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The Monogenic Wavelet Transform
Sofia C. Olhede and Georgios Metikas

Abstract—This paper extends the 1-D analytic wavelet transform
to the 2-D monogenic wavelet transform. The transformation re-
quires care in its specification to ensure suitable transform coef-
ficients are calculated, and it is constructed so that the wavelet
transform may be considered as both local and monogenic. This
is consistent with defining the transform as a real wavelet trans-
form of a monogenic signal in analogy with the analytic wavelet
transform. Classes of monogenic wavelets are proposed with suit-
able local properties. It is shown that the monogenic wavelet anni-
hilates anti-monogenic signals, that the monogenic wavelet trans-
form is phase-shift covariant and that the transform magnitude is
phase-shift invariant. A simple form for the magnitude and ori-
entation of the isotropic transform coefficients of a unidirectional
signal when observed in a rotated frame of reference is derived.
The monogenic wavelet ridges of local plane waves are given.

Index Terms—Analytic signal, analytic wavelet transform,
Hilbert transform, monogenic signal, Riesz transform.

I. INTRODUCTION

T HE analytic wavelet transform (AWT) is an important tool
for 1-D signal processing. Its utility is based on a number

of useful properties; for example its magnitude will not oscillate
around singularities as the transform magnitude is locally nearly
shift invariant [1]. Attention has focused on approximating the
transform using finite length filters [2]–[4], and the continuous
transform has been used to characterize oscillations and discon-
tinuities [5]–[8]. The key to understanding the AWT is via its
phase and magnitude. Local variation in the signal is mainly
described by the phase, with the magnitude of the coefficients
varying smoothly, this producing transform stability [3]. The
AWT can be thought of as the combination of two operations,
“localization” in time-frequency and “analytization,” or how to
restrict a function in time and frequency and simultaneously
construct an analytic signal.

This paper focuses on the formal extension of the 1-D AWT
into the 2-D monogenic wavelet transform (MWT). In 2-D, the
definition of an analytic signal, or a hyperanalytic signal, is
ambiguous. Popular definitions include the monogenic signal
[9]–[12] and the hypercomplex signal; see [13]. One important
characteristic of the 1-D analytic signal is that when evaluated
in a complex argument it satisfies the Cauchy–Riemann equa-
tions in the upper half plane [14, p. 5–6]. In this paper a general
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definition is given for a hyperanalytic signal in arbitrary dimen-
sions as the limit of a function satisfying an appropriate general-
ization of the Cauchy–Riemann equations. To justify using the
Riesz system (or the monogenic signal), we discuss the analysis
of 1-D structure embedded in 2-D. We represent the monogenic
signal using its polar representation [11] and quaternions.

In 2-D, local misalignment can be represented by rotations
and shifts of the argument of a signal. The extension of the
phase-shift and small spatial shift invariance of the magnitude
in 1-D should therefore be extended to such motion in 2-D. We
discuss the decomposition of a real-valued image into a sum of
a monogenic and an anti-monogenic signal in direct analogue
with the orthogonal sum of square integrable 1-D functions into
the two Hardy spaces [15, p. 10], of analytic and anti-analytic
signals. This decomposition is fundamental for determining
local relationships between signals and transform stability.

We need to combine the monogenic signal with the act of
localization. To this purpose we define general quaternionic
(vector-valued) mother wavelet functions, and a quaternionic
wavelet family; see Section IV-A. Two special important cases
are treated, namely starting from an isotropic real-valued
mother wavelet, or from a directional real-valued mother
wavelet. Special cases of families of wavelet functions are
defined using for example the Morse wavelet families; see [7]
and [16]–[18].

The quaternionic wavelet transform is defined in Section V.
We discuss the symmetry properties of the quaternionic coef-
ficients as compared to real-valued wavelet coefficients. These
properties are important for the understanding of phase. We de-
fine the MWT and derive its properties in Section V-B. We deter-
mine that the interpretation of the MWT coefficients is in every
way consistent with a jointly local and monogenic representa-
tion of a signal, in Proposition 3. The MWT, corresponding to a
quaternionic object, is represented by its magnitude, phase and
orientation. We demonstrate how the MWT annihilates the ro-
tated anti-monogenic component of the signal, this establishing
the interpretation of the phase of the MWT coefficients. We note
the form of the MWT of a plane wave, and the MWT ridges.

We note that the magnitude of the isotropic MWT is invariant
to local rotations. For locally unidirectional signals the orienta-
tion of a signal may be determined directly from the isotropic
MWT. This gives the justification for decomposing a locally di-
rectional signal only in scale, location and monogenic compo-
nents. We consider the effect of local phase-shifts of the signal.
We show that for locally orientationally stable signals, shifts in
phase are represented only by the phase of the wavelet coef-
ficients. The magnitudes of the wavelet coefficients are stable
and locally shift-invariant; see Theorem 4. This establishes an
analogue of the approximate shift-invariance observed for the
AWT; see [1, p. 143].
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The MWT as introduced in this article is not without pre-
cursors. Cnops [19] introduced a version of the isotropic MWT
while Metikas and Olhede [17] discussed the localization of the
isotropic Morse wavelets, and their usage. Unser et al. [20] have
introduced discrete wavelets for calculating the isotropic MWT,
establishing discrete results analogously to [17]. Brackx and
coworkers [21], [22] investigated special families of wavelets,
the Clifford wavelet families. Other work on quaternionic de-
compositions of note are [23]–[28]. Most of the latter contri-
butions correspond to constructing local versions of a quater-
nionic Fourier Transform. Utilizing phase structure of complex
wavelet coefficients for denoising is treated in [29] and [30].
Note also work by Hsieh [31] (motion smoothing) and He and
Yu [32]. Duits et al. [33] have developed oriented signal repre-
sentations based on orientation scores. Wavelet theory is in this
work extended to representing 2-D images in a directional repre-
sentation without including a full range of scales. This leads to a
substantial saving in terms of storage requirements. Frequently
images contain variability in many orientations associated with
different components and the MWT complements the orienta-
tion score, as the scale localization allows us to isolate individual
components and represent their directionality using the mono-
genic components without a high-resolution decomposition in
orientation. The name “monogenic wavelet” has been utilized
before in a different context [34].

