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On Instantaneous Amplitude and Phase of Signals
Bernard Picinbono,Fellow, IEEE

Abstract—In many questions of signal processing, it is impor-
tant to use the concepts of instantaneous amplitude or phase
of signals. This is especially the case in communication systems
with amplitude or frequency modulation. These concepts are
often introduced empirically. However, it is well known that
the correct approach for this purpose is to use the concept of
analytic signal. Starting from this point, we show some examples
of contradictions appearing when using other definitions of in-
stantaneous amplitude or frequency that are commonly admitted.
This introduces the problem of characterizing pure amplitude-
modulated or pure phase-modulated signals. It is especially shown
that whereas amplitude modulated signals can be characterized
by spectral considerations, this is no longer the case for phase-
modulated signals. Furthermore, signals with constant amplitude
have very specific properties, which are analyzed in detail. Some
consequences and extensions to random signals are finally dis-
cussed.

I. INTRODUCTION

I NSTANTANEOUS amplitude and phase are basic con-
cepts in all the questions dealing with modulation of

signals appearing especially in communications or information
processing. Let us remember that a purely monochromatic
signal such as cannot transmit any information.
For this purpose, a modulation is required, and one of the
simplest possible to introduce is amplitude modulation. Let

be a positive function corresponding to the information
to be transmitted. By multiplying the carrier frequency signal

by , we obtain the signal

(1)

and it is commonly admitted that is the instantaneous
amplitudeof the signal . This appears in many textbooks,
especially in [1, p. 237]. On the other hand, the need for
phase or frequency modulation requires the definition of the
instantaneous phase. By a reasoning similar to the previous
one concerning the amplitude, it is commonly admitted that
the signal

(2)

has a constant amplitudeand aninstantaneous phase .
Furthermore, theinstantaneous angular frequencyis given
by the derivative of . This is a generalization of the
procedure applied in the case where the phase is linear in
time or in the form , giving the frequency .
These definitions also appear in many textbooks or papers.
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For example, the following is written on [2, p. 645]: “The
argument in any signal having the form is called
the instantaneous phase, and is called the
instantaneous frequency.” The same definition appears, for
example, in [3, p. 480], [4, p. 260], and [5, p. 144].

Even if the previous definitions appear quite natural and
are widely used in practical applications dealing with signal
modulation, we immediately note that they cannot be satisfac-
tory. In order to make this point clear, let us discuss a very
simple example. Suppose that the function appearing in
(1) is bounded or satisfies . As a result, we
have . It is then possible to introduce a unique
function satisfying

(3)

By using this well-defined function, we obtain

(4)

This shows that the signal can be considered frequency as
well as amplitude modulated. In other words, its instantaneous
amplitude is as well as , and moreover, its instantaneous
phase is either or .

More generally, starting from a given signal , it is
possible to introduce an infinite number of pairs
such that

(5)

This leads to the conclusion that the definitions given
previously, even if they are widely used, are incoherent
because they do not associate with a given real signal
a well-defined pair of functions that are the instantaneous
amplitude and phase of . Therefore, these definitions must
be reformulated in such a way that any given signal
corresponds to one well-defined pair , allowing us
to write , as in (5).

In reality, the solution of this problem is well known and
explicitly introduced in [6, p. 50]. A recent review paper
on this question [7] also gives a good introduction on the
discussion leading to the standard definition of the quantities
studied hereafter. Moreover, this paper contains a list of
references corresponding to the history of this problem.

The classical definition of the instantaneous amplitude
and phase of a real signal is recalled in the next
section. This definition introduces the concept of a canonical
pair , and it is therefore interesting to find condi-
tions ensuring that a given pair of functions and is
canonical. When the instantaneous phase is linear, or when the
signal looks like (1), it is possible to characterize a canonical
pair only from the spectral properties of the signal. This
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becomes much more difficult when the instantaneous phase
is no longer linear, and this especially appears for signals with
constant amplitude, which are called phase signals, which are
at the foundation of phase- or frequency-modulation systems.
The properties of such signals are analyzed in the following
section, and from them, we can deduce various properties of
canonical pairs. The practical consequences of these results
and their extension for random signals are finally investigated.

