andAppli
ations
3.1 Introdu
tionIn this paper, we propose to improve some traditional methods for image and signal pro-
essing using the wavelets representation. In [28℄, Mallat presents new ideas on multi-s
aleanalysis, providing an approa
h to work and see the stru
tures at various s
ales. As op-posed to other methods that only work at the pixel level, this representation enables anorthogonal proje
tion on various subspa
es at di�erent s
ales. In [26℄, the wavelet pa
ketsare introdu
ed by Coifman to enable a better representation using a binary wavelet pa
kettree. The de
imated wavelets 
an be 
omputed with a fast algorithm but they have theobje
tionable feature of being grid dependent. To solve this trouble, we use the algorithmsdeveloped by Guglielmi in [27℄. We will prepro
ess our data using these di�erent tools.Our �rst appli
ation is de
onvolution, smoothing and sharpening one and two-dimensional signals. By 
hoosing various subspa
es of the signal, one 
an obtain simi-lar results on the signal to a sound equalizer, without artifa
ts. Ea
h 
omponent 
an bemodi�ed separately. We apply this pro
ess to one-dimensional 
hirps (sin
e frequential andspatial informations are linked, it is easier to observe the frequential e�e
t of the algorithm),113
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onvolution of one-dimensional signal before showinghow to remove the stripes of Barbara's vest without erasing the shadows of her arms.The se
ond appli
ation is the denoising for radar images. There are some diÆ
ultiessin
e these images have a high 
ontrast due to the targets and also thre are variations inthe ba
kground (stru
tures at various s
ales). We extra
t the ba
kground with a multi-resolution approa
h, the targets are extra
ted with a threshold and a \
-
orre
tion" isapplied to enhan
e the 
ontrast before denoising, with a multipass algorithm as implementedby L. Woog in [30℄. This algorithm has been inserted in a platform.The third appli
ation is within the medi
al �eld, we work on brain images obtainedwith the fun
tional-MRI. We have two datasets 
orresponding to an a
tive task and abaseline. We are interesting in the regions of the brain that have a distin
t a
tivation inthe two datasets. We do not only mean a variation of the average value but mu
h more twodistin
t probability density fun
tions. The relative entropy is 
omputed at various s
ales todeterminate the dissimilarities between the two states. After re
onstru
tion, we then havefor ea
h s
ale the level of a
tivation at every points.
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apitulatoryIn this se
tion, we present some of the main properties and theorems about the waveletsde
omposition. We follow Mallat [29℄ in his study, show the di�eren
e between unde
imatedand de
imated wavelets. We introdu
e also the 
on
ept of wavelet pa
kets de
omposition�rst developed by Coifman in [26℄.3.2.1 Theorems and Properties on WaveletsTheorem 3.2.1. In the 
ase of a wavelet multi-resolution approximation, we have a se-quen
e of 
losed subspa
es fVjgj2ZZ � L2(IR), that veri�es the following properties8(j; k) 2 ZZ2; f(�) 2 Vj , f(� � 2jk) 2 Vj (3.1)8j 2 ZZ; f(�) 2 Vj , f( �2) 2 Vj+1 (3.2): : : V2 � V1 � V0 � V�1 � V�2 : : : (3.3)limj!�1Vj = [j2ZVj = L2(IR) (3.4)limj!+1Vj = \j2ZVj = f0g (3.5)And we know that there exists � su
h that f�(:� n)gn2Z is a Riesz basis of V0. Forexample in the Haar 
ase, it 
orresponds to the pie
ewise 
onstant approximation. We have� = �[0;1℄. And so Vj represents the fun
tions f su
h that f is 
onstant on [k � 2j ; (k + 1) �2(j+1)).Theorem 3.2.2. Let fVjgj2ZZ be a multi-resolution approximation and � a s
aling fun
tionsu
h that: b�(�) = b�(�)�P+1�1 jb�(� + 2k�)j2� 12 (3.6)And we note �j;n(�) = 12j �( � � 2jn2j ) (3.7)For all j 2 ZZ; f�j;ngn2Z is an orthonormal basis of Vj



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 116Remark 3.2.1. We de�ne an approximation, at a level j, over Vj by using an expansionin the s
aling orthogonal basis: PVjf = +1X�1h�j;n; fi�j;n (3.8)We 
an easily see that h�j;n; fi = f � �j(2jn), where � represents the 
onvolution.Theorem 3.2.3. (Mallat, Meyer)Let � 2 L2(IR) be an integrable s
aling fun
tion. The Fourier series of h[n℄ =h 1p2�( �2 ; �(� � n)i satis�es:8� 2 IR; jbh(�)j2 + jbh(� + �)j2 = 2 (3.9)and jbh(0)j2 = 2: (3.10)Conversely, if bh is a 2�-periodi
 and 
ontinuously di�erentiable in a neighborhoodof zero, if it satis�es the two pre
edent properties and ifinf�2[��2 ;�2 ℄ jbh(�)j > 0 (3.11)and b�(�) = +1Yp=1 bh(2�p�)p2 (3.12)is the Fourier transform of a s
aling fun
tion � 2 L2(IR).Remark 3.2.2. For pie
ewise 
onstant approximations, � = �[0;1℄. Sin
e h[n℄ = h 1p2�( �2 ); �(��n)i it follows that h[n℄ = 8<: 1p2 if n = 0; 10 otherwise (3.13)



