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Abstract:  Two new two dimensional (2-D) complex operators for 
estimating the energy and orientation of 2-D oriented patterns are proposed.  
The starting point for our work is a new 2-D extension of the Teager-Kaiser 
energy operator incorporating orientation estimation.  The first new energy 
operator is based on partial derivatives and can be considered a local (point-
based) estimator.  Using a nonlocal (pseudo-differential) operator we derive 
a second and more general energy operator.  A scale invariant nonlocal 
operator is derived from the recently proposed spiral phase quadrature (or 
Riesz) transform.   The Teager-Kaiser energy operator and the phase 
congruency local energy are unified in a single equation for both 1-D and 2-
D.  Robust orientation estimation, important for isotropic demodulation of 
fringe patterns is demonstrated.  Theoretical error analysis of the local 
operator is greatly simplified by a logarithmic formulation.  Experimental 
results using the operators on noisy images are shown.  In the presence of 
Gaussian additive noise both the local and nonlocal operators give improved 
performance when compared with a simple gradient based estimator. 
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processing; (070.2590) Fourier transforms. 

References and links 
1 G. H. Granlund, and H. Knutsson, Signal processing for computer vision, Kluwer, Dordrecht, Netherlands, 

1995.  
2 G. Krieger, and C. Zetzche,  “Nonlinear image operators for evaluation of local intrinsic dimension,”  

IEEE Trans. Image Process.  5, 1026-1042 (1996). 
3 M. Kass, and A. Witkin,  “Analyzing oriented patterns,”  CVGIP  37, 362-385 (1987). 
4 R. Penrose,  “The topology of ridge systems,”  Ann. Hum. Genet.,Lond.  42, 435-444 (1979). 
5 K. Andresen, and Q. Yu,  “Robust Phase Unwrapping By Spin Filtering Combined With a Phase Direction 

Map,”  Optik  94, pp.145-149 (1993). 
6 Q. Yu, and K. Andresen,  “Fringe-orientation maps and fringe skeleton extraction by the two-dimensional 

derivative-sign binary-fringe method,”  Appl. Opt.  33, 6873-6878 (1994). 
7 J. L. Marroquin, R. Rodriguez-Vera, and M. Servin,  “Local phase from local orientation by solution of a 

sequence of linear systems,” J. Opt. Soc. Am. A  15, 1536-1544 (1998). 
8 H. Knutsson, R. Wilson, and G. H. Granlund,  “Anisotropic Non-Stationary Image Estimation and its 

Applications --- Part I: Restoration of Noisy Images,”  IEEE Trans. Commun.  31, 388--397 (1983). 
9 L. Hong, Y. F. Wan, and A. Jain,  “Fingerprint Image Enhancement - Algorithm and Performance 

Evaluation,”  IEEE Trans. Pattern Anal. Mach. Intell.  20, 777-789 (1998). 
10 K. G. Larkin, D. Bone, and M. A. Oldfield,  “Natural demodulation of two-dimensional fringe patterns: I. 

General background to the spiral phase quadrature transform,” J. Opt. Soc. Am. A  18, pp.1862-1870 
(2001). 

11 K. G. Larkin,  “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of 
the spiral phase quadrature transform.,” J. Opt. Soc. Am. A  18, pp.1871-1881 (2001). 

12 K. G. Larkin,  “Natural demodulation of 2D fringe patterns,”   Fringe'01 - The Fourth International 
Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, (2001), Elsevier,  The Data 
Science Library, eds W. Juptner and W. Osten, ISBN : 2-84299-318-7    

#8412 - $15.00 USD Received 8 August 2005; revised 19 September 2005; accepted 22 September 2005

(C) 2005 OSA 3 October 2005 / Vol. 13,  No. 20  / OPTICS EXPRESS  8097

mailto:kieran.larkin@cisra.canon.com.au
http://www.physics.usyd.edu.au/~larkin/


13 H. M. Teager, and S. M. Teager, “Evidence for nonlinear sound production mechanisms in the vocal 
tract,” Speech production and speech modelling, ed. Hardcastle, W. J., and Marchal, A.  (France: NATO 
Advanced Study Institute, Series D, 1989) pp. 55. 

14 J. F. Kaiser,  “On a simple algorithm to calculate the 'energy' of a signal,”  Proc IEEE Int. Conf. Acoust. 
Speech, Signal Processing, Albuquerque, NM, (1990),  pp. 381-384. 

15 T.-H. Yu, and S. K. Mitra,  “A novel nonlinear filter for image enhancement,”  Image Processing 
algorithms and Techniques II, Proc. SPIE 1452 ,(1991),  pp. 303-309. 

16 S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu,  “A new class of nonlinear filters for image enhancement,” Int. 
Conf.  Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991),  pp. 2525-2528. 

17 P. Maragos, A. C. Bovik, and T. F. Quatieri,  “A multidimensional energy operator for image processing,” 
SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992),  pp. 177-186. 

18 P. Maragos, and A. C. Bovik,  “Image Demodulation Using Multidimensional Energy Separation” J. Opt. 
Soc. Am. A  12, pp.1867-1876 (1995). 

19 K. G. Larkin,  “Topics in Multi-dimensional Signal Demodulation,”  PhD thesis.  Dept. of Physical Optics, 
University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/adt-NU/public/ 

20 O. Wilde, “Act 1,” The Importance of Being Earnest, 1899. 
21 J. P. Havlicek,  “AM-FM Image models,”  PhD thesis.  University of Texas, 1996. 

http://hotnsour.ou.edu/joebob/PdfPubs/JPHavlicekDiss.pdf 
22 D. Gabor,  “Theory of communications,”  Journal of the IEE,  93, 429-457 (1947). 
23 B. Jahne, Practical handbook on Image processing for Scientific applications, CRC Press, Boca Raton, 

Florida, 1997.  
24 C. F. Shu, and R. C. Jain,  “Direct Estimation and Error Analysis For Oriented Patterns,”  CVGIP-Image 

Understanding  58, 383-398 (1993). 
25 M. Felsberg, and G. H. Granlund,  “Detection using Channel Clustering and the 2D Energy Tensor,”  

Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, (2004),  pp. 103-110. 
26 M. Felsberg, and E. Jonsson,  “Energy tensors: Quadratic phase invariant image operators,”   DAGM 

Symposium, Mustererkennung, Wien, (2005),   
27 H. Canabal, J. A. Quiroga, and E. Bernabeu,  “Automatic processing in moire deflectometry by local 

fringe direction calculation,” Appl. Opt.  37, 5894-5901 (1998). 
28 X. Zhou, J. P. Baird, and J. F. Arnold,  “Fringe-Orientation Estimation by use of a Gaussian Gradient 

Filter and Neighboring-Direction Averaging,” Appl. Opt.  38, 795-804 (1999). 
29 J. A. Quiroga, M. Servin, and F. Cuevas,  “Modulo two pi fringe orientation angle estimation by phase 

unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A  19, 1524-1531 (2002). 
30 H. Knutsson, and M. Andersson,  “Robust N-Dimensional Orientation Estimation using Quadrature Filters 

and Tensor Whitening,”  ICASSP '94, Adelaide, Australia, (1994). 
http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html   

31 P.-E. Danielsson, Q. Lin, and Q.-Z. Ye,  “Efficient detection of second degree variations in 2D and 3D 
images,” Journal of Vis. Commun. Image Represent.  12, 255-305 (2001). 

32 J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou,  “New operators for optimized orientation 
estimation,”  ICIP 2001, Thessaloniki, Greece, (2001).   

33 M. C. Morrone, and D. C. Burr,  “Feature detection in human vision: a phase-dependent energy model,” 
Proceedings of the Royal Society of London, B  235, 221-245 (1988). 

34 E. H. Adelson, and J. R. Bergen,  “Spatiotemporal energy models for the perception of motion,” J. Opt. 
Soc. Am. A  2, 284-299 (1985). 

35 J. G. Daugman, and C. J. Downing,  “Demodulation, predictive coding, and spatial vision,” J. Opt. Soc. 
Am. A  12, 641-660 (1995). 

36 P. Maragos, T. F. Quatieri, and J. F. Kaiser,  “Speech nonlinearities, modulations, and energy operators,”  
Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991),  421-424. 

37 P. Maragos, T. F. Quatieri, and J. F. Kaiser,  “On separating amplitude from frequency modulations using 
energy operators,”  Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992),  1-4. 

38 P. Maragos, J. F. Kaiser, and T. F. Quatieri,  “On amplitude and frequency demodulation using energy 
operators,” IEEE Trans. Sig. Process.  41, 1532-1550 (1993). 

