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The Monogenic Signal

Michael Felsberg and Gerald Sommer

Abstract—This paper introduces a two-dimensional (2-D) complex signal is identified as a local measure for the qualita-
generalization of the analytic signal. This novel approach is based tive information of a signal called thecal phase Local am-
on the Riesz transform, which is used instead of the Hilbert trans- plitude and local phase fulfill the properties iofzarianceand

form. The combination of a 2-D signal with the Riesz transformed - 51. Thi that the | | oh L iant
one yields a sophisticated 2-D analytic signal: the monogenic equivariance[5]. This means that the local phase is invarian

signal. The approach is derived analytically from irrotational and ~ With respect to the local energy of the signal but changes if the
solenoidal vector fields. Based on local amplitude and local phase, local structure varies. The local amplitude is invariant with re-

an appropriate local signal representation that preserves the split gpect to the local structure but represents the local energy. En-
of identity, i.e., the invariance-equivariance property of signal qrqy and structure are independent information contained in a

decomposition, is presented. This is one of the central properties of _. Lunl the si i binati f partial si Is with
the one—dimensional (1-D) analytic signal that decomposes asignalSlgna uniess the signal 1s a combination ot partial signais wi

into structural and energetic information. We show that further ~ different local phases on different scales. In the latter case, to
properties of the analytic signal concerning symmetry, energy, maintain the invariance-equivariance property, the signal must
allpass transfer function, and orthogonality are also preserved, pe bandpass filtered in order to remove the other partial signals.
and we compare this with the behavior of other approaches for a - o, agrature (mirror) filters are well-known operators [5] that de-

2-D analytic signal. As a central topic of this paper, a geometric . . . . ; .
phase interpretation that is based on the relation between the liver bandpass filtered amplitude and phase information. Since

1-D analytic signal and the 2-D monogenic signal established by it iS (at least approximately) possible to separate the signal into
the Radon transform is introduced. Possible applications of this its partial signals by using narrow bandpass filters, we can think

relationship are sketched, and references to other applications of of the polar representatiorof the analytic signal in a narrow

the monogenic signal are given. frequency band as arthogonal decompositioof information.
Index Terms—Analytic signal, Hilbert transform, Radon trans- ~ We will use the termstructural informationandenergetic in-
form, Riesz transform. formationin the following. This terminology also gives hints for

designing methods for automatic image understanding since the
main information is carried by the phase [8].
o ) ) The analytic signal for the 1-D case is well known, and from
T HE analytic signal is an important complex-valued refhe discussion above, we can say that a sophisticated general-
resentation in one-dimensional (1-D) signal processinggtion of the analytic signal to two dimensions should keep
which is used in various applications like coding informatiog,e idea of the orthogonal decomposition of the information.
(phase and frequency modulation), radar-based object detggnce, it should have a representation that is invariant and equi-
tion, processing of seismic data [1], speech recognition, ajfariant with respect to energetic and structural information. The
foil design [2], etc. Some of these applications can be relatgghplem now is that a 1-D measure like the local phase cannot
to problems in image processing, which is based on 2-D sigR@|code 2-D structure because it does not have enough degrees
processing. For example, the demodulation of 2-D functionsdgfreedom. Indeed, the commonly used generalization obtained
the problem we encounter if we want to recover the shape ob@ calculating the Hilbert transform with respect to one of the
surface from an interferogram [3]. Furthermore, the local frgryes of the image coordinate system (or an arbitrary preference
quency can be taken as a measure for local scale (i.e., the fgaction [5]) is not isotropic. Therefore, local phase and local
quency band) [4]; structures such as lines and edges can be gifip|itude are affected by a systematic error that depends on the
tinguished by the local phase [5]; the local amplitude and thggle petween the axes (or the preference direction) and the ori-
local phase can be used for edge detection [6], and the loggtation of the signal. This problem is equivalent to the design
phase can be used to estimate the disparity of stereo imagesfan isotropic odd 2-D filter (which is not possible in the com-
or the flow in image sequences. plex domain [6]) or to the solution of the 2-D dispersion equa-
From the viewpoint of image processing and recognition, thgy, (which is also not possible, according to [9] and [10]). In
fundamental property of the analytic signal is 8pit of iden- oy gpinion, the reason for the failure thus far in designing an
tity. This means that in its polar representation, the mOdU|U5é&§propriate 2-D analytic signal is the restriction to the algebra
the complex signal is identified as a local quantitative measuecomplex numbers. In his thesis [11], Biilow chose hypercom-
of a signal called théocal amplitude and the argument of the plex algebras in order to design a local phase concept of 2-D sig-
nals. Nevertheless, the local energy of his quaternionic analytic
Manuscript received September 15, 2000; revised September 11, 2001. ﬁgnal is,in generalv not constant f the orientation of the signal is
work was supported by the German National Merit Foundation by DFG Graréfianged, i.e., it is not isotropic. Hence, the invariance-equivari-
Graduiertenkolleg 357 (M. Felsberg) and So-320-2-2 (G. Sommer). ance property is not perfectly fulfilled with respect to rotations.
The authors are with the Cognitive Systems Group, Christian Albrechts Urf\'/l'ore details about these approaches for a 2-D analytic signal

versity of Kiel, Kiel, Germany (e-mail: mfe@ks.informatik.uni-kiel.de). ) A | % "
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In this paper, we also make use of the quaternions. However, and the transformed signal is denotgg( ) [4]. Thean-

in contrast to Biilow, we retain a 1-D phase but adddtienta- alytic signalis given by f4(z) = f(z) — ifu(z).
tion informationto the quaternionic representation of the signal.
This yields an approach that takes the locally strongéshsi- Ill. HILBERT TRANSFORM

cally 1-D[12] structure and encodes itin the classical 1-D phase.AS a motivation for the following sections, we recall some

