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On Instantaneous Amplitude and Phase of Signals

Bernard PicinbonoFellow, IEEE

Abstract—in many questions of signal processing, it is impor- For example, the following is written on [2, p. 645]: “The
tant to use the concepts of instantaneous amplitude or phase argumen®(t) in any signal having the forraos[6(¢)] is called
of signals. This is especially the case in communication systeMsine instantaneous phase, afi/2r)d[6(¢)]/dt is called the

with amplitude or frequency modulation. These concepts are . 'y -
often introduced empirically. However, it is well known that instantaneous frequency.” The same definition appears, for

the correct approach for this purpose is to use the concept of €xample, in [3, p. 480], [4, p. 260], and [5, p. 144].

analytic signal. Starting from this point, we show some examples  Even if the previous definitions appear quite natural and
of contradictions appearing when using other definitions of in- are widely used in practical applications dealing with signal
stantaneous amplitude or frequency that are commonly admitted. modulation, we immediately note that they cannot be satisfac-

This introduces the problem of characterizing pure amplitude- t | der t ke thi int cl let di
modulated or pure phase-modulated signals. It is especially shown ory. In order 1o make this point clear, et us discuss a very

that whereas amplitude modulated signals can be characterized Simple example. Suppose that the functiesit) appearing in
by spectral considerations, this is no longer the case for phase- (1) is bounded or satisfie8 < m(t) < a. As a result, we
modulated signals. Furthermore, signals with constant amplitude have|(1/a)z(t)| < 1. It is then possible to introduce a unique
have very specific properties, which are analyzed in detail. Some function ¢(¢) satisfying

consequences and extensions to random signals are finally dis-

cussed. 0<(t)<m coslp()] = (La)alt). (3
l. INTRODUCTION By using this well-defined function, we obtain
NSTANTANEOUS amplitude and phase are basic con- x(t) = m(t) cosfwot] = a cos[p(t)]. 4)

cepts in all the questions dealing with modulation ogr is sh that the si . b idered f
signals appearing especially in communications or informati rﬁ"ss ows that the signal(¢) can be considered frequency as

processing. Let us remember that a purely monochromaW(?" as amplitude modulated. In other words, its instantaneous
signal such ag cos(wt + ¢) cannot transmit any information. amplltu_de '.Sm(t) as well as, and moreover, its instantaneous
For this purpose, a modulation is required, and one of tlpgase is eithewot or ¢(?).

simplest possible to introduce is amplitude modulation. Let MQLT gten.e;allél, startmg ffrgtm a glt:/en fmgna(tt), It tls
m(t) be a positive function corresponding to the informatiof°SSIP'€ 1o Introduce an Infinité number o pajist), ¢(¢)]

to be transmitted. By multiplying the carrier frequency signaﬁUCh that
cos{wot) by m(t), we obtain the signal z(t) = a(t) cos[p(t)]. (5)
z(t) = m(t) cos(wot) (1)  This leads to the conclusion that the definitions given

previously, even if they are widely used, are incoherent

and it is commonly admitted that(¢) is the instantaneous because they do not associate with a given real sigfa

amplit_udeof the signalz(¢). This appears in many textbooks,a well-defined pair of functions that are the instantaneous
especially in [1, p. 237]. On the other hand, the need f%\rmplitude and phase af(t). Therefore, these definitions must

phase or frequency modulation requires the definition of %ee reformulated in such a way that any given signél)

instantaneous phase. By a reasoning similar to the previus lI-defi ) lowi
one concerning the amplitude, it is commonly admitted th%) \:verigo;(ci? tgsoir;]e(\év)e defined pgift), ¢(#)], allowing us

the signal In reality, the solution of this problem is well known and
z(t) = acos[p(t)] (2) explicitly introduced in [6, p. 50]. A recent review paper
on this question [7] also gives a good introduction on the
has a constant amplitudeand aninstantaneous phasg(t). discussion leading to the standard definition of the quantities
Furthermore, theinstantaneous angular frequendg given studied hereafter. Moreover, this paper contains a list of
by the derivative of¢(t). This is a generalization of thereferences corresponding to the history of this problem.
procedure applied in the case where the phase is linear imhe classical definition of the instantaneous amplita¢t
time or in the form¢(t) = wot + ¢, giving the frequencyo. and phasep(t) of a real signalz(t) is recalled in the next
These definitions also appear in many textbooks or papesgction. This definition introduces the concept of a canonical
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becomes much more difficult when the instantaneous phdeSpectral Characterization of a Canonical Pair

is no longer linear, and this especially appears for signals withcgnsiger first a signal of the form (1). It corresponds to an
constant amplitude, which are called phase signals, which & /it de modulation of a pure monochromatic signal with
at the foundation of phase- or frequency-modulation syste_rreﬁe carrier frequencyy,. The nonnegative functiom(t) is the

The_properties of such signals are analyzec_l in the fOHO_V‘”r?Hstantaneous amplitude oft) if and only if m(t) exp(jwot)
section, and from them, we can deduce various properties;of;, Ag.

canonical pairs. The practical consequences of these resultg; M () be the Fourier transform (FT) ofi(t). As m(?)
and their extension for random signals are finally investigated. .o M(v) = M*(~v). The FT ofm(t) exp(jwot) is, of

course M (v—uy), with 1y = w/27. As a result, we obtain that

II. DEFINITIONS AND CANONICAL PAIRS M(v—1p) = 0 for v negative or thatn(¢) is the instantaneous
amplitude ofz(t) given by (1) if and only ifM (1) is zero for
A. Definitions |v| > 1. Physically, this means that(¢) is a low-frequency

andlimited signal. In all that follows, we call such a signal
low-frequency(rp) signal. Similarly, a high-frequency?)
signal is characterized by the fact that its FT vanishes for

