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It is widely believed, in the areas of optics, image analysis, and visual perception, that the Hilbert transform
does not extend naturally and isotropically beyond one dimension. In some areas of image analysis, this belief
has restricted the application of the analytic signal concept to multiple dimensions. We show that, contrary to
this view, there is a natural, isotropic, and elegant extension. We develop a novel two-dimensional transform
in terms of two multiplicative operators: a spiral phase spectral (Fourier) operator and an orientational phase
spatial operator. Combining the two operators results in a meaningful two-dimensional quadrature (or Hil-
bert) transform. The new transform is applied to the problem of closed fringe pattern demodulation in two
dimensions, resulting in a direct solution. The new transform has connections with the Riesz transform of
classical harmonic analysis. We consider these connections, as well as others such as the propagation of op-
tical phase singularities and the reconstruction of geomagnetic fields. © 2001 Optical Society of America
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1. INTRODUCTION: HISTORICAL SURVEY
Our work on the natural demodulation of two-
dimensional (2-D) fringe patterns will be presented in two
parts. In this, Paper I, we present a background to the
heuristic derivation of the spiral phase quadrature trans-
form and some simulations. In Paper II (this issue) a
mathematical basis for the validity and the accuracy of
the spiral phase quadrature transform is investigated.
The work presented is the culmination of several years of
investigating mathematical methods for the demodula-
tion of human fingerprints and other naturally occurring
fringe patterns. Although the presentation concentrates
on the logical development of the isotropic quadrature op-
erator, it glosses over the rather convoluted experimental
development of the technique. The discovery that our
method of isotropic demodulation is closely related to the
Riesz transform occurred after the technique was working
effectively as an image processing operation. Similarly,
the mathematical justification for the heuristic method
was developed only after extensive experimental testing
on real and simulated fringe patterns. The chronicle
might have been different if there were less conflicting in-
formation on the Hilbert transform (HT) in two dimen-
sions.

To help understand the confusion regarding the exten-
sion of the HT beyond one dimension, a brief historical
0740-3232/2001/081862-09$15.00 ©
survey of the literature is useful. The concept of an ana-
lytic (or holomorphic) signal was introduced to communi-
cation theory by Gabor1 in 1947 for one-dimensional (1-D)
signals. An analytic signal consists of two parts: The
real part is the base signal, and the imaginary (or quadra-
ture) part is the HT of the real part. The theory of ana-
lytic signals naturally underpins many modern concepts
of signal analysis such as amplitude and frequency (AM–
FM) demodulation, spectral analysis, instantaneous fre-
quency, interferometry, and radar. Unfortunately, the
concept has not, apparently, extended naturally beyond
one dimension without implying a preferred direction.
Consequently, a number of avowedly ad hoc definitions of
the 2-D HT have been proposed2–7 with varying degrees of
directionality. Typical definitions have half-plane
symmetry,5 quadrant-based symmetry,8,9 or rotated half-
plane symmetry.10 A recent development is the idea of
extending the complex analysis of the Fourier transform
(FT) to hypercomplex numbers. The concept has been
called ‘‘hyper-complex signal representation’’ by Bülow
and Sommer11,12 and potentially allows an unambiguous
definition of the analytic image in two dimensions. Un-
fortunately and surprisingly, the published definition has
a degree of directionality that is apparent in the demodu-
lated envelope patterns.11 A similar idea using quater-
nions and even octonions for multidimensional signals
2001 Optical Society of America
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was proposed by Craig13 in 1996. The quaternionic ap-
proach allows several possible definitions but introduces
additional phases into the definition of the analytic im-
age.

In the area of phase retrieval, the concept of analyticity
is central to the understanding of multidimensional band-
limited signals.14 Interestingly, the mathematical devel-
opment of a complex function of several complex variables
(and the associated Cauchy–Riemann equations) leads, in
this case, to a nonisotropic interpretation of the HT rela-
tions in the two real-space variables.15,16 However, an al-
ternative definition of the multidimensional Cauchy–
Riemann conditions leads to isotropic equations.17 In an
isotropic system it is not clear why there should be a pre-
ferred direction. Sometimes, anisotropic definitions are
justified by the symmetry of the problem. For example,
images obtained by differential interference contrast mi-
croscopy have one direction related to the differential
shear, so the application of a directional multidimensional
HT may be appropriate.18 Similarly, in three-
dimensional (3-D) white-light interferometry the HT rela-
tion applies to just one coordinate.19

