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The Monogenic Signal
Michael Felsberg and Gerald Sommer

Abstract—This paper introduces a two-dimensional (2-D)
generalization of the analytic signal. This novel approach is based
on the Riesz transform, which is used instead of the Hilbert trans-
form. The combination of a 2-D signal with the Riesz transformed
one yields a sophisticated 2-D analytic signal: the monogenic
signal. The approach is derived analytically from irrotational and
solenoidal vector fields. Based on local amplitude and local phase,
an appropriate local signal representation that preserves the split
of identity, i.e., the invariance-equivariance property of signal
decomposition, is presented. This is one of the central properties of
the one–dimensional (1-D) analytic signal that decomposes a signal
into structural and energetic information. We show that further
properties of the analytic signal concerning symmetry, energy,
allpass transfer function, and orthogonality are also preserved,
and we compare this with the behavior of other approaches for a
2-D analytic signal. As a central topic of this paper, a geometric
phase interpretation that is based on the relation between the
1-D analytic signal and the 2-D monogenic signal established by
the Radon transform is introduced. Possible applications of this
relationship are sketched, and references to other applications of
the monogenic signal are given.

Index Terms—Analytic signal, Hilbert transform, Radon trans-
form, Riesz transform.

I. INTRODUCTION

T HE analytic signal is an important complex-valued rep-
resentation in one-dimensional (1-D) signal processing,

which is used in various applications like coding information
(phase and frequency modulation), radar-based object detec-
tion, processing of seismic data [1], speech recognition, air-
foil design [2], etc. Some of these applications can be related
to problems in image processing, which is based on 2-D signal
processing. For example, the demodulation of 2-D functions is
the problem we encounter if we want to recover the shape of a
surface from an interferogram [3]. Furthermore, the local fre-
quency can be taken as a measure for local scale (i.e., the fre-
quency band) [4]; structures such as lines and edges can be dis-
tinguished by the local phase [5]; the local amplitude and the
local phase can be used for edge detection [6], and the local
phase can be used to estimate the disparity of stereo images [7]
or the flow in image sequences.

From the viewpoint of image processing and recognition, the
fundamental property of the analytic signal is thesplit of iden-
tity. This means that in its polar representation, the modulus of
the complex signal is identified as a local quantitative measure
of a signal called thelocal amplitude, and the argument of the
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complex signal is identified as a local measure for the qualita-
tive information of a signal called thelocal phase. Local am-
plitude and local phase fulfill the properties ofinvarianceand
equivariance[5]. This means that the local phase is invariant
with respect to the local energy of the signal but changes if the
local structure varies. The local amplitude is invariant with re-
spect to the local structure but represents the local energy. En-
ergy and structure are independent information contained in a
signal unless the signal is a combination of partial signals with
different local phases on different scales. In the latter case, to
maintain the invariance-equivariance property, the signal must
be bandpass filtered in order to remove the other partial signals.
Quadrature (mirror) filters are well-known operators [5] that de-
liver bandpass filtered amplitude and phase information. Since
it is (at least approximately) possible to separate the signal into
its partial signals by using narrow bandpass filters, we can think
of the polar representationof the analytic signal in a narrow
frequency band as anorthogonal decompositionof information.
We will use the termsstructural informationandenergetic in-
formationin the following. This terminology also gives hints for
designing methods for automatic image understanding since the
main information is carried by the phase [8].