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 117With the approximations of f , at the s
ales 2j and 2j�1, that are equal to theirorthogonal proje
tions on Vj and Vj�1. We know that Vj � Vj�1. Let Wj be the orthogonal
omplement of Vj in Vj�1, i.e. Vj�1 = Vj �Wj: (3.14)So the orthogonal proje
tion of f on Vj�1 
an be de
omposed as the sum of twoorthogonal proje
tions: PVj�1f = PVjf + PWjf: (3.15)PWjf provides the \details" of f that appear at the s
ale 2j�1 but whi
h disappearat the 
oarser s
ale 2j . Furthermore from the previous relations we 
an easily show that�j2ZZWj = L2(IR).Theorem 3.2.4. (Mallat, Meyer):Let � be a s
aling fun
tion and h the 
orresponding 
onjugate mirror �lter. Let ' bethe fun
tion whose Fourier transform is:b'(�) = 1p2bg��2�b'��2�; (3.16)with bg(�) = e�i�bh(� + �); (3.17)And we note 'j;n(�) = 12j '( � � 2jn2j ) (3.18)for any s
ale 2j, f'j;ngn2Z is an orthonormal basis ofWj. For all s
ales, f'j;ngj;n2Z2is an orthonormal basis of L2(IR).We des
ribe now a fast algorithm to 
ompute the wavelets de
omposition.
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ribe a fast �lter bank algorithm designed by S. Mallat. This algorithm
omputes the orthogonal wavelet 
oeÆ
ients of a dis
rete signal (a0[n℄)n. That 
orrespondsto a de
imate wavelets de
omposition. Let us de�ne:f = +1Xn=�1a0[n℄�(:� n) 2 V0: (3.19)Sin
e f�(:� n)gn2Z is orthonormal, we have:a0[n℄ = hf(:); �(: � n)i (3.20)Ea
h a0[n℄ is thus a weighted average of f in the neighborhood of n. The dis
retewavelet 
oeÆ
ients of a0 are de�ned to be the wavelet 
oeÆ
ients of f :dj [n℄ = hf; 'j;ni (3.21)And we denote �x[n℄ = x[�n℄ and�x[n℄ = 8<: x[p℄ if n = 2p0 otherwise (3.22)So the following theorem shows how to 
ompute the wavelet de
omposition andre
onstru
tion with dis
rete 
onvolutions.Theorem 3.2.5. (Mallat) For the de
omposition we have:aj+1[p℄ = +1Xn=�1aj [n℄h[n� 2p℄ = aj � �h[2p℄; (3.23)and dj+1[p℄ = +1Xn=�1aj [n℄g[n� 2p℄ = aj � �g[2p℄: (3.24)Con
erning the re
onstru
tion we have:aj = +1Xn=�1aj+1 � h[:� n℄ + +1Xn=�1 dj+1 � g[: � n℄= �aj+1 � h+ �dj+1 � g (3.25)The perfe
t de
omposition is ensured by the next theorem.
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h
h

        h         2       s        2       h

                                             

        g         2       d        2       g

f         f

−                                   *

−  *

zeros insertionsubsamplingFigure 3.1: A signal f is �ltered by a low-pass and high-pass �lter respe
tively to give s andd after sub-sampling, while an insertion of zero with dual �lters re
onstru
t fTheorem 3.2.6. (Vetterli)The �lter bank performs an exa
t re
onstru
tion for any input signal if and only if :bh(� + �) � b~h(�) + bg(� + �) � b~g(�) = 0 (3.26)and bh(�) � b~h(�) + bg(�) � b~g(�) = 2 (3.27)We obtain a perfe
t de
omposition re
onstru
tion by using 
onvolutions and de
i-mations as we 
an see on the �gure 3.1.By sub-sampling, we modify the relations between our wavelet de
omposition 
oef-�
ients and the original signal. Sin
e we have bx(�) = P1n=�1 x[n℄e�in, the Fourier seriesof the subsampled signal, y[n℄ = x[2n℄, is going to be su
h that:by(�) = 1Xn=�1x[2n℄e�in�) by(2�) = 1Xn=�1x[2n℄e�2in�) by(2�) = 1Xn=�1(1 + (�1)n2 )x[n℄e�in�) by(2�) = 12(bx(�) + bx(� + �)) (3.28)And by interpolating with zero, for re
onstru
tion we have a similar relation. The