II. DEFINITIONS AND CANONICAL PAIRS

A. Definitions

Let us recall the classical way to define without ambiguity
the instantaneous amplitude and phase of a real signal.
The problem is to write as in (5) but by using a pair of
functions that is in a one-to-one correspondence
with . For this purpose, we associate with its analytic
signal (AS) (see [6, p. 48]). It is obtained from by
filtering it using a filter with the frequency response
equal to 2 for and to 0 for . Conversely, it
is obvious that Re , where Re means the real
part. Therefore, if is real, there is indeed a one-to-one
correspondence between and . On the other hand, a
complex function is an AS if its Fourier transform is zero for
negative frequencies. It is clear that this function is the AS
of its real part.

As cannot be a real function because its Fourier
transform is zero for , it can be written as

(6)

where the phase is defined modulo , and is
nonnegative. As a conclusion, using the AS makes it possible
to associate with any real signal a unique pair
called in the following thecanonical pairassociated with .

Definition: Let be a real signal and the
canonical pair associated with it. The function appearing
in this pair is theinstantaneous amplitudeof , and
is its instantaneous phase. The instantaneous frequency is the
derivative with respect to time of .

The introduction of the AS is not at all recent, and among
the principal papers in this field, we can note [8]–[12].
There are some questions concerning the physical meaning
of the AS, and some of them are mentioned and discussed
in [7]. Furthermore, it is shown in [13] and [14] that starting
from somea priori physical assumptions, the only possible
definition of the instantaneous amplitude and phase is the one
given just above. However, it is worth pointing out that other
physical conditions lead to another definitions that are not
discussed below [15].

Once the definition is given, the question that immediately
follows is to characterize a canonical pair or to show what
the conditions are on and in order to ensure that (6)
is an AS, which means that its Fourier transform is zero for
negative frequencies. This is essential when verifying whether
or not the classical definitions given above are correct. In fact,
there is noa priori reason for appearing in (1) or

appearing in (2) to be canonical.

B. Spectral Characterization of a Canonical Pair

Consider first a signal of the form (1). It corresponds to an
amplitude modulation of a pure monochromatic signal with
the carrier frequency . The nonnegative function is the
instantaneous amplitude of if and only if
is an AS.

Let be the Fourier transform (FT) of . As
is real, . The FT of is, of
course, , with . As a result, we obtain that

for negative or that is the instantaneous
amplitude of given by (1) if and only if is zero for

. Physically, this means that is a low-frequency
bandlimited signal. In all that follows, we call such a signal
a low-frequency signal. Similarly, a high-frequency
signal is characterized by the fact that its FT vanishes for

.
This discussion shows that it is possible to characterize

a canonical pair such as uniquely by a spectral
condition on . Starting from this example of amplitude
modulation, it was tempting to try to use spectral methods
for the characterization of more general pairs of functions

. Unfortunately, we shall see that the task becomes
immediately impossible.

Saying that is an AS is equivalent to say-
ing that the Hilbert transform of is equal to

(see [6, p. 49]). It is therefore appropriate to
make use of the so-called Bedrosian theorem [16] dealing
with the Hilbert transform of a product of two real functions

and . A very simple derivation of this theorem
and some extensions can be found in [17]. The main result is
as follows: Let and be the FT’s of and

, respectively. If for and
for , then

(7)

where means the Hilbert transform. A direct application
of this result shows that if is a low-frequency signal ,
and a high-frequency signal , or if their spectra
do not overlap, then

(8)

However, this does not at all imply that

(9)

as stated by many authors and even recently in [7]. If (9) were
true, it would also be possible to characterize a canonical pair
only by spectral considerations, as for amplitude modulation.
Furthermore, as the constant signal has an FT limited to the
frequency zero, (9) would be true for any signal
without a low-frequency component. This result would be
especially attractive, suppressing all the questions discussed
in the introduction, when presenting some comments on (2).