Let us recall the classical way to define without ambiguit
the instantaneous amplitude and phase of a real sigfia
The problem is to writex(¢) as in (5) but by using a pair of
functions [a(t), ¢(¢)] that is in a one-to-one correspondenclﬁ.‘/| < B. . L . .
with z(t). For this purpose, we associate witft) its analytic This d_|scu55|_on shows that it is p_ossnble to characterize
signal (AS) z(t) (see [6, p. 48]). It is obtained from(t) by a ca_n_onlcal pair such_a@(t),wot] _unlquely by a spe(_:tral
filtering it using a filter with the frequency respong&(») cond|t|on on_a(t). Startmg_ from this example of amplitude
equal to 2 foryr > 0 and to 0 forr < 0. Conversely, it modulation, it was t(_amptlng to try to use spectral methods
is obvious thatz(t) = Relz(t)], where Re means the realfor the characterization of more general pairs of functions
part. Therefore, ifz(¢) is real, there is indeed a one-to-on a(t), ¢(£)]. Unfortunately, we shall see that the task becomes

diately impossible.
correspondence betweetit) and z(¢). On the other hand, a immec ; . . .
complex function is an AS if its Fourier transform is zero for SaYing thata(t) exp[j¢(#)] is an AS is equivalent to say-

negative frequencies. It is clear that this function is the A9 that the Hilbert transform Of‘(t) cosl(t)] is equa}l to
of its real part, a(t)sin[p(t)] (see [6, p. 49]). It is therefore appropriate to

As z(t) cannot be a real function because its Fouriép,ake use of the so-called Bedrosian theorem [16] dgaling
transform Z(») is zero forv < 0, it can be written as with the Hilbert transform _of a prodyct _of two re_aI functions
z1(t) and z2(¢). A very simple derivation of this theorem
2(t) = a(t) exp|jo(t)] (6) and some extensions can be found in [17]. The main result is
as follows: LetX,;(v) and X2(») be the FT’'s ofz,(¢) and
where the phasej(t) is defined modulo2r, and a(t) is  u,(t), respectively. IfX;(v) = 0 for » > B and X»(v) = 0
nonnegative. As a conclusion, using the AS makes it possiflg ,, < B, then
to associate with any real signal a unique pRift), ¢(¢)]
called in the following thecanonical pairassociated with:(t). Hlzy(H)xa(H)] = w1 () H[22(t)] ()

Definition: Let x(t) be a real signal andu(t), ¢(t)] the \here H[:] means the Hilbert transform. A direct application
canonical pair associated with it. The functieft) appearing of this result shows that if(¢) is a low-frequency signalB),
in this pair is theinstantaneous amplitudef «(t), and ¢(t) gng cos[¢(t)] a high-frequency signalB), or if their spectra
is its instantaneous phas@he instantaneous frequency is thg;g ot overlap, then
derivative with respect to time af(t).

The introduction of the AS is not at all recent, and among H{a(t) cos[p(t)]} = a(t)H {cos[¢(t)]}. (8)

the principal papers in this field, we can note [8]-[12]. However, this does not at all imply that
There are some questions concerning the physical meaning

of the AS, and some of them are mentioned and discussed H{cos[¢(t)]} = sin[¢(¢)] )
in [7]. Furtherm.or(.e, itis .shown n [13] and [14] that startlm%s stated by many authors and even recently in [7]. If (9) were
from somea priori physical assumptions, the only p053|bl(?ru

N : . ! e, it would also be possible to characterize a canonical pair
definition of the instantaneous amplitude and phase is the one ; ; ) ;
only by spectral considerations, as for amplitude modulation.

given just above. However, it is worth pointing out that OtheI‘E{,thhermore, as the constant signal has an FT limited to the

gihs)(/:sultszz(la(;:obnedlgﬁn[slé]ead to another definitions that are nPrequency zero, (9) would be true for any signak[é(t)]

Once the definition is given, the question that immedia\teg'thou.t a Iow-fre_quency component. This resglt wogld be
. . ; . specially attractive, suppressing all the questions discussed
follows is to characterize a canonical pair or to show what

the conditions are on(t) andg() in order to ensure that (6) in the introduction, when presenting some comments on (2).
. . . . : Let us now show that (9) has no reason to be true when
is an AS, which means that its Fourier transform is zero for

negative frequencies. This is essential when verifying wheth%rrlIy spectral properties afos|¢(t)] are introduced. For this
i _— : urpose, we shall propose an elementary counterexample of
or not the classical definitions given above are correct. In faﬁt]

there is noa priori reason forfm(¢), wot] appearing in (1) or
[a, ¢(t)] appearing in (2) to be canonical. cos?[p(t)] + (H{cos[p(t)]})? = 1. (10)

is property. It is obvious that (9) implies that
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Let z(t) be defined by there are other constraints on the complex numbegrslue
. to convergence problems. Here, we avoid these questions by
@(t) = sinc(2Bt) cos(wot) (11)  assuming thatV is finite. In this case, the interpretation of

where sine = sin(rz)/(rz), andwy > 2rB. As |z(t)] < 1, (15) is very simple. In order to be an AS, the_ functigw), for

it is possible to introduce a phasgt) uniquely defined if complex values o, must have all its poles in the half plane