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 120insertion is de�ned by: �y[n℄ = 8<: x[p℄ if n = 2p0 otherwise (3.29)whose gives us : by(�) = 1Xn=�1x[p℄e�2ip�) by(�) = bx(2�) (3.30)For a �rst level de
omposition, we denote s and d the wavelet de
omposition 
oeÆ
ients.We obtain bs(�) = 12 �bh � bf ��2�+ bh � bf �� + 2�2 �� (3.31)and bd(�) = 12 �bg � bf ��2�+ bg � bf �� + 2�2 �� (3.32)and for the re
onstru
tion we have:bf(�) = 12 hbh � bs(2�) + bh � bd(2� + �)i (3.33)If we do not subsample, we obtain an unde
imated wavelets de
omposition. It will in
rease
omputational time, for a signal of length N = 2p, sin
e at ea
h level i we have 
ompute2p points and not 2p�i points for the de
imate 
ase. Although this de
omposition is notorthonormal anymore but it has the advantage of being grid's independent. We now do are
all on the Wavelet pa
kets de
omposition.3.2.3 Wavelet Pa
kets RepresentationThe wavelets de
omposition is obtained by proje
tion of ea
h subspa
e Vj�1 on the dire
tsum of two orthogonal spa
es: Vj�1 = Vj�Wj. Instead of dividing only Vj�1 we 
an de
ideto operate also the same division on the details spa
e Wj�1 to obtain a binary waveletpa
kets de
omposition sin
e there is symmetry now. We then have a re
ursive symmetri
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omposition. For so we have to de�ne wlev;j ,the �lter used for the jth spa
e at the levth level to proje
t on Wlev;j. That enables to havethe new iteration relation for the proje
tion Wlev�1;j = Wlev;2j �Wlev;2j+1. To obtain thetwo 
omponents, also 
alled 
hildren nodes, we 
onvolve our signal either by the s
aling orthe wavelet fun
tions. We obtain the two wavelet pa
ket orthogonal basis: 2jlev = Xn h[n℄ �  jlev�1(:� 2lev�1n) (3.34)and  2j+1lev = Xn g[n℄ �  jlev�1(:� 2lev�1n) (3.35)We denote m0;m1 2 L2(IR), in the Fourier domain su
h that:m0(�) = bh(�)p2 and m1(�) = bg(�)p2 ; (3.36)and we obtain wlev;j in the Fourier domain su
h that:bwlev;j(�) = lev�1Yi=0 m�i(2�i�) (3.37)where � 
orresponds to the de
omposition of j in the dyadi
 de
omposition, j =Plev�1i=0 �i:2i.And we have 8l 2 IN, �2l�1j=0 W lj = V0.We represent this tree for the one dimensional 
ase on�gure 3.2. This algorithm enables to build a large family of spa
es that will be used for our
Figure 3.2: One dimensional Wavelet Pa
kets De
ompositionprepro
essing.
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onvolutions, sharpening and smoothingIn this 
hapter, we present various appli
ations to de
onvolve, sharpen or smooth one andtwo-dimensional signals. All these examples are based on the wavelets representation anditerative algorithms. In the �rst example, we are interested in restoring signals that havebeen blurred be
ause of a lost of informations. Instead of having a signal f , for examplewe only have is low pass de
omposition s. The se
ond example is about sharpening andsmoothing signal 
omponents. And �nally, we present numeri
al results of these examplesfor one and two-dimensional data, in
luding the removing of Barbara's vest stripes.3.3.1 Appli
ations to de
onvolutionWe used in this 
hapter the notations used before. We start from an original signal forigwhi
h we only have a blurred version f as only the low pass de
omposition \s" has beenkept. It 
an be written as bf = �m0 � bs, with bs = m0 � dforig and bd = m1 � dforig, where\d information" has been removed. We have to 
ompute the high pass de
omposition
oeÆ
ients d to re
onstru
t forig. We 
an apply a division in the Fourier domain but it willimply instability problems. Let's de�ne f1 = f; s1 = s and d1 = d. We will use the
apital letter to de�ne the Fourier transform of a signal, F = bf .
. s1 d1 = 0Figure 3.3: Initial state, virtual tree showing high pass 
oeÆ
ients set to zeroRemark 3.3.1. The term \virtual" and \real" are used to de�ne the di�erent trees 
on-stru
t for the unde
imated wavelet pa
kets representation. \Real trees" 
orrespond to therepresentation that have a true meaning like any de
imated representations. Some waveletpa
kets trees do not 
orrespond to a real tree. This feature is due to the fa
t that we donot have anymore an orthogonal de
omposition by using unde
imated wavelets. Thought,
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ies 
omponents are not anymore independent as in the de
imated
ase. There now exists some 
onditions linking these two subspa
es and at ea
h level of thede
omposition the dimension subspa
es are redu
ed by one instead of being divided by twolike in the de
imated 
ase.Presentation of the algorithmFor our example, we have by 
onstru
tion d1 = 0 and re
ompose the signal to obtain thesignal f1:
. f1s1 0����* HHHHYFigure 3.4: Virtual tree showing re
onstru
tion of f1 = f from s1 and d1 = 0F1(�) = bf1(�) = S1(�):m0(�) + 0:m1(�) (3.38)) F1(�) = F (�) � jm0(�)j2 (3.39)We iterate a pro
ess that we explain now to obtain f2. We obtain s2 and d2 byde
omposition of f1 su
h that S2(�) = m0(�) � F1(�) and D2(�) = m1(�) � F2(�) in theFourier domain.
. f1s2 d2����� HHHHjFigure 3.5: Real tree for the de
omposition of f1 in s2 and d2We set s2 = s1, and we re
onstru
t f2:F2(�) = S1(�):m0(�) +D2(�):m1(�) (3.40)
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. f2s1 d2����* HHHHYFigure 3.6: Virtual tree showing re
onstru
tion of f2 from s1 and d2We iterate this step. For ea
h n, we de
ompose fn in sn and dn and re
onstru
tfn+1 , setting sn = s1, we obtain the following trees:

.

fnsn+1 dn+1����� HHHHj
fn+1s1 dn+1����* HHHHYFigure 3.7: Real and virtual trees showing de
omposition of fn in sn and dn, and re
on-stru
tion of fn+1 setting sn+1 = s1

8n � 2 Fn+1(�) = S1(�):m0(�) +Dn+1(�):m1(�) (3.41)with S1(�) = m0(�) � F (�) and Dn+1(�) = m1(�) � Fn(�). We 
an write the followingrelation: 8n � 2 Fn+1(�) = F (�) � jm0(�)j2 + Fn(�) � jm1(�)j2 (3.42)



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 125As we know that F1(�) = F (�) � jmo(�)j2, by indu
tion we easily show that:8n � 2 Fn(�) = F (�) � jm0(�)j2 � ( nXi=0 jm1(�)j2)8n � 2 Fn(�) = F (�) � jm0(�)j2 � (1� jm1(�)j2n+21� jm1(�)j2 ) (3.43)As we have jm0(�)j2 + jm1(�)j2 = 1, then8n � 2 Fn+1(�) = F1(�) � (1� jm1(�)j2n+2) (3.44)We assume that the 
omportment ofm0 around zero is su
h that jm0(�)j2 = 1��j�j
+o(�
),we have limn!1Fn(�) = 0 (3.45)And we 
an 
on
lude:8� > 0;9Æ < 1=8� 2 [�� + �; � � �℄ jm1(�)j < Æ (3.46)) 8� 2 [�� + �; � � �℄; limn!1Fn(�) = F1(�) (3.47)And we also have Fn(�) = 0. By letting Æx0 be the Dira
 fun
tion in x0 we 
an write that:limn!1Fn = F1 � (1� Æ�): (3.48)The 
onvergen
e of this algorithm is given by the �xed point theorem.
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ation to sharpening and smoothingIn this 
hapter we show how to apply our algorithm to enhan
e or smooth some frequen
ybands without 
reating artifa
ts. We are working with dis
rete signal living in L2([0; N�1℄).At ea
h level lev, for all �lters !lev;�, O � � < 2lev, we 
an write its Fourier transform as:b!lev;�(�) = lev�1Yi=0 m�i(2�i�) where � = 1Xi=0 �i:2(lev�1)�i; �i = 0 or 1 (3.49)