The analytic signal for the 1-D case is well known, and from
the discussion above, we can say that a sophisticated general-
ization of the analytic signal to two dimensions should keep
the idea of the orthogonal decomposition of the information.
Hence, it should have a representation that is invariant and equi-
variant with respect to energetic and structural information. The
problem now is that a 1-D measure like the local phase cannot
encode 2-D structure because it does not have enough degrees
of freedom. Indeed, the commonly used generalization obtained
by calculating the Hilbert transform with respect to one of the
axes of the image coordinate system (or an arbitrary preference
direction [5]) is not isotropic. Therefore, local phase and local
amplitude are affected by a systematic error that depends on the
angle between the axes (or the preference direction) and the ori-
entation of the signal. This problem is equivalent to the design
of an isotropic odd 2-D filter (which is not possible in the com-
plex domain [6]) or to the solution of the 2-D dispersion equa-
tion (which is also not possible, according to [9] and [10]). In
our opinion, the reason for the failure thus far in designing an
appropriate 2-D analytic signal is the restriction to the algebra
of complex numbers. In his thesis [11], Bülow chose hypercom-
plex algebras in order to design a local phase concept of 2-D sig-
nals. Nevertheless, the local energy of his quaternionic analytic
signal is, in general, not constant if the orientation of the signal is
changed, i.e., it is not isotropic. Hence, the invariance-equivari-
ance property is not perfectly fulfilled with respect to rotations.
More details about these approaches for a 2-D analytic signal
will be given in the beginning of Section III.
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In this paper, we also make use of the quaternions. However,
in contrast to Bülow, we retain a 1-D phase but add theorienta-
tion informationto the quaternionic representation of the signal.
This yields an approach that takes the locally strongestintrinsi-
cally 1-D[12] structure and encodes it in the classical 1-D phase.
Its orientation is encoded in a new component that we call, ac-
cording to local phase and local amplitude, thelocal orienta-
tion. Since orientation is a geometric property, we call this infor-
mationgeometric information. For intrinsically 2-D signals, the
properties of our new generalization, which we call themono-
genic signal, will be discussed in the context of the relationship
between the 1-D phase and the monogenic phase established by
the Radon transform. The monogenic signal is also related to
the structure tensor (e.g., [5]), but in contrast to that, it islinear.
Actually, we derived it starting from the structure tensor. Our
result can be considered as a combination of the analytic signal
with the orientation vector obtained from the structure tensor.
Therefore, in the first published result [13], we used the term
“structure multivector,” which is now used for an extended ap-
proach [14].

II. PRELIMINARIES

In this section, we give the mathematical framework for what
follows. Originally, we derived the monogenic signal using geo-
metric algebra (see e.g., [15] and [16]) and Clifford analysis
(e.g., [17]). The formulation in geometric algebra is preferable
because some notational problems are avoided, and the deriva-
tion is straightforward (see [18]). Nevertheless, since geometric
algebra is less widely known, we formulate our approach in
vector notation. The only exceptions are some formulae where
we make use of the algebra of quaternions.

Throughout this paper, we use the following notation.

• The considered (real)signals(or images) are 1-D or 2-D
functions , which are continuously differentiable and in

so that all mentioned transforms can be performed.
• While scalars and quaternions are denoted by italic letters,

vectorsin are represented by boldface letters
( indicates the transpose). The scalar

product is denoted by . In 2-D, one vector orthogonal
to is . In 3-D,
indicates the cross product.

• The -D Fourier transform of is denoted
by

• The algebra ofquaternions is spanned by ,
and the product is defined by and

. Further details about quaternions are summa-
rized in the Appendix. We sometimes switch between 2-D
vectors and quaternions by and be-
tween 3-D vectors and quaternions by

. The conjugate of a quaternionis denoted by
and its norm by .

• TheHilbert transformis defined by the transfer function

sign

and the transformed signal is denoted [4]. Thean-
alytic signalis given by .

III. H ILBERT TRANSFORM

As a motivation for the following sections, we recall some
properties of the Hilbert transform and the analytic signal in
1-D. We show that some of these properties are lost for the
known 2-D approaches. Furthermore, we present a derivation
of the Hilbert transform from 2-D vector fields that will be gen-
eralized to 2-D in Section IV-A.

A. Hilbert Transform and Analytic Signal in 1-D and 2-D

The Hilbert transform has some important properties that
should be preserved in its 2-D generalization.