Little known to many researchers in signal processing,
the theory of the HT extended to n dimensions (n real
variables) has been in development since the 1920s by
pure mathematicians working in an area known as the
harmonic analysis of singular integrals. Following Hil-
bert’s lead,20 Riesz21 proposed ‘‘fonctions conjuguées,’’ or
conjugate functions, as extensions to the HT. Subse-
quently, independent work by Tricomi22 and Giraud23 de-
veloped the same idea. More recently, the works of
Mikhlin,24,25 followed soon after by that of Calderon and
Zygmund,26,27 have proved the existence and the conver-
gence of the associated integral operators.28 Another ap-
proach to the problem by the generalization of the
Cauchy–Riemann conditions to higher dimensions was
undertaken by Fulton and Rainich.17 Readers wishing to
follow the rather circuitous development of the
n-dimensional Riesz transform (RT) (as the
n-dimensional analog of the HT is now known) are ad-
vised to start with the textbooks by Stein29 and Mikhlin25

and the paper by Carberry.30 The main complication
with the RT is that it is an n-vector for an n-dimensional
scalar signal, and the corresponding analytic signal is an
(n 1 1)-vector. In 2-D image processing the resulting
signal is a three-vector and cannot be displayed as a com-
plex image.

Of all the applied sciences, geophysics has been per-
haps the most successful in finding possible definitions of
the 2-D HT over the years.13,31–34 Indeed, the definitions
of Nabighian32 and Craig13 developed for geomagnetic
field analysis coincide with the definition of the RT, al-
though they do not explicitly refer to the RT in their work.

A number of researchers have claimed that a true 2-D
HT can be considered difficult35 or impossible.6,36–39 The
difficulty is based on the perceived problem of extending
the 1-D signum function, central to the 1-D HT, to a 2-D
signum function. The spiral phase formalism for the 2-D
HT developed in this paper marks a conceptual change
from the incumbent linear signum function to a revolu-
tionary signum function. To demonstrate the power of
the new formalism, we use an otherwise intractable prob-
lem in fringe pattern analysis, which becomes almost
trivial because the usual difficulty in linearly separating
spectral zones does not occur.

Two recent publications have touched on the idea of an
isotropic HT. The first40 (written in German, but our
translation is available to interested researchers) explic-
itly uses the 2-D RT to enhance digital images. The
second41 considers a ‘‘radial HT’’ for digital image en-
hancement but in the context of an optical spiral phase
filter implemented with a spatial light modulator. Nei-
ther publication discusses the rather significant quadra-
ture effects of the transform. In this publication we shall
concentrate upon the remarkable phase- and quadrature-
related effects rather than the intensity or magnitude ef-
fects seen in digital images.

2. BACKGROUND: ONE-DIMENSIONAL
HILBERT TRANSFORM
Details of the conventional HT H and analytic signal are
well described in Bracewell’s classic textbook.42 Perhaps
the most important property for signal processing is that
it transforms all cosine components in a function of x to
sines and vice versa, regardless of scale factor l:

2sin~lx ! 5 H$cos~lx !% for l . 0, (1)

cos~lx ! 5 H$sin~lx !%. (2)

In many cases the Fourier (or spectral) description of the
HT is informative:

f̂~x ! 5 H$f~x !% (3)

defines the HT of a real function f, and

p~x ! 5 f~x ! 2 i f̂~x ! 5 ub~x !uexp@ic~x !# (4)

defines the corresponding complex analytic signal.
The FT operator F, operating on g, is given by

G~u ! 5 E
2`

1`

g~x !exp~22piux !dx 5 F$g~x !%, (5)

whereas the FT of the HT of g is given by

i sign~u !G~u ! 5 F$ĝ~x !%. (6)

In other words, the FT of the HT of g is the FT of g mul-
tiplied by an imaginary signum function (see Fig. 1).
Note that g and ĝ are real functions. Many attempts to

Fig. 1. Half-plane signum function plotted as a function of fre-
quency coordinates (u, v).
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extend the HT are based on extending the signum func-
tion to two dimensions. Conventionally, these are prod-
ucts of 1-D functions, which result in the half-plane and
quadrant signum functions. Such products are highly
anisotropic owing to the directional line discontinuities,
culminating in the familiar anisotropic definitions. A
more promising approach, conceptually, is to maintain the
point discontinuity of the 1-D signum function in higher
dimensions. Clearly, a point is a nondirectional disconti-
nuity in two or more dimensions. The transforms of sev-
eral authors actually have a point discontinuity13,32; how-
ever, the output is not a scalar for a scalar input but is
either a two-vector or a quaternion. It is not immedi-
ately clear how to interpret the output in such cases, and
this may explain to some extent why these methods have
not been endorsed more generally.