39 A. C. Bovik, P. Maragos, and T. F. Quatieri,  “AM-FM energy detection and separation in noise using 
multiband energy operators,” IEEE Trans. Sig. Process.  41, 3245-3265 (1993). 

40 A. C. Bovik, and P. Maragos,  “Conditions for positivity of an energy operator,” IEEE Trans. Sig. Process. 
42, 469-471 (1994). 

41 A. Potamianos, and P. Maragos,  “A Comparison of the Energy Operator and the Hilbert Transform 
Approach to Signal and Speech Demodulation,” Signal Process.  37, 95-120 (1994). 

42 K. G. Larkin,  “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. 
Soc. Am. A  13, 832-843 (1996). 

43 K. G. Larkin,  “Efficient Demodulator for Bandpass Sampled AM Signals,” Electron. Lett.  32, 101-102 
(1996). 

44 P. A. Fletcher, and K. G. Larkin,  “Direct Embedding and Detection of RST Invariant Watermarks,”  
IH2002, Fifth International Workshop on Information Hiding, Noordwijkerhout, The Netherlands, (2002),  
129-144. 

45 J. Bigun, T. Bigun, and K. Nilsson.,  “Recognition by symmetry derivatives and the generalized structure 
tensor,” IEEE Trans. Pattern Anal. Mach. Intell.  26,  (2004). 

#8412 - $15.00 USD Received 8 August 2005; revised 19 September 2005; accepted 22 September 2005

(C) 2005 OSA 3 October 2005 / Vol. 13,  No. 20  / OPTICS EXPRESS  8098

http://setis.library.usyd.edu.au/~thesis/adt-NU/public/
http://hotnsour.ou.edu/joebob/PdfPubs/JPHavlicekDiss.pdf
http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html


46 B. Forster, T. Blu, and M. Unser.,  “A New Family of Complex Rotation-Covariant Multiresolution Bases 
in 2D,”  Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal 
and Image Processing X, San Diego CA, USA, (2003),  475-479. 

47 M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, et al.,  “Linear phase imaging using 
differential interference contrast microscopy,” J. Microsc.  214, 7-12 (2004). 

48 R. Hamila, J. Astola, M. A. Cheikh, M. Gabbouj, et al.,  “Teager energy and the ambiguity function,” 
IEEE Trans. Signal Process.  47, 260-262 (1999). 

49 M. Servin, J. A. Quiroga, and J. L. Marroquin,  “General n-dimensional quadrature transform and its 
application to interferogram demodulation,” J. Opt. Soc. Am. A  20, 925-934 (2003). 

50 L. Hormander, Introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.  
51 H. Knutsson,  “Filtering and Reconstruction in Image Processing,”  PhD.  Linkoping University, 1982. 
52 S. Thurnhofer, “Two-dimensional Teager filters,” Nonlinear Image Processing, ed. Mitra, S. K., and 

Sicuranza, G. L.  (San Diego: Academic Press, 2001) 167-202. 
53 P. L. Duren, Theory of Hp Spaces, Dover Publication, Mineola, NY, 2000.  
54 S. Venkatesh, and R. Owens,  “On the classification of image features,” Pattern Recogn. Lett.  11, 339-349 

(1990). 
55 P. Kovesi,  “Image Features From Phase Congruency,” Videre: A Journal of Computer Vision Research, 

MIT Press  1,  (1999).  http://mitpress.mit.edu/e-journals/Videre/001/v13.html 
56 R. N. Bracewell, The Fourier transform and its applications, McGraw Hill, New York, 1978.  
57 V. Havin, and B. Joricke, The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, 1994.  
58 J. P. Havlicek, D. S. Harding, and A. C. Bovik,  “Multicomponent Multidimensional Signals,” 

Multidimens. Syst. Signal Process.  9, 391-398 (1998). 
59 A. C. Bovik, J. Havlicek, M. Desai, and D. Harding,  “Limits on discrete modulated signals,” IEEE Trans. 

Signal Process. 45, 867-879 (1997). 
60 M. Felsberg, and U. Köthe, “Get: The connection between monogenic scale-space and gaussian 

derivatives,” Scale Space and PDE Methods in  Computer Vision,, ed. R. Kimmel, Sochen, N., and J. 
Weickert.  LNCS, Springer, 2005) 3459: 192-203. 

61 FFTW: Fastest Fourier Transform in the West., “FFT Benchmarks,”  (2005).  http://www.fftw.org/speed/ 
62 M. Felsberg,  “The GET Operator,”  Dept. EE, Linkoping University, 2004. 

http://www.cvl.isy.liu.se/ScOut/Publications/ 
63 K. G. Larkin,  “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-

dimensional fringe patterns,” Opt. Express  9, 236-253 (2001). 
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-5-236 

64 M. Alonso, and G. W. Forbes,  “Measures of spread for periodic distributions and the associated 
uncertainty relations,” Am. J. Phys.  69, 340-347 (2000). 

65 B. Strobel,  “Processing of Interferometric Phase Maps As Complex-Valued Phasor Images,” Appl. Opt.  
35, 2192-2198 (1996). 

66 J. Burke, and H. Helmers,  “Complex Division as a Common Basis for Calculating Phase Differences in 
Electronic Speckle Pattern Interferometry in One Step,” Appl. Opt.  37, 2589-2590 (1998). 

67 NIST Image Group's Fingerprint Research, Fingerprint Test Data on CD-ROM. 
http://www.itl.nist.gov/iad/894.03/fing/fing.html 

68 J. M. Huntley,  “Fringe analysis today and tomorrow,”  Speckle Metrology 2003, Trondheim, Norway, 
(2003),  167-174. 

69 J. G. Daugman,  “Image analysis and compact coding by oriented Gabor primitives,”  Image 
Understanding and Man Machine interface,  19-30, (1987). 

70 J. J. Koenderink, and W. Richards,  “Two-dimensional curvature operators,” J. Opt. Soc. Am. A  5, 1136-
1141 (1988). 

71 J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel,  “Curvature estimation in oriented patterns 
using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell.  23, 
1035-1042 (2001). 

72 B. Rieger, and Lucas J. van Vliet, , 22(6), 2004,  “A systematic approach to nD orientation representation,” 
Image Vision Comput.  22, 453-459 (2004). 

73 M. Felsberg,  “Low-Level Image Processing with the Structure Multivector,”  PhD thesis.  Christian-
Albrechts-University of Kiel, 2002. http://www.isy.liu.se/~mfe/Diss.ps.gz 

74 M. Felsberg, and G. Sommer,  “The monogenic signal,”  Institut fur informatik, Chritian-Albrechts-
Universitat, 2001. 

75 J. P. Havlicek, J. W. Havlicek, and A. C. Bovik,  “The Analytic Image,”   IEEE International Conference 
on Image Processing, Santa Barbara,California, (1997),  446-449. 

76 E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 
Princeton, N.J., 1970.   

 

 

1. Introduction 

The estimation of image feature orientation is important in many areas of image and pattern 
analysis, especially for orientation adaptive algorithms.  Granlund and Knutsson [1] examined 
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the idea of local orientation and its relation to the local simplicity hypothesis and local Fourier 
properties.  Fringe patterns in interferometry are perhaps the archetypal locally simple images 
(also known as intrinsically one dimensional, i1D, by Krieger and Zetzche [2], as oriented 
patterns by Kass and Witkin [3] and as ridge systems by Penrose[4]).  Although we restrict 
our coverage to fringe pattern analysis much of the work applies (with careful modification) 
to more general signals and images.  In fringe pattern analysis the local fringe orientation can 
be utilized in directional filtering to improve fringe quality: spin filtering in optical 
interferometry [5-7] and fingerprint ridge enhancement by oriented filtering [1, 8, 9] being 
two pertinent examples.  Recently the author proposed an isotropic 2-D demodulation 
algorithm [10] which relies upon good orientation estimates for its applicability to intricate 
fringe patterns.  In subsequent publications [11, 12] an outline of the orientation estimation 
problem was given.  The major flaw of gradient-based orientation estimators is their failure in 
the zero gradient regions (namely ridge tops and valley bottoms).  The analogous problem is 
well known in 1-D demodulation, and has been elegantly resolved by the Teager-Kaiser 
energy operator [13, 14], designated TKEO from hereon.  The energy operator has also been 
generalized to N-dimensions [15-18] as a magnitude without directivity. 