• It is anti-symmetric: .
• It suppresses the DC component: .
• Its energy is equal to one for all nonzero frequencies:

.
Accordingly, the analytic signal has the following properties.

• Its energy is two times the energy of the original signal
(if the DC component is neglected) becauseand are
orthogonal.

• The analytic signal performs a split of identity (see Sec-
tion I).

• The spectrum of an analytic signal is one sided:

Since the 2-D Hilbert transform is a key to designing a 2-D
analytic signal, we concentrate on approaches involving it. As
far as we know, the following approaches for generalizing the
Hilbert transform to higher dimensions can be found in the lit-
erature (for a more extensive discussion, see [11]).

• Partial Hilbert transform:The Hilbert transform is per-
formed with respect to a half-space that is chosen by in-
troducing apreference direction[5]:

sign

The Hilbert transform performed with respect to one of the
axes is a special case of the partial Hilbert transform. The
main drawback is the missing isotropy of the transform.

• Total Hilbert transform;The Hilbert transform is per-
formed with respect to both axes:

sign sign

(see [19]). This approach is not a valid generalization of
the Hilbert transform since it does not perform a phase
shift of .

• A combination of partial Hilbert transforms and the total
Hilbert transform in the complex Fourier domain yields a
one-quadrant analytic signal [19]:

sign sign sign sign

This approach is neither complete nor isotropic.
• Combined partial and total Hilbert transforms in the

quaternionic Fourier domain:Instead of using the com-
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plex Fourier transform, the quaternionic Fourier transform
[20] is used. The result is discussed in detail in [11]. As
already pointed out in the introduction, this approach is
not isotropic either.

Hence, a common drawback of all previous approaches is
the missing isotropy that is necessary to obtain the invariance-
equivariance property. Other properties of the 1-D Hilbert trans-
form can easily be checked by calculation and are discussed in
detail in [11].

B. Derivation of the Hilbert Transform

The Hilbert transform of 1-D signals emerges from complex
analysis by means of the Cauchy formula [19]. Therefore, it
is straightforward to derive an appropriate 2-D generalization
of the Hilbert transform by means of the higher dimensional
generalization of complex analysis known as Clifford analysis
[17]. In the same manner as geometric algebra, Clifford analysis
is less widely known; therefore, we choose vector field theory
to perform the derivations. It is a well-known fact thatanalytic
functions1 correspond directly to 2-D harmonic fields [21]. This
generalizes to 3-D such thatmonogenic functions2 correspond to
3-D harmonic fields. This equivalence is used in Section IV-A to
derive the Riesz transform as a 2-D generalization of the Hilbert
transform. The aim of this section is to derive the Hilbert trans-
form by means of 2-D harmonic fields. We show that the Hilbert
transform relates the components of such a vector field on every
line with arbitrary but fixed .

A harmonic potential is a solution of the Laplace equation

where . The gradient field of
yields the harmonic potential field

In this derivation, we restrict the Laplace equation to the open
domain , with the boundary condition
(boundary value problem of the second kind) yielding the solu-
tion , depending on . The same solution can be obtained by
an appropriate choice for the boundary condition , and
we show that this boundary condition is given by the Hilbert
transform of (see also Fig. 1).

The harmonic potential field is irrotational and solenoidal
in the half space

rot and

(1)

div (2)

1In mathematics, these functions are also calledholomorphic. Such functions
are characterized by having a local power series expansion about each point
[21].

2Originally, monogenic was another, somewhat archaic term for holomorphic
[21]. In Clifford analysis literature, it was reused to express the multidimen-
sional character of the functions.

Fig. 1. Harmonic potentialp(x) for x < 0 and its gradient field on the
boundaryx = 0, which is given by the 1-D functionf(x ) and its Hilbert
transformf (x ).

where (1) follows from being a gradient field, and (2) follows
from being harmonic. If we identify with the complex
plane according to

and embed as

these equations are the Cauchy–Riemann equations, which are
solved by analytic functions.