.
�0 = 0 �0 = 1�1 = 0 �1 = 1 �1 = 0 �1 = 1�2 = 0 �2 = 1 �2 = 0 �2 = 1 �2 = 0 �2 = 1 �2 = 0 �2 = 1Figure 3.8: Tree Classi�
ation on p levels with � = (�0; �1; � � � ; �p)For a given signal f we 
ompute its proje
tions on the di�erent subspa
e given byits wavelet pa
kets de
omposition, and obtain the following formula:f!lev;� = N�1Xi=0 h!ilev;�; fi!ilev;� where !ilev;� = !lev;�(:� i): (3.50)Similarly at the previous 
hapter, we 
an write in the Fourier spa
e the relation given bythe \
onstru
tion-de
omposition" of the wavelet pa
kets !lev;�.We obtain f1 by using itswavelet pa
kets de
omposition until the level lev, we set to zero all the wavelet pa
kets but!lev;�: bf1(�) = jb!lev;�(�)j2: bf(�) (3.51)And then we re
onstru
t our virtual tree to obtain f2. By indu
tion we obtain fn with the
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.
f20 00 0 0 00 0 0 0 !3;4 0 0 0Figure 3.9: Virtual tree with all 
omponents set to zero but !3;4same pro
edure. And we have:
fn(�) = jb!lev;�(�)j2n: bf(�) (3.52)So if we have 
 2 IRp+1, we 
an 
onstru
thp(�) = pXi=0 
i � fi(x) (3.53)that we 
an write in the Fourier spa
e:bfp(�) = pXi=0 
i � bfi(�)) bfp(�) = [ pXi=0 
ijb!lev;�j2i℄ � bf(�) (3.54)We �x 
0 = 1 and we obtain) bfp(�) = [1 + pXi=1 
ijb!lev;�j2i℄ bf(�) (3.55)By using the limited development of x 7! (1 + x)� in zero:(1 + x)� = 1 + � � x+ �(� � 1)2 � x2 + : : :+0� �n 1A � xn + o(xn) (3.56)And we also have for x 7! (1� x)� a similar result:(1� x)� = 1� � � x+ �(� � 1)2 � x2 + : : : + (�1)n0� �n 1A � xn + o(xn) (3.57)
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hoose 
i = (�1)i0� �i 1A we obtain:
fn(�) = bf(�):(1 � jb!lev;�j2)� +O(jb!lev;�(�)j2n) (3.58)As we saw in the pre
edent 
hapter, we have 
onvergen
e everywhere but at � = �. It
orresponds to the Nyquist frequen
y. In the Haar 
ase, it's the ve
torial spa
e [ 1 �1 1�1 � � � 1 �1℄ �IR that is orthogonal to the subspa
e spanned by the low frequen
y 
omponent.And it is the reason why we 
annot re
over it. We observe that � = 1 is a key fa
tor. And�'s value will determinate if we enhan
e or blur the 
orresponding wavelet pa
kets.3.3.3 Numeri
al Examples of one dimensional de
onvolutionWe have shown in the previous 
hapters that for a given one-dimensional signal f , with noenergy at the Nyquist frequen
y, we 
an de
onvolve it using the algorithm de�ned before.We start with a periodi
 
hirp (N = 128 points) x 7! sin(
x � (N � x)) that does not haveany high frequen
ies. This 
hirp has been 
hosen to have low frequen
ies 
on
entrated inthe 
enter of the signal as �gure 3.10 shows. We iterate the deblurred algorithm des
ribed
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lue Figure 3.10: A �rst 
hirp and its Fourier transformbefore, and observe the evolution of the signal on �gure 3.11. The 
onvergen
e is quite fastas planned, as support( bf) is limited (no high frequen
ies). After an hundred iterations,there is almost no variations. We observe that the di�eren
es only appear where we havehigh frequen
ies as expe
ted, as jm0j has more energy in the low frequen
ies than amongthe high frequen
ies.
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Figure 3.11: A �rst signal, starting from a blurred version 
onverging to the originalWe 
onstru
t a se
ond example with more energy in the high frequen
ies, as we
an now noti
e on �gure 3.12. We observe that the blurred signal has lost mu
h more
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lue Figure 3.12: A se
ond 
hirp and its Fourier transforminformations and we see the same kind of result but with a mu
h slower 
onvergen
e.
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Figure 3.13: Starting from a blurred version 
onverging to the original3.3.4 Numeri
al examples of sharpening and smoothingIn this 
hapter we present numeri
al results for one and two-dimensional man made signalsand also for a real image. For the one-dimensional 
ase, we 
reate 
hirps that allow a betterunderstanding of the algorithm, sin
e spatial and frequential lo
ations are linked. We thenshow result for two-dimensional signals made of 
hirp and sine produ
ts. And we �nishwith the removing of Barbara's vest stripes.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 131Examples in the one-dimensional 
aseTo visualize our sharpening or smoothing we are going to use our previous 
hirp (1024points) and we are going to enhan
e or smooth ea
h frequen
y band on the se
ond level.So we obtain two examples for ea
h sub-band. We 
an see on �gure 3.14 and 3.15 the

.
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Figure 3.14: Sharpening and smoothing of !2;0 and !2;1 on a 
hirp of length N = 1024su

essive e�e
ts of the sharpening and smoothing. In ea
h 
ase, we manage to modifythe energy level without 
reating any artifa
ts. The e�e
ts on the signal is more or less
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h energy is 
ontained in the sub-band.

.
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Figure 3.15: Sharpening and smoothing of !2;2 and !2;3 on a 
hirp of length N = 1024Examples on two dimensional signalWe 
reate a two-dimensional signal whi
h is the sum of two fun
tions: a produ
t onedimensional 
hirp that allows lo
alization of the frequen
ies (as we have with the one-dimensional 
hirp) for a better understanding, the produ
t of two one-dimensional low
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y 
osines. For (x; y) 2 [1; N ℄2, the intensity I of the signal 
an be written as follow:I(x; y) = �50 + �80� ����N2 � x���� � � 
os��x � (N � x)64 ��� �50 + �80� ����N2 � y���� � � 
os��y � (N � y)32 ��+ 5000 � 
os(�x32 ) � 
os(�y64 ); (3.59)The two dimensional signal is represented on �gure 3.16, the upper left image.

.