Much of the preceding research on orientation has been concerned with either purely 
gradient based methods, or purely second derivative methods.  We propose to show that by 
redefining 2-D orientation estimation as a quadratic (Volterra) mix of first and second partial 
derivatives we obtain an operator that gives energy and orientation estimates that are uniform 
and isotropic, yet requires just one complex filtering operation (in its extreme formulation).  
By defining the operator in Fourier space a new family of operators with isotropic 
performance is revealed.  The new operators are related to the recently proposed spiral phase 
quadrature transform [10-12, 19]. 

The paper is structured as follows: 
Section 2  Reviews the previous approaches and problems of orientation estimation. 
Section 3 Reassesses the energy operator literature and introduces a new complex 2-D 

energy operator. 
Section 4  Establishes the replacement of local (derivative) operators by nonlocal 

(pseudo-differential) operators in the 2-D energy operator. 
Section 5  Describes implementation details, both discrete spatial and spectral methods. 
Section 6  Investigates the estimator performance in the presence of noise. 
Section 7  Discusses possible applications (such as fingerprint, oriented patterns, 

interferometry, image analysis), and developments. 
Section 8  Concludes. 
Section 9 Appendix.  Presents an alternative interpretation of the analytic image 

formalism presumed in section 2. 
Note 

We have endeavoured to condense and fairly represent much of the previously unconnected, 
cross-disciplinary research which underpins our work on the 2-D energy operator.   The task 
has been much harder than originally anticipated and only a fraction of the relevant research is 
actually referenced in the text.  We apologise in advance for any significant papers that may 
have been overlooked or misinterpreted; regrettably “The truth is rarely pure and never 
simple” [20].  

2.  Orientation estimation 

Estimation methods are categorized as follows in this section: 

First order (linear), first degree derivative method (2.2) 
Second order (quadratic), first degree derivative methods (2.3), 
First order, second degree derivative methods (2.4), 
Second order, first and second degree derivative methods (2.5). 

2.1 Direction and orientation 
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In all the following analysis we assume that the principal model for the image ( )yxf ,  is a  
single component amplitude modulated – frequency modulated (AM-FM) function as defined 
by Havlicek [21], corresponding to “locally simple” as defined by Granlund and Knutsson [1], 
and equivalently “i1D” as defined by Krieger and Zetzche [2]:   

( ) ( ) ( )[ ]yxyxbyxf ,cos,, ψ= .   (1) 

Multi-component AM-FM functions are explicitly excluded from consideration.  The 
envelope or amplitude is ( )yxb , , and the phase is ( )yx,ψ .  There is an underlying assumption 
here that any low frequency offset is absent, or has been removed by pre-processing.  A 
similar assumption underlies much demodulation research [10], but it is worth noting that 
bandpass filtering, or scale space filtering is often the preferred preprocessor for images.   

It is convenient to consider the function in Eq.(1) as the real part of a hypothetical complex 
function fA, analogous to the one dimensional analytic signal of Gabor [22]:  

( ) ( ) ( )[ ]yxiyxbyxf A ,exp,, ψ= .   (2) 

In one sense Eq. (2) can be considered as the a priori prototype function from which Eq. (1) is 
derived.  Phase-shifting interferometry allows Eq. (2) to be deduced from a sequence of 
equally phase-shifted images corresponding to Eq. (1).  However, we are primarily interested 
in the situation where we only have a single image corresponding to Eq. (1).  We prefer not to 
digress into such general issues as how Eq. (2) might be derivable from Eq. (1), and defer 
further discussion to the appendix (Section 9), noting merely that there is still considerable 
disagreement about how the definition of analyticity should be extended for signals of more 
the one dimension.   

The complex exponential signal of Eq. (2) allows the fringe (or local structure) direction 
β to be completely defined by, and calculated from, the complex gradient of the phase: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+

∂
∂=

y
i

x
Argyx

ψψβ , .    (3) 

The direction is a cyclic quantity with principal value in the range πβπ ≤<− .  In contrast 
the orientation is a quantity that is only well defined over half this range (see Jahne [23] for a 
detailed definition of direction and orientation).  The orientation is applicable to patterns 
which are of the form shown in Eq. (1), wherein the local reversal of the phase leaves the 
pattern unchanged: 
  

( ) ( )[ ] ( ) ( )[ ]yxyxbyxyxb ,cos,,cos, ψψ −≡ .   (4) 

It is well known that the 180° periodicity of orientation can be gracefully incorporated into 
complex algebra by the consistent use of the double angle formalism [1].  To be more precise 
all explicit estimators must contain phase functions of ( )β2  and not ( )β  alone.  Our analysis 
follows this formalism. 

2.2 Simple Gradient based methods (first order, first degree) 

Kass and Witkin [3] proposed a gradient based technique for analysing oriented patterns, but 
observed difficulties with aggregating orientation information.  Shu and Jain [24] continued 
the gradient approach.  Andresen [5] used the gradient approach to design an orientation 
adaptive filter. Estimation based on the simple gradient is the classic approach proposed by 
numerous other researchers, and its problems are discussed in appendix A of Larkin [11].  The 
main problem is that both components of the gradient of ( )yxf ,  are near zero at the ridge 
tops and valley bottoms of the pattern.  The estimator is 
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( ) ( )
( ) ( ) ⎟⎟⎠
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⎛

−
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=⎟
⎟
⎠
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⎜
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⎝

⎛
=

ψψψ
ψψψβ

cossin

cossin
atanatan

1010

0101

10

01

bb

bb

f

f
est   (5) 

where the subscripts denote partial derivatives with respect to x and y respectively.  On the 
ridges and in the valleys ( ) ( ) 0sin,1cos =±= ψψ , hence the angle estimate loses its 
dependence on the phase structure and instead follows the envelope gradient : 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

10

01atan
b

b
est

∓

∓β .    (6) 

Consequently the estimator defined by Eq. (5) is not uniform across features as the phase ψ  
varies, and for this reason uniformity is also known as “phase invariance” [1, 25, 26].  In 
practice Eq.(6) implies high noise sensitivity at extrema because both numerator and 
denominator are very small.  Several authors [27, 28] have proposed noise reduction in 
gradient maps by smoothing or averaging the intrinsic errors over a small neighborhood.  
Recently Quiroga et al [29] have proposed a method of regularizing the orientation estimate as 
part of a direction unwrapping scheme, but the initial estimates still contain high noise values.  
Ultimately methods based on the gradient alone are destined to fail at extrema; consequently 
we are encouraged to look beyond first order methods for improvements.  

2.3 Quadratic and tensor based methods (second order, first degree) 

Much has been published on second (quadratic) order methods for orientation estimation.  
Intuitively attractive because of the link between the double-angle formalism and second 
order forms, the basic idea is presented in the classic work of Granlund and Knutsson [1], and 
Jahne [23].  A (structure) tensor is constructed from quadratic products of gradient 
components.  The products are actually smoothed (over a local region) before the tensor is 
constructed.  Orientation estimation is accomplished by the direct or iterative solution of the 
eigenvalue problem for the tensor.  We have omitted details of the technique because it is not 
designed for patterns of the form given in Eq. (1), and is therefore prone to the problem 
exemplified in Eq. (6), although details are obscured by the smoothing operation.  A similar 
approach, termed “tensor whitening” [30] has been proposed to ameliorate low signal 
sensitivity of orientation filters. 

2.4 First order (linear), second degree derivative methods 

A comprehensive review of the application of (purely) second partial derivatives to structure 
determination in images was given by Danielson et al. [31].  It transpires that in 2-D three 
features have to be disentangled from the second derivatives: energy, orientation, and shape. 
Although an ingenious method is presented for extricating the orientation the method fails 
near the zero crossings of Eq.(1) where all second derivatives and the Hessian are exactly 
zero (and as a result noise can dominate any estimate).  More recently Da Costa et al. [32] 
recognized that gradient-based orientation estimators alone do not operate uniformly over 
oriented fringe patterns, and that second derivatives are most effective in the regions where 
first derivatives are least effective.  Their proposed solution estimated the likelihood or 
“coherence” of both estimates and makes a binary decision on which to use.  The connection 
with our work is considered in more detail section 3. 

2.5 The “Local Energy”, the 2-D Energy Operator and the Energy Tensor (quadratics of first 
and second degree derivatives) 

In the area of human vision research a number of attempts have been made to develop an 
energy model related to the local phase coherency of spatial frequency components.  In the 
influential work of Morrone and Burr [33] they note that idea of a “local energy” function was 
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first proposed by Adelson and Bergen [34] in 1985.  The Adelson-Bergen local energy 
function essentially combines directionally filtered quadrature functions in a fashion 
analogous to that of the human visual system.  The connection with our nonlocal energy 
operator is explored further in section 4.  The connection of the “local energy” with the 1-D 
energy operator of Teager-Kaiser-Maragos-Quatieri-Bovik is reviewed in section 3.  There is 
an even closer parallel with the analytic signal first proposed by Denis Gabor [22]. The related 
demodulation approach to human vision is well summarized by Daugman [35]. 