0 < ¢(t) < 7 and such thats(t) = cos[¢(t)]. As the FT Im(z) < 0. In order. to ha\{e a modulus equal to one, each
of sing2Bt) is zero for|v| > B, the FT ofz(t) does not Pole must be gssouated with a correqundlng zero symmetric
contain low-frequency components because of the assumpt®§rfhis pole with respect to the real axis. This procedure is
on wo. Applying (9) then givesH {z(¢)} = sin[4(¢)], and well known in filter theory: Stable phase filters have the same
as a consequence?(t) + H2{z(t)} = 1. However, it is number of poles and zeros, and these zeros are symmetric to

obvious that this equality is not correct. In fact, by applyinéf'e poles with respect to the imaginary axis. The stability and

the Bedrosian theorem, we obtain causality conditions imply that all the poles are in the left half
_ _ plane of the complex plane.
H{x(t)} = sinc(2Bt) sin(wot) (12)  Itis obvious that|b(t)| = 1, which implies thafz(t)| = 1.

Let us now explain whyz(¢) is an AS. For this, we must

and z2(t) + H?{z(t)} = sinc(2Bt). B
This shows that contrary to a common well-established id ar}alyze the_ structure .Of the FIB(v) Of b(t). As N IS finite,
aEt) is a rational function irt. If all the ;s are distinct, we

it is not possible to justify (9) by introducing only spectra .
. : ) X . . can write
considerations. This point will become much clearer in thé

. . . N

next section. In fact, (9) implies that b =1+ Z t Ch i (16)

#(t) = expljo(t)] (13) =1 T
. . . . where
is an AS or that the paifl, ¢(t)] is canonical. We shall now
see that this requires very specific properties of the structure o = lim (¢ — 2;)b(¢t). a7
of the phasep(t). s

As a consequence, we have
lll. PHASE SIGNALS N
Bv)=6@)+ Z Cr(v) (18)

A. General Structure k=1

Phase signals are real signals with constant instantanewiiere Cy(v) is the FT of (¢t — zf)~!. Because of the
amplitude. They can be expressed as (2) but with the conditigealization of z; in the complex plane, we deduce that
that exp[j¢(t)] is an AS. As a consequence, (9) is satisfied’x() = 0 for » < 0, which implies thatB(r) = 0 for
For such signals, all the information is contained in the < 0 and ensures thdi(¢) is an AS. Finally, assy > 0,
instantaneous phase (or frequency), and phase signals are #fghalso is an AS. The reasoning can be extended without

the basic elements of phase or frequency modulation. difficulty when some poles;, are no longer distinct.
The condition thatexp[j¢(t)] is an AS requires very The phase ob(t) is, of course
specific properties on the phagét). These properties have ¢ (t) = Arg[b()], mod (21) (19)

been analyzed in the framework of coherence problems in
optics [18] but, more precisely, in the framework of thend, as a result, we can say that any phase signal can be written
study of analytic functions, and especially in [19, ch. 7]. Was (2), wherep(¢) must have the form

present here the results that are the most important for our _
arguments without the proofs, which are out of the scope of 9t) = 6+ wot + g (t), mod (2m). (20)
this discussion and can be found in [19]. In practice, the continuity of the phase leads to suppress the
The most general structure of the AS of a nonsingular phagem mod27), and this convention is adopted in all that
signal is follows.
] This most general phase is defined Nycomplex parame-

#(t) = b(t) exp[j(wot + 6)] (14 ters 21 and two real parametets, and 6. Furthermore, it is
whered is arbitrary,w, is nonnegative, ant#) is a Blaschke OPvious that the phasg,(¢) is the sum ofN' phases of the
function defined by factors appearing in the product (15). Ugt(t) be equal to

) (t — 2z1)(t — 2z)~1, and letgy(¢) be its phase. This gives
t— z N
b(t) = —— xpeP 15
®) kglt—z;;’ RE St (19) $(t) =0 +wot + Y _ du(t). (21)

k=1

where P, is the half plane of the complex plane defined by, . . . . _

Im(z) > 0. The quantitywy is the carrier frequency and canéy mtroducmg the .reaI and imaginary parts of or z; =
+ 7bi, one obtains

be equal to zero. The expression nonsingular means that e
instantaneous phase oft) remains finite for finite values of dx(t) = 2Arctg br r/2< ¢u(t) <m/2. (22)
t. When the numbefV of factors in the product is not finite, ap —t’ - -
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At this step, we come back to the problem discussed fhat a sum of a finite humber of exponential functions cannot
the introduction. The signal (2) is phase modulated only if itse zero for all the frequencies satisfying> B.
phase takes the form (20), and as this is not in general thdt is also possible to show this property by contradiction.
case, its amplitude is not constant, and it must be expres&epose then that there exists a frequeBcsuch thatZ(v) =
as in (5). 0 for v > B. It results from this assumption and from
Property 3.3 that the FT of(¢) is zero outside the frequency
interval 1y < ¥ < B and has a spectral line at the carrier
frequencyry. Consider now the signal*(¢). Its FT is equal

Having the most general structure of phase signals, we Wil 7+(_,) and this FT is zero outside the frequency interval
now present some of their properties, which allows a betterg . _), _1 and has a spectral line at the frequency