3. TWO-DIMENSIONAL QUADRATURE
FUNCTIONS
We are quite clear about what we demand of a 2-D
quadrature transform, even if a 2-D HT is difficult to
agree upon. A classical problem in fringe analysis illus-
trates the requirements rather well. A typical 2-D fringe
pattern has the following form:

f~x, y ! 5 a~x, y ! 1 b~x, y !cos@c~x, y !#. (7)

Typically, the offset and modulation terms, a and b, re-
spectively, are slowly and smoothly varying functions.
The phase function c is also smoothly varying, but the
combined effect is a rapidly oscillating function f. The
objective of fringe pattern analysis (also the objective of
AM–FM signal demodulation in general) is to extract the
amplitude and phase functions, b(x, y) and c(x, y), re-
spectively. One of the most powerful methods—known as
the Fourier transform method (FTM)—was originally de-
veloped for one dimension43,44 and subsequently extended
to two dimensions.45 The two main complications in two
dimensions are that the FTM cannot separate the over-
lapping spectral components of closed-curve fringes and
that there are local and global ambiguities in the sign (6)
of the output quadrature estimate.46 Until now, no direct
methods have been able to surmount these obstacles (note
that indirect methods using either computationally inten-
sive optimization algorithms47 or extensive manual inter-
vention can succeed). We can identify two key points in
the development of a direct 2-D quadrature method. The
first is, in accordance with conventional belief, the defini-
tion of a suitable 2-D signum function in the spectral do-
main. The second is that a 2-D signum function alone is
unable to ensure that the output is real (for real input), of
the correct polarity, and direction insensitive. To do this,
we propose a second operation purely in the spatial do-
main.

The full 2-D Fourier domain analysis of our proposed
operator is presented in Paper II. Our proposed 2-D
signum function is defined simply as a pure spiral phase
function in spatial frequency space (u, v):

S~u, v ! 5
u 1 iv

Au2 1 v2
5 exp@if~u, v !#. (8)
Here the phase f is the polar angle in frequency space.
The spiral phase function has the curious property that
any section through the origin is a signum function. The
major influence in the conceptual and mathematical de-
velopment of our spiral phase formalism has been the re-
search on optical vortices. Nye and Berry48 first showed
that edge dislocations can exist in 3-D waves and that the
phase around the edge resembles a vortex. There are
deep connections mainly related to the Fourier property
of far-field diffraction patterns.48–51 Spiral phase plates
or holograms in the Fourier plane are analogous to the
Fourier multipliers of singular integrals. Another con-
nection is that the spiral phase discontinuity (in the guise
of a residue) is central to the theory of phase unwrapping
in two dimensions, as comprehensively described by
Ghiglia and Pritt.52 The phase-unwrapping connection
occurs again in the definition of orientation and is dis-
cussed further in Paper II. It transpires that the phase
spiral is also consistent with definitions of the 2-D RT
represented by a complex quantity instead of a two-
vector. Figure 2 shows a representation of the principal
value (p.v.) of the spectral polar angle f(u, v). The 2p
discontinuity in the phase p.v. f(u, v) is unimportant be-
cause the complex exponential in Eq. (8) is continuous ev-
erywhere (except the origin). Our reason for using the
spiral phase function S is that it has the following prop-
erties:

1. It has odd radial symmetry, 2S(u, v)
5 S(2u, 2v), so that it converts odd radial functions to
even, and even radial functions to odd.

2. It contains only a single point discontinuity (main-
taining circular symmetry).

3. There is no radial variation of magnitude or phase
with radius, and the magnitude is unity, hence ensuring
scale invariance.