The 2-D energy operator proposed by Yu and Mitra [15] and later by Maragos et al. [17, 
18] is simply the sum of 2 orthogonal energy operators.  The result is an isotropic operator.  
Unfortunately it is not possible to estimate the orientation of the 2-D frequency because the 
two (normally positive) orthogonal terms only define orientation within a quadrant. 

The idea of combining first and second degree derivatives in a  2-D energy tensor was 
recently proposed by Felsberg and Granlund [25] and is discussed further in the next section. 

3. A New Definition of the Two Dimensional Complex Energy Operator 

Our initial work has been motivated by a search for a local (or point-wise) orientation 
estimator that does not require a priori knowledge of the local fringe spacing (i.e., it is 
relatively scale invariant).  Clearly any scheme that requires local smoothing is not scale 
invariant.  Another important criterion for an estimator is uniformity: we would like an 
estimate that is equally reliable at any point in our model, Eq. (1), and not dependent on the 
sinusoid phase.  Reiterating, the term “uniformity” is equivalent to the term “phase 
invariance” used by other researchers [25]. 

3.1 Essential Properties of the Teager-Kaiser Energy Operator (TKEO) in One Dimension 

It is instructive to briefly review the 1-D TKEO defined by  

( ){ } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛=Ε
2

22

.
dx

gd
g

dx

dg
xg .    (7) 

The main property of the TKEO is that it gives an output proportional to the square of the 
amplitude and the square of the frequency of an oscillating input signal.  If the input signal is 
compared to a simple harmonic oscillator, the TKEO outputs a measure of the total energy of 
the oscillator.  The first term on the RHS of Eq. (7) is analogous to the kinetic energy whereas 
the second term is analogous to the potential energy of the oscillator.  More details on the 
properties of the TKEO can be found in a very large literature base (see [13, 14, 17, 18, 36-
43] for a small selection). 

The main property is best illustrated by the example of the AM-FM  signal 
( ) ( )xbxg ωcos=  having modulations varying slowly with respect to the carrier period: 

( ){ } ( )[ ] ( ) ( )[ ] 2222 coscossin bxbxbxbxg ωωωωωω =−−−≈Ε .  (8) 

Essentially the TKEO generates two oscillating terms in phase quadrature: the first - related to 
the gradient - is a sine, the second is a cosine.  The operation is equivalent to squaring and 
adding two quadrature terms, and the oscillation exactly cancels out resulting in a total energy 
measure 22bω .  We refer to this property as “uniform estimation” or uniform demodulation.  
Significantly, operators like the gradient are not uniform demodulators on a sinusoidal signal, 
but produce a rapidly varying output: 

( ){ } ( ) ( )xbxg ωω 222
sin≈∇ .   (9) 

3.2 Extending the Teager-Kaiser Energy Operator to Two Dimensions 
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We would like to perform the Teager-Kaiser magic in two dimensions; thereby avoiding the 
non-uniformity problems of both the gradient based methods and the purely second 
differential methods.  The method proposed by Yu and Mitra and, later, Maragos et al. [15, 
17, 18] simply adds TKEO outputs from orthogonal 1-D operators.  From our perspective the 
problem with this formalism is that it is a positive scalar with no directional information, even 
though the input is nominally constrained to be highly directional.  A first guess for a 2-D 
TKEO would be to form a vector from the individual x and y TKEO outputs.  The main 
problem is that such a vector can only define orientations within a quadrant and is quite 
powerless to distinguish between the distinct orientations +45°and -45°.  Using the individual 
x and y TKEO components alone it is not possible to go beyond the quadrant limit.  The 
missing directional information is actually located in the cross derivatives, but the inclusion of 
cross derivatives would seem to undermine the simplicity and  elegance of the TKEO. 

Observe that the TKEO in Eq. (7) can be written in simple operator form, if the 
derivatives are replaced by a general differential operator D . 

( ){ } { } { } { }{ } { }( ) { }gDggDgDDggDgDxg 22 ... −≡−=Ε .  (10) 

Then the operator form is suggestive of a possible 2-D extension, namely replacing the 
operator D  by a two dimensional gradient operator.   Our previous work [10] benefiting from 
the efficiencies inherent in complex image processing has predisposed us toward a complex 
(rather than the traditional vector) interpretation of the 2-D gradient operator.  The complex 
approach is gaining some popularity in diverse areas of image analysis  [44-46] and 
restoration [47].   We define a complex gradient operator analogous to the complex 
differential or Cauchy operator of complex analysis (except for a factor of 2 and a sign 
change): 

y
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x
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∂= ,     (11) 

and apply it, in the form of Eq. (10), to the fringe pattern defined in Eq.(1) 

( ){ } ( ) ( ) ( )yxf
y

i
xy

i
x

yxfyxf
y

i
x

yxf ,,,,

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+

∂
∂−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+

∂
∂=Ε .    (12A) 

Splitting into real and imaginary parts gives 
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The combination is clearly a mixture of quadratic forms of first partial derivatives and mixed 
forms of zeroth and second partial derivatives (including crucial cross terms).  But what does 
it do to a simple linear fringe pattern?  In this case a fringe pattern with spatial frequency 0q , 

fringe normal direction β , and phase offset  00ψ : 

( ) [ ] ( )[ ]
{ }.sin,coswhere

,2coscos,

0000

000000

ββ
ψπψ

qvqu

yvxubbfyxf sssimple

==

++===
 (13) 

The complex differential operations simplify: 
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In effect the cross terms of the zeroth, first and second derivatives coalesce and eliminate the 
sinusoidal modulations: 

{ } ( ) ( ) ( ) [ ] [ ]( )SSss ivubfDfDff ψψπ 222
00

2
0

22 cossin2. ++=−=Ε .  (15) 

Finally, introducing the oriented fringe parameters of Eq.(13), we obtain a complex estimator 
that has uniform magnitude across a sinusoidal fringe: 

( ) ( ) ( )βπ iqbfDffD sgssg 2exp2. 2
00

22 =−  .  (16) 

The magnitude corresponds exactly with previous incarnations of the TKEO, and is 
proportional to both the amplitude-squared and the frequency-squared of the original cosine.  
The novel feature is the phase term related to twice the direction angle of the fringe.  As many 
researchers have noted before (in particular Granlund and Knutsson [1] and Jahne [23]) the 
angle doubling corresponds to the angle β  being an orientation defined modulo π , whilst the 
complex exponentiation automatically accounts for the phase-wrapping.  Equation (16) is 
really quite remarkable; it represents an isotropic orientation estimator that does not fail at 
points of zero gradient.  Recently Felsberg and Granlund [25] have proposed a 2-D energy 
tensor that closely resembles our 2-D energy operator, but where the grad operator is replaced 
by the grad tensor and the second differential operator becomes the Hessian. 

It can be shown that our definition of 2-D energy operator also works for complex 
images.  However, the operator must be applied to the real and imaginary parts separately and 
the results added as follows: 

{ } ( ) ( ) IgIIgRgRRg
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IR fDffDfDffDiff 2222 .. −+−=+Ε .  (17) 

The output is complex.  This is structurally consistent with the complex energy operator 
defined by Hamila [48] for one dimensional signals, which uses symmetric sums of conjugate 
differential operators to obtain a real output:  
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An equivalent definition was given by Maragos and Bovik [18] to ensure that their energy 
operator gives a real output from a complex input.  They considered signals of two or more 
dimensions and obtained a sum of individual components with the result again real.  The 
Maragos approach is suitable whenever the total energy in a multidimensional signal is the 
quantity of interest.  However, in applications where the multi-dimensional structural 
components are of interest it is desirable to have both directional and magnitude quantities.  In 
the simplest implementation in N dimensions, each of the components can be associated with 
the components of an N-vector.  Such an extension is not proposed by Maragos et al, although 
it is a possible starting point for a directed energy operator. 