In contrast to the aforementioned results this paper defines the
generic monogenic continuous wavelet transform, determines
the properties of monogenic wavelets, and their transform co-
efficients. The interpretation of the coefficients is established to
justify the choice of definition of the MWT. The concepts of
transform phase and magnitude are clarified. The introduction
of the decomposition of a real-valued signal into its monogenic
and anti-monogenic components is a necessary development for
these results. A version of the MWT has already been used
for denoising [35] and for nonstationary plane-wave estimation
[17], [36]. Given the suitable theoretical properties of the con-
tinuous MWT, appropriate discretized versions, such as [20], are
of great importance, and lead the way for future innovation.

NOTATION

We let AWT abbreviate the analytic wavelet transform,
CWT is the continuous wavelet transform, FT is the Fourier
transform, HT is the Hilbert transform [14], MWT is the
monogenic wavelet transform, QFT is the quaternion Fourier
transform [37], RT is the Riesz transform, and UQFT is the
unit quaternion Fourier transform [37]. and are the 1-D
and 2-D convolution operations. is used as the spatial vari-
able, as the frequency variable, and as the quaternionic
frequency variable. Their moduli are , and

. We take , ,
,

and . We let be
the translation operator, be the di-
lation operator, be the rotation operator,
for , and be the reflection
operator. and

. An arbitrary
quaternion [38] takes the form

where , and is the four-dimen-
sional real associative algebra of the quaternions. We note
that: , while

, and has conju-
gate , and can be written as

, where , is the real
part and , is a pure quaternion. A pure
unit quaternion is written as , where

and a pure unit quaternion without component
as .

II. PHASE, LOWER DIMENSIONAL STRUCTURE

AND ANALYTICITY

A. Analyticity and Hyperanalyticity

The monogenic signal is a generalization of the analytic
signal [14]. In 1-D the instantaneous frequency and ampli-
tude of a signal are defined from the analytic signal [39].
Such a representation is suitable for a 1-D oscillatory signal,

,

where is the amplitude and is the phase. We use
the definition of the FT of a -dimensional signal of

(1)

where , with as the
phase of the FT. The analytic signal is then

, with the
HT of , defined [14] by

(2)

using a principal value integral and corresponds to the
FT of the analytic signal. The anti-analytic signal is defined as

. If the FT of is only
supported at frequencies higher than those at which the FT of

are supported, then we can retrieve the true phase and
amplitude of from the phase and amplitude of [14,
p. 88–90] (Bedrosian’s Theorem). This is the motivation for
representing a generic signal via its local amplitude and
phase. These two functions may then be defined from

, and .
The 1-D analytic signal is the limit of an analytic function,

satisfying the Cauchy–Riemann equations in the upper half of
the complex plane [14, p. 5–6]. Note that an analytic signal eval-
uated in a complex-valued argument is still an analytic function.
The decomposition of real-valued into two com-
plex-valued analytic and anti-analytic functions , and

respectively, of

(3)

corresponds to the analytic decomposition of [40]. The
analytic decomposition is important for deriving the properties
of the 1-D analytic wavelet transform, as shown in [41, p.
426], due to the fact that the analytic wavelet annihilates the
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anti-analytic component in the decomposition. The analytic
and anti-analytic signals are represented in polar form by

, where we interpret
as the local energy and , as the local structural represen-
tation of . Starting from the analytic decomposition we
obtain an oscillatory representation of by

(4)

Thus, a local magnitude and phase can for any
real-valued function be defined from the modulus and
phase of . In higher dimensions to determine analogues
of and from an observed real-valued function

the analogue or analogues of function must be de-
fined. To this purpose 2-D extensions of the Cauchy–Riemann
equations are used, and any set of equations corresponding
to extensions of these equations, is a set of generalized
Cauchy–Riemann equations. We define the domain by

.
Definition 3.1: The hyperanalytic function and signal.
Any vector-valued function , in spatial variable ,

with associated dimensional auxiliary variable , that satisfies
a given 2-D generalization of the Cauchy–Riemann equations
for is a hyperanalytic function. Any vector-valued
function , that can be written as the limit as of a
hyperanalytic function , is a hyperanalytic signal.

B. The Monogenic Signal

A popular choice of a 2-D generalization to the Cauchy–Rie-
mann equations is given by the Riesz system [42]. The
Cauchy–Riemann equations are given for functions in a com-
plex variable , while the 2-D Riesz system of
equations is defined for the triplet of variables , and
is satisfied by a three-vector valued function. Any solution of
the Riesz system in the upper half-space ( ) is a mono-
genic function [43, p. 35]. Note that if is a monogenic
function then is a solution of the Riesz system in
the lower half-space ( ), and will be referred to as an
anti-monogenic function, with notation . We define the
Riesz kernels [42], [44] ( ) and transform ( ) by

(5)

(6)

Recently introduced by Felsberg and Sommer [11] into image
processing the monogenic, and anti-monogenic signals of real
signal , are defined by applying operator to signal
as

(7)

Letting the monogenic signal is retrieved from the
monogenic function [43, p. 36]. Signals are often not observed
in axes of special importance. Intrinsic orientational structure
must be recognized from data. To this purpose the rotated
monogenic, and rotated anti-monogenic signals of are
defined

(8)

with , thus also defining for . The
rotated monogenic signal with angle concurs with the rotated
anti-monogenic signal for an angle taking the value . It is
still convenient to keep our definition for all rather than
restricting the range of permitted values of . Also

