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ABSTRACT 
The most common way to define instantaneous ampli- 

tude, phase and frequency of a real signal is to use its ana- 
lytic signal. One of the main advantages of this procedure is 
that it establishes a one-to-one relationship between any real 
signal and the pair of functions defining its instantaneous 
amplitude and phase. However, there are some problems in 
its physical interpretation but it is shown that for narrow- 
band signals the analytical signal is well related to some 
physical procedures allowing the measurements of ampli- 
tude and frequency. As any analytical signal is a very spe- 
cific function, any arbitrary pair of functions cannot be con- 
sidered as the amplitude and phase of a real signal. This 
point is especially discussed in the case of phase signals, 
which means signals with constant instantaneous amplitude. 
The phase must satisfy very specific conditions related to 
the theory of Blaschke functions and analyzed in the regular 
as well as in the singular cases. These results are applied to 
hyperbolic and parabolic chirp signals. Hyperbolic signals 
are true phase signals corresponding to the singular case. 
On the other hand parabolic signals, often called signals 
with instantaneous frequency varying linearly in time, are 
not phase signals and their amplitude is not constant. This 
point is analyzed in dletail and the structure of their ampli- 
tude and phase is explicitly calculated. Various calculations 
allow the evaluation cif the errors appearing when assuming 
that these signals are lrue phase signals. Some extensions to 
other cases of chirp signals are discussed. 

1. INTRODUCTION 

Instantaneous amplitude, phase and frequency (IAPF) of 
signals seem commoa sense concepts widely used in ra- 
diocommunication systems and their designers do not take 
great care of mathematical concepts. In order to analyze the 
behavior of these systems they make use of these very sim- 
ple ideas. Let us remember that a purely monochromatic 
signal such as a cos(cd + 4) cannot transmit any informa- 
tion. For this purpose a modulation is required and one of 
the simplest possible to introduce is the amplitude modula- 
tion. Let p( t )  be a positive function corresponding to the 
information to be tra.nsmitted. By multiplying the carrier 
frequency signal cos(w0t) by D ( t )  we obtain the signal 

(1) z(2:) = p( t )  cos(w0t) , 
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and it is commonly admitted that p( t )  is the instantaneous 
amplitude of the signal z(t) .  By a similar reasoning it is 
commonly admitted that the signal 

z( t )  = acos[+(t)] (2) 

has a constant amplitude a and an instantaneous phase +(t). 
Furthermore the instantaneous angular frequency is given 
by the derivative of $(t). This is a generalization of the 
procedure applied in the case where the phase is linear in 
time or in the form +(t) = wot + + giving the frequency WO. 

Even if the previous definitions appear quite natural and 
are widely used in practical applications dealing with sig- 
nal modulation, we immediately note that they cannot be 
satisfactory. Indeed it is possible to associate with any real 
signal z( t )  an infinite number of pairs [a(t ) ,  4(t)] such that 

(3) z( t )  = a( t )  cos[+(t)] . 

In order to arrive at a precise mathematical definition it 
is necessary to suppress this ambiguity. This introduces the 
concept of a canonical pair [l]. For such pairs there is a 
one to one correspondence between the real signal z( t )  and 
[a(t ) ,+(t)] .  This means that the pair is defined from z ( t )  
and conversely that this signal is given by (3). Canonical 
pairs are defined and analyzed in Section 2. It is especially 
shown that such pairs cannot be characterized only from 
spectral assumptions, as often believed. A good example 
of the constraints on such pairs appears when the ampli- 
tude is constant, which defines phase signals. The phase 
4(t)  such that the pair [l,+(t)] is canonical must have a 
very specific structure related to Blaschke functions. This 
is especially analyzed in Sections 3 an 4. In order to verify 
the results of these sections we consider chirp signals on the 
form c o s [ ( ~ t ) ~ ]  and we calculate their IA and IF. It is shown 
that such signals are phase signals only for n = fl .  In the 
other cases the IF cannot be obtained by derivation of (at)n 
and numerical results are presented for n = 2 and n = 3. 