An obvious question about our development above is: why not use a vector formalism?  
The short answer is that the correct combination of partial derivatives cannot be obtained from 
a simple vector operator, and the elegance of the TKEO formalism is therefore diminished for 
a vector formalism.  It is true that care must be taken to interpret the real and imaginary parts 
of the complex 2-D energy operator, however there is much to be gained from an operator that 
fits into current software implementations of complex image processing.  Furthermore, it can 
be shown that the apparent problems with (complex) channel crosstalk [49] do not necessarily 
require the n-vector formalism for solution.  
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3.3 Some observation regarding Subharmonicity and the proposed 2-D Energy Operator 

In 1-D the TKEO can also be expressed as the Laplacian of a logarithm of a signal, thus going 
back to Eq. (7) we obtain: 
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Although insightful, the LHS form of the equation is not particularly useful numerically for 
values of g  near zero, owing to the divergence of the logarithm.  The above equation was 
used by Bovik to show that the positivity restriction of the TKEO [40] is equivalent to 
concavity of the logarithm.  More generally the condition defines subharmonic functions in 
complex variable theory (see Hormander [50] for example): 
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We can rewrite Eq. (19A) for the 2-D energy operator; again the LHS form is numerically 
problematic although mathematically concise: 

{ } { }( ) { } { }ggDggDgDg Ε=−=− 22222 .log
2

1
.   (19B) 

If g  is real then 2log g  is also real, giving rise to a well defined operator except at the zero 
crossings of g.  The above equation shows that the 2-D energy operator can, in principle, be 
implemented with just one complex filter; the Hessian-like 2D  operator, and three other 
algebraic operations (squaring, multiplication and taking the logarithm).  This result is rather 
surprising when we realize that the quadrature filter approach of Knutsson  [1, 51] requires at 
least three complex linear filters (preferably spaced at 60°intervals).  The efficiency is due, in 
part at least, to the energy operator’s nonlinear structure [42, 43] as a homogeneous quadratic 
(second order) Volterra filter [52].  Equation (19B) can also be used to represent Felsberg’s 
energy tensor in terms of a Hessian tensor operating on the logarithm of the signal: 

{ } [ ][ ] [ ] ( )[ ]22 log
2

1
ggggggg T HH −=−∇∇=Ε .  (19C) 

Equation (20) indicates that the positivity of the energy operator is equivalent to the 
subharmonicity of the logarithm of a signal.  In his 1970 book (page 8) on Hardy spaces, 
Duren [53] observed that if a real-valued function ( )zu  of a complex variable z  is harmonic 

in a domain, then ( ) p
zu  is subharmonic in the domain if 0>p .  Furthermore ( )zf+log , the 

logarithm of the modulus of an analytic function ( )zf , is automatically subharmonic.  
Clarification of these tantalising connections is currently under investigation. 

3.4 Almost uniformity of Da Costa scheme 

A previous attempt by Da Costa et al [32] to design a uniform orientation estimator that is 
invariant to phase came close to our energy operator.  They recognised that the second 
derivatives can be nonlinearly combined with pure gradient methods to eliminate null regions.  
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However instead of utilising the perfect uniformity of the 1sincos 22 ≡+  squared combination 
they chose the rather less optimal  sincos +   modulus combination rule which gives non-

uniformity between 1 and 2 . 

4. A Nonlocal Complex Energy Operator 

The previous section introduced a 2-D energy operator that directly parallels the classical 1-D 
TKEO.  In this section we propose an absolutely scale invariant 2-D energy operator based on 
pseudo-differential operators.  The 1-D parallel will eventually become clear. 

4.1 Spiral-Phase-Riesz Transform Formulation 

The 2-D operator defined in section 3, (Eq. (10)), neatly combines demodulation and 
orientation estimation.  It can be classified as a nonlinear local (point) operator since it 
combines the local (or point) derivatives in quadratic products.  It is well known that 
derivative operations tend to enhance noise.  Even though the 2-D energy operator works well 
with perfect fringe patterns, the performance degrades significantly for noisy input. 

The complex gradient operator used in Eq. (10) is isotropic and has a Fourier transform 
multiplier defined as follows, where { }F  is the Fourier transform operator: 

( ) ( ){ } ( ) ( )[ ]dxdyvyuxiyxgyxgvuG +−== ∫ ∫
+∞

∞−
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∞−

π2exp,,F, ,  (21) 

{ }{ } ( ) ( ) uvvuqGiiqGivuigD =+==+= φφππ tan,,exp22F 222  . (22) 

One interpretation of Eq. (22) is that the complex derivative operator is a spiral phase 
multiplier in the Fourier domain, with a linearly increasing (conical) radial frequency factor 
q .  The increasing gain with frequency q  is the main cause of the noise enhancement 
associated with the gradient operator.   If we now reconsider Eq. (16) we see that the 2-D 
energy operator quadratically ( 2q ) enhances the magnitude.  The question inevitably arises: 
if the gradient operator were replaced by another spiral phase operator, but without the radial 
frequency factor, would it still work?  Previously we defined a spiral phase quadrature 
operator for fringe pattern demodulation [10].  We define a new modified operator but call it 

mD to show that it is a modified differential operator.  In reality it is a type of pseudo-
differential operator, better known in the pure-mathematical realm of harmonic analysis as the 
Riesz transform.  The essential Fourier multiplier property is that it has the same Fourier 
phase as the differential operator, but unit Fourier magnitude as follows: 

{ }{ } ( ) ( ) ( ) [ ]( )
⎪
⎩

⎪
⎨

⎧

==

+==+≡
+
+=

.sin,cos

,2expexpsgnF

φφ

πφφ

qvqu

GiGiiGivuiG
ivu

ivu
igDm

 (23) 

Note that the operator defined above is slightly different to our “spiral phase quadrature 
transform” in that it contains an extra imaginary factor.  This is purely for the convenience of 
paralleling the complex differential operator in section 3, and avoiding a superfluous negative 
sign in the final energy.  As we know, this multiplier has an associated spatial domain 
convolution kernel that is itself a spiral phase, but with a singular inverse square drop-off: 
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Where the spatial polar coordinates are ( )θ,r .  For locally simple fringe patterns (which 
satisfy quite loose restrictions on the rate of change of frequency and curvature) it can be 
shown using asymptotic methods [11] that the following approximations are applicable: 
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0

Ssm

Ssm

ibfD

ibfD

ψβ
ψβ

   (25) 

Consequently a modified energy operator based on these circular harmonic operators gives the 
following intriguing result: 

( ) ( ) ( )βibfDffD smssm 2exp. 2
0

22 =− .   (26) 

The use of higher order spiral phase (Riesz) operators was foreshadowed in the author’s thesis 
[19].  One interpretation of the above result is as a 2-D dirigible (steerable) analytic signal 
demodulator, with orientation free of charge.  In one dimension the TKEO is considered to 
parallel the magnitude of the analytic signal, [41] or “local energy” (from the phase 
congruency perspective [54, 55]).  The modified 2-D energy operator in Eq. (26) parallels the 
differential 2-D energy operator in the same way.  The derivative is replaced by the Hilbert 
transform in 1-D and the complex gradient is replaced by the spiral phase operator (or Riesz 
transform) in 2-D.  It seems rather paradoxical  that the phase congruency “local energy” is 
derived from a signal using the Hilbert (1-D) or Riesz (2-D) transform, both of which are 
archetypal nonlocal operators.  We prefer to use operator localization (rather than analytic 
signal localisation) to characterize the two new energy operators we have presented.  
Accordingly Eq. (10) defines a local 2-D energy operator, whereas Eq. (26) defines a nonlocal 
2-D energy operator. 

4.2 Unification of Kaiser-Teager energy operator and the “Local Energy” 

The Kaiser-Teager energy operator and the phase congruency “local energy” in one 
dimension can be unified under a generic operator that also unifies the family of two 
dimensional operators proposed in this paper.  The trick is to utilize the fact that applying a 1-
D Hilbert transform twice is just the negation operator.  This means that the usual equation. 
for “local energy” [55] which sums the squares of the in-phase signal g  and quadrature signal 

ĝ  can be written in the canonical operator form of Eq. (10) using S to represent the Hilbert 
transform operator: 

{ }( ) { }gggggggg 22222 .ˆˆ̂ˆ SS −≡+−=+  .  (27) 

It is perhaps worth noting that the above LHS form of energy operator, being the sum of 
squares, is never negative (in contrast to the differential energy operator which is only rarely 
negative). 

4.3 Other Scale Invariant Formulations 

The 2-D energy operator of Eq. (26) has flat spectral response, giving a result independent of 
local frequency. Application of Plancherel/Rayleigh theorem [56] shows immediately that the 
total energy measure is unaltered by operators with unit-magnitude Fourier multipliers.  The 
operators D  and 2D  can be further generalised to homogeneous functions with index α : 
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Accordingly that the gradient based operator can be characterised by 1,1 DDgradient ==α  and 

the Riesz operator characterised by 0,0 DDRiesz ==α .  Local spectral analysis with the 
generalized energy operator the gives the following result: 

( ) ( ) ( )βα
αα iqbfDffD sss 2exp.