(9)

Furthermore, we may note that [recalling is the argument of
, and using (9) and (8)]:

(10)

If the Fourier transform of any function , say, can be
written in the form of (10), where is the FT of a real-valued
signal, then it can be directly deduced that corresponds to
the rotated monogenic image of . Equation (10) can there-
fore be used to determine if a quaternionic object is a rotated
monogenic signal, and what real-valued object plays the role of

. If the signal is locally unidirectional then rotations are im-
portant to determining the simplest form of the signal. We define

(11)

(12)

the latter relation noted by [42, p. 241]. We may note from (11)
that and . Thus,
the rotation operator, , and the RT operators, , do
not commute, and so . The decomposition of
real-valued into two quaternionic components,

and , , is

the (rotated) monogenic decomposition of , with

The rotated monogenic signal is represented in terms of ampli-
tude, phase and orientation by

(13)
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(14)

.

is a function of as is spatially varying. is
added to the definition of to enable to take values
over a full range, namely but .
This way defines an orientation (or axes of variation)
and is supported over the full range of values ,
just like a 1-D phase function. If we analyze a quaternionic
signal then it may be that the monogenic and anti-monogenic
signals are not trivially related and the physical properties of the
signal may prescribe signal monogenicity or signal anti-mono-
genicity, as is the case for the analyticity of complex-valued
signals in applications; see [45].

The rotated polar representation of a real signal

(in terms of ) is given by

. Locally a signal is described

by its magnitude and the local structure of

the signal is determined by , from which an in-
stantaneous frequency is determined by . It

follows that (the magnitude at

), (the phase at ), however
(the orientation at ), but for con-

venience we shall write for . The monogenic
representation of is equivalent to the rotated monogenic
representation, as only the orientation of the representation
changes. The intuitive understanding of this is that the mono-
genic signal is constructing a plane wave representation of the
signal at spatial point , where the orientation of the plane
wave is determined from the signal. No matter what axes we
use, the local plane wave representation in the amplitude and
phase remain the same, but the parameterization of orientation
changes. It is possible to define a new rotation operator ( ,
say) of a monogenic signal so that the target of the Riesz
transforms is co-rotated with the argument of the signal

and thus .1

While working out very neatly for the Riesz transforms such
definitions of rotations do not make sense for arbitrary quater-
nion-valued functions. In fact if we have a pair of kernels,

and say, that commute with translations and
dilations and whose convolution with a signal correspond to

1The authors gratefully acknowledge a referee for proposing this rotation op-
erator and noting the form of �� � �� .

bounded transformations on , then and have
to be constant multiples of Riesz transforms [46, Prop. 2],
for such simple rotation relationships to hold. The fact that

yields implies
that the monogenic wavelets will have a number of suitable
rotation properties.

Exploiting the Hermitian symmetry of the FT of a real image
, we have

(15)

This is a direct generalization of the case where
. However, and do not always

satisfy . Such relationships are important for
determining the statistical properties of the RT, as well as the
localized RT; see also [17] and [35], as deriving the distri-
bution of noisy monogenic coefficients requires determining
the covariance between the components of a three-vector of

. If the signal is also
radially symmetric, then it also follows . The
norm of the Riesz components is given by (as noted by [11, p.
3140]):

(16)

If furthermore is radially symmetric then
. These relationships were used in [17] in

the special case of the isotropic multiple Morse wavelets, and
special forms were also derived for the discrete wavelet trans-
form of a monogenic signal [35].

C. Unidirectional Signals and Fourier Descriptions

Wavelets are spatially localized functions associated with a
certain period or periods. In 2-D we may use other frequency-
domain descriptions than the regular FT; see Pei et al. [37]
or Bülow et al. [47]. The unit quaternion Fourier transform
(UQFT) [37] in an arbitrary pure unit quaternion is

(17)

The transform is also known as the Type 3 QFT; see Pei et al.
[37, p. 2784]. The UQFT is still interpretable as a sinusoidal
decomposition of structure, as any pure unit satisfies the De
Moivre’s relationships.

A unidirectional signal, say, can for some given
, with , be modelled as

[35, p. 1525]. The
monogenic signal of is

(18)
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This follows by exchanging the order of the MT and the inte-
gral, and then using the expression for the monogenic extension
of a sinusoid given in [11], recalling the definition of . The
global orientation of the globally directional signal in this case
may be determined from the monogenic signal by calculating
the arctangent of the ratio of the two RTs. It may be shown, again
using the monogenic extension of a sinusoid given in [11], that

and . Thus,
the spectral support of the UQFT of the signal in is one-sided,
and limited to the positive frequencies, just like a 1-D analytic
signal. The result is to be expected, as a plane wave is really a
1-D feature.

If the signal corresponds to unidirectional variation only, the
monogenic signal is extracting the orientation of the axis of vari-
ation, and lives in a half-plane, while the anti-monogenic signal
lives in the second (other) half-plane. Calculating the partial HT
[44] in the correct axes will yield a suitable representation also,
but the advantage of using the monogenic signal is that the ori-
entation is retrieved directly from the observed image without
having to perform HTs at all values of (or having to estimate

). We also define the quaternionic Fourier transform (QFT) in
2-D by [37] and [47, p. 192]:

(19)

(20)

The form in (19) is also suitable for quaternionic (i.e., not real-
valued) signals , and this makes the appropriate left and
right multiplication important. The QFT can recover separate
parity structure in and as it separately records four real
values at each quaternion frequency .