Its or|entat|on is encoded in a new component that we call, ap():r'operties of the Hilbert transform and the analytic signal in
cording to local phase and local amplitude, tbeal orienta-

. ; . L i .. . 1-D. We show that some of these properties are lost for the
tion. Since orientation is a geometric property, we caIIthlsmfoT(—nOWn 2-D approaches. Furthermore, we present a derivation
mationgeometric informationFor intrinsically 2-D signals, the '

X o . of the Hilbert transform from 2-D vector fields that will be gen-
properties of our new generalization, which we call theno-

genic signalwill be discussed in the context of the relationshigrallzeOI t0 2-Din Section IV-A.

between the 1-D phase and the monogenic phase establishegd byjiipbert Transform and Analytic Signal in 1-D and 2-D

the Radon transform. The monogenic signal is also related tq ) i i

the structure tensor (e.g., [5]), but in contrast to that,linisar. The Hilbert transfo_rm has some mportant properties that

Actually, we derived it starting from the structure tensor. OLIQfhOUId be preserved in its 2-D generalization.

result can be considered as a combination of the analytic signal® It is anti-symmetric:H, (—u) = —H(u).

with the orientation vector obtained from the structure tensor. * It suppresses the DC componeff; (0) = 0.

Therefore, in the first published result [13], we used the term * lts energy is equal to one for all nonzero frequencies:

“structure multivector,” which is now used for an extended ap-  [Hi(w)| =1 Vu # 0.

proach [14]. Accordingly, the analytic signal has the following properties.

« Its energy is two times the energy of the original signal
Il. PRELIMINARIES (if the DC component is neglected) becaysand f;; are

orthogonal.

» The analytic signal performs a split of identity (see Sec-
tion I).

¢ The spectrum of an analytic signal is one sided:

In this section, we give the mathematical framework for what
follows. Originally, we derived the monogenic signal using geo-
metric algebra (see e.g., [15] and [16]) and Clifford analysis
(e.g., [17]). The formulation in geometric algebra is preferable
because some notational problems are avoided, and the deriva- Hi(u)=0 Yu<O0.
tion is straightforward (see [18]). Nevertheless, since geometric
algebra is less widely known, we formulate our approach in Since the 2-D Hilbert transform is a key to designing a 2-D
vector notation. The only exceptions are some formulae whexgalytic signal, we concentrate on approaches involving it. As
we make use of the algebra of quaternions. far as we know, the following approaches for generalizing the

Throughout this paper, we use the following notation. Hilbert transform to higher dimensions can be found in the lit-

« The considered (rea$iignals(or images) are 1-D or 2-D erature (for a more extensive discussion, see [11]).
functions f, which are continuously differentiable and in < Partial Hilbert transform: The Hilbert transform is per-
L? so that all mentioned transforms can be performed. formed with respect to a half-space that is chosen by in-

« While scalars and quaternions are denoted by italic letters, troducing apreference directiofs]:
vectorsin IR™ are represented by boldface letters— .

(r1,22,...,2,)" (T indicates the transpose). The scalar Hp(u) = isign((u,n)).

product is denoted by, ). In 2-D, one vector orthogonal
tox = (.Tl,.TQ)T isxt = (.’L’Q,—.’L'l)—r. In 3-D, x x y
indicates the cross product.

* Then-D Fourier transform(n = 1,2) of f(x) is denoted

by

The Hilbert transform performed with respect to one of the
axes is a special case of the partial Hilbert transform. The
main drawback is the missing isotropy of the transform.

e Total Hilbert transform;The Hilbert transform is per-
formed with respect to both axes:

F(u) = F{f(x)} = /]R G exp(—i2m(x,w)) dx Hy(u) = —signu )sign(u»)

. . L (see [19]). This approach is not a valid generalization of
The algebra ofqugtermpnslH IS Sp"".g‘”ed by1, L’J,’,k}’ the Hilbert transform since it does not perform a phase
and the product is defined by = j2 = —1 andij = -

- : . shift of = /2.
—ji = k. Further details about quaternions are summa-
rized in the Appendix. We sometimes switch between 2-D
vectors and quaternions Iy, j)x = x1¢ + 225 and be-
tween 3-D vectors and quaternions @gyj, 1)x = z3 +
1% + z24. The conjugate of a quaternigris denoted by Hg(u) = i(sign(uy) + sign(uz) + sign(uy ) sign(usz)).
g and its norm bylg|.