Sharp from Original ( quad[128 , 128] ) with γ = -5 , Lev = 2, PosX = 1, PosY = 1Original ( quad[128 , 128] )

Sharp from Original ( quad[128 , 128] ) with γ = -5 , Lev = 2, PosX = 2, PosY = 1
Sharp from Original ( quad[128 , 128] ) with γ = -10 , Lev = 2, PosX = 2, PosY = 2

Figure 3.16: Sharpening and smoothing of the image given by equation 3.59 for di�erentsubspa
es and values of �



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 134Example on a real imageWe now work on a real image and we present result obtained with Barbara, an image(512; 512) showed on �gure 3.17. We want to remove the verti
al lines appearing on \Bar-

Figure 3.17: Original Image \Barbara" (512; 512)bara's vest", just below her left arm without erasing the shadows. The stripes 
orrespondto the wavelets of the �rst level, with low frequen
y in the verti
al dire
tion and high fre-quen
y in the horizontal dire
tion. The wavelet representation is adapted for su
h kind ofsignals. The result 
an be observed on �gure 3.18. We de
onvolved only a small part of thevest and left the other part as it was. We 
an observe that the arm's shadow is still on the
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Figure 3.18: Image \Barbara" (512; 512) partially de
onvolved, the stripes of the vest havebeen removedvest, it didn't disappear with the algorithm. We observe that we do not loose resolutionand sharpness as in the heat equation pro
ess or with a 
onvolution.
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ations to DenoisingS.A.R. images with targets have some parti
ular properties, more pre
isely the range ofvalue (due to the targets) 
ompresses the stru
tures. We apply a prepro
essing to be ableto have a better denoising. In this report, we develop an algorithm to denoise radar imagesin four steps:� De
omposition on Wavelets Pa
kets Unde
imated and Prepro
essing,� Applying a Threshold for targets separation and a 
 
orre
tion,� Denoising using multi-pass wavelet pa
kets de
omposition,� Re
onstru
tion of the 
omplete signalThis algorithm has been implemented inside an existing platform for image and signalpro
essing.3.4.1 Prepro
essing and GoalsWavelets have been used for denoising. But we know that the results are not always good.Too many artifa
ts are introdu
ed due to the data stru
ture. In the 
ase of S.A.R. images,we have a bad representation, as we 
an see on the �gure 3.19 their statisti
al representation.Targets 
an be assimilate to Dira
 fun
tions or noise. To avoid the artifa
ts generated bythis repartition, that essentially 
ompress the stru
tures and gives dis
ontinuities due tothe targets, we apply a prepro
essing to our data set. In the �rst part we are going toextra
t the low frequen
ies, using unde
imated wavelets. We know that the noise is almostinexistent in this 
omponent. When we have done this, we re-normalize our data. Andin the se
ond step we are extra
ting the targets, assimilated as high values. These targetsmodify the range and make impossible most of the denoising based on wavelet analysis.Sin
e they 
ompress the other data in a small range, by renormalisation. So we de
ide toextra
t them before denoising. But we have to be 
areful to not add artifa
ts to our data.And we are able to apply an optional \
 
orre
tion".
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0
Min Med Max

Probabilty Density

Figure 3.19: Probability density fun
tion of a radar image with targets, showing the rangeof data.3.4.2 Extra
tion of Low frequen
iesFor ea
h signal we subtra
t the low frequen
ies. We apply an unde
imated wavelet de-
omposition until level three or four depending on the size of the signals. And we set tozero all the wavelets 
oeÆ
ients but the low frequen
ies 
omponents. And we rebuild oursignal. This algorithm enables us to apply a soft threshold on our data. It 
orresponds toa multipli
ation by a bell in the Fourier spa
e. We have extra
tion of low frequen
ies (at a�xed level) that is obtained by keeping the 
oeÆ
ients of the left box of the 
orrespondinglevel and setting the other elements to zero. The re
onstru
tion of the signal will give asignal 
ontaining the low frequen
y 
omponents. This s
heme 
an be understood with the�gure 3.20
00 0 0 0 00

Low3

Figure 3.20: One dimensional prepro
essing using wavelet pa
kets re
onstru
tion.Remark 3.4.1. After Wavelet Pa
kets De
omposition unde
imated, for a one dimensional
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oeÆ
ients at ea
h level. So we have (�2level �N) elements, it means ((2(maxlevel+1) � 1) � N) 
oeÆ
ients if we have de
omposition untillevel maxlevel. Instead of the N 
oeÆ
ients with de
imated de
omposition. For a twodimensional signal, the amount of data is even bigger as we have (4(maxlevel+1) � 1) � Nelements.We have shown in the previous 
hapter that a similar 
omputation 
an be done bykeeping any wavelet pa
kets subspa
e and setting to zero the others elements. We subtra
tthis 
omponent to the original signal and the working data set is therefore 
omposed of two
omponents. We are keeping a side the low pass part and pro
ess the high pass part. Wehave a similar result for two-dimensional signals, like images that we will denoise later. Thes
heme for the de
omposition-re
onstru
tion is shown on �gure 3.21. After the extra
tion of
         0 

     V2  0 0 0 0    
     V1     0       0               0

      0  0           0  0

      0     0        0     0        0      0

V3

LOW1   LOW2    LOW3

Figure 3.21: Two-dimensional prepro
essing using the wavelet pa
kets re
onstru
tion.the low frequen
ies, we obtain two 
omponents as previously. The low frequen
y 
omponentis kept as is, its 
omplementary part needs pro
essing. We apply a renormalisation usingthe a linear renormalisation that pro
eeds the \
-
orre
tion".



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 1393.4.3 RenormalisationWe want to apply a renormalisation that keep some properties of our signal f to applydi�erent operators. We re-normalize our signal between -1 and 1, and we also for
e themedian to have a value equal to zero. To be able to apply a 
 fun
tion on ea
h side of themedian. We apply a linear transformation, that we de�ne as follows:min = mini2[1:::N ℄ f(i) (3.60)med = mediani2[1:::N ℄f(i) (3.61)max = maxi2[1:::N ℄ f(i) (3.62)And we have the following aÆne transformations:ifx 2 [min;med℄) f(x) = x�medmed�min (3.63)ifx 2 [med;max℄) f(x) = x�medmax�med (3.64)We represent the linear transformation on �gure 3.22
Max   −−−                −−−   1.

Med   −−−                −−−   0.