III. QUATERNIONIC WAVELET ANALYSIS

A. Quaternionic Wavelets

In 2-D the CWT of requires choosing an ad-
missible mother wavelet [48]. To be admissible,
the mother wavelet function, or , must satisfy the two con-
ditions of

(21)

Thus, the mother wavelet is constrained to be both a spatially
local function, and to be mainly supported over some range of
frequencies not including the origin, i.e., the function is oscilla-
tory. Without loss of generality, center the mother wavelet func-
tion in space to , and assume that is maximum at

. From , a family of
functions is defined by

, with . The purpose of including in the

decomposition is to identify local behavior not aligned with the
observational axes. The wavelet coefficients of function ,
and the reconstruction from the transform, are given by

(22)

It is frequently easier to interpret the nonnegligible coefficients
, rather than trying to disentangle the full behavior

of an image in the original spatial domain. For notational sim-
plicity we shall write for , unless the and func-
tions are of note. , the mother wavelet function, needs to be
chosen with care so that has suitable properties.

This article provides classes of wavelet functions so that the
wavelet coefficients calculated are rotated monogenic signals in
the index at any fixed scale . We (in general) use wavelets of
the form

(23)

where each for . Thus, for any
fixed it follows that . Naturally the whole
family of wavelet coefficients constructed from the family of
wavelet functions must be constructed to enjoy suitable proper-
ties. An arbitrary member of the wavelet family is

(24)

The construction corresponds to individually translating,
scaling and rotating the four components of the quaternionic
function. We thus intend to construct the quaternionic wavelet
family by first extending the real wavelet to a monogenic signal,
and then scaling, rotating and shifting the monogenic mother
wavelet. This family member will be a rotated monogenic
signal. It is very important that the wavelet coefficients are
interpretable, as they will be considered as a local projection
of the image, and they, rather than any other given quantity,
will be the basis for analysis. We shall demonstrate that the
method we use to define the wavelet transform will endow the
coefficients with suitable properties. Note that this distinction
does not arise in 1-D as the act of analytization commutes with
constructing the wavelet family, and so all the members of
the analytic wavelet family with a positive choice of scale are
analytic signals. Hypercomplex (another choice of a hyperan-
alytic signals with two auxiliary variables is the hypercomplex
signal) wavelets do not in general give hypercomplex wavelet
coefficients [18].

B. Monogenic Wavelets

The monogenic signal of a globally unidirectional signal could
be represented as an Inverse UQFT (IUQFT) in , constructed
only from the positive frequencies of the UQFT in , and had
an interpretation from (17). The orientation of a unidirectional
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signal could be determined directly by the ratio of the RT compo-
nents. A scale-localized version of this construction would cor-
respond to filtering the image in space and spatial frequency, thus
isolating structure with a given period and spatial location, and
then constructing the RTs of the local component. The route to
constructing the scale localized monogenic signal in one step will
be by using monogenic wavelet functions. The monogenic exten-
sion of any given real-valued mother wavelet with ad-
missibility constant is given by

(25)

where , . To satisfy the condi-
tions of being a wavelet each function must be square integrable,
and satisfy the admissibility condition, i.e., the two conditions
of (21). First as

and so square integrability follows as the wavelets were con-
structed from a real mother wavelet. Denote by the value
of (21) with . Equation (9) in combination with the fact
that and are always between 0 and 1, imply that

and , unless .
so and cannot both be the zero function.

Consequently and as the are finite and nonzero for
, satisfy the admissibility condition (21), and are both

wavelets or one of them is the zero function. The functions are
not unit energy, but can easily be renormalized. We note that the
monogenic extension of a real wavelet is also a wavelet, from
the same arguments.

The monogenic wavelets may be represented in polar form
via their moduli, orientations, and phases respectively given by
using (13), this yielding , and , respec-
tively. The wavelet is a function with spatial energy given by
the modulus square, has a local period given by , and is
showing a “local orientation preference” to angle . The
MWT is decomposing the image in terms of localized oscilla-
tions with a local period determined from ; see also the
discussion in [36].

To understand the properties of the wavelet transform, we de-
rive the form of the Fourier representations of the wavelets. The
FT of the translated, dilated, and rotated monogenic wavelets is

(26)

Recall that is the rotation angle of the wavelet, and is the
argument of the Fourier variable. The nature of the MWT may
be deduced from (26): the frequencies are localized according
to , with the extra directional selectivity afforded by

and . We can note directly from this
expression and (10) that the members of the family given by

(24) generated from the monogenic wavelet are rotated
monogenic signals.

1) Monogenic Isotropic Wavelets: If is
an isotropic mother wavelet function, then any member of the
monogenic wavelet family in the Fourier domain is (with

) given by

(27)

This follows by direct calculation. As an example of the mono-
genic isotropic wavelet; see Fig. 1. The isotropic structure of
the magnitude is clear, while local variation in the monogenic
wavelet over the and directions respectively may be de-
termined from the pure quaternion part of the wavelet. When
the monogenic mother has a radially symmetric real part, then
the monogenic wavelet coincides with the anti-monogenic
wavelet with , or ; see
(27). An example of a monogenic isotropic family are the mono-
genic Morse wavelets; see [17], with special members of the
family considered also by Cnops [19] and Brackx and Sommen
[49]. The isotropic wavelets are defined in the Fourier domain
by , where

,
, and is the

generalized Laguerre polynomial [50, Sec. 8.97]. The mono-
genic extension of the th order mother isotropic Morse wavelet
is therefore

(28)

with a Bessel function of the first kind of order [50,
p. 900]. Fig. 1 displays a plot of a monogenic isotropic Morse
wavelet. The wavelets have isotropic support but recognize
variation associated with the two spatial directions. Thus,
the wavelets will localize signals in scale and represent the
directional structure in the Riesz components.