B. Properties of Phase Signals

understanding of their structure. —1p. Let us now introduce the signal
Property 3.1: A phase signal contains only two spectral .
lines corresponding to its carrier frequencyhis is a direct w(t) = 2*(t) exp(27j f1) (24)

consequence of the structure of the Blaschke function appegy;

o o . _ th f > B. This signal obviously satisfielgs(¢)| = 1, and
ing in (15). Its FTB(v) is given by (18), which can be written the frequency condition ensures that it is an AS. It then has
as

the general form (14) and (15) and must satisfy Property 3.3.
However, its spectral line is at the frequengy— 1, and
B(v) = 6(v) + Be(v). (23)  W(v) is not zero forw < f — 1. This is in contradiction with
Property 3.3, which shows the result.
The functionB.(v) describes the continuous part of the FT Property 3.5—Frequency Shiftf in (14) we replacewy
of B(v). Itis a sum of N component€ () that are bounded with wy, with w; > wy, we obtain a complex signal that
and equal to zero for < 0. This implies thatB.(v) is also is still an AS. As a consequence, if(t) = cos[¢()] is a
bounded and equal to zero for< 0, and thus,B(r) exhibits phase signal, which means that its phase has the structure (20),
only one Dirac component, or a spectral line, at the frequentg{(t) = acos[Awt + ¢(¢t)], where Aw = w1 — wy, is still a
zero. Because of the exponential term in (14), the FE(@f phase signal with the carrier frequengy. This especially
is Z(v) = ¢’ B(v — ), and this means that there is only onémplies thatz’(¢) is a high-frequencyw, ) signal.
spectral line at the carrier frequeney = wy/27. By using Property 3.6—Instantaneous Frequency of a Phase Signal:
the Hermitian symmetry, we deduce thait) has only two It is obtained by differentiating the instantaneous phase. The

spectral lines at the frequencigs/. most general form of this phase is given by (21) and (22), and
This property can be used in a reciprocal way, indicatindjfferentiating this equation yields

that all the signals containing more that one spectral line in N

the range of positive frequencies cannot be phase signals and, W(t) = wo + 22 ; bx ' (25)

therefore, exhibit a nonconstant instantaneous amplitude. ot (ar, — 1)

Property 3.2: A phase signal with a nonzero carrier fre-, . . . . . .
quency is a high-frequendyo) signal. This is a direct conse- A similar equation has been obtained in [20] and [21] by using

quence of the form of the FZ(v) analyzed just above. As : f;hﬁlredéfng?iZEe?l;gkéil:;e.positive because of the local-
B(v)y=0forv <0, Z(v) =0forv < 1y, and X () =0 ’

ization of the zerosz,, we deduce that the instantaneous
for || < .

The converse is, of course, not true. There is no reasfrﬁquencyw(t) is always greater thaw,. This is another

for a high-frequency signal to be a phase signal becal. ustration of the fact that the FT of(¢) is zero fory < wy.

e X .
this frequency condition does not imply the structure (14).%5%II :;% ?ﬁse ?rzgt;r?tg)ﬁégﬁg(fr)egjgsss igysi(lnaayls equal to

simple counterexample appears with a high-frequency signa ome other comments can be presented on the structure
containing more than two spectral lines and, thus, does n(?t . . .
satisfy Property 3.1 of the instantaneous frequency of a phase signal, and this
P y o . . is especially relevant in all those questions dealing with
Property 3.3: The FT of the AS of a phase signal is zero f?r . ) . .
requency or phase modulation of signals. The information

all the frequencies smaller than the carrier frequemngywhere . . . .
L . . arried by the instantaneous frequency of a phase signal is
the spectral line is locatedThis is a direct consequence of_ . .
entirely in the term

(23) and of the fact that the FZ(v) of z(¢) is proportional

to B(v — o). N by
Property 3.4. A phase signal cannot be a low-frequency win(t) = 22 B2+ (af — t)2 (26)
(B) signal except when it is monochromatithe monochro- k=1 ¥

matic case appears whéit) = 1, and z(¢) is therefore where the indexn stands for the modulation term. We note
cos(wot +8), that is, of course, a low-frequency signal. Exceghat this function tends to zero whét — oco. This especially

in this case, the property means that it is impossible to fimdeans thatv,,,(¢) cannot be a periodic function, and this is

a frequencyB such thatZ(v) = 0 for v > B. This property related to the fact that a phase signal cannot have spectral
can be shown by two procedures. In the first, we simply noliees, except those coming from the carrier frequengy

that the functions’y(») of (18) are exponential functions for Furthermore, we note that,,(t) is a rational function

v > 0 when the poles are distinct. However, it is well knowrn ¢. The polynomials appearing in the numerator and the
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denominator have the degre2d — 2 and 2V, respectively. and exhibit spectral lines at the frequencigs It results from

As N is arbitrary, we deduce that by using th& parameters the unimodular property that the number of such spectral lines
ax and by, it is possible to approximate a large class df either one or infinite. Indeed, the propery(¢)]?> = 1
functions. The most limiting constraint on these functionisecomes

comes from the necessary behavior [fpr— oo. In fact,w,,(¢) . .

decreases at infinity if|=2, which is a strong restriction on Z Z axay exp[j2m(vy — v )t] = 1 (29)

the instantaneous frequency. koW

for any ¢, and this is impossible if the number of frequencies
v, i1s finite.