Let us now show that (9) has no reason to be true when
only spectral properties of are introduced. For this
purpose, we shall propose an elementary counterexample of
this property. It is obvious that (9) implies that

(10)
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Let be defined by

(11)

where sinc , and . As ,
it is possible to introduce a phase uniquely defined if

and such that . As the FT
of sinc is zero for , the FT of does not
contain low-frequency components because of the assumption
on . Applying (9) then gives , and
as a consequence, . However, it is
obvious that this equality is not correct. In fact, by applying
the Bedrosian theorem, we obtain

(12)

and sinc .
This shows that contrary to a common well-established idea,

it is not possible to justify (9) by introducing only spectral
considerations. This point will become much clearer in the
next section. In fact, (9) implies that

(13)

is an AS or that the pair is canonical. We shall now
see that this requires very specific properties of the structure
of the phase .

III. PHASE SIGNALS

A. General Structure

Phase signals are real signals with constant instantaneous
amplitude. They can be expressed as (2) but with the condition
that is an AS. As a consequence, (9) is satisfied.
For such signals, all the information is contained in the
instantaneous phase (or frequency), and phase signals are then
the basic elements of phase or frequency modulation.

The condition that is an AS requires very
specific properties on the phase . These properties have
been analyzed in the framework of coherence problems in
optics [18] but, more precisely, in the framework of the
study of analytic functions, and especially in [19, ch. 7]. We
present here the results that are the most important for our
arguments without the proofs, which are out of the scope of
this discussion and can be found in [19].

The most general structure of the AS of a nonsingular phase
signal is

(14)

where is arbitrary, is nonnegative, and is a Blaschke
function defined by

(15)

where is the half plane of the complex plane defined by
Im . The quantity is the carrier frequency and can
be equal to zero. The expression nonsingular means that the
instantaneous phase of remains finite for finite values of
. When the number of factors in the product is not finite,

there are other constraints on the complex numbersdue
to convergence problems. Here, we avoid these questions by
assuming that is finite. In this case, the interpretation of
(15) is very simple. In order to be an AS, the function , for
complex values of, must have all its poles in the half plane
Im . In order to have a modulus equal to one, each
pole must be associated with a corresponding zero symmetric
of this pole with respect to the real axis. This procedure is
well known in filter theory: Stable phase filters have the same
number of poles and zeros, and these zeros are symmetric to
the poles with respect to the imaginary axis. The stability and
causality conditions imply that all the poles are in the left half
plane of the complex plane.

It is obvious that , which implies that .
Let us now explain why is an AS. For this, we must
analyze the structure of the FT of . As is finite,

is a rational function in . If all the s are distinct, we
can write

(16)

where

(17)

As a consequence, we have

(18)

where is the FT of . Because of the
localization of in the complex plane, we deduce that

for , which implies that for
and ensures that is an AS. Finally, as

also is an AS. The reasoning can be extended without
difficulty when some poles are no longer distinct.

The phase of is, of course

(19)

and, as a result, we can say that any phase signal can be written
as (2), where must have the form

(20)

In practice, the continuity of the phase leads to suppress the
term mod , and this convention is adopted in all that
follows.

This most general phase is defined bycomplex parame-
ters and two real parameters and . Furthermore, it is
obvious that the phase is the sum of phases of the
factors appearing in the product (15). Let be equal to

, and let be its phase. This gives

(21)

By introducing the real and imaginary parts of or
, one obtains

(22)
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At this step, we come back to the problem discussed in
the introduction. The signal (2) is phase modulated only if its
phase takes the form (20), and as this is not in general the
case, its amplitude is not constant, and it must be expressed
as in (5).

B. Properties of Phase Signals

Having the most general structure of phase signals, we will
now present some of their properties, which allows a better
understanding of their structure.