Min   −−−                −−−  −1.Figure 3.22: AÆne renormalisation on ea
h side of the median value, that will enableto apply the \
-
orre
tion", x 7! sign(x) jxj
 , without lost of symmetry. The median isinvariant by this transformation.3.4.4 Targets extra
tionWe are now working on the high amplitude part of the signal, as opposed to the previous partthat was 
entered on the frequen
ies domain. This part is 
onstituted of small stru
tures,targets (high values that we 
ompare to Dira
 or 
hara
teristi
 fun
tion) and noise. Targetsare represented by high positive values. We are extra
ting them to denoise the small
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tures without being in
uen
ed by the targets. We have di�erent possibility to doso. But many artifa
ts 
an be introdu
ed. The �rst and the easiest way is to apply a
. 0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

’Smooth’
’Linear’

Figure 3.23: In
uen
e of regularity on vision. The 
entral graph show two one-dimensionalsignals. One is C1 while the other is pie
ewise C1. We generate two-dimensional signalsfrom them to observe the importan
e of the C1 property in vision.hard threshold. We separate the signal in two parts by assimilating targets to the highestfew pour-
ents. By iteration we 
an extra
t one, two, three or more pour-
ents. And theseparation between targets and simple stru
tures is done but it is a manual pro
edure. These
ond method is based on the probability density. We know that our data stret
h the rangeof value and we assimilate it to a bi-modal density. Computing the quantiles will enableus to �nd the separation of these two modes. As a matter of fa
t, there is a big jump ofvalue between the two modes and that is going to generate a jump in our quantiles. Thesetwo methods have the drawba
ks of applying hard threshold. The last possibility that we
onsider is based on the same idea at the extra
tion of the low frequen
ies. We want toapply an operator without adding artifa
ts. As we know image regularity is important as�gure 3.23 shows. As the matter of fa
t, when we extra
t our data by hard threshold weobtain signal without enough regularity. Our signal 
an be assimilate to a \hat fun
tion",and we know that it implies artifa
ts. We want to apply a soft threshold to separate targetsfrom the small stru
tures. Moreover, we know that targets have positive values so we onlyapply this soft threshold to [0; 1℄, that 
orresponds to the value range 
ontains between themedian and maximal values. Our fun
tion should be in C2(IR), as the one proposed on thegraph on �gure 3.24. We apply now a \
-
orre
tion" that will help to 
on
entrate or spread
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Figure 3.24: Target extra
tion using soft threshold to avoid artifa
ts as shown on �gure 3.23the di�erent probability densities.3.4.5 
-Corre
tion
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Figure 3.25: Three di�erent 
 fun
tions, x 7! x
 , to emphasize or redu
e the variousdi�erent stru
tures by modifying the probability density fun
tions. A value of 
 between 0and 1 will 
reate a fun
tion above the identity fun
tion and then will \push" the data togreater value as opposed to 
 > 1 that will \pull" the data to zeroAfter renormalisation and extra
tion of the targets, we 
an apply a 
-fun
tion,x 7!x
 , to emphasize the stru
tures 
ompared to the noise. On ea
h side of origin we apply the\gamma-fun
tions" with di�erent values for 
. We show their graphs on �gure 3.25. We



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 142apply this transformation on [�1; 0℄ and [0; 1℄ separately. Denoising 
an now be runningon this prepro
essed signal. The median is not modi�ed with the \
-fun
tion", as it is anon-de
reasing fun
tion. We present a re
apitulatory of our pro
essing before applying adenoising.3.4.6 Prepro
essing re
apitulatoryWe have shown in the last few 
hapters how to extra
t parts of our data to be able tohave favorable 
onditions for denoising. We represent this summary as a diagram on �gure3.26. We have separated our data in three parts: low frequen
ies, high amplitudes 
alled
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Figure 3.26: Diagram showing the prepro
essing steps before denoisingtargets and small stru
tures to denoise. We know that the low frequen
ies do not 
ontainany noise, we keep this apart and add it later. The targets are 
onsidered as high positivevalues, white dots, the noise does not have a veritable in
uen
e on their values. Targets willbe added later too. We have to 
on
entrate our denoising work on the small stru
tures that
orrespond to the last part. The next 
hapter is going to show how to apply a multi-passdenoising using wavelet pa
kets.
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kets de
omposition.We apply here an algorithm developed by Lionel Woog, in his Ph.D. thesis [30℄, to denoiseour data. De
imated wavelet pa
kets are used for this step for fast 
omputations. Thisalgorithm is 
omposed of :� Multi-pass wavelet pa
kets de
omposition-re
omposition with a hard threshold (asshown on �gure 3.27)� Spatial Spin Cy
le� Spin Cy
le on the �ltersSpin Cy
le is used to 
ompensate the dependen
e on dyadi
 grid or on the �lter with anaverage of the results. To do so, we translate the data. For the spatial spin 
y
le, weshift the data of one pixel in ea
h dire
tion and repeat the algorithm, and take the averagevalue. While the for the �lters, we repeat the algorithm with various �lters, before average.Usually four spatial translations and four �lters are adequate. The Multi-pass algorithm
Best Basis Decompos ition
     of the S ignal

Residu(1)

|X|
i

 1                N

Residu(2)

|X|
i

 1                N

Best Basis Decompos ition
     of the R esidu(1 )

Threshold Threshold

Coherent(1) Coherent(2 )

Denoised  = Coherent( 1) + Coherent(2)Figure 3.27: Two-passes algorithm for denoising using a hard thresholdis 
omposed of the following steps (the �rst three 
orresponds to the one pass best basisthresholding):
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kets de
ompositions and sear
h of Best Basis.� Appli
ation of a hard threshold after data sorting by absolute values.� Wavelet pa
kets re
onstru
tion to obtain the 
oherent part.� Iterations of these three steps on the residue, until the residue is 
onsidered as onlynoise.� Summation of the 
oherent partsA two pass algorithm is represented on �gure 3.27. The advantage of this algorithm is thatit enables to \see" stru
tures in di�erent steps. The se
ond and third pass enable to 
at
hthe small stru
tures living in ea
h respe
tive residues.
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an be seen as a separation of our image in three parts and a denoising ofone of them. This summary 
an be seen as the diagram shown on �gure 3.28. The 
om-
IMAGE

LOW     HIGH

  TARGETS   SMALL STRUCTURES

  Gamma CORRECTION

     DENOISING

  SMALL STRUCTURES
      DENOISED

            

+    RESULT         +

+

Figure 3.28: Diagram showing the di�erent steps of the global algorithm used for denoisingbined algorithm has been implemented on a platform that 
ontains others image pro
essingprograms. The 
anvas 
orresponding to this stru
ture is shown on �gure 3.29. And byapplying the algorithm to the original image, shown on the left of �gure 3.30, we obtain ainteresting result on the right of �gure 3.30.