Some unimodular signals can also have an FT with only
one spectral line and a continuous part. To present an example
of such a situation, lef(¢) be the function equal to zero for
[t| > T/2 and toexp[j¢(t)] — 1 otherwise. This function has

By definition, the instantaneous amplitude of a phase signglcontinuous FTF(v), and this FT tends to zero when|
is constant. Consider now the functian(t) = exp[¢(¢)]. tends to infinity. Furthermore, the signab(t) = 1 + f(¢) is
Its modulus is one but, as, in general(t) has no reason unimodular because its value is 1 for > 7//2 andexp[j¢(t)]
to be an AS, the instantaneous amplitudecof[¢(t)] has otherwise. Its FT igV (v) = §(v) + F(v). Finally, the signal
no reason to be constant. The signa(t) is said to be (¢) = wo(t)explj(wot + 0)] is unimodular, and its FT is
unimodular The characteristic property of such a signal is5(,—14)+F(1r—14). This shows the presence of a spectral line
of course,w(t)w*(t) = 1, which especially implies that its at the frequency, and a continuous part due to the function
energy is infinite. As a consequence, the calculation of its F(.),
can require the use of distributions, and the best example ofany signal with at least one spectral line necessarily has an
this point appears with the signai(t) = exp[j2n10t]. Its FT infinite energy. Conversely, the energy can be infinite without
is 6(v — 1), where é(-) is the Dirac distribution, and this 3 spectral line, and we shall verify that this situation can
introduces a spectral line at the frequengy It results from appear for unimodular signals. The energy of the sign(a)
the propertyw(t)w*(t) = 1 that the FTW () of w(¢) satisfies  satisfyingw(t)w*(t) = 1 is also the integral of¥ (1-)|2. This

integral can become infinite either [ (1/)|? is not bounded
/W(n)W*(n —v)dn = 6(v) (27) orif it decreases too slowly at infinity or for the two reasons
simultaneously.
wherelW (1) is the FT ofw(t). This means that the correlation Consider, for example, the signai(t) = Sg(¢) = t/¢|. It
function of W(v) is a Dirac distribution. is obviously unimodular as well as real. Its FT1igjr» and

We deduce from the previous discussion thatnimodular S not bounded forr = 0. However, there is no spectral line
signal cannot be bandlimiteéxcept in the monochromaticat the frequency zero. As a consequence, the FT of the signal
case. Indeed, suppose thdt(v) is zero for || > B. w(t)= Sdt)exp(j2mmot)is 1/jm(v — ro).

Multiplying w(t) by exp[j2r1ot], wherer, > B vyields a Let us now present an example of a unimodular signal with
signal that is both unimodular and analytic because its Farbounded FT. Starting from the Fresnel integrals

is zero for negative frequencies. It is then the AS of a phase ,+w +o0

signal whose FT is zero far > 1y+B. This is in contradiction / cos(bx?)dx = / sin(ba?)dz = (7/20)*/%  (30)
with Property 3.4. -0 —o0

It is worth pointing out that this does not mean that a signalis easy to show that the FT of the so-callesmplex chirp
such as:os[¢(t)] cannot be bandlimited. Indeed, we have sesgignal w(t) = exp(jbt?) is
that the signal sin@Bt) can be written asos[¢(t)], and its ,

FT is zero for|v| > B. However, this means thain[¢(t)] is W(v) = ™4 (m /)1 expl— jm?b~ 7). (31)
not its Hilbert transform. Indeed, if this were trues[¢(t)]
would be a bandlimited phase signal, which is impossible.

IV. UNIMODULAR SIGNALS, PHASE,
AND FREQUENCY MODULATIONS

A. Definitions

It is clear thatw(t) is a unimodular signal and that its FT is
nlgounded because its modulus is constant and equalitoln

For the following discussion, it is of interest to prese L
some structures of the FT’s of unimodular signals. There o(taher words, the property of infinite energy comes from the
' Fact thatw(t) and W(r) have a constant modulus.

unimodular signals with an FT containing only spectral lines.
The best example appears when the functit) is periodic
with the period7". For instance, consider the signal(t) =
exp jlwot + msin(Qt)]. As exp j[msin(§2¢)] is periodic with ~ As stated in the introduction, there is a great tendency to
the period? = 27/, its FT contains only spectral lines atconsider that a signat(t) like cos[¢(t)] is phase modulated,
the frequencies(2/2x. By shifting these lines by, /27, we or to admit thate(t) is its instantaneous phase, even if all
obtain the FT ofw(¢). the previous discussions show that this has no reason to be
More generally, some unimodular signals can be written &sle. The complex signalu(t) = exp[j¢(t)] is sometimes
considered to be the complex representationz¢f) (see
w(t) = exp[jo(t)] = Zak explj2mvpt] (28) [22, p. 13]) even ifw(t) has, in general, no reason to be
k an AS. It is then worth analyzing the difference between

B. Application in Phase and Frequency Modulation



PICINBONO: ON INSTANTANEOUS AMPLITUDE AND PHASE OF SIGNALS 557

the unimodular signatu(¢) and the AS ofcos[¢(¢)]. This same limit given by (30), and taking into account the value
introduces the difference betwee(t) and the instantaneousof this limit, one sees thakl [cos(bt?)] tends toH [sin(bt?)].
phase, as defined previously, by using the AS. This means that fot sufficiently large, and this depends, of

In reality, this difference is very low in many practical casexourse, of the value of the constanthe complex chirp signal
This is the reason why a good understanding of frequeneyp(jbt?) tends to become an analytical signal. This result
modulation in radio engineering has been realized long befdras nothing to do with a frequency band limitation because
the AS was invented. In some sense, the practice wastle spectrum oéxp(;4t?) deduced from (31) does not present
advance with respect to the theory. any decreasing for high frequencies.