4. The relative angular variation is constant, so that
it has uniform rotational properties.

This spiral phase Fourier multiplier is applied to g(x, y),
a fringe pattern with its offset removed53:

g~x, y ! 5 f~x, y ! 2 a~x, y ! 5 b~x, y !cos@c~x, y !#. (9)

Hence the ideal quadrature function (assuming suitably
band-limited amplitude and phase54) would be

Fig. 2. Spiral phase ‘‘signum’’ function exponent f. The prin-
cipal value of the complex exponent f(u, v) is shown in the
range 6p.
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ĝ~x, y ! 5 2b~x, y !sin@c~x, y !#, (10)

and the 2-D complex fringe pattern55 would be

g 2 iĝ 5 b exp~ic!. (11)

If we have a fringe pattern image g(x, y) that has a
unique orientation angle b(x, y) associated with each
point, as shown in Fig. 3(a), then we find that our Fourier
spiral phase operator has the following effect on the
fringe pattern:

F 21$exp@if~u, v !#F$b~x, y !cos@c~x, y !#%%

> i exp@ib~x, y !#b~x, y !sin@c~x, y !#. (12)

The approximation is exact for the particular case of per-
fectly straight fringe patterns. This result can be dem-
onstrated by considering a straight, equispaced fringe
pattern with constant modulation b0 :

g1~x, y ! 5 b0 cos@2p~u0 x 1 v0 y !#. (13)

The FT of this pattern is a pair of delta functions

F $g1~x, y !%

5 G1~u, v !

5
b0

2
@d~u 2 u0 , v 2 v0! 1 d~u 1 u0 , v 1 v0!#. (14)

Applying the spiral phase factor and noting that tan(b0)
5 v0 /u0 , we obtain

Fig. 3. (a) Definition of local orientation angle b(x, y) for a lo-
cally simple fringe pattern. Each point in the fringe pattern has
a well-defined orientation angle. (b) Spectral sidelobes related
to the local fringe pattern. The lobes are located at a polar angle
equal to the fringe normal angle.
exp~if!G1~u, v ! 5 exp~ib0!
b0

2
@d~u 2 u0 , v 2 v0!

2 d~u 1 u0 , v 1 v0!#. (15)

Finally, taking the inverse FT gives the exact expression

F 21
ˆexp~if!F$b0 cos@2p~u0x 1 v0y !#%‰

5 i exp~ib0!b0 sin@2p~u0x 1 v0y !#. (16)

The heuristic derivation of the more general approxima-
tion (12) is as follows. If we consider the FT of the local-
ized fringe pattern in Fig. 3(a), then we obtain the distri-
bution shown in Fig. 3(b). If we try to localize the
pattern to a small region, then the spectral lobes in Fig.
3(b) become larger. The formal mathematical description
of this process, utilizing the method of stationary phase,
is described in Paper II. We ignore here the uncertainty
principle, which limits localizing the fringes and the
fringe lobes simultaneously. A cosine fringe pattern will
give two lobes with the same polarity. Multiplying the
lobes by the spiral phase will change the lobes to opposite
polarity and introduce a phase factor exp(ib). It is well-
known that changing lobe polarity changes a cosine into a
negative sine, and the orientational phase then appears
as a factor on top of this quadrature effect.

The above Fourier multiplication is also equivalent to a
2-D convolution of the image function with a spatial spiral
phase kernel function s(x, y):

F 21
ˆexp@if~u, v !#F $g~x, y !%‰ 5 g~x, y ! ** s~x, y !,

(17)

where the kernel function can be shown by general Fou-
rier techniques to be a rather interesting spiral phase,
inverse-square function,

s~x, y ! 5
i~x 1 iy !

2p~x2 1 y2!3/2 5
i exp~iu!

2pr2 . (18)

The spatial polar coordinates are defined as usual:

x 5 r cos~u!, y 5 r sin~u!. (19)

Equation (18) can also be interpreted as the complex sum
of two 2-D Riesz kernels29:

F 21H 2i
u

q J 5
x

2pr3 , F 21H 2i
v

qJ 5
y

2pr3 , (20)

where the spectral radial coordinate q is defined by

q2 5 u2 1 v2. (21)

These real functions are more familiar as the singular
kernels in singular integral theory, but they can be com-
bined in the real and imaginary parts of the complex
Riesz kernel of Eq. (18). The complex notation is unus-
able in dimensions greater than two but can be advanta-
geous in two dimensions because it implies possible opti-
cal implementations. The convolution kernel approach
may be important for efficient implementations of the spi-
ral phase transformation. The kernel clearly shows that
the spiral phase transform is nonlocal, with a variation
(1/r2) rather like that of the nonlocal 1-D HT kernel (1/x):
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F 21$i sign~u !% 5
1

px
. (22)