Property 3.1: A phase signal contains only two spectral
lines corresponding to its carrier frequency.This is a direct
consequence of the structure of the Blaschke function appear-
ing in (15). Its FT is given by (18), which can be written
as

(23)

The function describes the continuous part of the FT
of . It is a sum of components that are bounded
and equal to zero for . This implies that is also
bounded and equal to zero for , and thus, exhibits
only one Dirac component, or a spectral line, at the frequency
zero. Because of the exponential term in (14), the FT of
is , and this means that there is only one
spectral line at the carrier frequency . By using
the Hermitian symmetry, we deduce that has only two
spectral lines at the frequencies .

This property can be used in a reciprocal way, indicating
that all the signals containing more that one spectral line in
the range of positive frequencies cannot be phase signals and,
therefore, exhibit a nonconstant instantaneous amplitude.

Property 3.2: A phase signal with a nonzero carrier fre-
quency is a high-frequency signal.This is a direct conse-
quence of the form of the FT analyzed just above. As

for for , and
for .

The converse is, of course, not true. There is no reason
for a high-frequency signal to be a phase signal because
this frequency condition does not imply the structure (14). A
simple counterexample appears with a high-frequency signal
containing more than two spectral lines and, thus, does not
satisfy Property 3.1.

Property 3.3: The FT of the AS of a phase signal is zero for
all the frequencies smaller than the carrier frequencywhere
the spectral line is located.This is a direct consequence of
(23) and of the fact that the FT of is proportional
to .

Property 3.4: A phase signal cannot be a low-frequency
signal except when it is monochromatic.The monochro-

matic case appears when , and is therefore
, that is, of course, a low-frequency signal. Except

in this case, the property means that it is impossible to find
a frequency such that for . This property
can be shown by two procedures. In the first, we simply note
that the functions of (18) are exponential functions for

when the poles are distinct. However, it is well known

that a sum of a finite number of exponential functions cannot
be zero for all the frequencies satisfying .

It is also possible to show this property by contradiction.
Suppose then that there exists a frequencysuch that

for . It results from this assumption and from
Property 3.3 that the FT of is zero outside the frequency
interval and has a spectral line at the carrier
frequency . Consider now the signal . Its FT is equal
to , and this FT is zero outside the frequency interval

and has a spectral line at the frequency
. Let us now introduce the signal

(24)

with . This signal obviously satisfies , and
the frequency condition ensures that it is an AS. It then has
the general form (14) and (15) and must satisfy Property 3.3.
However, its spectral line is at the frequency , and

is not zero for . This is in contradiction with
Property 3.3, which shows the result.

Property 3.5—Frequency Shift:If in (14) we replace
with , with , we obtain a complex signal that
is still an AS. As a consequence, if is a
phase signal, which means that its phase has the structure (20),

, where , is still a
phase signal with the carrier frequency. This especially
implies that is a high-frequency signal.

Property 3.6—Instantaneous Frequency of a Phase Signal:
It is obtained by differentiating the instantaneous phase. The
most general form of this phase is given by (21) and (22), and
differentiating this equation yields

(25)

A similar equation has been obtained in [20] and [21] by using
a rather different procedure.

As the coefficients are positive, because of the local-
ization of the zeros , we deduce that the instantaneous
frequency is always greater than . This is another
illustration of the fact that the FT of is zero for .
If all the s are zero, then defined by (15) is equal to
one, and the instantaneous frequency is simply.

Some other comments can be presented on the structure
of the instantaneous frequency of a phase signal, and this
is especially relevant in all those questions dealing with
frequency or phase modulation of signals. The information
carried by the instantaneous frequency of a phase signal is
entirely in the term

(26)

where the index stands for the modulation term. We note
that this function tends to zero when . This especially
means that cannot be a periodic function, and this is
related to the fact that a phase signal cannot have spectral
lines, except those coming from the carrier frequency.

Furthermore, we note that is a rational function
in . The polynomials appearing in the numerator and the
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denominator have the degrees and , respectively.
As is arbitrary, we deduce that by using the parameters

and , it is possible to approximate a large class of
functions. The most limiting constraint on these functions
comes from the necessary behavior for . In fact,
decreases at infinity in , which is a strong restriction on
the instantaneous frequency.