The major argument justifying the intuitive concept of in- Another possible approach is to calculate (possibly by
stantaneous phase comes from an application of the Bedrosiamputation) the FTV () of w(¢) and to study its value for
theorem to situations where it cannot be strictly applied. Thiggative frequencies. Indeed, it is the fact tHatr) # 0 for
theorem indicates that if a signal(¢) is bandlimited in the » < 0thatimplies thatu(¢) is not an AS, and therefore(t) is
frequency domainy| < B, the signalw(t) exp(j2r1ot) is not the instantaneous phase. Unfortunately, there is no general
an AS as soon asy; > B. Applied to a unimodular signal result in this way, and the calculation must be processed for
w(t) = expljo(t)], this means that if it is bandlimited, theneach case considered.
exp j[2mmot + ¢(t)] is an AS foriy sufficiently large, and  More recently, the class of asymptotic AS’s was introduced
27vot + ¢(t) becomes the instantaneous phaseosf2riot+  [24]. The idea is to consider unimodular signals that are only
¢(t)]. However if exp[j¢(¢)] is bandlimited, this is also the asymptotically AS. However, the conditions that such signals
case ofexp j[2r1ot + ¢(t)], and therefore, this signal is amust satisfy are not easy to verify.
unimodular and bandlimited AS. We have seen above that thisie shall, however, present the concept of asymptotic AS
is impossible. Then, there is a contradiction in this reasoning. another way. As indicated previously, the question is to
However, this contradiction comes from the high frequenciésow in which senseexp[j¢(t)] can be considered to be
of the spectrum, and there is a great tendency to consider thpproximately bandlimited. For this discussion, it is worth
arbitrary high frequencies do not have any physical meaningpnsidering separately the case of signals with only spectral
This tendency leads us to consider that all the real signalslioles or without such lines.
radio engineering are practically bandlimited. Starting from the spectral representation (28), we can cal-

It is not possible to reconcile rigorously these theoreticalilate the corresponding correlation function defined by
and practical approaches. It is clear that any physical device 1 T2
cannot transmit arbitrary high frequencies. However, the con- (1) = lim = / w(t)w* (t — 7)dt (34)
sideration of the chirp signal introduced above indicates that T=eo T'J 12
its FT giyen by (31) does not decrgage at infinity, and sughq e have, of course,(0) = 1 becausdw(t)?> = 1. By
frequencies are, t.h_erefore, present in its spectrum. _using (28), we easily deduce

The only scientific procedure would require the calculation

of the error coming from the approximations introduced in Y0) = |ax|? exp(2mjveT) (35)
many practical considerations, and we shall now indicate some o
possible approaches of this question. which means that the coefficiens;|*> are the those of the

This problem is not new and has been approached in varid@Ver spectrum ofu(t). As this power is 1, there is certainly
ways. As indicated in [23], the difference between the A8 frequencyB such that the sun_ |a,|* calculated for all
of cos[¢(t)] and exp[i$(t)] appears only in their imaginarythe freque.nC|es greater thdh is arbitrary smaII.' T.h|s means
part, and this difference comes from the fact that (9) i§at the difference between(t) and the bandlimited signal
not necessarily valid. As a consequence, it is possible 9§tained by the previous procedure has an arbitrary small
characterize this difference by the error signal power.

e(t) = H{cos[p(t)]} — sin[p(?)] (32) V. PROPERTIES OFCANONICAL PAIRS

whereH(-) denotes the Hilbert transform. There is no general !N the previous sections, we have investigated properties of
procedure to calculate this error signal, and the results dep@fgPlitude modulated signals like (1) or of phase signals like
on the structure of the functio(t). (2). Co.mblnlng' these .results,.lt is |.nterest|ng.to exhlblt.some
For example, if(t) = bt2, we obtain the real chirp signal ProPerties of signals like (5) in which the pdir(t), $(#)] is
2(t) = cos(bt?). It is shown in the Appendix that its Hilbert ©0Viously canonical, which means thalt) exp[j¢(#)] is an
transform is AS. : ) ) )
The first point to note is that the canonical character
a2 . 2 of [a(t),#(t)] does not, in general, imply any frequency
Hleos(bt7)] = ;[[C(\/Et) + S(\/Et)] sin(bt") con[st(ra?int(o%]the amplitud€t), as is sometimes believed [25].
+[C(Vbt) — S(Vbt)] cos(bt?)]  (33) Thisis the case, as seen in Section II, when the phase is linear
in time or, equivalently, when the instantaneous frequency is
where the functiong”(z) and S(z) are also defined in this constant. However, there is no reason for that to remain true
Appendix. This equation exhibits an interesting result. Wheior a more general structure of the instantaneous phase. In
t goes to infinity, the functiong”(x) and S(z) tend to the order to confirm this point, let us now present an example of
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instantaneous amplitude without any spectral limitation. Leten that it is possible to change the phase without changing
2(t) be defined by« —275t)~2, > 0. It is obviously an AS the amplitude. This property is well known in the context
because of the localization of the pole of this rational functioof causality properties of linear filters. It is known that if a
Its instantaneous amplitude(t)| is («® + 47%t?)~L, and the filter is causal, the magnitude of its frequency response does
FT of this function is(2«)~* exp[—a|v|], which is never zero. not determine its phase, except in the case of minimum-phase
However, some spectral properties can be sufficient cdilters. It is possible to transpose all these properties to the case
ditions to ensure that a paju(t), ¢(¢)] is canonical. More of signals and especially to change the instantaneous phase of
precisely, if the FT ofa(t) is limited to the frequencies signals by manipulations of zeros in the complex plane (see
satisfying—B < v < +B and if the FT ofw(t) = exp[j¢(¢t)] [21]). This does not directly concern the questions analyzed
is zero forrv < B, the pair[a(t), ¢(¢)] is canonical. Indeed, in this paper.
the FT of z(¢) = a(t)w(t) is
VI. CASE OF RANDOM SIGNALS