We have defined an orientational phase factor
exp@ib(x, y)# that is simply related to the fringe angle
b(x, y). The Fourier spiral phase approximation is de-
rived by considering the Fourier components of localized
fringes and is valid for suitably smoothly varying param-
eters (the local simplicity constraint39). Initial experi-
ments indicate that the accuracy is better than 1% for
typical patterns, where the fringe radius of curvature is
greater than the fringe spacing. In fact, relation (12) can
actually be used to define the orientation b(x, y), but we
take an alternative approach in the following examples.
Orientation estimators are of great interest in human and
computer vision, with some reliable methods currently
available.39 A number of other researchers have noted
the importance of fringe orientation in fringe
demodulation.56,57 We use a special orientation estima-
tor to find be , an estimator that does not flip 180° from
fringe to fringe (i.e., it is not a simple gradient estimator)
and so maintains local continuity. Details of orientation
estimation are provided in the appendix to Paper II. The
next step is simply to extract ĝ and calculate the 2-D com-
plex image:

g 2 iĝ 5 g 2 exp~2ibe!F 21
ˆexp~if!F $g%‰. (23)

The process can be seen as a combination of pure phase
function multiplication in the space domain (x, y) and in
the Fourier domain (u, v). The operator V $ %, defined by

V $g% 5 2i exp~2ib!F 21
ˆexp~if!F $g%‰, (24)

shall be referred to as the vortex operator for brevity in
the following text. The vortex operator has the following
invariant properties: scale, translation, and rotation (for
properly defined b). In essence, the operator satisfies all
the requirements of a hypothetical 2-D quadrature trans-
form. The demodulation process defined by V $ % can be
said to be natural in the sense that b sin(c) [or, more cor-
rectly, 2b sin(c)] is the natural quadrature of b cos(c) for
2-D functions as well as 1-D functions.

It transpires that an accurate orientation estimate is
not necessary for high-accuracy phase demodulation or
for high-accuracy amplitude demodulation, as can be seen
in the following case, where we consider an orientation
with an error e 5 e(x, y). The vortex operator then
gives

V e$g% 5 2i exp@2i~b 1 e!#F 21
ˆexp~if!F $g%‰

5 b~x, y !sin@ic~x, y !#exp~2ie!. (25)

For small values of the error (ueu , 0.1),

V e$g% ' b~x, y !sin@ic~x, y !#S 1 2 ie 2
e2

2 D . (26)

The phase estimate in this case ignores the imaginary
part of the vortex transform:

tan@ce~x, y !# 5
R@V $g~x, y !%#

g~x, y !
5 S 1 2

e2

2 D tan@c~x, y !#.

(27)
The error in the phase estimate, dc 5 ce 2 c, then has a
particularly simple form58:

dc~x, y ! ' 2
e2

4
sin@2c~x, y !#. (28)

So the phase error is second order and follows the classic
second-harmonic pattern familiar in phase-shifting inter-
ferometry. If, for example, the orientation error were a
rather poor 0.1 rad, then the demodulated phase would be
in error by a maximum of 0.0025 rad. The amplitude er-
ror derived from the real part of relation (26) is db 5 be

2b, where

be
2 ' b2 cos2~c! 1 b2S 1 2

e2

2 D 2

sin2~c!, (29)

db ' 2
e2

2
b sin2~c! 5 2

e2

4
b@1 2 cos~2c!#. (30)

Fig. 4. Spiral phase algorithm for 2-D quadrature function es-
timation. A purely real fringe pattern is converted to a purely
imaginary quadrature pattern by the spiral phase transform.
The pattern shown could be an interferogram or a fingerprint
pattern, for example. The operation consists of a frequency-
domain spiral phase multiplication followed by a space-domain
orientation phase multiplication. An additional multiplication
can convert the output to real.
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The error is again second order with respect to the orien-
tation error with dc and second-harmonic terms. How-
ever, by reformulating Eq. (23), we can demodulate the
amplitude without any errors that are due to the orienta-
tion error:

ugu2 1 uĝu2 5 ugu2 1 uF 21
ˆexp~if!F $g%‰u2

5 ubu2 ⇒ db [ 0. (31)

In summary, the errors in the orientation estimate cause
only second-order errors in the demodulated phase. The
demodulated amplitude may have second-order errors or
no errors at all, depending on the demodulation algo-
rithm. The second-order error property is indeed fortu-
nate and makes the vortex transform inherently robust to
errors.