There are several ways to solve (1) and (2). One is to take
the partial derivatives of thefundamental solutionof the 2-D
Laplace equation . Since we are only interested
in the relationship between and , it is easier to perform the
calculations in the frequency domain of, which means that
we apply the 1-D Fourier transform . From (2), it follows
that

div

and by plugging in (i.e., using (1))

This differential equation is solved for by

where is independent of . Therefore, the components
of the gradient field are

and

Since can be considered to be an analytic function, the
component is the harmonic conjugate of and vice versa
[21], which is another way to say that and are a Hilbert
pair

sign

Hence, for any fixed , the Hilbert transform relates the
components of a harmonic potential field. This relationship also
holds for the continuous extension offor
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Applying the inverse Fourier transform to this expression yields
, and therefore, is con-

sistent with the definition of the analytic signal. Hence, we have
established a fundamental relationship between 2-D harmonic
potential fields and the 1-D analytic signal.

IV. NEW 2-D ANALYTIC SIGNAL

Our new 2-D analytic signal is based on a 2-D generalization
of the Hilbert transform known as the Riesz transform [22]3 that
is derived in the next section. The combination of the signal and
the Riesz-transformed one forms our new 2-D analytic signal
(the monogenic signal), which is defined in Section IV-B using
an embedding in the algebra of quaternions.

A. Riesz Transform

In the light of the previous section, we start with a 3-D
harmonic potential for deriving the Riesz transform. The
boundary condition of the 3-D Laplace equation is a 2-D
function, and hence, the choice of dimension is appropriate
for 2-D signals. As we show in Section V-A, the additional
degree of freedom allows us to encode the local orientation of
the signal.

According to the derivation of the Hilbert transform, we show
that the three boundary conditions of the 3-D Laplace equation
are related by the Riesz transform (see also [23]), and hence, the
Riesz transform replaces the Hilbert transform when proceeding
from 2-D to 3–D. Denoting the harmonic potential field as

(where is the 3-D gradient operator), the boundary condition
reads . The relation of
to the other two boundary conditions and

yields the definition of the Riesz transform.
The harmonic potential field is irrotational and solenoidal

in the half-space

rot and (3)

div (4)

where (3) follows from being a gradient field, and (4) follows
from being harmonic. As before, we do not solve the equa-
tions using the fundamental solution of the 3–D Laplace equa-
tion , but instead perform the calculations in the
frequency domain of and . This means that we apply the
2-D Fourier transform . Accordingly, we get from (4) the dif-
ferential equation

with . Solving this equation for yields

3Here, we want to thank T. Bülow for alluding to the existence of the Riesz
transform and for giving us [22] and [23], which enabled us to identify the trans-
form (8) in [13] as such.

where is independent of . Consequently, we obtain
for (i.e., applying (3))

(5)

(6)

(7)

Finally, we get the relations between and

(8)

(9)

Hence, for any fixed , the components of a harmonic
potential field are related by (8) and (9). This relationship also
holds for the continuous extension offor

and

Setting

and defining so that , we get the expres-
sion of the Riesz-transformed signal in the frequency domain

(10)

The transfer function of the Riesz transform4 constitutes a
2-D generalization of the Hilbert transform. In the following, we
use the notation since . The multiplica-
tion in the Fourier domain in (10) corresponds to the following
convolution in the spatial domain:

(11)

where is obtained by applying the derivative theorem of the
Fourier transform to [24] (see also [22]).
Hence, we have established the Riesz transform to be an appro-
priate 2-D generalization of the Hilbert transform in the context
of a vector field-based derivation.