2) Monogenic Directional Wavelets: In some applications, it
may be suitable to localize signals in both scale and orientation,
as several components are present at each position and at the
same scale in different directions. Following work on discrete
wavelet filters given in [1, p. 138] a real directional wavelet,
based on the 1-D analytic continuous wavelet filters, will be
constructed. Assume we have a 1-D analytic continuous wavelet
function , where is
even, and is odd, where the FT of is local to

. We define the -directional wavelet by

(29)
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Fig. 1. The real part (a), and two imaginary parts, (b) and (c), of � ���� � ��� (d), and imaginary parts (e) � ��� and (f) � ��� of the
monogenic directional Morse wavelet and the hypercomplex Morse wavelet respectively, with � � �� � � � and � � �, (g) the phase of � , (h) the phase
of � and (i) their absolute difference.

is local in frequency to
. To align the wavelet with the axis of observa-

tion we rotate the function and define

will be local in frequency to . The
RTs and partial HT [14] of the wavelet are

(see Appendix I). The complex2 monogenic
directional wavelet is formed by .
We plot a real-valued directional wavelet in Fig. 1(d), and the
Riesz component , in Fig. 1(e). We could also have con-
structed a complex-valued function by complementing
by using the partial HT [14] in operating on to yield

(the hypercomplex wavelet or
the dual tree -wavelet [1, p. 138]). Fig. 1(f) shows .
When the Riesz component is constructed from , the
spatial frequency modulation of is rather than

, that would follow from using the partial HT.
is mainly limited in frequency to , and for

,

2Formally � ��� � � ��� � ���� ���, rather than � ��� � ���� ���,
but any number system of the form of a real number plus a scaled pure unit
quaternion is isomorphic to .
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and so up to a small corrective error term .
To investigate this, we plot the phases of the complex wavelets
in Fig. 1(g) and 1(h), and their absolute difference (i). The dif-
ference in phases increases as we move away from ,
but the amplitude of the wavelet will be simultaneously de-
creasing. The advantage of using directional wavelets is that
they localize in direction. If the signal to be analysed has vari-
ability in several directions, i.e., is a 2-D signal, as defined by
[51], then it will be well represented using directional wavelets
if components of different orientation can be isolated using
scale and orientation localization but not scale localization
alone.

The advantage of using a second component constructed
from the RT rather than the HT, i.e., using rather than
using , is that the quaternionic mother wavelet when
rotated satisfies the relationships discussed in Section III-B,
which will not (in general) be true for [46, p. 58].
The complex-valued function is a bona-fide mono-
genic function coupled with a single quaternionic conjugate,
an anti-monogenic function. As a special choice of analytic
wavelets to start from, we propose the usage of the Morse
wavelets [16]. Directional wavelets have been previously
constructed from 1-D Morse wavelets; see [48], but these are
distinct wavelets.

IV. QUATERNIONIC WAVELET COEFFICIENTS

A. The Quaternionic Wavelet Transform

Equation (22) defined the CWT coefficients of image
analysed with a wavelet family constructed from wavelet .
If is quaternionic then (22) takes the form

(30)

thus defining . The local structure at
is given a four-vector valued representation, via some phase/s

representations or relative magnitudes of the . “Local
energy” is determined from the local magnitude square, ,
of the image . Define , where is the Fourier
variable after the Fourier transform in has been implemented,
and , where is the QFT variable of . The local
energy of at is defined by the scalogram of given by

(31)

Irrespective of what quaternionic mother wavelet function is
used, the magnitude square of the coefficients is interpreted as
local signal presence at index . The interpretation is appropriate
as the four wavelet functions with will be
chosen to be local to the same position and wave-number. See
also [35, p. 1526] for a discussion of the time-frequency prop-
erties of RTs.

The relationships between the other components of the
quaternionic wavelet will depend on the choice of mother
wavelet function used to decompose the image, and so the
phase representation of structure will vary with the mother

wavelets used. To obtain coefficients with interpretable prop-
erties we calculate , so that it corresponds to a rotated
monogenic signal in index for any fixed value of and . The
signal could also be represented in terms of some weights
attached with functions , that are monogenic in for any
fixed . In 1-D these two perspectives coincide, as analysis of
a signal in terms of an analytic wavelet yields analytic wavelet
coefficients and analytic wavelet functions. We introduce the
additional notation of . Note that

only operates on in .
Proposition 1: Forms of the FT and QFT of wavelet coeffi-

cients with real wavelet.
The FT and QFT of for a real signal with a

real-valued wavelet , respectively, are

(32)

(33)

Proof: Equations (32) and (33) follow by direct calcula-
tion, and are stated for comparison to the quaternionic wavelet
coefficients.

Proposition 2: Forms of the FT and QFT of wavelet coeffi-
cients with quaternionic wavelet.

The FT and QFT of for a real signal with a quater-
nionic wavelet , respectively, are

(34)

Proof: See Appendix II-A.
Equations (33) and (34) illustrate the new properties afforded

by the quaternionic decomposition, in comparison to a real-
valued decomposition of . The and coefficients will
enable us to characterize structure in the axis, and we are
not constrained to average the coefficients over and ,
as can be seen directly from (34). This enables us to recover
phase-shifts, as otherwise we would average negative and posi-
tive shifts, as will be discussed.

The axes of observation are not necessarily aligned with the
local axes of variation in the image. The CWT is covariant with
respect to the transformation , i.e., if we
observe , we may formally note that
the transform takes the value
[52, p. 40]. Having noted this equivariance of the CWT, one
might assume that no discussion needs to be provided of
changes of axes of observation. However, a discretization of
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the calculation of the CWT, implies that we calculate the CWT
coefficients at a sampled subset of all values of the locality
index . Small misalignments in space between the wavelet
function and the object under observation may cause the CWT
coefficient at a given value of to be small even if the signal
has a large contribution at and . The
down-sampling inherent in most filter bank implementations
of the CWT exacerbates the spatial initialization problem. In
1-D, time shift variance has been considered in great detail;
see also [3], [53], and the small misalignment in time may be
considered in terms of shifts in phase. It is important that at any
given the transform of structure that corresponds to the same
space and spatial frequency locality should not correspond to
very different magnitudes due to small misalignments in space
between the image and the wavelet. This becomes equivalent
to requiring that the magnitude of the CWT does not change
under phase-shifts of the signal.