2. DEFINITIONS AND CANONICAL PAIRS 

2.1. Mathematical Definitions, Analytic Signal 

The idea is to associate a complex signal ~ ( t )  with any real 
signal z ( t )  in such a way that the IA and IP of z ( t )  are the 
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modulus and the argument of z( t ) .  Therefore the canonical 
property is ensured if there is a one to one correspondence 
between z ( t )  and z( t ) .  Furthermore it is necessary that this 
procedure gives the classical result for pure sinusoid signals. 
If we also impose that the relation between z ( t )  and z ( t )  is 
a linear filtering, the problem has a unique solution and z ( t )  
is the analytic signal (AS) of z(t) .  Let us recall its precise 
definition. 

The AS z ( t )  is obtained by filtering z(t)  through a filter 
with the frequency response equal to 2 for v > 0 and to 0 
for v < 0. Conversely it is obvious that z( t )  = Re[z(t)], 
where Re means the real part. So if z( t )  is real, there is 
indeed a one-to-one correspondence between z( t )  and z ( t ) .  
On the other hand, a complex function is an AS if its Fourier 
transform is zero for negative frequencies. It is clear that 
this function is the AS of its real part. 

As z ( t )  cannot be a real function because its Fourier 
transform Z ( v )  is zero for v < 0, it can be written as 

(4) 

where the phase 4(t)  is defined modulo 27r and a( t )  is non- 
negative. As a conclusion, using the AS makes it possible to 
associate a unique pair [a(t) ,  +(t)] with any real signal. In 
the following it is called the canonical pair associated with 
z(t) .  This pair defines in all what follows the IA and IP of 
the signal z(t) .  The IF is the derivative of the phase with 
respect to time. 

The introduction of the AS is not at all new. It is pre- 
sented in [2] - [8] and it is shown in [7] and [9] that, starting 
from some a priori physical assumptions, the only possi- 
ble definition of the instantaneous amplitude and phase is 
the one using the AS. The question which directly results 
from the definition is the following. As any AS is a very 
specific function, an arbitrary pair [a(t ) ,  4(t)] has no reason 
to be canonical. It is therefore necessary to find conditions 
ensuring this property. 

For this purpose we shall extensively use properties of 
Hilbert transforms. The function z ( t )  is the AS of z ( t )  if 
and only if it can be written as ~ ( t )  = z(t)  + j y ( t ) ,  where 
y ( t )  is the Hilbert transform (HT) of z(t) .  This HT is ob- 
tained by filtering z( t )  through a linear filter with frequency 
response - jSg( v). 

z ( t )  = a ( t )  exp[j4(t)l , 

23. Spectral Characterization of a Canonical Pair 

The canonical pair introduced in amplitude modulation is 
[a(t) ,  uot + 41. It is easy to verify that this pair of functions 
is canonical if and only if a ( t )  is a positive band-limited 
signal, which means that its Fourier transform (FT) A(v) is 
zero for IvI > vo, where vo = w/27r. This is a very simple 
spectral characterization of a canonical pair. It is therefore 
tempting to try to use spectral methods for the characteriza- 
tion of more general pairs of functions [a(t ) ,  4(t)].  Unfor- 
tunately we shall see that this is impossible. 

Saying that ~ ( t )  exp[ j 4 ( t ) ]  is an AS is equivalent to 
saying that the Hilbert transform of a( t )  cos[+(t)] is equal to 

a( t )  sin[d(t)] (see p. 49 of [lo]). It is therefore appropriate 
to make use of the so-called Bedrosian theorem [ 1 13 dealing 
with the Hilbert transform of a product of two real functions 
z1 ( t )  and z2(t).  A very simple derivation of this theorem 
and some extensions can be found in [ 121. The main result 
is as follows: let X,(v) and X2(v) be the ITS  of zl ( t )  and 
5 2  ( t )  respectively. If XI (v) = 0 for v > B and XZ ( v) = 0 
for v < B,then 

H[Zl(t)ZZ(t)l = z:l(t)H[zz(t)l , (5) 

where H[.] means the Hilbert transform. A direct appli- 
cation of this result shows that if a( t )  is a low-frequency 
signal ( B )  and cos[$(t)] a high-frequency signal ( B ) ,  or if 
their spectra do not overlap, then 

However this does not at all imply that 

H{cos[+(t)l) = sin[+(t)l , (7) 

as stated by many authors, and even recently in [8]. In fact 
this equation implies that z ( t )  = exp[j+(t)] is an AS or 
that the pair [l, +(t)] is canonical. We shall see that this re- 
quires very specific properties of the structure of the phase 
4(t)  which cannot be characterized only by spectral consid- 
erations, as for amplitude modulation. 