 TheHilbert transformis defined by the transfer function This approach is neither complete nor isotropic.

e Combined partial and total Hilbert transforms in the
Hy(u) = isign(u) quaternionic Fourier domaininstead of using the com-

¢ A combination of partial Hilbert transforms and the total
Hilbert transform in the complex Fourier domain yields a
one-quadrant analytic signal [19]:
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plex Fourier transform, the quaternionic Fourier transforn
[20] is used. The result is discussed in detail in [11]. A<P(*)
already pointed out in the introduction, this approach i
not isotropic either.
Hence, a common drawback of all previous approaches , line 23 = 0 :
the missing isotropy that is necessary to obtain the invarianc * e 1)
equivariance property. Other properties of the 1-D Hilbert trans-

form can easily be checked by calculation and are discussedkig) 1. Harmonic potentiab(x) for o < 0 and its gradient field on the
detail in [11]‘ boundaryz; = 0, which is given by the 1-D functiorf(x,) and its Hilbert
transformyfz (x1).

D fu(z1)

B. Derivation of the Hilbert Transform _ ) i
where (1) follows fromg being a gradient field, and (2) follows

The Hilbert transform of 1-D signals emerges from complegqm, » being harmonic. If we identifyiR? with the complex
analysis by means of the Cauchy formula [19]. Therefore,&ane according to

is straightforward to derive an appropriate 2-D generalization

of the Hilbert transform by means of the higher dimensional z=(1,1)x = xo + iz
generalization of complex analysis known as Clifford analysis

[17]. In the same manner as geometric algebra, Clifford analysisd embeg as

is less widely known; therefore, we choose vector field theory . .
to perform the derivations. It is a well-known fact tfeatalytic gc = (=i, 1)g = g2 — i1
functions correspond directly to 2-D harmonic fields [21]. Thisthese equations are the Cauchy—
generalizes to 3-D such thabnogenic functiodsorrespond to solved by analytic functions.

3-D harmonic fields. This equivalence is used in Section IV-Ato There are several ways to solve (1) and (2). One is to take

derive the Riesz transform as a 2-D generalization of the Hilbe, partial derivatives of theindamental solutiomf the 2-D

transform. The aim of this section is to derive the Hilbert trani’aplace equatiofp(x) = log |x|). Since we are only interested

form by means of 2-D harmonic fields. We show that the HiIbem the relationship between andg,, it is easier to perform the

transform relates the components of such a vector field on evelyulations in the frequency domain f, which means that

line with arb_itrary bUt. fix_eer. ) . we apply the 1-D Fourier transfort;. From (2), it follows
A harmonic potentiap is a solution of the Laplace equation -

Riemann equations, which are

Ap=(V,V)p=0 Fi{divg(x) Huy) = 21 Gy (w1, 22) + %GQ(W, )
2

where V. = ((9/8z1),(8/0z2))T. The gradient field ofp =0
yields the harmonic potential field and by plugging inz = Vp (i.e.. using (1))

-
g(x) = (g1(x),g2(x = Vp(x). 2
() = (@:(x), 92(x)) ) —4n?ul P(uy, z0) + %P(ul,g@) =0.

X
In this derivation, we restrict the Laplace equation to the open >
domainz, < 0, with the boundary conditiog,(x1,0) = f(x;) This differential equation is solved far < 0 by
(boundary value problem of the second kind) yielding the solu-
tion p, depending ory. The same solution can be obtained by Plur, w2) = Cur) exp(2r|ur|22)
an appropriate chou:e for the bounq_ary _COHQI@@('IM, 0). an'd whereC(u1) is independent of». Therefore, the components
we show that this boundary condition is given by the H|Ibegf the gradient field are
transform off : fy(x1) = g1(x1,0) (see also Fig. 1).

The harmonic potential fielg is irrotational and solenoidal Gy (ug, x2) = i2ruy P(ug, z2) and
in the half space:; < 0
P z Gg(ul,l'g) :27r|u1|P(u1,a:2).

rotg(x) = (V,g(x)t) = 992(x) _ 991(%) _ 1,14 Sinceg can be considered to be an analytic functign the
! 1z componenty; is the harmonic conjugate @k and vice versa

@) [21], which is another way to say that and g, are a Hilbert
—0 (2 par

Gl(ul,l'g) = isigr‘(ul)Gg(ul,xg) = Hl(ul)Gg(ul,xg).

divg(x) = (V,g(x)) = agalx(f ) + a%?ff )

1in mathematics, these functions are also cafieidmorphic Such functions Hence, for any fixedca < 0, the Hilbert transform relates the

?re]characterized by having a local power series expansion about each pe%ponents of a harmonic potential field. This relationship also
21]. :

20riginally, monogenic was another, somewhat archaic term for holomorpﬂ'ﬂtpldS for the continuous extensiongfor z; — —0

[21]. In Clifford analysis literature, it was reused to express the multidimen-
sional character of the functions. G1(u1,0) = Hy(u1)Ga(u1,0) = Hy(w) Fu).
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Applying the inverse Fourier transform to this expression yieldshereC(«, , u2) is independent af;. Consequently, we obtain
fu(z1) = g1(x1,0), and thereforef4(z1) = gc(x1,0) iscon- for g = Vp (i.e., applying (3))
sistent with the definition of the analytic signal. Hence, we have

established a fundamental relationship between 2-D harmonic G (u1,uz, w3) = i2muy P(uy, uz, v3) ()
potential fields and the 1-D analytic signal. Go(uy,ug, 23) = 2mus P(uy, s, x3) (6)
G3(u, uz, v3) = 2nqP(u1, u2, x3). (7)