B. The Monogenic Wavelet Transform

If at any given spatial point corresponded to a single com-
ponent, then the local characteristics of could be extracted
from , and the polar representation of (13) can be used di-
rectly to represent the signal. However, in general, will cor-
respond to a multiscale structure at the spatial point , and thus it
is necessary to simultaneously implement a position and scale lo-
calization using (for example) a monogenic wavelet in order to
produce interpretable polar representations of the signal.

In general, analysis with a monogenic but not necessarily
monogenic isotropic mother wavelet, is implemented which
takes the form
A nonisotropic mother wavelet is a suitable choice when it is
not reasonable to assume that the scale localization alone will
be sufficient to separate components present in the image.

To interpret the MWT coefficients we shall show that the
MWT annihilates the anti-monogenic component. This ensures
that, equivalently, first the monogenic signal may be constructed
and then scale localized; or first the image can be scale local-
ized and then the monogenic extension of the local signal con-
structed. Indeed both operations can be implemented in one step
using the MWT, and this then establishes the interpretation of
the MWT coefficients. We write the MWT as , and note
that the FT of the MWT of a real signal is given by

recalling (5) and (34). From this equation the frequency do-
main properties of the monogenic wavelet coefficients can be
determined. Note from (10) that we can immediately deduce
that the MWT coefficients are rotated monogenic. If the real
mother wavelet is radially symmetric, ,
then the rotation has no important effect in the definition of
CWT, (30), as this assumption implies that , and

. The FT of the MWT based on a
real isotropic mother wavelet of a real signal is given by

This relation will enable us to consider the properties of the
magnitude of the wavelet coefficients under rotation. The FT
of the MWT of a monogenic extension of a real signal takes the
form

(35)

The anti-monogenic extension has an analogue form with the
on the right-hand side replaced by . To prove this result

see Appendix II-B and set . To be able to establish the
interpretation of the MWT we need to consider if the monogenic
wavelets annihilate elements of the monogenic decomposition.

Theorem 1: CWT of the rotated monogenic and anti-mono-
genic decomposition components. The Fourier transform of the
MWT of the rotated monogenic and anti-monogenic extension
of a real signal take the forms

(36)

The MWT thus annihilates the rotated anti-monogenic
image and the anti-monogenic CWT annihilates the ro-
tated monogenic image: ,

. For any other angle than
, is a linear combination of

and . Furthermore if we assume , with

:

(37)

Proof: See Appendix II-B.
Hence the MWT of a rotated monogenic signal observed

in the rotated frame of reference, i.e., is twice that
of the real wavelet transform of the rotated monogenic signal

. When analyzing a real signal, the MWT can be used
to annihilate the anti-monogenic components in the real image,
which is in complete analogy to the analytic/anti-analytic
case. Compare with (6.8) to (6.10), and in particular the unnum-
bered equation over (6.10), of [41]. These show that the AWT
of an real signal with respect to an analytic (anti-ana-
lytic) wavelet is equal to one half of the CWT of the analytic
(anti-analytic) extension of the real signal with respect to the
analytic (anti-analytic) wavelet. The relationships of Theorem
1 are thus generalizations of the unnumbered equation above
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(6.10) of [41]. This implies that both in and , the
AWT or MWT of the real signal or image has the same phase
and one half of the modulus of the CWT of the analytically
or monogenically extended signal or image. This provides the
interpretation of the local polar representation of the MWT.

Proposition 3: Construction of the local rotated monogenic
signal.

The MWT of a real image is equivalent to the scale
localization of the rotated monogenic extension of the signal and
the rotated monogenic extension of the scale-localized version
of the image :

(38)

Proof: See Appendix II-C.
The left-hand side of (38) corresponds to the MWT of the

real signal, while the middle equation is the rotated monogenic
extension of the scale local signal , that corresponds to
adding some suitable components to the real part of the CWT
of . The right-hand side of (38) corresponds to first forming
the monogenic extension of the signal, and then scale-localizing
the extension to make the phase description of the signal in-
terpretable. Thus, all three local descriptions, i.e., the MWT of
a real signal, the real CWT of a rotated monogenic signal and
the monogenic extension of a real CWT of a real-valued signal
may all therefore be viewed as equivalent. The MWT can, as-
suming a single component has been retrieved at local index
, be represented in polar form using (13) where the magni-

tude, phase and orientation are interpretable in terms of a local
univariate variations and the rotated monogenic representation.
Felsberg and Sommer discuss properties of the (distinct) mono-
genic scale-space in [25], which are related to some of the de-
rived properties of the MWT. If we had chosen to define the
MWT using rather than then establishing the equivalent
of Proposition 3 is very simple: by using the orientation of
the wavelet transform is relative to the global axes rather than
the wavelet. We retain to keep consistency in the definition
of the wavelet transform. If we may assume the signal corre-
sponds to a local plane wave the following theorem specifies its
representation.

Theorem 2: The MWT of a plane oscillatory signal.
The MWT of a single component separable oscillatory signal

modelled by where , as well
as are assumed to be slowly varying, is

(39)

where ,
,

, and note that Hermitian symmetry im-
poses as well as .

This result follows by direct calculation assuming
sufficiently slowly varying, and the

terms will be due to such variation over the width of the
wavelet. Let . We note that a

simplified description of the oscillatory signal can be
determined from the ridge of the CWT; see Gonnet and Torre-
sani [54, p. 394] via the subspace of the locality index given
by . Equation (39) can be used to
characterize the oscillation at and if the signal would be
more appropriately modelled as an aggregation of oscillatory
signals as long as they are sufficiently separated, i.e., as long as
the wavelet is sufficiently narrow in space and spatial frequency
to separate the different component; see also [17] and [36],
then the coefficients will still be interpretable. Using directional
monogenic wavelets will allow us to analyze a larger class of
signal as it is more reasonable to assume we can distinguish a
collection of plane-waves if we localize in scale, position and
orientation.