23. Physical Interpretations 

There are various criticisms against the use of the AS es- 
pecially to define the IF, and that is the reason why other 
attempts to define IF of signals have been presented [13], 
[14], [15], [16], [17]. The main criticisms usually presented 
are the following. (a) The IF defined by the AS is typically 
erratic and has wild variations. It can even take negative 
values. (6) The IF is not related to zero crossings of the 
signal, which seems a good approach to define the IF of a 
signal by extension of the situation valid for sinusoid sig- 
nals. In this case the distance between successive zeros is 
the period, proportional to the inverse of the frequency. (c) 
For band-limited signals the IF does not always belong to 
the frequency band of the signal. ( d )  There is no clear re- 
lationship between the IF and the FT of the signal. (f) For 
periodic signals the IF has no relationship with the funda- 
mental frequency. 

We shall now discuss these points, and our objective is 
to show whether or not the quantities defined by the AS are 
related to some physical measurements. 

However it is important to point out that even if the AS 
can be defined for any real signal, the convenient framework 
for its use is the case of narrow-band signals, and we shall 
admit this assumption unless otherwise specified. In this 
case the AS can be expressed as a( t )exp[ jwot  + j4 ( t ) ] ,  
where wo is the carrier angular frequency. Therefore z ( t )  
is the product of the monofrequency signal exp(jw0t) by 
the complex amplitude a( t )  exp[j+(t)]. The narrow-band 
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assumption means that this amplitude varies very slowly in 
time intervals of the order of the period TO = 27r/wo. In 
the complex plane this can be represented by a vector rotat- 
ing with the velocity wo slowly modulated by the complex 
amplitude, which intmduces slow variations of the modulus 
and the phase. 

Let us first consilder the problem of the instantaneous 
amplitude. It is clear that the IA defined by the AS is the 
amplitude measured by a physical device taking the time 
average of z2(t) on an interval of the order of TO. 

Consider now the relationship between the IF given by 
the AS and the time iintervals between two successive zeros 
of z( t ) ,  which is a possible physical interpretation of the 
IF. This interval is defined by the fact that the IP @(t)  = 
wot + +(t) has a variation of 27r. As the local phase +(t) 
has slow variations the time interval T( t )  corresponding to 
a variation of 27r of @(t) satisfies [WO + 4’(t)]T(t) = 27r, 
which shows that the IF defined from the AS is related to 
the distance between successive zeros of the signal. 

Let us now come to the problem of relationships be- 
tween the fl of the signal and its IF. This question was 
discussed in [13], [14] and [15]. It is easy to show that 
the time average of thie IF is the average frequency deduced 
from its FT [3] [13]. This means that if Z(w)  is the FT of 
~ ( t )  we have 

where w ( t )  is the IF deduced from the AS. However this 
does not at all mean that if a real signal is band-limited in 
a frequency band B ,  its IF does not necessarily belong to 
this band, and this property is sometimes considered as in- 
dicating a lack of physical meaning of the IF deduced from 
the AS. In reality there is no reason for the existence of this 
kind of relationship between these two quantities. 

In order to discuss this point more precisely, let us take 
the example of a two1 components signal, already analyzed 
in [ 131, [ 141 and [ 151. Consider the signal 

A w  A w  
WO WO 

z( t )  = a c o s ( ( 1  - -)wot] + cos[(l  + -)wet], (9) 

where WO is the carrier frequency and A w  satisfies A w  << 
WO, which ensures the narrow-band property. This signal is 
composed of two spectral lines at the frequencies WO - Aw 
and WO + Aw. It is easy to calculate the IF deduced from 
the AS, and the result is 

1 - a2 
a2(t) 

w(t) = WO + AW - 

where a2(t)  is the square of the IA of the signal given by 

a”(t) = 1 + 2acos(2Awt)  +a2.  (1 1) 

If a = 1, this expression gives w ( t )  = WO, which is sat- 
isfactory because in this case z(t)  = 2 cos(2Awt) cos(wot), 

giving immediately the IF of the signal. On the other hand 
we have w( t )  > WO for a < 1 and w(t)  < wo for a > 1. 
This shows that there is a discontinuity for a = 1. It is 
clear that w(t)  is not necessarily in the frequency band of 
the signal. For example for a < 1, this property appears if 
a2( t )  < 1 - a2. This yields cos(Awt) < [ ( l  - ~ ) / 2 ] ~ / ~ ,  
and for any value of a (0 < a < 1) there are time instants 
where this inequality is satisfied. 

