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A common goal of many watermarking techniques is to produce a mark that 
remains detectable after the geometric transformations of Rotation, Scale and 
Translation; also known as RST invariance.  We present a simple approach to 
achieving RST invariance using pixel-by-pixel addition of oscillating 
homogeneous patterns known as Logarithmic Radial Harmonic Functions 
[LRHFs].  LRHFs are the basis functions of the Fourier-Mellin transform and 
have perfect correlation, orthogonality, and spread-spectrum properties.  Once 
the patterns have been embedded in an image they can be detected directly 
regardless of RST and with great sensitivity by correlation with the 
corresponding complex LRHFs.  In contrast to conventional methods our 
approach is distinguished by the utilization of signal phase information and the 
absence of interpolation artifacts. Data encoding is based on the information in 
the relative centre positions of multiple spatially overlapping patterns. 

1 Introduction 

In this paper we are primarily concerned with practical watermarking schemes.  A 
practical watermarking scheme must be resistant to the most common image editing 
operations if it is to be accepted by typical users. The common, non-malicious edits 
are rotation, scaling, shifting, cropping, blurring, filtering, contrast adjustment, colour 
shifting, printing, scanning, quantization and JPEG compression.  The first four of 
these edits are known as geometric distortions or image deformations.  Rather 
surprisingly many watermarking schemes proposed by researchers in the last half 
dozen years of frenetic publishing activity are vulnerable to one or more of these 
deformations. 

One of the first systematic approaches to watermarking with resilience to rotation, 
scale and translation (RST) was presented by O’Ruanaidh and Pun. 1  Their method is 
based upon the Fourier-Mellin transform (FMT) of the Fourier magnitude of an 
image.  The Fourier magnitude is, perhaps, one of the best known translation 
invariants, whilst the 2-D FMT imparts rotation and scale invariance.  Prior to this 
work Cox2 had proposed a watermarking scheme based upon modifying the transform 
(Fourier or cosine) magnitude values of the Nth largest values for an image.  The idea 
being that peak ordering is unaffected by simple image deformations such as RST.   
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One of the earliest published methods to incorporate rotation immunity was the patent 
of Rhoads3, which proposed a pattern of interlocking rings as the watermark.  The 
underlying assumption here is that a ring is the only pattern with full rotational 
symmetry . 

Another approach to affine image deformations is to embed an alignment pattern, 
or template, in an image.  Perhaps the most interesting approach is based on the 
embedding of a near-random pattern which is periodically repeated in x and y.  Such a 
marked image will give a large autocorrelation (AC), if suitably high-passed filtered 
first.  The autocorrelation resembles an array of delta functions with peaks values 
exceeding the background image AC, so it can easily be detected even if the template 
itself is imperceptible.  Both Kodak4 and Philips5, 6 have proposed AC methods. 

Finally we note a technique based on the scaling and rotation of self-similar 
patterns.  Solachidis and Pitas 7presented a method that only requires correlation over 
a small range of scale factors and a small range of angles.  The method is expected to 
be computationally intensive because of the 2-D search space with a correlation at 
each point. 

RST invariant watermarking is a very active area of research and this introduction 
has omitted many of the recent publications. Our outline is not intended to be 
encyclopedic in it coverage, but rather to place our proposed RST method in context. 

2 Fourier Mellin Basis Patterns and Invariant Functions 

2.1 2-D Fourier Mellin Basis Function 

In this section we introduce a remarkable family of functions by way of the 
Fourier-Mellin transform.   In the last three decades there has been considerable 
research in the area of RST pattern detection, especially for military target (viz tanks 
and aircraft) detection.  Correlation is usually the chosen mode of detection because it 
can often be implemented in real time using optical correlators.  In 1976 Casasent and 
Psaltis8 introduced the idea of invariant correlation based upon a Mellin transform.  
Subsequently much research has been published in this area, most notably Mendlovic 
et al9,  Rosen and Shamir10, and Sheng and Shen.11  There is also a considerable body 
of research in the image processing and pattern analysis literature which might be 
included in a full review article but has been omitted here for brevity. 