B. Monogenic Signal

In Section III, we used the analogy between 2-D vector fields
and complex functions to obtain the complex-valued analytic
signal . The algebra of complex numbers is
not sufficient to embed a generalized 2-D analytic signal, con-
sisting of the signal and its Riesz transform vector , since
we have three components now. Actually, function theory cor-
responding to 3-D (andD) vector fields is given by means of
Clifford analysis [17]. If we embed into the subspace of
spanned by according to

4Our definition of the Riesz transform differs to those in [22] by a minus sign
due tox < 0 instead ofx > 0.
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and embed the vector field as

then (4) and (3) are equivalent to the generalized Cauchy–Rie-
mann equations from Clifford analysis [17]. Functions that ful-
fill these equations are called (left)monogenicfunctions. Ac-
cordingly, we define themonogenic signalusing the same em-
bedding by the transfer function

(12)

which is equivalent to

(13)

Note that we have moved the imaginary unitsand to the left
to obtain a compact expression (is a skew field, i.e., noncom-
mutative).

Now, having defined the monogenic signal as a 2-D general-
ization of the analytic signal, we check whether the properties
of the latter are fulfilled. First, we look at some properties of the
Riesz transform.

• It is antisymmetric since . Note in
this context that symmetry in 2-D can be with respect to a
point or to a line. The choice of symmetry is fundamental
to designing the generalization of the Hilbert transform
(in 1-D, there is only one symmetry). Obviously, the Riesz
transform corresponds to point symmetry, whereas the ap-
proach in [11] corresponds to line symmetry with respect
to the coordinate axes, and the partial Hilbert transform
corresponds to line symmetry with respect to the prefer-
ence direction.

• It suppresses the DC component. We have a singularity at
. If we remove it by continuously extending the

two components of the Riesz transform along the lines
[see (8)] and [see (9)], we immediately

get .
• The energy has value one for all nonzero frequencies:

. This follows directly from the def-
inition of in (10).

These properties can be verified by considering the vector field
(see Fig. 2).

According to the properties of the Riesz transform, and in
comparison with the analytic signal, the monogenic signal has
the following properties:

• Its energy is two times the energy of the original signal if
the DC component is neglected:

• In polar coordinates, the monogenic signal fulfills the split
of identity. Since the energy is only modified by a constant
real factor, we conclude that the amplitude of the mono-
genic signal isisotropic, which means that there is no de-
pendence on the orientation of a signal (see also Fig. 3).
This can be compared with the isotropy property of the

Fig. 2. Transfer function of the Riesz transform displayed as a vector field. The
axes are the frequenciesu andu . The vector field is given by the normalized
frequency vectors [see (10)] and by setting it to zero at the origin (see text).

Fig. 3. Left: Test image showing all even and odd symmetries for all
orientations. Right: Energy of the corresponding monogenic signal is isotropic
and independent of the local symmetry.

structure tensor, which fulfills the invariance-equivariance
property with respect to energy and orientation (but not
phase). Further details will be discussed in Section V-B.

• The spectrum of the monogenic signal is not one-sided,
i.e., it includes redundancies, but this property is irrelevant
for image recognition. Nevertheless, it is possible to use a
nonredundant representation [13].

V. INTERPRETATION OF THEMONOGENICSIGNAL

In order to obtain an appropriate 2-D analytic signal, we in-
troduce a phase approach for the monogenic signal in the next
section. The relation of the new phase to the 1-D phase is then
discussed in Section V-B.

A. Phase of the Monogenic Signal

The phase of a complex signal is a measure of the rotation
of a real signal in the complex plane. In 2-D space, the rotation
axis is unique, except for thedirection of rotation. Therefore,
the polar representation of a complex number is
uniquely defined by , where is
given by

atan sign atan

with atan . The factor sign indicates the direction
of rotation. If we use this definition, the negative real numbers
are singular because they have an angle ofwith respect to
positiveandnegative rotations.
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In 3-D space, the rotation axis is represented by a 3-D unit
vector. The straightforward generalization of a 2-D angle is then
a vector with the length corresponding to the rotation angle and
the direction corresponding to the rotation axis. This vector is
called therotation vector. Consequently, we define a new arc-
tangent function by the rotation vector that represents the rota-
tion of into (with ; see also Fig. 6):

atan3 atan (14)

where yields the direction of the rotation
vector. Again, there is a singularity if , but
now, it becomes more obvious why this is a singularity: The
magnitude of the rotation vector is well defined by, but the
rotation axis is arbitrary in the 2-D subspace orthogonal to.
Therefore,any rotation vector in that subspace is a solution of
(14).