IV. UNIMODULAR SIGNALS, PHASE,
AND FREQUENCY MODULATIONS

A. Definitions

By definition, the instantaneous amplitude of a phase signal
is constant. Consider now the function .
Its modulus is one but, as, in general, has no reason
to be an AS, the instantaneous amplitude of has
no reason to be constant. The signal is said to be
unimodular. The characteristic property of such a signal is,
of course, , which especially implies that its
energy is infinite. As a consequence, the calculation of its FT
can require the use of distributions, and the best example of
this point appears with the signal . Its FT
is , where is the Dirac distribution, and this
introduces a spectral line at the frequency. It results from
the property that the FT of satisfies

(27)

where is the FT of . This means that the correlation
function of is a Dirac distribution.

We deduce from the previous discussion thata unimodular
signal cannot be bandlimitedexcept in the monochromatic
case. Indeed, suppose that is zero for .
Multiplying by , where yields a
signal that is both unimodular and analytic because its FT
is zero for negative frequencies. It is then the AS of a phase
signal whose FT is zero for . This is in contradiction
with Property 3.4.

It is worth pointing out that this does not mean that a signal
such as cannot be bandlimited. Indeed, we have seen
that the signal sinc can be written as , and its
FT is zero for . However, this means that is
not its Hilbert transform. Indeed, if this were true,
would be a bandlimited phase signal, which is impossible.

For the following discussion, it is of interest to present
some structures of the FT’s of unimodular signals. There are
unimodular signals with an FT containing only spectral lines.
The best example appears when the function is periodic
with the period . For instance, consider the signal

. As is periodic with
the period , its FT contains only spectral lines at
the frequencies . By shifting these lines by , we
obtain the FT of .

More generally, some unimodular signals can be written as

(28)

and exhibit spectral lines at the frequencies. It results from
the unimodular property that the number of such spectral lines
is either one or infinite. Indeed, the property
becomes

(29)

for any , and this is impossible if the number of frequencies
is finite.

Some unimodular signals can also have an FT with only
one spectral line and a continuous part. To present an example
of such a situation, let be the function equal to zero for

and to otherwise. This function has
a continuous FT , and this FT tends to zero when
tends to infinity. Furthermore, the signal is
unimodular because its value is 1 for and
otherwise. Its FT is . Finally, the signal

is unimodular, and its FT is
. This shows the presence of a spectral line

at the frequency and a continuous part due to the function
.

Any signal with at least one spectral line necessarily has an
infinite energy. Conversely, the energy can be infinite without
a spectral line, and we shall verify that this situation can
appear for unimodular signals. The energy of the signal
satisfying is also the integral of . This
integral can become infinite either if is not bounded
or if it decreases too slowly at infinity or for the two reasons
simultaneously.

Consider, for example, the signal Sg . It
is obviously unimodular as well as real. Its FT is and
is not bounded for . However, there is no spectral line
at the frequency zero. As a consequence, the FT of the signal

Sg is .
Let us now present an example of a unimodular signal with

a bounded FT. Starting from the Fresnel integrals

(30)

it is easy to show that the FT of the so-calledcomplex chirp
signal is

(31)

It is clear that is a unimodular signal and that its FT is
bounded because its modulus is constant and equal to. In
other words, the property of infinite energy comes from the
fact that and have a constant modulus.

B. Application in Phase and Frequency Modulation

As stated in the introduction, there is a great tendency to
consider that a signal like is phase modulated,
or to admit that is its instantaneous phase, even if all
the previous discussions show that this has no reason to be
true. The complex signal is sometimes
considered to be the complex representation of (see
[22, p. 13]) even if has, in general, no reason to be
an AS. It is then worth analyzing the difference between
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the unimodular signal and the AS of . This
introduces the difference between and the instantaneous
phase, as defined previously, by using the AS.