The conventional viewpoint is that an image can be transformed to an RST 
invariant domain and then detected by correlation.  An equivalent interpretation is that 
an image can be uniquely represented by an orthonormal series of invariant functions; 
and these functions are the basis functions of the 2-D Fourier-Mellin transform; also 
known as Logarithmic Radial Harmonic Functions (LRHFs).1 
                                                            
1 Actually the Fourier-Mellin transform method of O’Ruanaidh discards the phase information 

of the embedded pattern, which means that it is more correct to state that the method is 
equivalent to the addition of a sequence of different basis functions, all centered at the spatial 
origin. 



The 2-D Fourier-Mellin transform of a function ( )θ,rf  is given by 
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The variable s  is assumed to be complex, and m  is an integer representing the 
circular harmonic order.  It can be shown that a complete9  orthogonal 12 sequence of 
functions results from setting ( ) 1−=ℜ s .  The orthogonal 2-D Fourier –Mellin basis 
functions ( )θα ,, rg k  are given by 
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It can be readily confirmed that this family of functions exhibits the required scale 
and rotation invariant properties we desire: 

( ) ( )θθθ αα ,, ,0, rAgarg kk =+  (3) 

where A  is a complex constant independent of the polar coordinates ( )θ,r .  The 
orthogonality conditions ensure that correlation based detection of such patterns is 
perfect (insofar as correlation results in a pure delta function peak). 

2.2 Homogeneous Functions 

The foregoing Fourier-Mellin approach to generating perfect RST patterns has the 
benefit of hindsight.  Instead of proceeding by transforming an image to an RST 
invariant space and then embedding a pseudorandom noise pattern as described by 
O’Ruanaidh we initially considered the question: 

Can there exist a two-dimensional pattern that has a sharp pattern when 
correlated with itself, and yet maintains correlation sharpness even when it is 
rescaled and rotated? 

The answer to this question remained apparently negative for some years during 
our research.  To begin with, we knew that a function can only have a sharp 
autocorrelation if it has wide spectral coverage or support.  We also knew that (using 
the Schwarz inequality) that the maximum possible (normalized) cross-correlation for 
two functions occurs when the functions are identical, within a multiplicative 
constant.  From our past research on modulation and demodulation13 we also knew 
that amplitude and frequency modulated patterns [AM-FM] possess particularly 
attractive spatial and spectral properties.  The main idea being that a pattern can be 
defined by its local amplitude and its local phase (or frequency).  The archetypal AM-
FM radial function in 2-D being 

( ) ( ) ( )[ ]rrbyxf ψcos, =  (4) 

where the amplitude ( )rb  is real, but not necessarily positive, and the phase ( )rψ  can 
also be interpreted as an integral of the instantaneous frequency (IF).  The idea that a 



modulated pattern might have an IF that is essentially unchanged by scaling may 
seem at first counterintuitive, nevertheless it leads to a deep insight.  Consider a 
function with spatially varying IF ( )rq  determined by 

( ) ( )
dr
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(5) 

A function with an IF that is simply the reciprocal of the coordinate r  has the 
immediate property of scale invariance.  This surprising result follows from the 
rescaling of Eqn. 4: 

( ) ( ) ( )[ ]ararbarf ψcos=  (6) 
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Eqn. 8 defines a function that is the sum of two separately scale invariant functions 
(within a constant phase) if the amplitude is a homogeneous function with a real 
index: ( ) prrb = .   
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  Fig. 1.  Section of scale invariant function. Note the unusual singularity as 0→r . 