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 146

Figure 3.29: Canvas of the algorithm implemented in the platform

.Figure 3.30: Original and denoised SAR image, with our prepro
essing and multi-pass al-gorithm
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ation to brain a
tivation dete
tionIn this 
hapter, we are 
onfronted to the following medi
al problem: dete
tion and lo
aliza-tion of a
tivation regions in human brain using fun
tional MRI. Two di�erent MRI s
answere a
quired: one baseline during whi
h the subje
t was not performing any task, andanother set during whi
h the subje
t was performing a motor task. We would like to dete
tregions of a
tivation. We will represent the data as two three dimensional data sets. Theimages should have the same spatial size but their respe
tive number may di�er. The thirddimension 
orresponds to the temporal dimension, di�erent realizations of the same state(a
tive task or baseline). Ea
h data set is a temporal sequen
e of one single sli
e of thebrain. We assume that the sli
es in the a
tivated data set and baseline are registered in thez-dimension as shown on �gure 3.31.
N1 N2Figure 3.31: Two data sets of brain given by the fun
tional MRI, baseline and a
tive task.The steps of the algorithm are the following:� De
omposition at various s
ales of ea
h image using the unde
imated wavelets de
om-position.� For ea
h wavelet 
oeÆ
ient lo
ation, estimation of the two probability density fun
-tions.� Computation of a \Cost Subspa
e" for ea
h subspa
e, that interprets the dissimilarityof the two probability density fun
tions.
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onstru
tion of the \Cost Subspa
es" to obtain the dissimilarity at a �xed leveland merging of the various levels.3.5.1 Prepro
essing with Wavelets De
ompositionWe represent our data with the multi s
ale analysis obtained with unde
imated wavelets asexplained before to have representation grid's independent. We use the algorithm developedby Roland Guglielmi. We represent this de
omposition as a table. Ea
h box has thesame size as there is no de
imation. But for an easier visualization we show them as ade
imated de
omposition on �gure 3.32. The �rst raw is the original signal and the following
orrespond to the di�erent levels of de
omposition. We represent our de
omposition on
Figure 3.32: One dimensional wavelets de
omposition�gure 3.33 for our two datasets. We apply this de
omposition. For a �xed s
ale and a

N1 N2Figure 3.33: Two dimensional wavelets de
omposition of the two setsgiven lo
ation, we will 
ompute for ea
h subspa
e data set (that has the same size), the
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tion given by the respe
tive N1 and N2 terms. We then determinatethe dissimilarity of these two fun
tions to 
ompute the \
ost subspa
es" that will allow there
onstru
tion of an image that 
orresponds to the di�eren
e between our two data sets atthis �xed s
ale.Remark 3.5.1. During the wavelet de
omposition, we have a growing size of our data, forhigh level of de
omposition, that is a real problem for two dimensional signals. It is thereason why our study does not use the wavelet pa
ket de
omposition as previously.3.5.2 Computations on ea
h subspa
e

Level = i

N1 N2

Cost Subspace V’i

    Subspace Vi

Figure 3.34: Cost Subspa
es 
omputed for a �xed level (level = i).We want to determine if we 
an dis
riminate lo
ally di�erent a
tivations between this
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rimination at ea
h s
ale. We have four subspa
es 
orrespondingto ea
h level, as we do not use the wavelet pa
kets representation. We work in ea
h �xedsubspa
e, and we have respe
tively N1 and N2 realizations for ea
h mode. For ea
h levelwe 
ompute the four 
ost subspa
es as seen on �gure 3.34. Therefore we have to 
ompute alo
al 
ost a

ording to the dissimilarity behavior of our data. We will 
all \Cost Subspa
e",the subspa
e 
orresponding to a signal (it has same dimension as this subspa
e) and givesus the lo
al di�eren
e between our two data sets. For ea
h pixel, of ea
h subspa
e, we applythe same operations. The following steps are applied:Step 1 Extra
tion of the N1 and N2 realizations with identi
al pixel lo
ation and Estimationof the two probability density fun
tionsStep 2 Cost Computation using the di�erential entropy:E(X1;X2) = i=NXi=1 (pi � qi) � log(piqi ) � 0 (3.65)Step 3 Creation of the Cost Subspa
e and re
onstru
tion.We give details of these steps in the next few 
hapters.Estimation of the probability density fun
tionWe look for a
tivation zones using a bin probability for ea
h s
ale. We have now N1 andN2 set of images, and their respe
tive unde
imated wavelet de
ompositions. Therefore, weare interested in a
tivation di�eren
e in the brain and not in the ba
kground. So later,when we build our probability density we will use this knowledge to 
ompare the data. Anoisy ba
kground will not a�e
t our study. We want to dete
t the a
tive parts of our data.We are working at various s
ales meaning, in our 
ontext, di�erent levels of de
omposition.Our study is done at ea
h level separately. We work on the de
omposition 
oeÆ
ients at�xed levels before re
onstru
tion. We have two data sets, ea
h 
ontaining images withidenti
al sizes. These images are 256 by 128, and they have been obtained by M.D. KevinJohnson (S
hool of Medi
ine, Yale University). They 
orrespond to sli
es of the brain in a



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 151
|   | |||  ||||  | |
Min               M ax

|  | | | | | | | | |
Min               M axFigure 3.35: Prepro
essing of measure for the 
ost 
omputationnoisy ba
kground. We are only interested in what happens inside the brain. Therefore we
onsider the smallest re
tangular region that 
ontained the brain. Within this region, weestimate the probability density fun
tion using the �rst image of ea
h data set, to obtaina global measure. The probability density is approximated with an histogram. We 
an
al
ulate the histogram based on quantiles or linear distribution as shown on �gure 3.35.This probability density fun
tion is 
omputed to establish the dissimilarity between the twosets of realizations.Extra
tion of data with identi
al spatial lo
alization.