C. Phase-shifts for Unidirectional Variation

The stability of the CWT coefficients under given affine trans-
formations of the argument is important. With the MWT we ob-
tain suitable magnitude invariance for an arbitrary phase-shift,
and in some instances obtain invariance under rotation. If the
real mother wavelet is isotropic, then the MWT coefficients of a
real image at will have a magnitude invariant to the value
of . This implies that we are not sensitive to loss of magnitude
due to local orientation misalignment. However, we would nat-
urally like to also be able to retrieve the local orientation, from
the MWT. A real signal is considered as a 1-D directional
at frequency if such that

(40)

We shall in this article be analyzing real images: as its
FT is Hermitian , and thus necessitates having
both a delta distribution component at and .

Theorem 3: Directional selectivity of the MWT.
If the real mother wavelet is isotropic, and the analyzed signal

is directional over the support of the monogenic wavelet at
with directionality , then with

(41)

Proof: See Appendix II-D.
Thus with an isotropic mother wavelet, the magnitude of the

Riesz component wavelet coefficients is invariant to rotations,
but is maximized in the first component if we rotate the wavelet
to align with the directionality of the variations. Hence, we may
determine the local directionality of the signal from the mono-
genic isotropic wavelet coefficients.

1) Phase-shifted Plane Wave Signals: For a plane wave
present at a given point we define the phase-shift operation
on a signal using the monogenic signal. Phase shifts could
also have been defined in both the and axes using the
hypercomplex signal [13].

Definition 5.1: Phase-shift of a plane wave.
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For a real signal we note that the image
may for any rotation angle be written in sinusoidal form and
the phase-shifted by version of the signal is defined via

(42)

where is the phase-shift operator.
Theorem 4: The MWT of the phase-shifted signal.
For a real signal the rotated monogenic extension of the

phase-shifted real image if is varying sufficiently slowly,
i.e., assuming such that is on-negli-
gible, takes the form

(43)

The MWT of a phase-shifted signal, where the orientation of
the signal is constant over the width of the wavelet is therefore
given by

(44)

The magnitude of the MWT of a phase-shifted signal, when the
local orientation of the signal is stable over the width of the
wavelet, is equivalent to that of the non-phase-shifted signal.

Proof: See Appendix II-E.
This implies that the phase-shift between two images that

locally correspond to the same plane wave may easily be de-
termined by (44), and the methods of [41] can be extended to
this context (2-D) to extract common components across im-
ages which may be phase-shifted. The magnitude of the MWT
is invariant to shifts of phase. This implies that there will be no
migration of energy across scales, due to misalignment between
the wavelet and the signal, which in turn shows the stability of
the MWT to small spatial misalignment between the observed
signal and the analysis filters.

V. EXAMPLES

One of the main advantages of the monogenic isotropic
transform is to remove additional degrees of redundancy. If the
scale localization is sufficient for localization and separation
of components, then directional properties can be directly
quantified in the monogenic representation via the orienta-
tion. We illustrate this by simulating a set of geometrically
anisotropic random fields (see also [55]), and show their rep-
resentation by both the monogenic directional wavelets and
the monogenic isotropic wavelets. We apply the method of

Eom [56] to simulate a long correlation (LC) random field.
We define , with

specifying the degree of anisotropy, the orientation of
anisotropy. The spectral density function [57, p. 58] of an LC
field is defined in terms of by the equation shown
at the bottom of the page. specifies the periodicity of the
field, its rate of spatial decay, and its overall magnitude.
We simulate four random fields, each of size 128 128, where
the sets of parameters are: , and for
all the four fields apart from the first where , and i)

and , ii) and , iii) , and
, and iv) and . These four realizations

are then joined into a inhomogeneous random field, by con-
tiguous placement of the individual fields; see Fig. 2(a), and
denoted , . The field is directional
and spatially heterogeneous. Using only the isotropic Morse
wavelets [17] at scale we plot the wavelet transform
at all shifts (rotations are redundant when using an isotropic
wavelet). The two high frequency components are isolated by
the isotropic Morse wavelet. Using the MWT yields a scalo-
gram of Fig. 2(c), which has removed the oscillation in the
scalogram due to the wavelet and random field being “in phase”
and “out of phase.” The directional nature of the field can be
determined by using the two RT components; see Fig. 2(g).
Thus, we may easily characterize the local nature of the random
field from the monogenic isotropic Morse wavelet transform,
using the estimated orientation from the unit quaternion of the
MWT without localizing in orientation.

Using only the real part of a directional wavelet at scale
yields Fig. 2(d). Including the RT component to form

the scalogram yields Fig. 2(e), and if we rotate the wavelet
by we obtain Fig. 2(f). Again including the RT compo-
nent removes the dependence of phase alignment between the
wavelet and signal. We can with this representation charac-
terize the local nature of the random field, and have isolated
the directional nature, but in this case this will require sam-
pling sufficiently finely to recover the nature of the field.
To get a better feeling for the spatial localization of the two
monogenic wavelets we plot their moduli in Fig. 2(h) and (i).
The extra directional localization of the directional wavelets
has been bought with spatial resolution, as is also clear from
Fig. 2(c), (e), and (f), where the latter two are more “smeared
out” than the isotropic transform in Fig. 2(c). It is clear from
these Figures that both transforms are very useful to localize
and characterize different components of the image.