 
The analysis can be extended from purely radial functions by the inclusion of circular 
harmonics to give a result similar to Eqn. 2 except that only the real part of the 
function is considered: 

( )[ ] ( )( )θαθα kr
r

rg k +=ℜ lncos1,,  . 
(9) 



Eqn. 8 may also be expressed in complex form by the addition of the quadrature, or 
Hilbert conjugate, component ( ) ( ) ( )[ ]ararbarf lnsinˆ α=  so that 

( ) ( ) ( ) ( )[ ] ( )[ ]airiarbarfiarf lnexplnexpˆ αα=+  . (10) 

Recently it has been shown that the first order ( )1,0 ±== kα  scale invariant 
transforms correspond to the Hilbert transform in 1-D and the Riesz (or spiral phase) 
transform in 2-D. 13   

Interestingly it seems that homogeneous functions have not been considered 
previously for watermarking purposes.  The reason may be that the well-known real 
index homogeneous functions, such as pr  have very large cross-correlations with 
typical image functions, even though their autocorrelations have all the right 
properties.   It transpires that complex index homogeneous functions, exemplified by 
Eqn. 2, have rather small cross-correlations with typical images.  The full explanation 
of this effect is rather involved, but heuristically it is because of the rapid oscillation 
of the real and imaginary parts of kg ,α  tend to cause cancellation with image features 
in the same way as pseudo random noise (PRN). 

Fig. 2 shows the real and imaginary parts of the function shown in Eqn. 2 with the 
harmonic coefficient k set to zero, resulting in exact circular symmetry.  Fig. 3 shows 
a LRHF with a spiral component 0≠k . 

 

real part imaginary part
 

Fig. 2.   Circular symmetric form of the LRHFs truncated at an inner and outer radius. Note 
that the central region has been set to zero to avoid aliasing of the high frequencies. 



 

real part imaginary part
 

Fig. 3.  The real and imaginary parts of a logarithmic radial harmonic phase function.  Note 
how the tangential (angular) component generates an equiangular spiral.  The central region has 
been set to zero to avoid aliasing of the high frequencies. 

We now have some complex basis functions with the desired RST properties.  The 
next section considers an additional property which supports their use in real, finite,  
images. 

 

3 Orthogonality of truncated LRHFs  

The first problem with using LRHFs is that they extend over all space and that they 
have infinitely high frequencies near the centre.2  In practice the patterns must be 
limited in extent to fit in an image.  The finite sampling requirement means that the 
maximum, non-aliased, spatial frequency is one half the sampling frequency (the 
Nyquist criterion).  If we are to utilize these patterns they must be truncated beyond a 
maximum radius and below a minimum radius corresponding to the Nyquist 
frequency.  In principle the truncation boundary may be a shape other than a circle, 
however we ignore this possibility here to allow the derivation of an exact 
orthogonality condition.  In practice rectangular and other boundary shapes give near-
orthogonality which is quite useable. 

Firstly we consider a generalized form of the LRHF in Eqn. 2 

                                                            
2  Ironically, singular functions have often been used as examples of pathological functions that 

do not have well-defined Fourier transforms.  However the functions and transforms do exist 
as generalized functions or tempered distributions, see for example Champeney, D. C., A 
handbook of Fourier transforms, Cambridge University Press, Cambridge, 1987.  
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The orthogonality properties of this LRHF (over an annular region) are easily 
calculated because of the radial and tangential separability: 
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This equation can be further simplified because the tangential (angular harmonic) 
component integrates to a Kronecker delta function 
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The radial part of the overlap integral has the following form 
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Now using the original orthogonality condition 1−=p , the magnitude squared of the 
overlap integral is 
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Orthogonality is thus ensured for integer values of  [ ]lk,  and [ ]βα ,  such that 
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Further details about the correlation peaks function under orthogonality condition 
will be covered in the next few sections.  For a typical digital image containing 5122 
pixels there are of the order 103 independent useable patterns. 

4 The Remarkable Spectral Properties of LRHFs 

Not only do LRHFs have unusual spatial properties, but also their spectral 
properties are unique.  Essentially LRHFs are self-Fourier functions, but because of 
their scale invariance the normal Fourier scaling theorem is subverted.  The 
continuous 2-D Fourier transform can be defined 
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The inverse transform similarly 
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It is more convenient here to work with continuous functions and FTs, but it is 
worth remembering that all the equations have corresponding discrete forms 
appropriate (although more complicated) for exact evaluation in sampled images. 