If we have a smooth vector field and we want to use (14) as a
definition of thephaseof the vector field (as we will do in the
next paragraph), it is possible to extend the definition: If we con-
sider the values of (14) in an open sphere with radiusaround
the singular point and lettend to zero while averaging the rota-
tion directions, we get a well-defined rotation vector because of
the smoothness of the vector field. This continuous extension of
the orientation is used in [25] for a stable orientation estimation.

Using (14), we are able to define the phase of the monogenic
signal (abbreviation: monogenic phase) by

atan3 (15)

where is the vector field such that . The ro-
tation vector field represents
the rotation of the real-valued signal into the quater-
nionic-valued signal . Note that the real component is the
third component of the 3-D vector.

The rotation vector always lies in the plane orthogonal to
since , and hence, . Com-

parable with phase wrapping in 1-D, there is awrapping of the
phase vectorsof the monogenic phase: If a vector in a certain
direction would exceed the amplitude, it is replaced by the
vector minus times the unit vector in that direction, i.e., it
points in the opposite direction; see Fig. 4.

In Section IV-B, we already used the norm of the quaternions
for calculating the energy of a monogenic signal. Indeed, the
norm is used for defining thelocal amplitudeof by

(16)

The choice of definitions for the local phase (15) and local
amplitude (16) establishes atransformation to polar coor-
dinates. Given the local phase and the local amplitude

of a monogenic signal, it can be reconstructed by

(17)

Fig. 4. Monogenic phase of one part of Fig. 3, left (curved line, displayed as
underlying grayscale image). The phase is represented by the vector field that is
obtained according to (15). Hence, the length indicates the rotation angle, and
the direction indicates the rotation axis. Note the phase wrapping.

To see this, observe that from , we get

and

Plugging (14) into (15) yields

atan

In the previous section, the property “split of identity” was
discussed only with respect to the isotropy of the energy (or am-
plitude). Now, having a definition of the monogenic phase, we
recognize that amplitude and phase are indeed orthogonal. The
local amplitude includes energetic information, and the phase
includes structural information. In contrast to the 1-D case, the
phase now includes additionalgeometric information. The or-
thogonality of structural and geometric information is discussed
at the end of the next section.

B. Relation to the 1-D Analytic Signal

Up until now, we have considered the 1-D analytic signal and
the 2-D monogenic signal as two approaches that are only re-
lated by the fact that the latter is the generalization of the former
with respect to the dimension of the domain. In signal theory,
there is a well-known relation between 1-D and 2-D signals:
the Radon transform [26]. The Radon transformmaps a 2-D
signal onto an orientation parameterized family of 1-D signals
by integrating the 2-D signal on the line given by the orientation
parameter:

(18)

where is the Dirac delta, and is
the normal vector given by the orientation5 . Geo-
metrically, the Radon transform projects (orthogonally) the 2-D

5Note the difference betweendirectionandorientationin this context: a di-
rection corresponds to a vector, an orientation to a 1-D subspace.
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signal onto a line with orientation. The Radon transform is in-
vertible, and there are some important theorems about signals
in the Radon domain, such as the Fourier slice theorem [4]:

(19)

As a consequence of the slice theorem, the Radon transform re-
lates the Riesz transform of a 2-D signal to the Hilbert trans-
forms of the 1-D signals obtained from the Radon transform.6

Accordingly, we conclude that the interpretation of the mono-
genic phase of intrinsically 1-D signals in 2-D space is the same
as the interpretation of the complex phase in 1-D space. How-
ever, for intrinsically 2-D signals, we also obtain an interpreta-
tion by decomposing the signal into its intrinsically 1-D parts.
Indeed, the Radon transform is the connecting link between the
1-D and 2-D approaches.