IV. NEW 2-D ANALYTIC SIGNAL

o . ... Finally, we get the relations betweéh , G», andG
Our new 2-D analytic signal is based on a 2-D generalization y g €, G 8

of the Hilbert transform known as the Riesz transform §2B8at G (w1, up, 5) = iﬂG (s, 1z, 23) ®)
is derived in the next section. The combination of the signal and LT T2 g ovhTEs

the Riesz-transformed one forms our new 2-D analytic signal iUo

(the monogenic signal), which is defined in Section IV-B using Ga(u1,uz, 23) = TG?’(““ uz, ¥3)- ©)

an embedding in the algebra of quaternions. _ .
g g q Hence, for any fixedc; < 0, the components of a harmonic

potential field are related by (8) and (9). This relationship also

_ . _ . holds for the continuous extensiongfor z3 — —0
In the light of the previous section, we start with a 3-D )
(2

harmonic potentiap for deriving the Riesz transform. The ¢, (4, v, 0) = ﬂgg(ub?@’g) = 2 F(u1,u) and
boundary condition of the 3-D Laplace equation is a 2-D 4
function, and hence, the choice of dimension is appropriateGQ(ul7u270) _ %F(ul,w)-
for 2-D signals. As we show in Section V-A, the additional
degree of freedom allows us to encode the local orientation §étting
the signal.
According to the derivation of the Hilbert transform, we show Frui,u) = (Gr(ug,us,0), Go(uy, uz, 0))T
that the three boundary conditions of the 3-D Laplace equation
are related by the Riesz transform (see also [23]), and hence,and definingu = (u1,u2) T so thaty = |u|, we get the expres-
Riesz transform replaces the Hilbert transform when proceedigign of the Riesz-transformed signal in the frequency domain
from 2-D to 3—D. Denoting the harmonic potential field as

A. Riesz Transform

Fn(w) = [0 F(w) & Hy(w)Fw) (10)
8(x) = (91(x). g2(x). 93(x)) " = Vp(x) "

The transfer function of the Riesz transfari, constitutes a
(whereV is the 3-D gradient operator), the boundary conditioR-D generalization of the Hilbert transform. In the following, we
readsgs(x1,z2,0) = f(x1,z2). The relation ofgz(z1,22,0) use the notatiox = (x1,z2)" sincexs = 0. The multiplica-

to the other two boundary conditiong;(z1,z2,0) and tion in the Fourier domain in (10) corresponds to the following

g2(x1, z2, 0) yields the definition of the Riesz transform. convolution in the spatial domain:
The harmonic potential fielg is irrotational and solenoidal x et
in the half-space; < 0 fr(x) = P f(x) = ho(x)x f(x)  (11)

rotg(x) = V x g(x) and (3) whereh, is obtained by applying the derivative theorem of the
divg(x) = (V, g(x)) (4) Fourier transform taF>{|x|~'} = |u|~* [24] (see also [22]).

Hence, we have established the Riesz transform to be an appro-

where (3) follows fromg being a gradient field, and (4) follows Priate 2-D generalization of the Hilbert transform in the context

from p being harmonic. As before, we do not solve the equ&f & vector field-based derivation.

tions using the fundamental solution of the 3—-D Laplace equa- L

tion (p(x) = [x|~1), but instead perform the calculations in thd>- Monogenic Signal

frequency domain of; andz,. This means that we apply the In Section Ill, we used the analogy between 2-D vector fields

2-D Fourier transfornf,. Accordingly, we get from (4) the dif- and complex functions to obtain the complex-valued analytic

ferential equation signalf.s(x1) = gc(z1,0). The algebra of complex numbers is

not sufficient to embed a generalized 2-D analytic signal, con-

sisting of the signaf and its Riesz transform vectég, since

we have three components now. Actually, function theory cor-

responding to 3-D (andD) vector fields is given by means of

with ¢ = /2 + 3. Solving this equation for; < 0 yields Clifford analysis [17]. If we embedR? into the subspace dffl
spanned by{1,4, j} according to

=0
=0

82

WP(Ul,T/LQ,‘Tg) = 47r2q2P(u17u27‘T3)
3

P(uy,uz,x3) = Cluy, uz) exp(2mwqzs) o . .
q= (Zvjv 1)X = T3+ T1t + T2
3Here, we want to thank T. Bulow for alluding to the existence of the Riesz
transform and for giving us [22] and [23], which enabled us to identify the trans- 4Our definition of the Riesz transform differs to those in [22] by a minus sign
form (8) in [13] as such. due toxs < 0 instead ofrs > 0.
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and embed the vector fielgl as
gH — (_iv _jv 1)g =93 — gli - 92j7

then (4) and (3) are equivalent to the generalized Cauchy—Rie
mann equations from Clifford analysis [17]. Functions that ful-
fill these equations are called (lefjonogenidunctions. Ac-
cordingly, we define thenonogenic signalising the same em-
bedding by the transfer function

Fr(a) = Ga(ug, u2,0) — iGy(ug, u2,0) — jGo(ur, ug, 0)
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= F(u) — (¢,5)Fgr(u) F(u) (12) Fig.2. Transferfunction of the Riesz transform displayed as a vector field. The
|11| axes are the frequenciaes andu.. The vector field is given by the normalized
L . frequency vectors [see (10)] and by setting it to zero at the origin (see text).
which is equivalent to
fu(x) = f(x) — (i, )fr(x). (13)

Note that we have moved the imaginary uritand; to the left ~ /
to obtain a compact expressidH (s a skew field, i.e., noncom- /
mutative). i

Now, having defined the monogenic signal as a 2-D generil

ization of the analytic signal, we check whether the propertis
of the latter are fulfilled. First, we look at some properties of th
Riesz transform.