In reality, this difference is very low in many practical cases.
This is the reason why a good understanding of frequency
modulation in radio engineering has been realized long before
the AS was invented. In some sense, the practice was in
advance with respect to the theory.

The major argument justifying the intuitive concept of in-
stantaneous phase comes from an application of the Bedrosian
theorem to situations where it cannot be strictly applied. This
theorem indicates that if a signal is bandlimited in the
frequency domain , the signal is
an AS as soon as . Applied to a unimodular signal

, this means that if it is bandlimited, then
is an AS for sufficiently large, and

becomes the instantaneous phase of
. However if is bandlimited, this is also the

case of , and therefore, this signal is a
unimodular and bandlimited AS. We have seen above that this
is impossible. Then, there is a contradiction in this reasoning.
However, this contradiction comes from the high frequencies
of the spectrum, and there is a great tendency to consider that
arbitrary high frequencies do not have any physical meaning.
This tendency leads us to consider that all the real signals of
radio engineering are practically bandlimited.

It is not possible to reconcile rigorously these theoretical
and practical approaches. It is clear that any physical device
cannot transmit arbitrary high frequencies. However, the con-
sideration of the chirp signal introduced above indicates that
its FT given by (31) does not decrease at infinity, and such
frequencies are, therefore, present in its spectrum.

The only scientific procedure would require the calculation
of the error coming from the approximations introduced in
many practical considerations, and we shall now indicate some
possible approaches of this question.

This problem is not new and has been approached in various
ways. As indicated in [23], the difference between the AS
of and appears only in their imaginary
part, and this difference comes from the fact that (9) is
not necessarily valid. As a consequence, it is possible to
characterize this difference by the error signal

(32)

where denotes the Hilbert transform. There is no general
procedure to calculate this error signal, and the results depend
on the structure of the function .

For example, if , we obtain the real chirp signal
. It is shown in the Appendix that its Hilbert

transform is

(33)

where the functions and are also defined in this
Appendix. This equation exhibits an interesting result. When

goes to infinity, the functions and tend to the

same limit given by (30), and taking into account the value
of this limit, one sees that tends to .
This means that for sufficiently large, and this depends, of
course, of the value of the constant, the complex chirp signal

tends to become an analytical signal. This result
has nothing to do with a frequency band limitation because
the spectrum of deduced from (31) does not present
any decreasing for high frequencies.

Another possible approach is to calculate (possibly by
computation) the FT of and to study its value for
negative frequencies. Indeed, it is the fact that for

that implies that is not an AS, and therefore, is
not the instantaneous phase. Unfortunately, there is no general
result in this way, and the calculation must be processed for
each case considered.

More recently, the class of asymptotic AS’s was introduced
[24]. The idea is to consider unimodular signals that are only
asymptotically AS. However, the conditions that such signals
must satisfy are not easy to verify.

We shall, however, present the concept of asymptotic AS
in another way. As indicated previously, the question is to
know in which sense can be considered to be
approximately bandlimited. For this discussion, it is worth
considering separately the case of signals with only spectral
lines or without such lines.

Starting from the spectral representation (28), we can cal-
culate the corresponding correlation function defined by

(34)

and we have, of course, because . By
using (28), we easily deduce

(35)

which means that the coefficients are the those of the
power spectrum of . As this power is 1, there is certainly
a frequency such that the sum calculated for all
the frequencies greater than is arbitrary small. This means
that the difference between and the bandlimited signal
obtained by the previous procedure has an arbitrary small
power.

V. PROPERTIES OFCANONICAL PAIRS

In the previous sections, we have investigated properties of
amplitude modulated signals like (1) or of phase signals like
(2). Combining these results, it is interesting to exhibit some
properties of signals like (5) in which the pair is
obviously canonical, which means that is an
AS.