This is not in contradiction with physical measurements 
and in order to verify this point, consider now the zeros of 
x( t )  defined by x ( t )  = 0 which can be put in the form 

tan(wt)  = - + a cot ( rwt) .  
1 - a  

By a calculation not reproduced here, it can be shown that 
the distance between two successive zeros introduces an in- 
stantaneous period T( t )  equal to 27r/w(t), where w(t)  is 
given by (IO). Therefore a frequency discriminator using 
the distance between zeros will give an IF in accordance 
with the value obtained from the AS. As a consequence for 
some zeros this distance can be smaller than 27r/(w + Aw) ,  
which means that the IF is not inside the frequency band of 
the signal. 

As there is a singularity for a = 1, consider a particular 
example of signal z( t )  represented in Fig. 1 .  This signal is 
calculated for WO = 1OOAw and the variable on the z axis 
is 5 = wot/7r. Therefore the zeros of cos(w0t) correspond 
to the numbers z = n. + 1/2 ,  where n is integer. The signal 
of the figure is calculated for a = 0.995. It appears that 
there is indeed a singularity at x = 50, and if we measure 
the IF by zero counting, we find that the IF can be twice as 
large as the frequency WO. In reality this figure shows that 
the concept itself of IF is not valid in the neighborhood of 
z = 50, or t = 7r/(2Aw). Indeed for these values the IA 
a(t) becomes very small and the figure shows that the signal 
cannot be locally approximated as a pure sinusoid signal. In 
reality the basic physical idea in the use of the AS is to admit 
that any narrow-band signal can be considered locally as a 
pure sinusoid signal, and the AS allows one to determine its 
amplitude and phase. These quantities must therefore vary 
slowly in time in order to be IAP of the signal. 

Let us now consider the same signal as in Fig. 1 but 
with a = 0.5. The maximum and minimum values of the 
IA are 1.5 and 0.5, reached for z = 0 and z = 50 respec- 
tively. This appears in the Fig. 2 which also shows that 
the period is always smaller than 2, period corresponding to 
the frequency WO, and the minimum value of this period ap- 
pears for z = 50. Theoretically the value of this minimum 
is 0.97 x 2, while the period corresponding to the upper 
bound of the frequency band is 0.99 x 2. This is of course 
difficult to evaluate in the figure and this is the result of the 
narrow - band assumption. 

In conclusion of this discussion the fact that the IF does 
not belong to the frequency band of the signal deduced from 
its FT is not an argument against its physical meaning and 
this criticisms against the AS is not entirely valid in the 
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narrow-band case. Mathematical quantities obtained from 
the AS can be in good agreement with possible physical 
measurements. 
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Figure 1: Signal with two spectral lines, a = 0.995 
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Figure 2: Signal with two spectral lines, a = 0.5 

This is no longer the case if the assumption of narrow 
bandwidth does not hold. From the mathematical point of 
view it is always possible to introduce the AS and to deduce 
an IA and an IP from it. However the physical interpretation 
of these quantities looses any simple meaning. For example 
a broad-band signal can have no zeros and a device measur- 
ing the IF from the distance between two successive zeros 
give an IF equal to zero. 

In front of this situation various approaches have been 
presented. The most recent one uses the so-called homo- 
morphic AS related to the logarithm of the signal and well 
adapted to the structure of poles and zeros [16]. There is 
no space here to discuss this approach here and some com- 
ments will be presented in the oral presentation of this pa- 
per. We can only point out that this procedure cannot in- 
troduce the concept of IA and therefore only IF can be dis- 
cussed. As an example let us take the case of the signal 
s(t) = a + cos(&). The IF deduced from the AS is given 

by (10) where WO and Aw are replaced by w / 2 .  It is clear 
that this IF has no real physical meaning because the signal 
is not narrow-band. By using the homomorphic AS the IF 
becomes w if la1 < 1 and w f ( t )  if la1 > 1, with f(t) = 
1 - d m [ a  + co~(wt)]-~/' .  It is difficult to give a phys- 
ical interpretation of these 3 results and this comes from the 
fact that the assumption of narrow-band is not valid. 