2

0
22 =− .   (29) 

The localisation of the Riesz operator and its alpha generalisation is important in the study of 
the uncertainty principle.  In a fascinating twist it can be shown that in 1-D the Hilbert 
transform is completely anti-local (an extreme form of nonlocality,  page 485 of Havin [57]). 

4.4 Radial Spectral Filter Formulations 

We may wish to apply our energy operators to images, but the assumption of local simplicity, 
valid for fringe patterns, is no longer applicable.  Felsberg [25] uses a “difference of 
Gaussians” filter to invoke the Gaussian scale-space guarantee of positive eigenvalues for 
their energy tensor.  Granlund and Knutsson [1] prefer radial lognormal filters to limit the 
signal spectrum.  Havlicek suggests several forms of multi-band filtering [58].  Almost any 
desired filter can be integrated into a 2-D energy operator by defining and applying the 
differential operator in the Fourier domain.  A radial and polar separable Fourier multiplier 
could be of the form 

( ) ( )φiqRD
FT

general exp↔ .   (30) 

where the absolute value ( )qR  ensures that no sudden sign flipping occurs in the orientation 

estimate. 

5.  Implementation 

5.1 Discretization: Spatial Domain 

It is well known that the 1-D energy operator has a very compact and neat discrete 
formulation: 

( ) ( ) ( )112 −+− mfmfmf .    (31A) 

Only three adjacent samples are needed to implement the operator.  In practice it is necessary 
to remove the DC or background signal, so the above triplet is replaced by a zero mean triplet 
[59].  An alternative is to replace each sample by a symmetric finite difference [42, 43], 
necessitating 5 samples in total: 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]2211 2 −−−+−−−+ mfmfmfmfmfmf . (31B) 

Corresponding attempts to discretize the gradient form of the 2-D energy operator (defined by 
Eq. (9) and Eq. (11)) cannot achieve isotropic performance with small kernels.  The main 
difficulty is avoiding spectral phase reversals (and spectral magnitude variation) related to the 
finite difference approximation of differential operators.  Although it is possible in principal 
to implement an effective local estimate of the gradient using just a 3x3 region (and its auto-
convolution  the 5x5 kernel Hessian operator), we recommend that larger kernels be used to 
improve the spectral accuracy to the desired response. 

Assuming a single frequency input and D operators with the following spectral magnitude 
(M) and phase (P) response, Eq. (14) and Eq. (15) are modified as follows by the discrete 
operator response: 
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The single frequency input results in the following energy operator output 
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Clearly, if the D operators do not originate from the same source, then magnitude 2
2
1 Μ≠Μ , 

and phase  212 Ρ≠Ρ mismatch can occur in the RHS of Eq (33), and the uniformity condition 
will no longer apply.  Initial analysis indicates that the simplest 3x3 and 5x5 kernels can 
produce systematic orientation errors of up to 8°.  There is scope for discrete optimisation of 
the 2-D energy operator but it will not be considered further in this paper.   Felsberg et al [26, 
60] have recently considered spatial discretization in more detail. 

5.2 Discretization: Fourier Domain 

Typical computer speeds are now such that a 1024 by1024 pixel fast Fourier transform (single 
precision, real data, 2.8Ghz P4 Xeon) takes about 45 milliseconds [61].  Consequently for 
many applications it is realistic to perform filtering as complex multiplication in the Fourier 
domain.  This allows full control of magnitude and phase over all frequencies.  We have 
found in practice that the following Fourier multipliers give good results: 
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For much image analysis the image will be split into subbands or scale spaces before 
application of energy operator as a feature detector [25].  Note that the sub-band filtering and 
the differential operator filtering can be efficiently combined into one Fourier operation.  In 
the case of the spiral-phase-Riesz implementation of the nonlocal energy operator (where the 
nonlocal filter kernel is delocalized over the full image area) it is more efficient to implement 
filtering in the Fourier domain. 

6. Performance  

6.1 Test Pattern Design 

NOTE:  The following tests are applied to images that can be classified as locally simple, or 
equivalently i1D (as described in section 2.1).  This means that multi-band separation is not 
required as a pre-processing step for the local and nonlocal 2-D energy operators.  Felsberg et 
al [25, 26, 60, 62] have considered the pre-filtering issues necessary for the application of 
their closely related energy tensor to more general (i2D) images.  

Our objective here is to develop and use a fringe pattern that tests representative 
properties of orientation estimators.  One of the problems with the evaluation of orientation 
algorithms is how to define a good test image or image sequence to test the properties over a 
wide range of conditions.  As our basis pattern we have chosen a periodic pattern (not unlike 
that of Quiroga  [29]) which evenly fills half the Nyquist frequency range in both spatial 
directions.  We circumvent edge effects by enforcing periodicity in this initial analysis.  The 
pattern contains almost equal components at all frequencies and orientations within the half 
Nyquist zone, the pattern has circular and hyperbolic regions with undefined orientation (zero 
phase gradient), where we might expect orientation estimators to perform poorly. 

The test pattern is the real part of the following pure phase function defined over a 
256x256 pixel image: 
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( ) ( ) ( )[ ]( )2562cos2562cos64expexp yxii test ππψ += .   (34) 

In actual tests we quantize this to 8 bit representation typical of many imaging devices 

( ) ( ) ( )[ ]( )[ ]( )2562cos2562cos64cos15.127int, yxiyxftest ππ ++= .  (35) 

In orientation tests we can compare the estimator with the exact theoretical orientation testβ  
give by 
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Figure 1 shows the test image and the Fourier transform magnitude of the test image.  
The maximum horizontal or vertical frequency present in the test image is 2π  radians per 
pixel - precisely half the Nyquist rate. 

 

          
  (a)    (b) 

Fig.1.  (a) Sample fringe pattern for analysis and (b) its Fourier magnitude 

 
Felsberg [25] mentions that the energy operator has the elegant property of exactly 

compensating the aliasing inherent in the gradient squared term alone, and the function times 
Hessian term alone, thus oversampling is not required in practice.  In one dimension it is 
known that the energy operator can perform remarkably well with significant (3x) 
undersampling [19, 42, 43], and there is a precise interpretation is in terms of bandpass 
sampling theory.  Nevertheless our test pattern here is 2x oversampled to reduce any printing 
artifacts that might otherwise appear. 

6.2 Systematic Error Theory 

In 1-D the error propagation for the TKEO has been analysed in great detail [38, 40].  The 
estimation error is proportional to the second derivative of the phase (namely the rate of 
change of the frequency). 

Error analysis in 2-D is greatly simplified by the use of Eq. (19B) which uses the Hessian 
of the logarithm.  Amplitude modulation affects are further simplified by the use of the 
exponential (or attenuation ρ ) representation, ρeb = , in Eq.(1) so that : 

( ) ( ) ( )[ ]yxeyxf yx ,cos, , ψρ= .    (1B) 
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Equation (16) then becomes: 
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The RHS consists of three terms; the first is the desired 2-D energy operator, the second term 
is an error proportional to the Hessian of the attenuation, and the third term is an error 
proportional to the Hessian of the phase.  The logarithmic formulation effortlessly removes 
the complication due to negative amplitude modulation (since the squaring operation 
eliminates awkward π  phase flips).  The relative errors oscillate at twice the fringe frequency 
and are inversely proportional to the fringe frequency squared.  Significant errors (>10% for 
example) only occur when the amplitude or frequency change substantially over the period of 
a single fringe, or when the fringe radius of curvature is less than a few fringe periods.   

Systematic error analysis for the nonlocal 2-D energy operators is more involved because 
there is no simple logarithmic formulation.  Nevertheless the asymptotic analysis of the 
(single) spiral phase quadrature transform [11] indicates that the quadrature phase has an error 
directly proportional to the curvature of the underlying fringe phase ψ .  The analysis can be 
extended to the double spiral phase operator (second order Riesz transform), but this would 
constitute a research paper on its own, and is not considered further here. 

6.3 Energy Operator Performance: High Signal to Noise Conditions 

For relatively slowly changing fringe frequencies the 2-D energy operators exhibit very small 
systematic errors, and their robustness in the presence of noise is of more practical concern.  
Figure 2 shows the performance of an idealized energy operator as a magnitude (energy) and 
phase (orientation angle) map.  The magnitude is presented with a linear scale (black=zero, 
white =maximum value).  The phase is presented with a linear scale between π−  (black) and  

π+  (white). 
 