* It is antisymmetric sincd;(—u) = —Hz(u). Note in
this context that symmetry in 2-D can be with respect to a
point or to a line. The choice of symmetry is fundamentdiig.- 3. Left: Test image showing all even and odd symmetries for all
to designing the generalization of the Hilbert transfor L'g”ifgfp”:ﬁgg{‘gffﬁgrlgzsfst;‘grcnog{@?pond'”g monogenic signal is isotropic

(in 1-D, there is only one symmetry). Obviously, the Riesz
transform corresponds to point symmetry, whereas the ap-
proach in [11] corresponds to line symmetry with respect
to the coordinate axes, and the partial Hilbert transform
corresponds to line symmetry with respect to the prefer-
ence direction.

* It suppresses the DC component. We have a singularity at
u = 0. If we remove it by continuously extending the
two components of the Riesz transform along the lines
u; = 0 [see (8)] andu; = 0 [see (9)], we immediately
getH,(0) = 0.

» The energy has value one for all nonzero frequencies:
|H2(u)| = 1 Yu # 0. This follows directly from the def-  In order to obtain an appropriate 2-D analytic signal, we in-
inition of Hy(u) in (10). troduce a phase approach for the monogenic signal in the next

These properties can be verified by considering the vector figigction. The relation of the new phase to the 1-D phase is then

H, (see Fig. 2). discussed in Section V-B.

According to the properties of the Riesz transform, and in .

comparison with the analytic signal, the monogenic signal h'g‘s Phase of the Monogenic Signal

the following properties: The phase of a complex signal is a measure of the rotation

« Its energy is two times the energy of the original signal #f @ real signal in the complex plane. In 2-D space, the rotation
the DC component is neglected: axis is unigue, except for thdirection of rotation. Therefore,

the polar representation of a complex numbee z + iy is
uniquely defined by(r, ¢) = (V/zz, arg(z)), wherearg(z) is
given by

structure tensor, which fulfills the invariance-equivariance
property with respect to energy and orientation (but not
phase). Further details will be discussed in Section V-B.

» The spectrum of the monogenic signal is not one-sided,
i.e., itincludes redundancies, but this property is irrelevant
for image recognition. Nevertheless, it is possible to use a
nonredundant representation [13].

V. INTERPRETATION OF THEMONOGENIC SIGNAL

/|fM(x)|2dx:/f(x)2+|fR(x)|2dx:2/f(x)de.

« In polar coordinates, the monogenic signal fulfills the split
of identity. Since the energy is only modified by a constant
real factor, we conclude that the amplitude of the monevith atar( - ) € [0, 7). The factor sigfy) indicates the direction
genic signal igsotropic, which means that there is no de-of rotation. If we use this definition, the negative real numbers
pendence on the orientation of a signal (see also Fig. 8fe singular because they have an angle ofith respect to
This can be compared with the isotropy property of thgositiveand negative rotations.

ang(2) = atare(y, ) = signy)atar|y| /=)
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In 3-D space, the rotation axis is represented by a 3-D unit  , , , . . . ..
vector. The straightforward generalization of a2-D angleisthen ~ -~ - - - - - -
a vector with the length corresponding to the rotation angleand . . . . | |’
the direction corresponding to the rotation axis. This vectoris  * -« - - -
called therotation vector Consequently, we define a new arc- o
tangent function by the rotation vector that represents the rota-
tion of (0,0, |x|)" into x (with x # 0; see also Fig. 6):

atan3x) = XD atan< G AXBL X>> (14) :

lxpl

- . ma a s

- m w n s s
k‘\‘\\\\\\\\.
P e R

wherexp = (0,0,1)T x x yields the direction of the rotation __ , , o
Fig. 4. Monogenic phase of one part of Fig. 3, left (curved line, displayed as

. . : T T
vecto_r. Again, there is a Slr_]gu'a”tyﬁ N (_0’ 0, —_|x|) ’_bUt underlying grayscale image). The phase is represented by the vector field that is
now, it becomes more obvious why this is a singularity: Thgbtained according to (15). Hence, the length indicates the rotation angle, and

magnitude of the rotation vector is well defined bybut the the direction indicates the rotation axis. Note the phase wrapping.
rotation axis is arbitrary in the 2-D subspace orthogonat.to
Ilhlle;refore,anyrotatlon vector in that subspace is a solution of, gee this, observe that frofej, 4, 1)
If we have a smooth vector field and we want to use (14) as a (ipn — jo1) = cos [¢] + ;92 sin || — j
definition of thephaseof the vector field (as we will do in the PUp2 = Jier) = coslpl oy o siel = J
next paragraph), itis possible to extend the definition: If we coand
sider the values of (14) in an open sphere with radiasound __sin |<p|( 0)
the singular point and lettend to zero while averaging the rota- XD = o] P1, P2,
tion directions, we get a well-defined rotation vector because of _ _
the smoothness of the vector field. This continuous extensionRJfigging (14) into (15) yields
the orientation is used in [25] for a stable orientation estimation. -
H 1 i . . ) ) 0 Sin