Another point sometimes discussed is the IF of a pe- 
riodic signal [16] [lq. It is clear that looking at a music 
score for instruments playing only one note (flute or clar- 
inet) gives the feeling of reading the IA and IF of the musi- 
cal signal. This is however not the case. Indeed each note 
is not a pure sinusoid signal but only a periodic signal with 
various harmonics and the specificity or the quality of the 
sound depends precisely on the structure of these harmon- 
ics. The possible IF is only the frequency of the fundamen- 
tal, and associating only one frequency at each instant with 
the complete signal is mathematically possible, for example 
by using the AS, but physically without real meaning. In re- 
ality there is a spectrum at each instant, and the concept of 
the instantaneous spectrum is better adapted to this situation 
than the one of IF. However this point is outside the scope 
of this talk. 

3. PHASE SIGNALS, REGULAR CASE 

3.1. General Structure 

Phase signals are real signals with constant instantaneous 
amplitude. They can be expressed as (2), but with the con- 
dition that exp[j+(t)] is an AS. As a consequence (7) is 
satisfied. For such signals all the information is contained 
in the instantaneous phase (or frequency), and phase signals 
are then the basic elements of phase or frequency modula- 
tion. 

The condition that exp[ j+( t ) ]  is an AS requires very 
specific properties on the phase +(t). These properties have 
been analyzed in the framework of coherence problems in 
Optics [ 181 but more precisely in the framework of the study 
of analytic functions and especially in Chapter 17 of [19]. 

The most general structure of the AS of a regular (or 
nonsingular) phase signal is 

Z ( t )  = b ( t )  exp[j(wot + e)]  1 (13) 

where 8 is arbitrary, WO is non-negative and b( t )  is a Blaschke 
function defined by 

P+ being the half-plane of the complex plane defined by 
Im(z) > 0. The quantity WO is the carrier frequency and 
can be equal to zero. The expression regulur (or nonsingu- 
lar) means especially that the number N of factors in the 
product is finite. The interpretation of (14) is very simple. 
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In order to be an AS the function b ( t )  for complex values 
o f t  must have all its poles in the half-plane Im(z) < 0. In 
order to have a modulus equal to one each pole must be as- 
sociated with a corresponding zero symmetric to this pole 
with respect to the real axis. This procedure is well known 
in filter theory: stable phase filters have the same number of 
poles and zeros and these zeros are symmetric of the poles 
with respect to the imaginary axis. The stability and causal- 
ity conditions imply that all the poles are in the left half- 
plane of the complex plane. 

It is obvious that Ib(t)l = 1 ,  which implies that Iz(t)l = 
1 .  Let us now explain why z ( t )  is an AS. For this we must 
analyze the structure of the FT B(v)  of b(t) .  As N is finite, 
b(t) is a rational func:tion in t .  If all the ZkS are distinct we 
can write 

N 

where 
Ck == lim (t - z;)b(t) . (16) t+z; 

As a consequence we have 

where Ck(v) is the IFT of Ck(t - z ; ) - l .  Because of the 
localization of z; in the complex plane, we deduce that 
c k ( V )  = 0 for v < 0, which implies that B(v )  = 0 for 
v < 0, and ensures that b ( t )  is an AS. Finally, as WO > 0, 
~ ( t )  also is an AS. The reasoning can be extended without 
difficulty when some poles Zk are no longer distinct. 

The phase of b ( t )  is of course 

$ b ( t )  == Arg[b(t)] 7 mod(2n) 7 (18) 

and, as a result, we can say that any phase signal can be 
written as (2) where qh(t)  must have the form 

(19) 

In practice the continuity of the phase leads to suppress the 
term mod(27r) and this convention is adopted in all that fol- 
lows. 

This most general1 phase is defined by N complex para- 
meters Zk and 2 real parameters WO and 8. Furthermore it is 
obvious that the phase d b ( t )  is the sum of N phases of the 
factors appearing in the product (14). Let bk(t) be equal to 
(t - Zk)(t - z ; ) - l ,  and $k(t) be its phase. This gives 

4(t)  = 8 -t (.dot + $ b ( t )  , mod(27r) . 