          
  (a)    (b) 

Fig. 2. (a) Ideal 2-D energy operator magnitude and (b) ideal orientation phase for test pattern 
 

By way of comparison we have computed a simple gradient based orientation estimator 

( )2fDg , using simple finite differences, and applied it to the 8 bit quantized test pattern of Eq. 

(35).  The result is shown in Fig. 3.  The intrinsic noisiness of the estimate is clear, even when 
the input is an 8 bit image with SNR of 53dB (as defined by Granlund [1] on page 257): 
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log20SNR 10 .    (38) 

The characteristic of all gradient based methods is the failure at fringe extrema.  In this 
particular example the increased noise sensitivity is clear around the fringe maxima.  The 
gradient orientation estimator also fails at half the Nyquist frequency (the diamond shaped 

line in Fig. 3) due to aliasing of the ( )2
sg fD  operator. 

 

         

Fig. 3.    Gradient based magnitude and orientation estimate 

Figure 4 shows the performance of the local (differential) 2-D energy operator as a magnitude 
and phase map.  Notice how closely it resembles the ideal shown in Fig. 2, the only visible 
difference being small variations of the zero to π2  phase transitions. 

 

          
  (a)    (b) 

Fig. 4.  (a) Differential 2-D energy operator magnitude (b) differential 2-D energy operator 
orientation phase 

 
Figure 5 shows the performance of the nonlocal (spiral-phase) 2-D energy operator as a 

magnitude and phase map.  Again notice how closely the phase resembles the ideal shown in 
Fig. 2.  The magnitude however is quite different, primarily because it now represents a 2-D 
signal magnitude and is largely independent of fringe frequency.  Observe that the magnitude 
is quite uniform, except where the original fringe patterns have singular structure.  Crucially 
the orientation phase is close to ideal, with some dimly visible artifacts near the singular 
points of zero fringe frequency. 
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             (a)              (b) 

Fig. 5.  (a) Spiral-phase 2-D energy operator magnitude and (b) Spiral-phase 2-D energy 
operator phase 

6.4 Energy Operator Performance: Low Signal to Noise Conditions 

Typical oriented patterns (such as optical interferograms and fingerprints) have relatively low 
signal to noise ratios.  A useful measure of estimator performance is the RMS phase error (in 
degrees) versus SNR.  Such a performance measure was calculated by Granlund ([1], page 
258) for the orientation tensor, although their test pattern avoids edge effects by windowing 
fringe modulation, not by periodic tiling.  Their pattern also carefully avoids very low 
frequency and high curvature effects that occur at the centre and edges of our pattern.  This 
means that our results are not directly comparable to theirs.  For large phase errors it is 
preferable to use period statistical measures which avoid phase wrapping artifacts [63, 64], in 
the same way that Granlund’s arcsine of the tensor estimate gives properly wrapped phase. 
 

 
Fig. 6.   10dB  test pattern 

 
The most visually representative case is for the 10 dB SNR, as defined by Eq. (38).  The 

noise is zero mean Gaussian.  We have applied the three estimators to the pattern in Fig. 6 
with the following results: 
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(a)            (b) 

         
(c)            (d) 

         
             (e)              (f) 

Fig. 7.  Estimates from 10dB test pattern:  (a) and (b) magnitude and phase of the gradient 
estimator, (c) and (d) magnitude and phase of the differential energy operator, and (e) and (f) 
magnitude and phase of the spiral phase (Riesz) estimator 

 
The sequence of results shown in Fig 7 is revealing.  The simple gradient phase shown in 

Fig. 7(b) is still working at 10dB, but is beginning to become overwhelmed by the intrinsic 
high frequency noise from the spatial derivative.  The differential energy operator phase 
shown in Fig. 7(d) is clearer, but the RMS orientation error is actually only marginally better.  
The spiral phase (Riesz) energy operator phase shown in Fig. 7(f) is much clearer again as the 
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noise has not been amplified by any spatial derivatives.  The results for other SNR ratios are 
summarized in the following table (Table 1) 

Table 1.   Standard deviation of the β2  orientation error for various estimators and SNR ratios.  Note that β  errors 
are half the double –angle errors and are given in brackets. 

 ∞ dB 
No noise 

53dB  
8 bit 

20dB 10dB 0dB 

Gradient Estimator 
 

3.7° 
(1.9°) 

4.3° 
(2.2°) 

23.0° 
(11.5°) 

37° 
(18.5°) 

44.6° 
(22.3°) 

Differential 
Energy Operator 

1.3° 
(0.7°) 

2.0° 
(1.0°) 

14.4° 
(7.2°) 

29.9° 
(15.0°) 

42.9° 
(21.5°) 

Spiral Phase 
Energy Operator 

2.2° 
(1.1°) 

2.2° 
(1.1°) 

5.3° 
(2.7°) 

14.8° 
(7.4°) 

37.5° 
(18.8°) 

 
The results for the spiral phase operator are directly comparable to those of Granlund, but it 
should be noted that our test pattern contains features with much higher curvature, which we 
expect to undermine the initial assumptions of i1D. 

6.5 Noise reduction by Low Pass Filtering 

The preceding example test patterns have rather slowly varying orientation phase patterns.  In 
1996 Strobel [65] proposed a method of filtering noisy fringe patterns (especially electronic 
speckle interferograms) by forming a complex (phasor) image that can be simply low pass 
filtered.  The method elegantly avoids all the phase wrapping problems normally associated 
with processing of phase images, and has been an inspiration for a systematically complex 
approach to fringe analysis [10, 66].  Although it is true that many fringe patterns have rather 
slow variation of orientation over the image, some others (like fingerprints) have rapid 
variations of orientation (discontinuities, minutiae, folds etc) that would be simply lost if low 
pass filtered.   Our proposed local and nonlocal operators have the potential to track very fast 
changes in orientation.  For this reason phasor low pass filtering is not considered further. 

6.6 Energy Operator Performance: Fingerprint Image 

As an example of how the new energy operators perform on real images a publicly available 
digitized fingerprint image from the NIST test data CD-ROM [67] is used, as shown in Fig.8.  

 

 
Fig. 8.   NIST digitized fingerprint image 
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(a)            (b) 

         
(c)            (d) 

         
             (e)              (f) 

Fig. 9.   Fingerprint magnitude and orientation phase estimates.  Note that the phase is 
displayed as a pseudo-color map between π−   and π+ , with the color scale shown (blue is 
zero).  (a) and (b) are the magnitude and phase of the gradient squared operator, (c) and (d) are 
the magnitude and phase of the differential (local) energy operator, and (e) and (f) are the 
magnitude and phase of the spiral phase (nonlocal) energy operator. 
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The original fingerprint image was first cropped to 768x768 then Fourier down-sampled to 
384x384.  The only other pre-processing is the removal of spectral components near DC.  
Figure 9 shows the results of applying the three basic orientation estimators of sections 6.3, 
and 6.4  The differential energy operator gives considerably better orientation estimation than 
the simple gradient-squared estimator, which shows substantial high frequency noise.  The 
spiral phase based estimator gives an even more recognizable orientation phase in Fig. 9(f) as 
one might expect from an operator that does not enhance high frequencies.  The magnitude 
images shown in Figs. 9(a), (c), and (e) all show good discrimination between good signal 
modulation regions (white) and poor signal modulation (black).  The simple gradient-squared 
magnitude picks out the edges of the saturated ridge structure very clearly especially when 
compared to the differential operator in Fig. 9(c).  The fingerprint orientation estimation using 
energy operators is surprisingly good considering that the image is almost binary and scarcely 
resembles the smooth grayscale sinusoid underlying Eq. (1). 

7. Discussion  

7.1 Filtering performance of local and nonlocal operators 

Care must be taken interpreting the results of the preceding section.  Both the squared-
gradient operator and the local 2-D energy operator have differential structures that give them 
a high pass filtering character.  Both are local (point) operators, hence it is not surprising that 
they appear to enhance noise in noisy fringe maps.  Nevertheless it is clear from the tabulated 
noise data that the local 2-D energy operator has about half the orientation noise of the 
squared-gradient operator.  The noise improvement has been gained by careful use of the 
second partial derivatives, without loss of signal resolution.  In contrast low pass filtering of 
the squared-gradient operator would reduce noise, but it would also reduce resolution. 