A particularly elegant solution arises for circular sym-
metric patterns such as circular fringes. In this case the
orientational phase in Eq. (24) is just a single spiral but
in the opposite sense of the Fourier spiral—the overall
transform is then a double spiral (or double vortex) trans-
form. As far as we know, the direct demodulation of
simple closed-curve fringe patterns has not been pre-
sented before. We shall present examples in Section 4.

Fig. 5. Comparison of 2-D Hilbert transform (HT) methods for a
simple image. The complex images generated by three different
methods are compared with the ideal. The vortex operator gives
a result similar to the ideal magnitude and phase. Both the
half-plane and quarter-plane Hilbert operators give highly aniso-
tropic estimates of magnitude and phase.
In fringe patterns with disjoint closed-curve regions (that
is to say, several separated regions such as the number 8,
for example), the question of global sign choice for the ori-
entation is ambiguous, and each separate region must
have a sign allocated arbitrarily (or based on an addi-
tional global constraint). For clarity, our examples will
be restricted to simple (nondisjoint) closed-curve pat-
terns.

4. APPLICATION TO TWO-DIMENSIONAL
FRINGE PATTERNS
The first example using the vortex operator is a fringe
pattern that could quite easily occur in a human finger-
print or as an optical interference pattern. Figure 4 is a
flow chart of our proposed vortex operator algorithm.
Note that the orientation estimation step produces the
pure phase function exp(ib), which is discussed in detail
after Eq. (22). The direct algorithm is computationally
efficient, requiring just two FTs and two multiplications
(and an additional orientation estimation with compa-
rable computational complexity). In the examples shown
the offset function a(x, y) is very slowly varying and eas-
ily removed, but in general the removal requires more so-
phisticated processing. The output function is in quadra-
ture to the input. All the examples are computed by
using the fast Fourier transform on 128 3 128 discrete
images without any additional windowing operations.
Note how the FT magnitude contains a spectral lobe that
is a continuous ring. Such rings have made previous at-
tempts at direct FT demodulation impossible.46,59

Fig. 6. Comparison of 2-D HT methods for an AM–FM image.
The input image has both amplitude and frequency modulation
with 10% uniform random noise added. The complex image
generated by the vortex operator is visually (and numerically)
close to the ideal. In contrast, the half-plane Hilbert result
shows gross errors in both magnitude and phase estimates.
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In Fig. 5 we show details of the input and output im-
ages compared with idealized quadrature pairs and alter-
native demodulation methods. The quadrant ‘‘Hilbert’’
transform3,14 has been included because it appeared re-
cently in a problematic definition of the multidimensional
analytic signal.11 The vortex operator complex image is
visually very close to the ideal, failing only close to the

Fig. 7. Comparison of demodulated magnitudes for vortex op-
erator and half-plane Hilbert operator. The vortex operator de-
rives a close estimate of the complex image magnitude, failing
only at discontinuities in the phase. The half-plane Hilbert op-
erator derives a highly oscillatory estimate of the magnitude
with substantial errors in all regions.
discontinuity at the center. The half-plane Hilbert
method fails seriously for any closed-curve fringe pattern.
The horizontal fringes are highly distorted in this case,
leading to a dark region in the estimated magnitude.
The phase shows a local sign ambiguity and is also highly
distorted in the transition region.10 The quadrant HT
gives a slightly more isotropic estimate of the magnitude
but fails rather badly with the phase estimate.11

In Fig. 6 we show a comparison of methods applied to
the interference pattern from Fig. 4. This time the ini-
tial image has both amplitude and phase (AM–FM)
structure.60 The input image also has uniform random
noise added for realism (10% of peak signal, 100% of mini-
mum signal). Again, the vortex operator generates an
estimated complex image that is visually close to the
ideal. The measured relative amplitude error db/b is in
the range 228% to 110% within a region less than half of
a fringe from the central discontinuity of the underlying
conical phase function. Outside a region just two fringes
from the center, the measured relative error drops below
3%, and the closeness to the ideal magnitude is clear in
Fig. 7. The errors appear to be related to extremes of
fringe curvature and spacing. In contrast, the half-plane
HT produces anisotropic magnitude and phase estimates
with the usual visible artefacts, as seen in Fig. 6. Note
that the half-plane artefacts are typically very large (with
measured magnitude errors in the range 298% to 135%,
for example) and widely dispersed, as illustrated in Fig. 7.