Zvy= [ A —n)dn. 36
) / ()W (r = n)dn (36) Because of the importance of randomness in signal pro-

cessing and communication problems, it is worth extending
L . the previous results and introducing the concepts of random
- . Th le f h = . o

v —n > B. This is impossible for <0, and thenZ(») = 0 amplitude and phase. Leét\, F, P) be a probability space.

for v < 0. . :
Nevertheless, it is worth pointing out that the conditior’?‘ complex random signal can be written a§; A), wheret

. . NPT . refers to the time and to the randomness. The definitions of
on ¢(t) is very restrictive because it implies thatp[ jo(¢)] . ; : . :
is an AS. As a consequence(t) must have the form (20). instantaneous amplitude and phase given in Section Il make

Furthermore, this condition is a band limitationoft) and not ?rsi of thed,?stkc])f ? L%alrjlgnaj(tg. Thesetrt]jetlo\nétlo:s rcar|1 rb(reld m
of cos[¢(t)]. It is perfectly possible that the FT @bs[¢(¢)] ansposec o e random case because the As ota rea rando

is zero for|v| < B without havingW (1) = 0 for » < B signal z(t; A) is a well-defined concept. It can be introduced

This can be shown by contradiction. Suppose, therefore, tﬁgper in the time domain by

the condition oncos[¢(t)] implies that the FTW(r) of 2(8N) = 2(t; A) + jH[z(t; N)] (38)
w(t) = exp[jo(t)] is zero fory < B. This implies that
w(t) is an AS and, more precisely, the AS afs[¢(t)]. Let where H[-] means the Hilbert transform, or in the frequency
us show by example that this is not necessarily true. Let demain. For this, it is necessary to assume th@t A) is
take once again the signal (11). It can obviously be writtédrarmonizable (see [26, p. 200]) or can be written as
as cos[¢p(t)]. However, its AS is sin@Bt) exp| jwot], which
is not a unimodular signal. As a consequence, the AS cannot x(t;A) = /dX(V; A) exp(27jut). (39)
be written exp| j$(t)].

It is also worth pointing out that ifzy () and z»(t) are The AS z(#;)\) is then defined by the same integral where
two AS'’s, then the product(t) = z1(t)z2(t) is also an AS. dX(1; A) is replaced byiZ(v; \) = 2dX (v; A) for v > 0 and
This comes from the fact that the FT oft) is given by the dZ(»;\) = 0 for v < 0.

The frequency limitation implies that B < n < B and

convolution integral If z(¢; \) is second-order stationary (see [26, p. 178)), it has
a power spectrurii, (), and the power spectruif, () of its
Z(v) = /Zl(ﬂ)ZQ(V —n)dn. (37) AS is zero forr < 0. Conversely, this property characterizes

a second-order stationary AS.
However, Z;(v) and Z,(v) are zero forv < 0. The limits of Consider first a signal like (1), where(¢) is now random
integration are the® < n < v, and this yieldsZ(») = 0 for and harmonizable with spectral incremedfd (; A). We can
v < 0. A direct consequence of this result is thalift), ¢(¢)] transpose without alteration the results of Section 1I-B, and the
is a canonical pair, the same is valid far(t), ¢’(¢)], with consequence is that(t) is the instantaneous amplitude of (1)
@' (t) = O+wt+¢y(t), whereg,(t) is a Blaschke phase definedf and only if m(¢; A) is a low-frequencyw,/27) signal. This
by (19). This result comes from the fact thait) exp[j¢(¢t)] means that the increments of its spectral representation satisfy
is, by construction, an AS, angkp|[j$(t)] is also an AS, as dM(v;\) = 0 for v > vy = wo/27.
seen in Section Il As in the nonrandom case, the question becomes more

Finally, it is possible to use the previous results by concomplicated for the condition on the instantaneous phase. For
bining the properties of amplitude and phase signals. Moaits study, consider first the cases of phase and unimodular
precisely, if[a(t), wot] and [1, wot + ¢ (¢)] are two canonical random signals. A random phase sign#t; \) is such that
pairs, the same is valid fdu(t),wot + ¢ (t)]. for each value ofA, z(¢; \) is a deterministic phase signal.

At the end of this section, the concept of minimum phaskhis means that each trajectory is a phase signal, as defined in
signals is worth indicating, especially that studied in [20]. Bection IlI-A. It has been shown that such signals are defined
is well known that the real and imaginary parts of an A8y 2N + 2 parameters appearing in (14) and (15). It suffices to
are Hilbert transforms of each other. This means that it &sume that these parameters are random in order to introduce
possible to deduce the imaginary part from the real part. Threndom phase signals.
same property is no longer true for the amplitude and theSuppose first that in (14)(¢) = 1. This means that there
phase. This obviously appears just above because we hake only two possible random parametesg{A) andf( ). In
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this case,z(t) is second-order stationary, and its correlatioand zero otherwise. A#'(¢; \) is assumed to be stationary,
function is the statistical properties @& ®(¢, 7; A) do not depend ot but
A . . are functions ofr only.