The monogenic wavelet transform also permits the recovery
of phase-shifted signals. We generate a random field and overlay
a localized oscillatory function, as well as generate a random
field and a phase-shifted version of the localized function. We
generate the two signals by
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Fig. 2. A simulated random field (a), the magnitude square of the isotropic Morse wavelet coefficients (b), the magnitude square of the monogenic isotropic
wavelet transform (c), the magnitude square of the directional real-valued wavelet transform of the field calculated at orientation 0 (d), the magnitude square of the
directional monogenic wavelet transform of the field calculated at orientation 0 (e), calculated at orientation ��� (f), the orientation of the monogenic isotropic
wavelet transform of the field (g), the spatial magnitude of the monogenic isotropic wavelet (h), and the magnitude of the directional wavelet (i).

, and , with
a Bessel function of the first kind of order [50, p. 900],

are calculated as two independent realizations
from a LC model with parameters , , ,

, and . We calculate
the monogenic transform of the original signal and extract the
phase-shift using the phase of the monogenic signal, as well as
the phase from the isotropic MWT at scale . The
phase-shift is found using Theorem 4. Comparing Fig. 3(a) and
(b) shows the improved performance of the isotropic MWT to
separate the structure of the windowed Bessel function from the
directional “noise” signal. The phase-shift is estimated very near

for a local region with (the phase-shift is
for due to our definition of the monogenic signal). As
can be seen directly the estimate of the phase-shift between the
two signals is much more accurate once the image has been
scale localized. We also estimate the orientation of the Bessel
function and this estimate also improves when using the local-
ized signal [compare 3(c) with (d)]. The orientation is estimated
using the triplet of transform coefficients, by comparing the two
Riesz components of the transform; cf. (14). Note that and

plotted in 3(e) and (f) are not strictly speaking 1-D signals
in the sense of [51], but that the isotropic wavelets separate out
the two different directional structures that spatially overlap.

VI. CONCLUSION

The MWT forms a natural 2-D extension of the AWT. Using
the decomposition of a real-valued signal into a monogenic and
an anti-monogenic signal helped to establish the equivalent in-
terpretations of the transform as a rotated monogenic extension
of local transform coefficients constructed from a real wavelet,
or the real wavelet transform of the monogenic signal. This mo-
tivated the choice of definition of the MWT.

The monogenic signal gave us a natural framework for de-
termining the properties of the MWT coefficients, and for es-
tablishing the interpretation of the local phase, orientation and
amplitude of the signal defined from the MWT. If the signal
is much more localized in orientation than the wavelet, then
the local orientation calculated from the unit quaternion of the
MWT will better represent the orientation of the variation in
the signal, than the nominal orientation of the wavelet. The
monogenic wavelets annihilate a component of the monogenic
and anti-monogenic decomposition of a real-valued signal. This
property allowed us to derive the local phase properties of the
MWT coefficients. Phase shifts were defined using the mono-
genic signal. The MWT magnitude was shown to be invariant
under shifts of phase and the MWT phase covariant, for given
classes of signals. This established transform stability. When
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Fig. 3. Subplot (a) shows the difference between the estimated phase-shift and ��� using the monogenic signal, while subplot (b) shows the difference between
the estimated phase-shift and ��� using the monogenic isotropic wavelet coefficients at scale � � ������, (c) the estimated orientation of the pattern using the
monogenic signal, (d) the estimated orientation of the pattern using the monogenic isotropic wavelet transform, (e) shows � ��	 and (f) � ��	.

using a monogenic isotropic wavelet to transform a unidirec-
tional signal, the transform magnitude was shown to be invariant
to rotations while the orientation was shown to be covariant to
rotations. The orientation can be directly determined from the
pure quaternion in the quaternionic representation of the trans-
form. The wavelet ridges of a local plane wave were stated, and
shown to possess a simple form.

Thus, this article defined the MWT to obtain interpretable
transform coefficients, demonstrated the appropriateness of
this definition, and showed the various suitable properties of
the transform. Given these properties future application of the
monogenic wavelet transform holds great promise, and appro-
priate discrete definitions [20] will further stimulate usage.

APPENDIX I
PROPERTIES OF MONOGENIC WAVELETS

We recall that , if ,
, if . By calculating a FT of the rotated (29) we

can write the 1-D real directional wavelet as

(45)

Calculating a HT on the cosine in (45), we obtain

(46)

Direct calculation from (45) yields the result

(47)

(48)
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this result follows as the 1-D wavelet is only nonnegligible in
, for some small . The wavelet functions kill

off contributions for values of that are not near zero, but if
the integrand will be near zero from the sine function and

Riesz kernel. Hence, the overall contribution from the second
Riesz transform is negligible, and can be ignored (numerical
computations verify this result).

APPENDIX II
PROPERTIES OF THE QUATERNION WT

A. QFT of the Wavelet Coefficients With an Arbitrary
Quaternionic Wavelet

The CWT with respect to a quaternionic wavelet is written in
terms of its real components and we calculate the QFT compo-
nent by component as follows:

B. Wavelet Transform of Rotated Monogenic and
Anti-Monogenic Decomposition Components

By direct calculation, we find that

(49)

Therefore, it follows that

(50)

Furthermore mutatis mutandis with replacing
we derive that . This completes the

proof.

C. Construction of the Local Rotated Monogenic Signal

We note the form of the Fourier transform of and
then from (10) we find that

Thus, . For the second equality

we start by taking . By

the linearity of the wavelet transform we have that with
using (50) and Appendix II-B:

D. Directional Selectivity

By direct calculation, we may note that

For (1) to hold, we require , i.e.,
is isotropic, but if the rotation of the wavelet is small
and is sufficiently smooth then the same result also
follows. For a directional signal, when ,

. Also , and
hence the result follows.

E. CWT of Phase-shifted Signal

If , across the width of the image, then as the
Fourier transform corresponds to a right-hand multiplica-
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tion, we may note .
Refer to the wavelet transform of the phase-shifted signals as

.

With the additional assumption that is constant
over the spatial width of the wavelet

(51)

where we used Appendix II-B. Also from (50) we may
note , and thus the fol-
lowing result follows. From (44) we may note that

, and thus it follows that

.
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