We believe that the general demodulation methods de-
veloped here for fringe patterns may be extended to more
general 2-D patterns. However, the local orientation can
no longer be defined (local simplicity does not apply), and
the full RT approach with its additional components must
be utilized. In a similar manner, extensions to three or
more dimensions are possible.

5. EXACT SOLUTION FOR CIRCULAR
SYMMETRIC PATTERNS
Our equation defining the vortex operator derives from an
approximation linking the sine and cosine components of
a general fringe pattern. Equation (16) gives an exact so-
lution for equispaced straight fringes, but equispaced cir-
cular fringes (as comprehensively analyzed by Amidror61)
transform only approximately as follows:

V $b~r !cos~lr !% > b~r !sin~lr !, b 5 u, 0 , l.
(32)

As mentioned in Section 3, the transform is a particularly
simple double vortex transform. However, the vortex
transform generally breaks down near the origin, where
the phase has a conical discontinuity, as shown in Fig. 5.
Nevertheless, there is at least one simple circular sym-
metric function that transforms exactly with use of the
vortex operator:

V $J0~lr !% [ J1~lr !, 0 , l. (33)
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This relation can be derived directly from the 2-D Fourier
properties of Bessel functions (given on p. 661 of
Bracewell’s 2-D imaging book62). The Bessel functions
asymptotically approach decaying sinusoids for lr . 3,
which is essentially within one fringe period. The exact
solution above suggests an inverse formula:

V 21$J1~lr !% 5 J0~lr !, (34)

where

V 21$g% 5 iF 21$exp~2if!F ˆexp~ib!g%‰.

However, such an inversion may be impractical in more
general, noncircular symmetric cases. This is because
the inverse requires that orientation estimation and mul-
tiplication take place before the Fourier spiral phase
transformation. Consequently, any errors in the orienta-
tion, especially discontinuities, will spread widely in the
final result. The proposed forward algorithm does not
have such a problem; any errors in the orientation esti-
mate remain localized.

6. SUMMARY
We have surveyed the literature on multidimensional Hil-
bert transforms (HTs) and found that a number of groups
have independently adopted a Riesz-transform-based
definition (without necessarily recognizing the Riesz
transform as such). In other areas of research, the direc-
tional, orthant-based HT definitions may have inhibited
the evolution of isotropic forms. The proposed formalism
for the vortex operator allows a quadrature transform
and a complex ‘‘analytic’’ signal to be defined uniquely for
any 2-D signals, such as fringe patterns, that satisfy the
local simplicity constraint. The constraint is in keeping
with the restricted definition of instantaneous frequency
and the analytic signal in one dimension.63 We have
demonstrated a new form of fringe pattern analysis by us-
ing the vortex operator, which directly demodulates 2-D
patterns previously considered impossible. Both ampli-
tude and phase demodulations are facilitated by this tech-
nique. We expect the vortex operator and the associated
2-D complex signal to have wide applications beyond the
remarkable fringe pattern demodulation presented here.
The vortex operator may be implemented simply in an op-
tical system by using a spiral phase plate in the Fourier
plane or the back focal plane of an imaging system, allow-
ing near-instantaneous evaluation of quadrature func-
tions and suggesting new optical imaging modes.

Note added in proof. Soon after this paper was sub-
mitted, Felsberg and Sommer64 presented a paper that
corrected the previously anisotropic results of Bülow and
Sommer.11 They introduce the so-called ‘‘monogenic’’
function as the extension of the analytic function to n di-
mensions. The idea of a monogenic function was taken
from an area known as geometric algebra, closely con-
nected with the Clifford algebra and quaternions. In a
paper by Gull et al.,65 the monogenic function is derived
from the Cauchy–Riemann conditions in n dimensions by
using geometric algebra.
Address correspondence to Kieran G. Larkin at the first
address given on the title page or by e-mail,
kieran@research.canon.com.au.
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