N 
$(t) == 8 + W o t  f $k(t) .  (20) 

k= 1 

By introducing the real and imaginary parts of zk. or zk = 
U k  + j bk , one obtains 

At this step we return to the problem discussed in the 
introduction. The signal (2) is phase modulated only if its 
phase takes the form (19), and, as this is not in general the 
case, its amplitude is not constant and it must be expressed 
as in (3). 

3.2. Properties of Regular Phase Signals 

Having the most general structure of regular phase signals 
we shall now present some of their properties, which allows 
a better understanding of their structure. Note first that the 
product of phase signals is still a phase signal. This results 
directly from the definition of phase signals. 
3.1. A phase signal contains only two spectral lines corre- 
sponding to its carrierfrequency. 

function appearing in (14). Its FT B(v)  is given by (17) 
which can be written as 

This is a direct consequence of the structure of the Blaschke 

B(V) = 6(v) + B&) . (22) 

The function B,(v) describes the continuous part of the 
FT of B (v) . It is a sum of N components Ck ( v) that are 
bounded and equal to zero for v < 0. This implies that 
B,(v) is also bounded and equal to zero for v < 0, and thus 
B(v)  exhibits only one Dirac component, or a spectral line, 
at the frequency zero. Because of the exponential term in 
(13), the FT of z ( t )  is Z ( v )  = ejeB(v - vo) and this means 
that there is only one spectral line at the carrier frequency 
vo = w0/27r. By using the Hermitian symmetry, we deduce 
that x ( t )  has only two spectral lines at the frequencies Avo. 
3.2. A phase signal with a non-zero carrier frequency is a 
high-frequency (VO) signal. 

This is a direct consequence of the form of the FT Z(v )  
analyzed just above. As B(v)  = 0 for v < 0, Z ( v )  = 0 for 
v < vo and X ( v )  = 0 for [ V I  < vo. 

The converse is of course not true. There is no reason 
for a high-frequency signal to be a phase signal because this 
frequency condition does not imply the structure (1 3). 
33.  The FT of the AS of a phase signal is zero for all the 
frequencies smaller than the carrier frequency vo where the 
spectral line is located. 

This is a direct consequence of (22) and of the fact that 
the FT Z(v )  of z ( t )  is proportional to B(v - vo). 
3.4. A phase signal cannot be a low-frequency ( B )  signal 
except when it is monochromatic. 

The monochromatic case appears when b(t) = 1 ,  and 
z ( t )  is therefore cos(w0t + e) ,  that is, of course, a low- 
frequency signal. Except this case, the property means that 
it is impossible to find afrequency B such that Z ( v )  = 0 for 
v > B. This property is a consequence of the fact that the 
functions c k ( V )  of (17) are exponential functions for v > 0 
when the poles are distinct. But it is well known that a sum 
of a finite number of exponential functions cannot be zero 
for all the frequencies satisfying v > B. 
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35. Frequency shiji 
If in (13) we replace wo by w l ,  with w1 > wo, we obtain 

a complex signal that is still an AS. As a consequence if 
x( t )  = cos[q5(t)] is a phase signal, which means that its 
phase has the structure (19), d( t )  = acos[Awt + #(t)], 
where Aw = w1 - WO, is still a phase signal with the carrier 

frequency ( w l )  signal. 
3.6. Instantaneous frequency of a phase signal 

It is obtained by differentiating the instantaneous phase. 
The most general form of this phase is given by (20) and 

with T = 27r/w and b = (l/w)ln(l/a) with 0 < a < 1. In 
this case it can be shown that 

z - z k  a - $ W Z  +a 

(25) - - b(z)  = JJ - 
k=-oo z - z i  1 - a e j w z  ‘ 

frequency This imp1ies that x’(t) is a high- Apparently there is no other example of infinite Blaschke 
products giving an explicit and simple expression. This 
means that the function 

a - $Ut 

1 - ae+t b ( t )  = (26) (21), and differentiating this equation yields 

As the coefficients bk are positive, because of the localiza- 
tion of the zeros Z k ,  we deduce that the IF w ( t )  is always 
greater than W O .  This is another illustration of the fact that 
the FT of x( t )  is zero for v < WO and also this shows that 
the IF u(t) belong to the frequency domain of this FT. If all 
the Z k S  are zero, then b( t )  defined by (14) is equal to one, 
and the instantaneous frequency is simply WO. 