The Radon transform of the -embedded Riesz transform
[embedded in according to (12)] of a

2-D signal is given by the Hilbert transform of the Radon
transform of according to

(20)

This equivalence can easily be shown in the Fourier domain,
using the linearity of the Radon, Riesz, Hilbert, and Fourier
transforms:

Hence, the Radon transform allows us to calculate the Riesz
transform (and, therefore, the monogenic signal as well) by
using the Hilbert transform (see also Fig. 5).

This can be used to circumvent application of the Riesz trans-
form in the Fourier domain [actually, application in the spatial
domain is not very reasonable due to the infinite extent of the im-
pulse response; see (11)]. Especially in applications where the
data is given in the Radon domain (e.g., X-ray tomography), it
is advantageous to have this equivalence. By the following al-
gorithm, we get the monogenic signal directly from data given
in the Radon domain.

1) Calculate the Hilbert transform .
2) Multiply by and .
3) Calculate the inverse Radon transform of ,

, and .
Having the monogenic signal, we can apply other algorithms for
estimating local properties, detecting features, etc. (see [25]).

A second application of (20) is the design ofspherical
quadrature filters(SQFs) with finite spatial extent. As with a
1-D quadrature filter (QF), which is a Hilbert pair of bandpass
filters, an SQF is a Riesz triple of bandpass filters. Filters with
finite extent can only be obtained by an optimization, as in the
1-D case. The following algorithm produces optimized filters
using optimized 1-D QFs and an optimized inverse Radon
transform (see e.g., [4]).

6Actually, this relationship, as well as the Riesz transform, are well covered by
the results from Calderón–Zygmund theory [27], which is not very accessible to
engineers and computer scientists due to its abstract mathematical formulation.
Therefore, we think that calculus-based derivations of these results are helpful.

Fig. 5. Relation between Radon, Riesz, and Hilbert transform. The Riesz
transform in the spatial domain (left) is equivalent to the Hilbert transform
with subsequent multiplication by the orientation vector in the Radon domain
(right).

1) Choose an optimized 1-D QF with appropriate size (this
size will later be the radius of the SQF).

2) Create the Radon Riesz transformed signal by multi-
plying the odd part of the 1-D QF with and .

3) Apply the (optimized) inverse Radon transform.
The triple of filters obtained by this procedure can be applied to
a 2-D signal (image) by convolutions, resulting in the bandpass
filtered monogenic signal of the image.

A third consequence of (20) is that the interpretation of the
monogenic phase is given directly by the phase of the analytic
signal since

where is the rotation about the real axis by. Evaluating
the last line for gives

i.e., the analytic signal of . For any , the Radon
transform of the monogenic signal is just the analytic signal of
the Radon transform of the signal but with the imaginary unit

rotated by . The impact of
this result on the interpretation of the monogenic phase is that
for linear structures with large support (lines, edges in images),
the Radon transform is dominated by this structure. Hence, the
monogenic phase is given by the main orientationand the
1-D phase of . In the idealized case (i.e., the signal
is constant in one direction), the Radon transform is nonzero
only for the main orientation. Accordingly, the in (20)
is constant (equals ), and the Riesz transform is given
by

Thus, (20) is simplified to Theorem 1 in [28]. In contrast to the
idealized case, (20) also provides a sensible interpretation for
nonperfect signals.

For an intrinsically 1-D signal, we get the following decom-
position of the phase vector (15) while keeping the local phase
of the underlying 1-D signal. The rotation vector is orthog-
onal to thelocal orientation(i.e., the orientation of the Dirac line
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Fig. 6. Phase representation using a rotation vector'. First, the real valuejxj
is rotated about the second axis (j-axis) by' and second about the third axis
(real axis) by� . The rotation vector is orthogonal to the plane spanned by the
real axis and the vectorx. Its length is given by the angle between the real axis
andx. Although the rotation vector is unique, the decomposition is not. There
are two possibilities: 1)(� ; ') and 2)(� + �;�').

in the Fourier domain) of the 2-D signal, andsign
represents thelocal 1-D phaseof the 2-D signal (see also Fig. 6).
These interpretations are consistent with the former definition of
local phase and local orientation in [13].