It can be shown that the pure radial LRHF has the following FT, where we use the 
symbol ↔  to indicate Fourier transformation between function pairs: 

 

{ } 20,. 2 <ℜ<↔ −− cqr cc λ  (19) 

where the spectral polar coordinates are ( )φ,q , φcosqu = , φsinqv = , and  λ  is a 
complex constant determined by c.  Note that there is a radial inversion relation 
between the transform function exponents ( 2−→− cc ).  The negation of the 
imaginary part of c is simply phase negation or complex conjugation.  By partial 
differentiation of the above it is possible to show (informally) that the spiral LRHFs 
are also self-Fourier functions.  Again the radial parts invert but the spiral part does 
not.   A formal proof of these relations, being rather lengthy, is not presented here (for 
example see Bracewell for an outline of Bessel function methods15). 

{ } 20,2 <ℜ<↔ −− ceqer ikc
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Another important frequency related property of the LRHF hinted at above is that 
the outer regions contain lower frequency components than the central regions.  This 
can be formalized using the stationary phase approximation to the FT of a generalized 
2-D fringe pattern. 16, 17  Treating the LRHF as an AM-FM pattern (essentially the 
complex form of Eqn. 4) then gives the IF (as defined by the local phase derivative) 
as a function of position 
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Using the LRHF defined in Eqn. 11 we find that the IF magnitude is indeed inversely 
related to the radial coordinate as originally conjectured 
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A direct consequence is that the annular limitations proposed for the support practical 
LRHF  define a maximum and a minimum frequency: 
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One fascinating consequence of this relation is that annular LRHF Fourier transform 
into annular LRHF in the stationary phase limit.  Moreover, the inner parts of a LRHF 
transform into the outer parts of the FT, and vice versa.  In other words the FT turns 
the LRHFs inside out!   The significance of Eqn. 20 is that it is trivial to compute 
either the function or its FT directly from knowledge of the parameter c, allowing a 
shortcut in the discrete correlation computation.   

5 Optimal Detection: Correlation and Translation Invariance 

Correlation (or matched filtering) is known to be the optimal linear detection 
method under the assumption of certain noise models.  Of course in watermarking the 
watermark is considered to be the signal and the image is the “noise”.  Clearly the 
noise is nothing like zero-mean, stationary, Gaussian noise.  Following convention we 
ignore this intrusion of reality and pretend we have an ideal noise source! 

Correlation has the important effect of introducing translation (the T in RST) 
invariance into the watermarking procedure.  In the preceding section we have already 
shown how the idealized LRHFs have perfect orthogonality even after scaling and 
rotation. 

Initially we wish to know the ideal correlation function for two untruncated LRHFs  
kpg ,,α  and lpg ,,β .  We use the 2-D Fourier correlation/convolution theorem (see 

Bracewell) 15, 18 with ⊗⊗  representing the 2-D convolution operator: 
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(24) 

So correlation can be implemented by Fourier transforming both functions, complex 
conjugating one and then multiplying by the other before transforming back.  For our 
chosen functions we find: 
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The complex constant in each case is represented by µ .  The FT of the cross-
correlation is then 
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Now we can see that the phases partly cancel when the two chosen functions are 
similar.  Only when the functions are identical do the phases entirely cancel out.  
Phase cancellation is the classic condition for maximum correlation (a linear phase 
component can exist and merely indicates a shift between the two original functions).  



At this point it is worth noting, for future reference, that several types of enhanced 
correlation may be used advantageously here.  A phase-only correlation may be useful 
for detecting patterns (a phase correlation sets the magnitude of H to unity and can 
give a much sharper correlation peak in certain instances).   Furthermore, high 
frequency enhanced correlation is capable of sharpening the peak.  In the case where 
the correlated functions are identical (or scaled and rotated versions of each other) we 
obtain: 

( ) 422
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The correlation peak is then a pure delta function, or a very sharp inverse cone 
function, depending on the real radial exponent 
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In the latter cases of Eqn. 28 the inverse cone can be sharpened to a delta function by 
the use of Laplacian image enhancement (corresponding to a parabolic multiplier, 2q , 
in Fourier space).  In the case of finite sized LRHFs we find empirically that the limit 
on the radial power range can be extended to 02 <≤− p  at least.   