The first point to note is that the canonical character
of does not, in general, imply any frequency
constraint on the amplitude , as is sometimes believed [25].
This is the case, as seen in Section II, when the phase is linear
in time or, equivalently, when the instantaneous frequency is
constant. However, there is no reason for that to remain true
for a more general structure of the instantaneous phase. In
order to confirm this point, let us now present an example of



558 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997

instantaneous amplitude without any spectral limitation. Let
be defined by . It is obviously an AS

because of the localization of the pole of this rational function.
Its instantaneous amplitude is , and the
FT of this function is , which is never zero.

However, some spectral properties can be sufficient con-
ditions to ensure that a pair is canonical. More
precisely, if the FT of is limited to the frequencies
satisfying and if the FT of
is zero for , the pair is canonical. Indeed,
the FT of is

(36)

The frequency limitation implies that and
. This is impossible for , and then,

for .
Nevertheless, it is worth pointing out that the condition

on is very restrictive because it implies that
is an AS. As a consequence, must have the form (20).
Furthermore, this condition is a band limitation of and not
of . It is perfectly possible that the FT of
is zero for without having for .
This can be shown by contradiction. Suppose, therefore, that
the condition on implies that the FT of

is zero for . This implies that
is an AS and, more precisely, the AS of . Let

us show by example that this is not necessarily true. Let us
take once again the signal (11). It can obviously be written
as . However, its AS is sinc , which
is not a unimodular signal. As a consequence, the AS cannot
be written .

It is also worth pointing out that if and are
two AS’s, then the product is also an AS.
This comes from the fact that the FT of is given by the
convolution integral

(37)

However, and are zero for . The limits of
integration are then , and this yields for

. A direct consequence of this result is that if
is a canonical pair, the same is valid for , with

, where is a Blaschke phase defined
by (19). This result comes from the fact that
is, by construction, an AS, and is also an AS, as
seen in Section III.

Finally, it is possible to use the previous results by com-
bining the properties of amplitude and phase signals. More
precisely, if and are two canonical
pairs, the same is valid for .

At the end of this section, the concept of minimum phase
signals is worth indicating, especially that studied in [20]. It
is well known that the real and imaginary parts of an AS
are Hilbert transforms of each other. This means that it is
possible to deduce the imaginary part from the real part. The
same property is no longer true for the amplitude and the
phase. This obviously appears just above because we have

seen that it is possible to change the phase without changing
the amplitude. This property is well known in the context
of causality properties of linear filters. It is known that if a
filter is causal, the magnitude of its frequency response does
not determine its phase, except in the case of minimum-phase
filters. It is possible to transpose all these properties to the case
of signals and especially to change the instantaneous phase of
signals by manipulations of zeros in the complex plane (see
[21]). This does not directly concern the questions analyzed
in this paper.

VI. CASE OF RANDOM SIGNALS

Because of the importance of randomness in signal pro-
cessing and communication problems, it is worth extending
the previous results and introducing the concepts of random
amplitude and phase. Let be a probability space.
A complex random signal can be written as , where
refers to the time and to the randomness. The definitions of
instantaneous amplitude and phase given in Section II make
use of the AS of a real signal . These definitions can be
transposed to the random case because the AS of a real random
signal is a well-defined concept. It can be introduced
either in the time domain by

(38)

where means the Hilbert transform, or in the frequency
domain. For this, it is necessary to assume that is
harmonizable (see [26, p. 200]) or can be written as

(39)

The AS is then defined by the same integral where
is replaced by for and

for .
If is second-order stationary (see [26, p. 178]), it has

a power spectrum , and the power spectrum of its
AS is zero for . Conversely, this property characterizes
a second-order stationary AS.

Consider first a signal like (1), where is now random
and harmonizable with spectral increments . We can
transpose without alteration the results of Section II-B, and the
consequence is that is the instantaneous amplitude of (1)
if and only if is a low-frequency signal. This
means that the increments of its spectral representation satisfy

for .
As in the nonrandom case, the question becomes more

complicated for the condition on the instantaneous phase. For
its study, consider first the cases of phase and unimodular
random signals. A random phase signal is such that
for each value of is a deterministic phase signal.
This means that each trajectory is a phase signal, as defined in
Section III-A. It has been shown that such signals are defined
by parameters appearing in (14) and (15). It suffices to
assume that these parameters are random in order to introduce
random phase signals.