(1) = Ela(t)27(t = 7)] = Elexp(2mjr(M)7)] - (40) 1he correlation function ofu(t) is deduced from (45) by
Wh_er_ez/()\) = wo(A)/2m. This expre_ssion exhibit_s the chgrac- 2 (1) = exp(jwor) Elexp{jA® (£, 73 M)} (48)
teristic function of the random variablg ), and introducing
its probability density functiorp(f) yields As in (40), the last term of this equation is the characteristic

function of the random variablé\® (¢, 7; A) given by (47).
(1) = /exp(27rjf'r)p(f)df (41) As stated before, this characteristic function does not depend
on ¢. However, its calculation from the statistical properties
which shows that the power spectrufm(v) of z(t;)\) is of F(t;A) is, in general, impossible without any additional
simply p(1). As a consequence(t; \) is an AS if and only if assumption on the functiod’(¢; ). The simplest possible,
p(r) = 0 for v < 0, which means that the random frequencyhich also is the most important in physical applications, is to
takes only positive values. This implies, indeed, that eaéssume that'(¢; ) is Gaussian (or normal). In this case, any
trajectory is a real monochromatic signal of frequency linear transformation preserves the Gaussian character, and as
The impact of random Blaschke factor is much more diffa consequencey® (¢, 7; A) is a Gaussian random variable. It is
cult to analyze. In order to understand this point, suppose tfiaen entirely characterized by its mean value and its variance.

in (15), N = 1. This leads us to writé(t) as We assume that the expectation is zero, which physically
P P means that the mean frequency wft) is wo. By applying
b(t) = —=1-— (42) the classical formulae of linear filtering, we can express the
t—z t—z variance of A®(t,7;A) in terms of the power spectrum of
and its FT is readily F(t) by
B(v) = 6(v) — 4mbu(v) exp(—2nbr) exp(—27jar) (43) o = 72 / Sin@(vr)Lp(v)dv. (49)

where u(v) is the unit step function, and = a + jb with _ )
b > 0. We assume now that and b are two real random Two extr_eme cases are of interest. The flr_st appears when
variablesa(t; A) and b(t; A). It is clear in (42) and (43) that the fu_ncnon F((jt?)‘) does BOt lflepend Oﬂ.t;h's X|elds that
b(t; \) cannot be stationary, which is rather inconvenient fgp(?) = £t and we come bac tob(40) wi g)‘) = 27”/d()‘2]-

the description of many physical phenomena. However, aﬂl—ge POwer SPng“mg(’Q in (49) becomes.6(v), an the
trajectory of b(#; \) is an AS, which implies thab(t; ) is Varanceoig IS thenojr .Asgcgnsgquence?;%(t,f,)\) IS

also a random AS. a random variable with the distributio¥ (0, o7.77), and its

Let us now consider the case of unimodular complex signa@aratheriStic function iexp[—(1/2)o%72] in such a way that
Following the previous discussion, we shall assume that thdf&) Pecomes

exists a carrier frequency, such that the signal can be v.(1) = exp(jwor) exp[—(1/2)0%72]. (50)

expressed as )
Its FT has still a normal shape centered at the frequency

w(t) = exp(jwot) exp[j (¢; V)] (44) 1y = wo /27 and a standard deviation ef-. As a consequence,
where®(¢; A) is now a random function. We deduce from thiéhe kT Of’y.z(T)’ which still has a nor_mal shape, is never zero,
equation that and~.(7) is not an AS. However, it becomes practically an
q AS when the contribution of negative frequencies in the power
w(t)w* (t — 7) = exp(jwoT) exp[JAR(t, T; A)] (45) spectrum can be neglected. This appears wherg 1. This
_ _ condition means that the signa(t) = cos[wot + ®(¢; A)] is
where A[®(#, 7; A)] = @(# A) — (t — 73 A) is the increment asymptotically a phase signal with the instantaneous phase
of the random functior®(¢; \) betweent — 7 andt. It results B(t; \).
from this relation that in order to obtain that() is second- | et ys now consider the opposite case whétg) is a
order stationary, we must assume thdt; \) is a signal with \yhite noise or has a flat spectrum with a spectral level
stationary increments (see [26, p. 289]). Such signals can g variance (49) then takes the fomd, = cr, and the
expressed fot > 0 as correlation function (48) becomes

(s \) = / t F(6; \)df + @o(\) (46) V2(1) = exp(jwor) exp[—(1/2)c|7]]. (51)

_ _ _ The corresponding spectrum has a Lorentzian shape (see
where I(6; A) is a stationary signal. As a consequence, theg p. 173]). However, regardles of this form, the previous

increment appearing in (45) takes the form condition remains true. If < 14, the unimodular signal (44)
t tends to become an AS of a real random phase signal.
AQ(t, ;) I/ F(6;))d6. (47)  Starting from these properties of phase and unimodular
t—7

random signals, it is possible to extend without difficulty to
This increment is then obtained by filtering(¢; A) using a the random case the results obtained in Sections IV-B and V
linear filter with impulse response equal to one flox ¢t < = for deterministic signals.
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APPENDIX [10]

Let C(z) and S(z) be the functions defined by [11]
Clz) = / cosudu, S(z)= / sin w?du. (12]

’ ° [13)

By applying the Cauchy theorem for integration in the complex
plane, we obtairC(co) = S(co) = (w/8)*/2, which gives the [14]
values of the Fresnel integrals (30). From these integrals, we
deduce that

+oo
/ exp(jba?)de = (1/b)H2 exp(jm/4).

— o0

[15]

[16]

Consider now the real chirp signabs(bt?). By using the [17]
previous equations, it is possible to calculate its FT, and tl“&%]

result is
T cos |2 T
b b 41

Its AS is defined from its FT equal tfor » < 0 and to2X (/)

for v > 0. After some algebra, one obtains the imaginary pa{rgg]
of this AS, or the Hilbert transform afos(b¢2), which is given

by (33). 241

[19]
[20]

X(v)

[21]
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