Consider the quintessential scaled and rotated correlation and its FT: 
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In other words it is the same as the undistorted correlation in Eqn. 27 and hence the 
final rotated and scaled correlation is just the same as Eqn. 26 apart from a complex 
constant.   This is precisely the correlation property we require for RST watermark 
detection.  

It should be noted that the various integrals and FTs presented above have certain 
limitations related to 2L  boundedness and the existence of singular integrals, which 
will not be dealt upon here (see Stein19, Champeney14, or Calderon & Zygmund20 for 
more details). 

Taking the annular bounds of practical LRHFs into account modifies the result in 
Eq.28.  The main difference being that the ideal delta spike becomes an Airy disc 
function, more familiar as the point spread function of a perfect annular optical 
imaging system.  The actual energy spread is small; typically of the order of one pixel 
width. 

5.1 Embedding Real Marks and Detecting with Complex Patterns 

Having demonstrated that the LRHFs have all the required mathematical properties 
for RST detection we move on to an actual implementation.  We are typically limited 
to real patterns when embedding in discrete images.  We are further limited by typical 



greyscale images having just 8 bits (0-255) of data per pixel.  Fortunately all the 
preceding analysis extends easily to the case where we have a real pattern embedded 
in an image and we detect with a complex pattern.  The main difference is a halving 
of the detected signal compared to the full complex correlation, as can be seen from 
the Fourier representation: 
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There are two terms corresponding to the two conjugate terms in Eqn. 8.  The first 
term in the Fourier transform is half the original (complex-complex) correlation 
signal.  The second term is an auto-convolution term and contains frequency doubled 
terms which appear as a highly dispersed noise background (and in discrete systems 
some high frequencies will be aliased to low frequencies).  The process is reminiscent 
of sum and difference frequency generation in AM modulators, except in 2-D.  For 
typical image sizes (>2562) the frequency doubled components are several orders of 
magnitude below the main correlation peak level and can therefore be ignored.  We 
can conclude that scale and rotation invariant correlation is achievable for real 
patterns in practice. 
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6 Proposed Embedding Algorithm 

The basic idea is to add a number of LRHF patterns to an image at a near 
imperceptible level.  Each LRHF is chosen with a different centre position but a fixed 
radial index α  and spirality k .  The relative positions of the centres can encode 
information in a variety of ways.  In the simplest case the x and y position in a 2562 
grid can encode almost 2 bytes per pattern.  It is prudent to take advantage of certain 
features of the human visual system to allow embedding more signal in regions where 
it is less visible, and less signal in particularly sensitive regions.  This so-called 
perceptual masking is universally used in watermarking schemes.  We use a very 
simple perceptual mask based on the local mean of the gradient magnitude to 
demonstrate the essential characteristics of our method, bearing in mind that more 
sophisticated perceptual masking could be used to further improve results.  The 
algorithm flowchart is shown in Fig. 4. 
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Fig. 4.  Watermark Embedding Algorithm. 

The effectiveness of the embedding and detection of LRHFs in typical images 
depends on the cross-correlation of the image with the chosen LRHF being of low 
magnitude and widely dispersed.  In general this is difficult to estimate, however 
initial tests have indicated that the cross-correlation is almost always small compared 
to the auto-correlation.  The heuristic argument for this is that LRHFs do not resemble 
features in typical images.  The LRHFs used have both wide spatial support and wide 
spectral support. 