Using (14), we are able to define the phase of the MONOgeNiG, (exp (i, — jio1)) = (¢1,92,0) atan< |<P|> .

signal (abbreviation: monogenic phase) by |l cos ||

@ = 12 — Jp1, We get

Y1

sin |¢|
]

T

der In the previous section, the property “split of identity” was
p(x) = atan3fy (x)) = arg(fa(x)) (15)  discussed only with respect to the isotropy of the energy (or am-

. ] o plitude). Now, having a definition of the monogenic phase, we
wheref), is the vector field such that, = (i, j, 1)TfM- Thero-  recognize that amplitude and phase are indeed orthogonal. The
tation vector fieldy(x) = (¢1(x), pa(x), ¢3(x)) " represents |ocal amplitude includes energetic information, and the phase
the rotation of the real-valued signgh, (x)| into the quater- includes structural information. In contrast to the 1-D case, the
nionic-valued signaf, (x). Note that the real component is theyhase now includes additiongéometric informationThe or-

third component of the 3-D vector. thogonality of structural and geometric information is discussed
The rotation vector always lies in the plane orthogonal togt the end of the next section.

(0,0,1)T sincexp = (—x2,21,0)T, and henceps = 0. Com-
parable with phase wrapping in 1-D, there iw@pping of the g Relation to the 1-D Analytic Signal
phase vectorsf the monogenic phase: If a vector in a certain

direction would exceed the amplitude it is replaced by the Up until now, we have considered the 1-D analytic signal and

vector minus2x times the unit vector in that direction, i.e., itte 2-D monogenic signal as two approaches that are only re-
points in the opposite direction; see Fig. 4. lated by the fact that the latter is the generalization of the former

In Section IV-B, we already used the norm of the quaternioH‘ch respect to the dimension of the domain. In signal theory,

for calculating the energy of a monogenic signal. Indeed, tHaeTe iS @ well-known relation between 1-D and 2-D signals:
norm is used for defining thiecal amplitudeof f,;(x) by the Radon transform [26]. The Radon transfdRmmaps a 2-D

signal onto an orientation parameterized family of 1-D signals
by integrating the 2-D signal on the line given by the orientation

|fa ()] = A/ far(x) far (x) parameter:

=/ f3(x) + |fr(x)|2. (16) R{f}(t’e):/mz f(x)60({x,ng) — t) dx (18)

The choice of definitions for the local phase (15) and local
amplitude (16) establishes @ansformation to polar coor- Whereéo(-) is the Dirac delta, anty = (cos6,sin6)" is
dinates Given the local phase(x) and the local amplitude the normal vector given by the orientatiofl € [0, 7). Geo-
| far(x)| of a monogenic signal, it can be reconstructed by ~ metrically, the Radon transform projects (orthogonally) the 2-D

5Note the difference betweatirection andorientationin this context: a di-
Far(x) = | far(x)| exp((—J, 4, 0)p(x)). (17) rection corresponds to a vector, an orientation to a 1-D subspace.
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signal onto a line with orientatioft The Radon transformisin- ~ spatlal domaln Radon domain
vertible, and there are some important theorems about sign Radon transform
. ' . . . i don transiormed
in the Radon domain, such as the Fourier slice theorem [4]: sod he %
FUHUR{S (. 0) = F(ung). (19)
As a consequence of the slice theorem, the Radon transform re § §
lates the Riesz transform of a 2-D signal to the Hilbert tran ,
. . Hilbert Radon transiormen
forms of the 1-D signals obtained from the Radon transform X ' .
Accordingly, we conclude that the interpretation of the mon é 3
genic phase of intrinsically 1-D signals in 2-D space is the sa §
as the interpretation of the complex phase in 1-D space. Ho 2
ever, for intrinsically 2-D signals, we also obtain an interpret Riesz iransformed | £A0ontanstonn_ o4 biecs wansformed

tion by decomposing the signal into its intrinsically 1-D parts.

Indeed, the Radon transform is the connecting link between ‘iﬂ& 5. Relation between Radon, Riesz, and Hilbert transform. The Riesz

1-D and 2-D approaches. transform in the spatial domain (left) is equivalent to the Hilbert transform
The Radon transform of thEI-embedded Riesz transformWwith subsequent multiplication by the orientation vector in the Radon domain

fr(x) = (4,7)fr(x) [embedded inH according to (12)] of a (right).

2-D signalf(x) is given by the Hilbert transform of the Radon

transform off(x) according to 1) Choose an optimized 1-D QF with appropriate size (this

size will later be the radius of the SQF).
R{fr}(t.0) = (4,5)ng h1(t) * R{f}(t,6).  (20) 2) Create the Radon Riesz transformed signal by multi-
plying the odd part of the 1-D QF wittbs 6 andsin 6.