Introducing the nonlocal (spiral phase) 2-D energy operator we achieve further 
diminution of orientation noise at low SNR.  The spiral phase (Riesz) structure of the operator 
has a flat frequency response, neither enhancing nor attenuating the noise spectrum.  One 
could argue that the nonlocal spiral phase kernel in Eq. (24) has a large domain and then it is 
only to be expected that it tends to average out the effects of noise on the orientation estimate.  
In fact there is a view that our comparison of the two local estimators (having small spatial 
kernels) with the nonlocal estimator (having a kernel as big as the image itself) does not make 
sense because the operator windows are so disparate.  The important point, however, is that 
the nonlocal energy operator has the extraordinary ability to demodulate without explicit low 
pass filtering and as a consequence the resolution loss associated with low pass filtering is 
completely avoided simply by using Eq. (26).  A similar process is well known in one 
dimension with the nonlocal character of the Hilbert transform. 

7.2 Signal Bandwidths 

A common misapprehension with both the spiral phase quadrature transform and the 2-D 
energy operator is that the method is limited to narrow bandwidth signals (see for example 
Felsberg [25] section 2).  As can be seen from the (i1D) examples in section 6, the signal 
covers frequencies from DC right up to half Nyquist.  It is more correct to say that the input 
signal must be locally, not globally, narrowband.  Nevertheless it is true that in the application 
to more general images (i2D), the operator must be limited to small bandwidths by pre-
filtering.  

7.3 Applications: Fingerprint Analysis 

An obvious application is in the demodulation of fingerprint patterns.  The preliminary results 
shown in section 6.6 are very encouraging for automation of fingerprint analysis because they 
are totally scale invariant and do not require the selection of band pass filters.  This work 
represents the second stage in our search for an efficient method to analyse, compress, and 
accurately resynthesize human fingerprints [68].  To do this we must reliably demodulate a 2-
D signal into its amplitude and phase.  The first stage is based on the isotropic quadrature 
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transform [10, 11].  The third and final stage will be presented in a forthcoming paper by the 
author.  Daugman originally suggested in 1987 that image demodulation could be used for 
compact image coding [69].  In his particular case the signal of interest was another biometric: 
the human iris pattern. 

7.4 Applications: Curvature Estimation 

Once the orientation β  has been robustly estimated, the curvature is easily derived by 
differentiation – the rate of change of orientation (see [1] page 361).   Continuing with the 
complex D operator approach, and utilising the compactness of complex algebra [65, 66] we 
find 

( ) ( ){ } { }βββ
gg DiD

i

i =−
2exp.

2

2exp
.   (39) 

The LHS of the above equation defines an effective algorithm for computing the curvature 
without explicitly having to compensate for wrapping of the orientation angle.  The usual 
approach to curvature estimation typically fails in zero gradient regions (see Koenderink et al 
[70] or van de Weijer [71] for more detailed discussion), whereas Eq.(39) has no such 
difficulty as it operates on a uniform orientation estimate. 

7.5 Applications: Image Analysis 

Felsberg and Granlund [25] have already proposed the use of the 2-D energy tensor for point 
of interest detection in images and subsequently a new variant they call the Gradient Energy 
Tensor (GET).  Countless image processing algorithms depend on structural estimators; hence 
whenever robust estimation of orientation or curvature is required the 2-D energy operator 
may be the most effective method available.  

7.6 Alternative Implementations 

In the world of fringe analysis the 2-D energy operator can replace a multitude of ad-hoc 
estimators which predominantly rely on low pass filtering to reduce their inherent noise 
characteristics.  In the world of AM-FM image decomposition the 2-D energy operator now 
provides orientation information in addition to the energy with little additional computation.  
The connection between the positivity of an energy operator and the subharmonicity of a 
function has been noted, but there needs to be more research into the relationship.  As in 
previous publications we have utilised complex algebra to effortlessly combine various 
operations.  It is possible to utilise the more general properties of other algebras such as 
matrix, tensor, quaternion or Clifford and extend the ideas to higher dimensions (see Rieger et 
al. [72] or Felsberg [73] for recent insights into n-D orientation) .  It is even possible to use 
vector algebra, but the simplicity is then lost.  The complex operators are easily implemented 
in image and signal processing systems which utilise complex algebra; virtually any system 
using discrete Fourier transforms for example. 

8. Conclusion 

We have presented two new operators for estimating orientation in 2-D fringe patterns.  The 
(local) differential 2-D energy operator generalises the 1-D TKEO, whilst the (nonlocal) spiral 
phase 2-D energy operator generalises the 1-D phase congruency energy estimator, making it 
automatically steerable.  A further generalization unifies all four operators in one standard 
form, Eq. (10) and Eq. (27).  Preliminary analysis of their performance shows that the 
operators successfully combine the advantages of first and second order as well as linear and 
quadratic orientation estimators.  Indeed, for pure sinusoidal inputs the operators give 
perfectly uniform energy and orientation estimates.  We are not aware of any other estimators 
that perform in this way.  The operators also work remarkably well for fringe patterns with 

#8412 - $15.00 USD Received 8 August 2005; revised 19 September 2005; accepted 22 September 2005

(C) 2005 OSA 3 October 2005 / Vol. 13,  No. 20  / OPTICS EXPRESS  8119



strong curvature, and this is most likely due to the avoidance of low pass filters in the operator 
design. 

9. Appendix: Extension of the Analytic Signal to Images 

At present the image processing research community is split on the issue of how to extend the 
analytic signal from 1-D to 2-D.  The situation is similar in the optical community except that 
many researchers have recently realized the advantages of the Riesz transform approach when 
applied to optical fringe patterns.   We would like to clarify some of the issues that lead us to 
the fundamental definition of the orientation problem in terms of Eq. (1) and Eq .(2).   

Essentially there are two approaches: the orthant definition outlined below, and the Riesz 
transform (or spiral phase) approach that has been covered in the main body of this paper and 
others [10, 11, 73, 74].  The crucial point is that the orthant approach enforces the validity of 
Eq. (1) by multi-band filtering; Eq. (2) then automatically results from the one-sided, or 
orthant,  nature of the filters.  Our approach, in contradistinction, must assume the validity of 
Eq. (1), but never explicitly realize Eq. (2). 

9.1 Orthant/Hyperquadrant Analytic Image  

The quintessential exposition of the orthant analytic image occurs in the 1996 thesis of 
Havlicek [21] and a subsequent paper [75].  Havlicek appears to be the first image processing 
researcher to have considered the Riesz-based definition of the Hilbert transform in higher 
dimensions; referring to the classic work of Stein [76].  Having discussed possible reasons for 
using the Riesz transform to define an analytic image Havlicek (page 79 [21]) eschews the 
following properties: 

• Uniqueness, 
• Cauchy Riemann relations, 
• Isotropy, 

in exchange for: 
• Spectrum only supported on half the frequency space (orthants or hyperquadrants), 
• Analytic signal is complex. 
Many good reasons are given for the final choice of an orthant analytic image.  Havlicek 

then goes on to carefully define an “adjusted” signum function in such a way to avoid the 
problems of an orthant defined as the product of several 1-D signum functions.  Clearly the 
n -dimensional product contains n  hyperplanes with zero values.  If a significant signal 
component just happens to occur on one of these hyperplanes, then the essential quadrature 
property of the signum multiplier fails because the signal is zeroed.  An adjustment has to be 
made on a set of measure zero (the hyperplanes).  In contrast the Riesz transform approach 
only has a discontinuity at a single point (DC), rather than n  hyperplanes, and thus remains 
essentially continuous, isotropic, and unique. But the Riesz based analytic image requires 
three separate components, therefore it cannot be represented by a complex (two component) 
function. 

9.2 Quasi Eigenfunction Approximation 

The application of the orthant based analytic image requires multi-band decomposition.  The 
idea of multi-band demodulation is to separate an image into sub-bands each of which must be 
smaller than a single orthant.  The theory of quasi eigen-function approximation (QEA) is 
developed by Havlicek in Chapter 3 [21] and shows that filtering of the sub-band effects the 
phase and amplitude modulation of each component of the analytic image in an intuitive and 
well defined way.   Interestingly QEA gives the same results as the application of the 
asymptotic method of stationary phase [11].  

The application of multi-band decomposition to the kind of fringe patterns we consider in 
this paper appears to be possible.  For a closed fringe pattern with almost constant fringe 
spacing (like a fingerprint, for example) the dominant frequency component forms an annulus.     
Multi-band filtering would likely require at least three bands.  Each band-pass analytic image 
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would provide both phase and amplitude information, thus avoiding the uniformity problem of 
conventional approach outlined in our main text. The phase gradient of each provides an 
estimate of the orientation, but the multiple bands need to be combined in some manner to 
give an overall orientation and energy map corresponding to our energy operators. 
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