Suppose first that in (14), . This means that there
are only two possible random parameters: and . In
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this case, is second-order stationary, and its correlation
function is

(40)

where . This expression exhibits the charac-
teristic function of the random variable , and introducing
its probability density function yields

(41)

which shows that the power spectrum of is
simply . As a consequence, is an AS if and only if

for , which means that the random frequency
takes only positive values. This implies, indeed, that each
trajectory is a real monochromatic signal of frequency.

The impact of random Blaschke factor is much more diffi-
cult to analyze. In order to understand this point, suppose that
in (15), . This leads us to write as

(42)

and its FT is readily

(43)

where is the unit step function, and with
. We assume now that and are two real random

variables and . It is clear in (42) and (43) that
cannot be stationary, which is rather inconvenient for

the description of many physical phenomena. However, any
trajectory of is an AS, which implies that is
also a random AS.

Let us now consider the case of unimodular complex signals.
Following the previous discussion, we shall assume that there
exists a carrier frequency such that the signal can be
expressed as

(44)

where is now a random function. We deduce from this
equation that

(45)

where is the increment
of the random function between and . It results
from this relation that in order to obtain that is second-
order stationary, we must assume that is a signal with
stationary increments (see [26, p. 289]). Such signals can be
expressed for as

(46)

where is a stationary signal. As a consequence, the
increment appearing in (45) takes the form

(47)

This increment is then obtained by filtering using a
linear filter with impulse response equal to one for

and zero otherwise. As is assumed to be stationary,
the statistical properties of do not depend on but
are functions of only.

The correlation function of is deduced from (45) by

(48)

As in (40), the last term of this equation is the characteristic
function of the random variable given by (47).
As stated before, this characteristic function does not depend
on . However, its calculation from the statistical properties
of is, in general, impossible without any additional
assumption on the function . The simplest possible,
which also is the most important in physical applications, is to
assume that is Gaussian (or normal). In this case, any
linear transformation preserves the Gaussian character, and as
a consequence, is a Gaussian random variable. It is
then entirely characterized by its mean value and its variance.
We assume that the expectation is zero, which physically
means that the mean frequency of is . By applying
the classical formulae of linear filtering, we can express the
variance of in terms of the power spectrum of

by

sinc (49)

Two extreme cases are of interest. The first appears when
the function does not depend on. This yields that

, and we come back to (40) with .
The power spectrum in (49) becomes , and the
variance is then . As a consequence, is
a random variable with the distribution , and its
characteristic function is in such a way that
(48) becomes

(50)

Its FT has still a normal shape centered at the frequency
and a standard deviation of . As a consequence,

the FT of , which still has a normal shape, is never zero,
and is not an AS. However, it becomes practically an
AS when the contribution of negative frequencies in the power
spectrum can be neglected. This appears when . This
condition means that the signal is
asymptotically a phase signal with the instantaneous phase

.
Let us now consider the opposite case where is a

white noise or has a flat spectrum with a spectral level.
The variance (49) then takes the form , and the
correlation function (48) becomes

(51)

The corresponding spectrum has a Lorentzian shape (see
[26, p. 173]). However, regardles of this form, the previous
condition remains true. If , the unimodular signal (44)
tends to become an AS of a real random phase signal.

Starting from these properties of phase and unimodular
random signals, it is possible to extend without difficulty to
the random case the results obtained in Sections IV-B and V
for deterministic signals.
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APPENDIX

Let and be the functions defined by

By applying the Cauchy theorem for integration in the complex
plane, we obtain , which gives the
values of the Fresnel integrals (30). From these integrals, we
deduce that

Consider now the real chirp signal . By using the
previous equations, it is possible to calculate its FT, and the
result is

Its AS is defined from its FT equal tofor and to
for . After some algebra, one obtains the imaginary part
of this AS, or the Hilbert transform of , which is given
by (33).
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