Some other comments can be presented on the structure 
of the instantaneous frequency of a phase signal, and this is 
especially relevant in all those questions dealing with fre- 
quency or phase modulation of signals. The information 
carried by the instantaneous frequency of a phase signal is 
entirely in the term 

is the AS of a phase signal. This can be verified immedi- 
ately because Iz(t)l = 1 and the FT is zero for negative 
frequencies. In order to verify this point it suffices to note 
that b ( t )  is periodic, and by using the geometric series one 
sees that the Fourier coefficients F, are zero for n < 0 and 
furthermore we have Fo = a and F, = -(1 - a2)an-l. 

Consider now the signal defined by (13) and (14) where 
b ( t )  is given by (26). It is the AS of the real signal 

-a2 cos[(wo - w) t ]  + 2acos(wot) - cos[(wo + w ) ] t  
1 - 2acos(wt) + a2 

x( t )  = 

(27) 
This signal is therefore a phase signal and its IA is equal to 
1. It is narrow-band if (w/wo) << 1, and its IF is 

(28) 
1-a’ 

1 - 2acos(wt) + a2 * 
w ( t )  = WO + w 

N bk Note the analogy with (10). All the properties of phase sig- 
nal indicated previously are verified, except those using the 
point that N is finite. In this singular case phase signals con- 

bE+ (ak - t ) 2  ’ wm( t )  = 2 
k=l 

tain only spectral lines, but their number is infinite. There 
are various examples of phase signals that can be generated 
from (26). It suffices to recall that the product of phase sig- 
nal remains a phase signal, and it is perfectly possible in 
these products to mix regular and singular phase signals. 

where the index m stands for the modulation term. We note 
that this function tends to zero when It1 + 00. This espe- 
cially means that wm(t )  cannot be a periodic function, and 
this is related to the fact that a regular phase signal cannot 
have spectral lines, except those coming from the carrier 
frequency WO. 

Furthermore we note that w m ( t )  is a rational function 4.2. Poles on the Real Axis 
in t’ The polynomials appearing in the numerator and the By using arguments that cannot be presented here (see the- have the degrees 2N - and 2N respctively* orem (17-15) in [19]) one can show that the function z(t) = 

exp(-j/t) is an AS. This means that the signal x ( t )  = 
cos(l/at), a > 0, is a phase signal and its Hilbert transform 
is - sin(l,at). These signals are called hyperbolic chirps 
and are represented in Fig. 3. It is also possible to calculate 
the FT of x( t ) ,  and the result is 

As N is arbitrary, we deduce that by using the 2N para- 
meters U k  and bk it is possible to approximate a large class 
of functions. The most limiting constraint on these func- 

from the necessary behavior for I t /  In 
fact wm(t) decreases at infinity in It/-’, which is a strong 
restriction on the instantaneous frequency. 

4. PHASE SIGNALS, SINGULAR CASES 
7r 2na. X ( v )  = 6(v) + U(.)--- - J1 (2&) l (29) 

4.1. Infinite Product 

The simplest example of a Blaschke function with infinite 
value of N appears if the poles of (14) are z k  = kT + j b ,  

where U(.) is the unit step function. The spectral line at the 
frequency 0 is due to the fact that x( t )  tends to 1 for infinite 
Values Of t .  This FT is presented in Fig. 4 where a = 1 and 
x = 27rv. 
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Figure 3: Hyperbolicchirp y = cos ( l / t )  

Figure 4: Fourier transform of the hyperbolic chirp 

5. APPROXIMATE PHASE SIGNALS 

We shall now study signals in the form of cos[@(t)] where 
@(t) does not satisfy the conditions analyzed in the previ- 
ous sections and ensuring that exp[j@(t)] is an AS. As a 
consequence these signals do not have a constant IA and 
@(t) is not the IP. However under some circumstances these 
signals are approximately phase signals and we intend to 
study the meaning of this approximation. These signals are 
widely used in many areas of Signal Processing and espe- 
cially when the phase is a polynomial in t .  In order to sim- 
plify the discussion we shall restrict our analysis to the case 
of degree two and three. 