7 Detection Algorithm 

The first step of the detection algorithm is to undo the perceptual masking.  The 
reason for this is that optimal detection theory predicts that the best signal detection 
occurs for a matched detection function.  There would appear to be two possibilities; 
one to perceptually mask the detection function before correlation, the second, shown 
in Fig. 5, is to unmask the image before correlation.  The first option is not actually 
possible to implement because it would require a different mask for each overlap 
integral and for each embedded pattern.  The second option has the advantage, unlike 
the first, that the simple correlation is close to perfectly spread-spectrum, and results 
in a very sharp detection peak.  Of course the ultimate SNR depends upon the 
unmasked image cross-correlation too, and this is impossible to predict in general.  In 
practice it is not necessary to exactly undo the masking of the embedding process – 
experiments indicate that the unmasking step (even with a rough estimate of the 
mask) significantly improves peak SNR. 
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Fig. 5.  Watermark detection algorithm. 

8 Detection Results 

To demonstrate the effect of RST operations on an embedded pattern we embedded 
87 patterns with their centers placed in the form of the company logo CISRA.  Fig. 6 
shows the full sequence of results.  Initially the patterns were embedded in a greyscale 
image of Lenna.  The embedded signal has an rms of 3.6 greylevels.  Applying the 
detection algorithm to the watermarked image recovered the logo against a 
background of low-level noise.  The image was then rotated 17° and reduced to 80% 
of its original size.  Applying the detection algorithm again recovered the logo against 
a slightly higher background noise level.  Using phase-only correlation typically 
results in detection peaks that are localized within a few pixels with an SNR of more 
than 16 (peak signal/rms noise) and 2 (lowest signal peak/highest noise peak).  Fig. 7 
show details of the correlations peaks before and after image distortion; note that the 
peak energy distribution is not seriously degraded. 

In real applications the number of embedded patterns can be much smaller than the 
above example.  Embedding patterns located on a 642 grid requires about 12 patterns 
to encode 8 bytes of information, including error correction.   

 
 
 
 
 



 

 
(a) Basis pattern 

 

 
(b)  Sum of 87 patterns 

 

 
(c)  Perceptually masked sum 

 

 
(d)  Correlation magnitude 

 

 
(e)  Distorted watermarked image 

 

 
(f) Correlation magnitude from (e) 

Fig. 6.   Correlation detection results.   

 



 
 

 
(a) Correlation peak close-up 

 

 
(b) Peaks after distortion 

Fig. 7.  Close up of correlation peaks before and after rotation-scaling distortion. 

9 Performance: Resistance to Watermark Attacks 

In principle a watermarking scheme based upon embedded LRHFs is completely 
invariant to RST and cropping.  However the finite size of the patterns introduces 
some limitations that may be optimized for particular applications.  Assuming a 
minimum final image size of 2562 the method is resistant to: scaling in the range 50% 
to 200%, any rotation, and cropping to approx 50% of original.  Simple changes to the 
detection search space can easily extend these ranges.  Because of the spread-
spectrum, wide-space nature of the patterns, they are intrinsically resistant to filtering 
and compression.  Embedding the watermark in the luminance signal makes the mark 
robust to colour modifications.  Random row and column deletions do reduce the 
correlation peaks, but not drastically.  Only two Stirmark21, 22 v3.1 attacks defeat the 
method.  The first is the shear/aspect ratio change of more than 1%.  The second is 
extremely low quality JPEG compression, where the image quality is unacceptable for 
many applications. 

 

10 Conclusion 

We have presented a family of spread-space/spread-spectrum functions that are 
invariant to rotation and scale essentially because of their equiangular spiral 
symmetry.  The Logarithmic Radial Harmonic Functions have near ideal 
autocorrelation and orthogonality properties and can be derived from two different 
premises: Fourier Mellin invariance or AM-FM pattern invariance.  Surprisingly the 
patterns have, like PRNs, very low cross-correlation with most natural images, which 



makes them eminently suitable for watermarking applications.   The direct embedding 
and detection of LRHFs avoids awkward interpolation effects (related to the log-polar 
transforms required by alternative RST methods) and allows encoding based on the 
relative centering of individual basis patterns.  Like many proposed watermarking 
schemes the method is vulnerable to certain attacks, however malicious removal of 
the marks in an image of N pixels would involve at least 103 NlogN operations.  Only 
the rudimentary properties and applications have been presented in this short 
introduction to LRHFs; much more remains to be uncovered! 
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