This equivalence can easily be shown in the Fourier domain, e X
g y 3) Apply the (optimized) inverse Radon transform.

using the linearity of the Radon, Riesz, Hilbert, and Fourier

transforms: The triple of filters obtained by this procedure can be applied to

a9y . . a 2-D signal (image) by convolutions, resulting in the bandpass
F{R{fr}}(w, 8) =" (i, j)Fr(ung) filtered monogenic signal of the image.
= (i j)iﬂp(um) A third consequence of (20) is that the interpretation of the
7 lung| monogenic phase is given directly by the phase of the analytic

= (4, 7)ns Hy (w) FL{R{f} }(u, 0). signal since

Hence, the Radon transform allows us to calculate the RiesZR{fm }t,0) = R{f}(t,0) — R{fr}(t,0)i

transform (and, therefore, the monogenic signal as well) by =R{f}¢,0) — (i,5)ngh1(t) * R{f}(t,6)

using the Hilbert transform (see also Fig. 5). — i DR —hs % R 0.R T
This can be used to circumvent application of the Riesz trans- _ (@, _) (O)(=he = RATY 7 ) _
form in the Fourier domain [actually, application in the spatig?hereR(#) is the rotation about the real axis ByEvaluating

domain is not very reasonable due to the infinite extent of the iffiL€ 1ast line ford = 0 gives
pulse response; see (11)]. Especially in applications where the R{f}t,0) —ihi(t) « R{f}(t,0)
data is given in the Radon domain (e.g., X-ray tomography),illg_, the analytic signal & { £ }(¢, 8). For anyd = 6o, the Radon

IS gdvantageous to have this .equl|valen(':e. By the followmg "Ilrlénsform of the monogenic signal is just the analytic signal of
gonthm, we get the_monogemc signal directly from data givelje Radon transform of the signal but with the imaginary unit
in the Radon domain. ¢ rotated byfy: exp(kbp)i = cosfpi + sinfpj. The impact of

1) Calculate the Hilbert transforR{f}x = h1 + R{f}.  this result on the interpretation of the monogenic phase is that

2) Multiply R{f} by cos 6 andsin 6. for linear structures with large support (lines, edges in images),
3) Calculate the inverse Radon transform &{f}, the Radon transform is dominated by this structure. Hence, the
cos R{f}p, andsin 0 R{f}u. monogenic phase is given by the main orientatigrand the

Having the monogenic signal, we can apply other algorithms forD phase ofR { f}(¢, 6,). In the idealized case (i.e., the signal

estimating local properties, detecting features, etc. (see [25])s constant in one direction), the Radon transform is nonzero
A second application of (20) is the design spherical only for the main orientation. Accordingly, the, j)n, in (20)

quadrature filters(SQFs) with finite spatial extent. As with ais constant (equalg, j)ns, ), and the Riesz transform is given

1-D quadrature filter (QF), which is a Hilbert pair of bandpasisy

filters, an SQF is a Riesz triple of bandpass filters. Filters with s 1L

finite extent can only be obtained by an optimization, as in the Tr(x) B (f’J)I_I?O((SO“X’ n9°>)hl(<_x’ nen))) * J ().

1-D case. The following algorithm produces optimized filter§NuS, (20) is simplified to Theorem 1 in [28]. In contrast to the

using optimized 1-D QFs and an optimized inverse Raddfealized case, (20) also provides a sensible interpretation for

transform (see e.g., [4]). nonperfect signals. . .
For an intrinsically 1-D signal, we get the following decom-

SActually, this relationship, as well as the Riesz transform, are well covered BY)sition of the phase vector (15) while keeping the local phase
the results from Calder6n—Zygmund theory [27], which is not very accessible

t . . . .
engineers and computer scientists due to its abstract mathematical formulatQ?rF.he underlying _1'D S|_gna_l. The rOta_lt'on V_eCW('X) IS O_rthOQ_'
Therefore, we think that calculus-based derivations of these results are helpnal to thdocal orientation(i.e., the orientation of the Dirac line



FELSBERG AND SOMMER: MONOGENIC SIGNAL 3143

real axn lytic signal. In contrast to previous approaches, it is isotropic
and, therefore, performs a split of identity. The information in-
cluded in the signal is orthogonally decomposed into energetic,
structural, and geometric information by means of local ampli-
tude, local phase, and local orientation. We have established an
equality that directly relates the 1-D analytic signal and the 2-D

2 - monogenic signal. The Radon transform was shown to be the
L o ———— —de appropriate tool for shifting the 1-D Hilbert transform to 2-D.
o T b _fotatiin -,._..;m,'- One can imagine a wide field of possible applications of the

{ monogenic signal. Up to now, several applications have been

e realized, for example

« estimation of the local orientation;
« contrast independent edge detection (see both in [25]);
2 « Moiré interferograms [29], [30];
| « texture analysis [28];
| « image denoising [31];
* curvature estimation and corner detection [14];

. . . . . « stereo correspondence.
Fig. 6. Phase representation using a rotation veetdiirst, the real valugx| . . . .. .
is rotated about the second axjsdxis) by and second about the third axis BOth the monogenic signal and its applications are easier

(real axis) by?,. The rotation vector is orthogonal to the plane spanned by the formulate in geometric algebra. It is even possible to gen-

real axis and the vectox. Its length is given by the angle between the real aXiéraIize the approach to arbitrary dimensions [18]. Neverthe-

andx. Although the rotation vector is unique, the decomposition is not. The[e y . o ’

are two possibilities: 1)6,,¢) and 2)(6s + 7, —). ess, we chose the vector notation since it is more common.
It was only necessary to formulate some details using quater-
nions (which is a specific geometric algebra) in order to have

the tools for geometric computations available. For applications,

% wever, it is not necessary to make use of geometric algebra.
The monogenic signal is obtained by ordinary real-valued con-

eYQ|utl0n kernels.

in the Fourier domain) of the 2-D signal, ardign(¢:)|e(x)|
represents thiecal 1-D phasef the 2-D signal (see also Fig. 6).
These interpretations are consistent with the former definition
local phase and local orientation in [13].

