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Abstract—The monogenic signal is the natural 2-D counterpart
of the 1-D analytic signal. We propose to transpose the concept to
the wavelet domain by considering a complexified version of the
Riesz transform which has the remarkable property of mapping
a real-valued (primary) wavelet basis of ��

�� into a complex
one. The Riesz operator is also steerable in the sense that it give
access to the Hilbert transform of the signal along any orienta-
tion. Having set those foundations, we specify a primary polyhar-
monic spline wavelet basis of ��

�� that involves a single Mex-
ican-hat-like mother wavelet (Laplacian of a B-spline). The impor-
tant point is that our primary wavelets are quasi-isotropic: they
behave like multiscale versions of the fractional Laplace operator
from which they are derived, which ensures steerability. We pro-
pose to pair these real-valued basis functions with their complex
Riesz counterparts to specify a multiresolution monogenic signal
analysis. This yields a representation where each wavelet index is
associated with a local orientation, an amplitude and a phase. We
give a corresponding wavelet-domain method for estimating the
underlying instantaneous frequency. We also provide a mechanism
for improving the shift and rotation-invariance of the wavelet de-
composition and show how to implement the transform efficiently
using perfect-reconstruction filterbanks. We illustrate the specific
feature-extraction capabilities of the representation and present
novel examples of wavelet-domain processing; in particular, a ro-
bust, tensor-based analysis of directional image patterns, the de-
modulation of interferograms, and the reconstruction of digital
holograms.

Index Terms—Analytic signal, directional image analysis,
Hilbert transform, monogenic signal, polyharmonic splines, Riesz
transform, steerable filters, wavelet transform.

I. INTRODUCTION

T HE analytic signal is a complex extension of a 1-D signal
that is based upon the Hilbert transform; it was introduced

to signal theory by Gabor in 1946 [1]. This representation gives
access to the instantaneous amplitude and phase of a signal and
is widely used in applications involving some kind of ampli-
tude or frequency modulations [2], [3]. This type of AM/FM
analysis can also be performed in a multiresolution framework
using Kingsbury’s dual-tree wavelet transform, which consists
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of two wavelet transforms which are (approximately) Hilbert
transforms of one another [4]–[7]. An exact implementation is
actually possible within the framework of fractional splines [8],
which is closed under fractional differentiation.1

Several attempts to generalize the analytic signal to two di-
mensions have been reported in the literature [9]–[11]. The first
class of representations relies on a separable application of the
Hilbert transform along the and coordinates. In the approach
of Hahn [9], the analytic signal is represented by two com-
plex components whose Fourier spectrum is restricted to the
upper-right and lower-right quadrant, respectively. The trans-
position of this approach to the wavelet domain results in a
2-D dual-tree complex wavelet transform that has a redundancy
of four. The transform allows for a separation into six distinct
orientation channels via a proper combination of positive and
negative frequency bands [4], [12]. The clear advantage of this
type of representation over the traditional real-valued separable
wavelet transforms is improved shift-invariance (thanks to the
notions of wavelet-domain amplitude and phase) and better ori-
entation selectivity [4], [5], [12]. There is also an alternative of
the 2-D analytic signal—due to Bülow and Sommer [10]—that
starts with the same separable Hilbert-transform constituents,
but combines them into four “quadrature” components that are
manipulated using a more sophisticated quaternion algebra. The
transfer of this concept to the wavelet domain leads the dual-tree
quaternion wavelet transform [13], which is well suited for the
coherent processing of relative positional information.

The third generalization of the analytic signal—called the
monogenic signal—was introduced by Felsberg and Sommer in
2001 [11]. Its distinguishing property is that the underlying fea-
ture extraction process (phase, amplitude and orientation esti-
mation) is truly rotation-invariant which explains its success for
image analysis. The method is build around the Riesz transform
which is the vector-valued extension of the Hilbert transform
favored by mathematicans [14]. To make an analogy, the Riesz
transform is to the Hilbert transform what the gradient is to the
derivative operator. The image-processing applications of the
monogenic signal are numerous: they include contour detection
and local structure analysis [15], [16]; stereo, motion estimation,
and image registration [17], [18]; as well as image segmentation
and phase-contrast imaging [19]. The monogenic signal is also
closely linked to the spiral quadrature phase transform in optics
which constitutes a powerful tool for the processing of fringe
patterns and the demodulation of interferograms [20]–[22]. Re-
cently, Metikas and Olhede have transposed the approach to the

1The Hilbert transform can be interpreted as the anti-symmetric (fractional)
derivative of order 0, while the identity is the symmetric derivative of order 0.
Likewise, we may view the Riesz transform, which is central to this work, as
the (fractional) gradient of order 0.
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wavelet-domain, albeit within the framework of the continuous
wavelet transform which is an overly-redundant representation
[23]. In practice, the monogenic analysis is often performed on
some bandpass-filtered versions of the input signal which also
leads to the idea of multiresolution [15], [24]. Our goal in this
paper is to fill the gap by presenting the minimally-redundant
wavelet counterpart of Felsberg’s monogenic signal representa-
tion. The nontrivial aspect here is that the multiscale versions
of the signal are critically sampled and that the scheme is fully
reversible (exact reconstruction property).2

The main features of the proposed “Riesz–Laplace” wavelet
decomposition are as follows.

• The wavelet transform has three monogenic components
for any scale/location index.