Note that these definitions do not yield a unique phase rep-
resentation since a rotation of the signal byyields the same
orientation and a negated phase. This ambiguity can be visual-
ized by two different decompositions of the rotation vector (see
Fig. 6). The same problem also occurs in the context of oriented
quadrature filters (see [5]), where Granlund and Knutsson claim
that there is no local way to get the direction from the orienta-
tion. In [29] and [30], it is proposed to apply an unwrapping
of the orientation (modulo ) in order to obtain a consistent
phase representation. The application in both papers is the 2-D
demodulation needed for interferogram processing.

If the monogenic phase is decomposed into local orientation
and local phase, the split of identity (the third property of the
analytic signal) is also preserved with respect to geometric and
structural information. The local phase is invariant to changes
of the local orientation, and the local orientation is invariant to
changes of the local structure (up to the ambiguity explained
above). If we can recover the correct local direction from the
local orientation, we have an ideal split of identity with respect
to energetic, geometric, and structural information. The problem
with the correct local direction is that there is no absolute solu-
tion; there is only a relative one. This relative solution can be
obtained by constraints on the smoothness of the phase and ori-
entation.

VI. CONCLUSION

In the present paper, we have analytically derived the mono-
genic signal, which is a generalization of the analytic signal to
two dimensions. This new 2-D analytic signal is based on the
Riesz transform and preserves the properties of the 1-D ana-

lytic signal. In contrast to previous approaches, it is isotropic
and, therefore, performs a split of identity. The information in-
cluded in the signal is orthogonally decomposed into energetic,
structural, and geometric information by means of local ampli-
tude, local phase, and local orientation. We have established an
equality that directly relates the 1-D analytic signal and the 2-D
monogenic signal. The Radon transform was shown to be the
appropriate tool for shifting the 1-D Hilbert transform to 2-D.

One can imagine a wide field of possible applications of the
monogenic signal. Up to now, several applications have been
realized, for example

• estimation of the local orientation;
• contrast independent edge detection (see both in [25]);
• Moiré interferograms [29], [30];
• texture analysis [28];
• image denoising [31];
• curvature estimation and corner detection [14];
• stereo correspondence.

Both the monogenic signal and its applications are easier
to formulate in geometric algebra. It is even possible to gen-
eralize the approach to arbitrary dimensions [18]. Neverthe-
less, we chose the vector notation since it is more common.
It was only necessary to formulate some details using quater-
nions (which is a specific geometric algebra) in order to have
the tools for geometric computations available. For applications,
however, it is not necessary to make use of geometric algebra.
The monogenic signal is obtained by ordinary real-valued con-
volution kernels.

APPENDIX

The algebra of quaternions is not widely known in the signal
processing community. Therefore, we give a short introduction
in this Appendix. In Section II, we defined the quaternions to be
the algebra on the real 4-D vector space spanned by
(i.e., a quaternion is of the form ) with the
algebra product defined by and .
From these two rules, we can derive all other products of base
elements since , and

. Addition and subtraction of quaternions is given
by vector addition

and multiplication with a real numberby field multiplication

The multiplication of two arbitrary quaternions is obtained by
associativity and distributivity

The conjugate of a quaternionis defined by

so that the norm of is
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Additionally, the quaternions are a division algebra, which
means that the inverse of a quaternion is uniquely given by

. The exponential function of a quaternionis
defined by

(which converges since converges), and any linear
combination of and with unit magnitude can be substituted
for the imaginary unit in the Euler formula

Hence, the only fundamental difference to working with com-
plex numbers is that the base elements do not commute.
For a more detailed introduction of quaternions, see, e.g., [32].
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