N1

N2Figure 3.36: Extra
tion of the two realizations sets for ea
h pixel



CHAPTER 3. UNDECIMATED WAVELETS AND APPLICATIONS 152We have two di�erent realizations of our data, baseline and a
tivated. For ea
h pixel(i; j), we 
reate two sets 
orresponding to the N1 and N2 realizations, as seen on �gure 3.36.These realizations do not have any temporal relations, and we are only interested in thestatisti
al properties of our data. We then 
ompute their respe
tive histograms, using themeasure 
omputed previously during the prepro
essing. For ea
h subspa
e, the size andlo
ation of the bins (shown on �gure 3.37) have been estimated previously using all the pixelsof the subspa
e. Then we use the same bin sizes for every pixel of this subspa
e, related tothe measure previously, to estimate the histogram of the time series. The di�erent measurehave been 
hosen globally, they depends on the pixel values of the whole subspa
e. In order
| |

MaxMin

Max

| | | | | | | | | |

MinFigure 3.37: Probability density fun
tion 
omputed with the measure de�ned with the pre-pro
essingto 
ompare the two time series we 
ompute their relative entropy. A \Cost subspa
e" isobtained by allo
ation to every pixel of this value.Cost Computation and a�e
tation of this valueFor ea
h pixel (i; j), we estimated the probability density fun
tions using the two histograms.We de
ide to 
ompare them by 
omputing the di�erential entropy E as follow:E(X1;X2) = n=NXn=1 (pn � qn) � log(pnqn ) � 0 (3.66)where pn and qn represent the probability ofX1 andX2 in the interval In, with [Min;Max℄ =[Nl=nIn, for a given pixel (i; j). We 
ompute the di�erential entropy using probability densityfun
tions and not the values. It give a better idea about how di�erent are the probabilities,
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t this value 
ost to the spatial lo
ation (i; j) to 
reate
|

Min

|

Max

∆

Figure 3.38: Di�erential Entropy as an estimation of the dis
rimination of two probabilitydensity fun
tionsthe 
ost subspa
e. For ea
h level (or s
ale), we have obtained four \Cost subspa
es" thatenables us to re
onstru
t an image 
orresponding to the di�eren
e at this �xed level. Thisstep is now follow by the re
onstru
tion.Re
onstru
tionFor ea
h de
omposition level we have four subspa
es (ex
ept at the pixel level). We rebuiltas many images as we have levels of de
omposition, as represented on �gure 3.39. Ea
hre
onstru
tion gives us a di�erent s
ale for 
lassi�
ation. We are then able to visualize thedi�eren
es between our two data sets for di�erent s
ales. We note on �gure 3.39 by Vi the
ost subspa
e at the level i. We then are able to multiply these result to visualize only thepixels seen as important at every s
ale. Sin
e our 
ost fun
tion is positive, multiplying thevarious values is equivalent to a smooth version of the logi
 operator \AND".3.5.3 ResultsWe present a result for the fun
tional MRI data on �gure 3.41. From these experiments,we note some important properties. First, we have 
onsisten
y through the various s
ales.In fa
t, after only two levels the produ
ts obtained by this algorithm is almost the same.
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         0 

     V2  0 0 0 0    
     V1     0       0               0

      0  0           0  0

      0     0        0     0        0      0

V3

LOW1   LOW2    LOW3LOW0

V0

Figure 3.39: Wavelet re
onstru
tion from various levelsWe have a 
onvergen
e of our algorithm through the s
ale whi
h allows us to think thatthe result is stable. The se
ond property is due to the multi-s
ale approa
h. We 
ombinethe result of di�erent s
ales, we re�ne our result. By multiplying the various at di�erents
ales we go from 
oarse to �ne, and so by iteration we dis
ard the invalid \a
tivated pixels"(informal 
onversation with Fran
ois G. Meyer). For easier 
omprehension, we explain thisproperty on a one dimensional example shown on �gure 3.40.

Spatial position

Level

3-   ********             *****    ****   **************

2-    *****     ****       ***      ***      ********

1-      **       **    *    **      **       *****

0- *     *     *    *        *       *           ***

         *                   *       *           ***      Figure 3.40: Multi-s
ale property of the algorithm. At ea
h s
ale, a
tivation is dete
ted.The produ
t of the result of the various s
ales enable a better lo
alization
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onsisten
y of the multi-resolution analysis. After twolevels, the produ
t of the re
onstru
ted images does not have signi�
ant 
hanges.
L
E
V
E
L

0

1

2

3

   Activation
 at different level s

Products

Figure 3.41: Result of the brain a
tivation dete
tion at various s
ale. The left row shows thea
tivation at level 0 (pixel level) to 3, while the left row shows the produ
ts of the variouslevels starting at 0.
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lusionThe three appli
ations developed in our reports were based multi-resolution. Sin
e weworked at di�erent s
ale and not only at the pixel s
ale, we obtain a better analysis andresult. We have shown in this report how to prepro
ess data with unde
imated wavelets.Non-de
imation is 
ru
ial as it gives grid independen
e as opposed to the 
lassi
 de
imatedwavelets representation. Our prepro
essing is followed by 
lassi
al engineering methods. Italso means that most of the steps, as the 
ost fun
tion or 
-
orre
tion are examples, of ouralgorithm 
an be modi�ed. Improvement 
an be done in many dire
tions sin
e the variousparts of the algorithms are independent.



Chapter 4
Con
lusion
In this thesis, we have presented properties and results about the fa
torization representa-tion based on the Blas
hke Produ
t. Stability to noise and invarian
e have been shown forthe phase of the Blas
hke produ
t. The non-linear approximation gives good results andfast 
onvergen
e. Further work have to be done to optimize the algorithm with the lo
al-ized term z 7! p1�j�j21���z . The two dimensional extension, that we develop, has properties ofstability to noise to but many parameters, su
h as the partition unity of the Fourier spa
eor the value of � for the threshold, have to be tested to improve the algorithm. It also givesan alternative for 
omputing phase for segmentation.In the se
ond part we have worked on segmentation using prepro
essing based on the waveletpa
kets representation. the 
hoi
e of a 
ost fun
tion and the addition of an extra term to theMumford-Shah fun
tional gave us the 
anoni
al number of regions, based on our 
riterionof regions of similar size, for segmentation. EÆ
ient segmentation 
an then be obtainedby keeping only the useful �lters. By 
on
eption this algorithm is modular and then manyimprovement 
an be done on ea
h blo
, as the 
hoi
e of the 
ost fun
tion or the �lters usedin the prepro
essing.In the third part, we worked with mutli-resolution algorithms. We have shown appli
ationof the unde
imated wavelets and more pre
isely how to 
reate an equalizer for one and twodimensional signal that does not su�er of artifa
ts. An implementation on Matlab has been157
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an be done to make the tool more operational. The dete
tion of braina
tivities has good results as it uses standard engineering te
hniques with the multi-s
aleanalysis. Improvement 
an be done at various steps sin
e the algorithm is also modular.
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