Let us consider the signal z( t )  = cos[wot + a2t2] .  It is 
clear that it is not a p'hase signal, because its phase does not 
have the structure previously analyzed. This means that its 
Hilbert transform is not sin[wot + a2t2],  or that the complex 
signal 

(30) 

is not an AS. This point is easily verified by calculating its 
FT which is 

w(t) = exp[j(wot + a2t2)] 

where vo = 27r/wo. This function satisfies IW(v)12 = 
7r/a2 and therefore cannot be zero for negative frequencies. 
Furthermore it does not decrease for large values of IvJ. 
However this decreasing property is the argument used in 
[SI and [20] to indicate that any complex signal in the form 
expljwt + j$(t)] is an asymptotic AS, which means that its 
FT for negative values of v tends to zero when WO -+ 00. 

It is therefore necesiary to study more carefully the prob- 
lem and for this purpose the simplest way is to calculate the 
Hilbert transform ya( t )  = H [ z ( t ) ]  of x ( t )  = cos[wot + 
a2t2].  After some algebra not presented here one finds 

y,(t) = m{[c (e)  + S(O)I sin[wot + a2t2] + 
[c(e) - s(e)]  COS[^^^ + a2t2]}, (32) 

with 9 = (wo/2a) + ut. The functions C and S are defined 
by 

As c(00) = s(00) = 7r/8, we see that when 8 + 00, 

by (30) is in fact an asymptotic AS, but not for the reasons 
indicated in [20]. 

In order to discuss this point we present some numerical 
results to evaluate the errors introduced when assuming that 
the AS of cos[wot +a2t2] is sin[wot+a2t2]. To simplify the 
calculations we assume that WO = 0, which does not restrict 
the meaning of the results because the effect of WO is the 
same as the one o f t ,  according to the definition of 9. 

The parabolic chirp signals cos(nt2) and sin(7rt2) are 
represented in Fig. 5 and previous equations show that these 
two functions are not Hilbert transforms. This appears in 
Fig. 6 where the Hilbert transform y,(t) of c o s [ ~ ( a t ) ~ ]  and 
the difference ~ ( t )  = sin[r(at)'] - ~ , ( t )  for a = f i  are 
presented. This function is the error made when assuming 
that the Hilbert transform of cos [~ r (a t )~ ]  is s i n [ ~ ( a t ) ~ ] .  As a 
consequence the LA of c0s[7r(at)~] is not 1, and this appears 
in Fig. 7 where the IA a( t )  = dz2(t) + y/,"(t) is presented. 
As the IF is an increasing function this figure presents the 
relative error when assuming a linear IF. 

All these results show that the parabolic chirps are not 
phase signals, but tend to have this structure either when 
the time t or the frequency WO are increasing. Therefore the 
general intuition that such signals are asymptotic phase sig- 
nal is verified, but the reason is not the elementary argument 
presented in [20]. In reality the FT given by (31) has a con- 
stant modulus, but there are also very rapid oscillations as 
the signal itself. This appears on the figure for large values 
oft .  Because of these oscillations, even if the FT is not van- 
ishing, its integral in any domain of the negative frequencies 
tends to zero because of the rapid changes between positive 
and negative values. 

Let us now consider the signal w(t) = exp(ja3t3). As 
w( t )  = w*(-t), its lT W ( v )  is real. Its expression can be 

y,(t) tends to sin[wot + a d- t 2 ] .  This shows that w(t )  given 
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obtained by using some properties of the Bessel functions 
J ( z )  and K ( z )  and after calculations not reproduced here 
one obtains the following results. For positive frequencies 
we have 

with x = 2.rru/3a. On the other hand for negative values of 
the frequency U we have 

(35) 

with z = -2ru/3a. This last equation shows that w(t) is 
not an AS because its FT is not zero for negative frequen- 
cies. The form of this FT will be shown in the oral presen- 
tation of this talk. We can only note that there is no spectral 
line in this IT and that it decreases to zero for infinite fre- 
quencies, which is a strong difference with the FT of the 
parabolic chirp. On the other hand it is much more difficult 
to calculate the Hilbert transform of x ( t )  = cos(wot+a3t3). 

2 
W ( - U )  = --&K1,3(2Z&) 
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Figure 5:  Parabolic chirps cos ( r t2 )  and sin(&) 
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