Note that these definitions do not yield a unique phase r
resentation since a rotation of the signal-byields the same
orientation and a negated phase. This ambiguity can be visual-
ized by two different decompositions of the rotation vector (see The algebra of quaternions is not widely known in the signal
Fig. 6). The same problem also occurs in the context of orientptbcessing community. Therefore, we give a short introduction
quadrature filters (see [5]), where Granlund and Knutsson claimthis Appendix. In Section Il, we defined the quaternions to be
that there is no local way to get the direction from the orientghe algebra on the real 4-D vector space spannefd by j, k}
tion. In [29] and [30], it is proposed to apply an unwrappingi.e., a quaternionis of the form= g, +g2i-+qgsj-+q.k) with the

APPENDIX

of the orientation (modul@x) in order to obtain a consistentalgebra product defined by = j2 = —1 andij = —ji = k.
phase representation. The application in both papers is the Zdm these two rules, we can derive all other products of base
demodulation needed for interferogram processing. elements sincé&? = —ijji = —1,ik = —j = —ki, and

If the monogenic phase is decomposed into local orientatigh = i = —k;. Addition and subtraction of quaternions is given
and local phase, the split of identity (the third property of thiey vector additionp = p; + p2i + p3j + pak)
analytic signal) is also preserved with respect to geometric and } .
structural information. The local phase is invariant to changed TP .((‘{1 +Ip1) + (g2 pa)i+ (25 +p?’)‘1 + (Q4_+.p4).
of the local orientation, and the local orientation is invariant t8nd multiplication with a real numbexr by field multiplication
changes of the local structure (up to the ambiguity explained Ag = (Aq) + (Ag2)i + (Ags)j + (Aqa)k-
above). If we can recover the correct local direction from th1ehe multiplication of two arbitrary quaternions is obtained b
local orientation, we have an ideal split of identity with respect sociativFi)t and distributivit yq y
to energetic, geometric, and structural information. The probleallﬁ Y y

with the correct local direction is that there is no absolute solu- qp = (@1p1 — 2P2 — G3P3 — GaPa)
tion; there is only a relative one. This relative solution can be + (q1p2 + Gop1 + qaps — qaps)i
obtained by constraints on the smoothness of the phase and ori- .
, +(¢1p3 + @3p1 — @2pa + qup2)J
entation.
+ (@1pa + qap1 + @2p3 — @zp2)k.
VI. CONCLUSION The conjugate of a quaternianis defined by
In the present paper, we have analytically derived the mono- q=q — @ —qs] — qak

genic signal, which is a generalization of the analytic signal {g, that the norm of is
two dimensions. This new 2-D analytic signal is based on the
Riesz transform and preserves the properties of the 1-D ana- lg| = Vqq = \/Qf +a3 + a3 + .
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Additionally, the quaternions are a division algebra, which[19] S. L. Hahn,Hilbert Transforms in Signal ProcessingBoston, MA:

means that the inverse of a quaternion is uniquely given by _ Artech House, 1996. . . .
YZO] T. A. Ell, “Hypercomplex spectral transformations,” Ph.D. dissertation,

q' = (7/|9)?). The exponential function of a quaternigris Univ. Minnesota, Minneapolis, 1992.
defined by [21] S. G. Krantz, Handbook of Complex VariablesBoston, MA:
Birkh&user, 1999.
ad q° [22] E. M. Stein and G. Weis$ntroduction to Fourier Analysis on Euclidean
exp(q) = =~ Spaces Princeton, NJ: Princeton Univ. Press, 1971.
o v [23] M. N. Nabighian, “Toward a three-dimensional automatic interpretation
of potential field data via generalized Hilbert transforms: Fundamental
(which converges sincexp(|¢|) converges), and any linear relations,"Geophys.vol. 49, no. 6, pp. 780-786, June 1984.

combination ofi andj with unit magnitude can be substituted [24] R. N. Bracewell,Two-Dimensional Imaging Englewood Cliffs, NJ:
: Prentice-Hall, 1995.

for the imaginary unit in the Euler formula [25] M. Felsberg and G. Sommer, “A new extension of linear signal pro-
) ) ai +bi cessing for estimating local properties and detecting feature®faa.
exp(ai +bj) = cos vV a? + b2 + BT gin va2+i2. 22nd DAGM Symp. Mustererkennyr@. Sommer, N. Kriiger, and C.
a? + b? Perwass, Eds., Heidelberg, Germany, 2000, pp. 195-202.

Hence, the only fundamental difference to working with com-[26] J. Radon, “On the determination of functions from their integral values

. L along certain manifoldsfEEE Trans. Medical Imagingsol. MI-5, pp.
plex numbers is that the base elementsk do not commute. 170176, Dec. 1986.

For a more detailed introduction of quaternions, see, e.g., [32]27] E. M. Stein, “Singular integrals: The roles of Calderén and Zygmund,”
in Notices Amer. Math. Sqovol. 45, 1998, pp. 1130-1140.
[28] M. Felsberg and G. Sommer, “Structure multivector for local analysis
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