• The primary mother analysis wavelet is Laplacian-like and
essentially isotropic, while the two others are the compo-
nents of the Riesz transform of the former. In our formu-
lation, the two Riesz wavelets are combined into a single
complex transform.

• The three wavelet components give access to the local
orientation—that is, the dominant orientation of image
features in a local neighborhood—as well as to the key
AM/FM parameters in the preferred orientation: ampli-
tude, phase, and instantaneous frequency. These latter
parameters are specific to the monogenic formalism and
are not accessible in a conventional wavelet transform.

• The monogenic wavelet analysis is essentially rotation-in-
variant because of: 1) the isotropy of the mother wavelet,
and 2) the fact that the Riesz transform is steerable.

• The wavelet transform has a fast filterbank algorithm. In
fact, the decomposition involves the concatenation of two
wavelet bases of , the second of which is complex-
valued.

The paper is organized as follows. In Section II, we review
the key properties of the complex Riesz transform, and reinter-
pret Felsberg’s monogenic signal using the directional Hilbert
transform; we also present a more robust, tensor-based esti-
mation of the local orientation. In Section III, we use the in-
variance properties of the complex Riesz operator to construct
a new complex wavelet basis of through the unitary
mapping of a primary real-valued wavelet transform. Our pri-
mary wavelet basis involves a single Mexican-hat-like mother
wavelet. It is specified within a polyharmonic spline framework
that forces the wavelet to replicate the isotropic behavior of the
(fractional) Laplacian. This ensures that the secondary com-
plex wavelet, which is the Riesz transform of the former, is
steerable. In Section IV, we propose to use the so-defined pair
of Riesz–Laplace wavelet transforms to specify a multiresolu-
tion monogenic signal analysis. We also show how to extract
wavelet-domain information that characterizes the local struc-
ture of the image (orientation, coherency), as well as its modu-
lation/localization properties (amplitude, phase and spatial fre-
quency). In Section V, we propose two simple solutions for im-
proving the shift and rotation-invariance of the decomposition.

2While this paper was under review, the authors became aware of the work
of Held et al. that introduces a similar construction based on isotropic wavelet
frames in � � � [25]; in the process, they also provide a hypercomplex gen-
eralization of the monogenic signal for dimensions higher than two.

We illustrate our method with concrete examples of wavelet-do-
main monogenic signal analyses, including a novel application
of wavelets to coherent optical imaging.

II. RIESZ TRANSFORM AND THE MONOGENIC SIGNAL

We start with a brief review of the Hilbert transform and the
analytic signal formalism and then proceed with the extension
of those concepts to two dimensions. In particular, we present
an alternative formulation of Feldberg’s monogenic signal
representation that rests upon a “complexified” version of the
Riesz transform which is due to Larkin [21]. This operator has
a number of remarkable of properties that will be exploited in
our construction.

A. Hilbert Transform

The 1-D Hilbert transform is the linear, shift-invariant op-
erator that maps all 1-D cosine functions into their corre-
sponding sine functions. It is an allpass filter that is character-
ized by the transfer function .
Its impulse response (in the sense of distributions) is

. Note that is neither in nor in due to
the singularity at the origin. The other important mathematical
feature is the slow decay of which implies that the Hilbert
transform is a nonlocal operator; in particular, it will gener-
ally map compactly supported functions into noncompactly sup-
ported ones.

The Hilbert transform plays a central role in the analytic
signal formalism which is a powerful tool for AM/FM analysis.
Given a real valued 1-D signal , one defines the complex
analytic signal

(1)

The advantage of this representation is that it allows
one to retrieve the time-varying amplitude and instan-
taneous frequency of an AM/FM signal of the form

, where and
are slowly-varying. Specifically, and

.

B. Riesz Transform

The Riesz transform is the natural multidimensional exten-
sion of the Hilbert transform [14]. It is the scalar-to-vector signal
transformation whose frequency response is . In 2-D,
which is the case of interest here, it can be expressed as

(2)

where with is the input signal, and where
the filters and are characterized by the 2-D frequency
responses and
with . By using the well-known property that

and performing a partial dif-
ferentiation with respect to or , we readily derive the
corresponding impulse responses and

.
For the present work, we have chosen to work with a “com-

plexified” version of the Riesz transform that combines the two



2404 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009

Riesz components into a single complex signal; it was intro-
duced by Larkin in optics under the name of the spiral phase
quadrature transform [20], [21]. The corresponding definition
of the 2-D complex Riesz operator is

(3)

where is the 2-D Fourier trans-
form of . The equivalent space-domain formulation is

(4)

or, equivalently, , in accordance with
(2). Note that this operator defines an allpass filter and that
its impulse response is anti-symmetric:

.

C. Properties of the Complex Riesz Operator

We now present and discuss the key properties of [14],
[20].

Property 1 (Invariances): The complex Riesz operator is
both translation- and scale-invariant

The translation invariance directly follows from the defini-
tion while the scale-invariance is easily verified in the Fourier
domain.

Property 2 (Steerability): The impulse response of the Riesz
transform satisfies the rotation-covariance relation

where is the matrix that implements a

spatial rotation by the angle .
This is established in the Fourier domain by showing that

.
The above result means that the Riesz transform can be

rotated by simple multiplication with a complex number. An
equivalent interpretation is that the component filters of the
Riesz operator form a steerable3 filterbank in the sense defined
by Freeman and Adelson [26]. This becomes most apparent
when we link the operator to the following directional version
of the Hilbert transform

(5)

whose impulse response corresponds to the rotated version of
. Note that the association between the

Riesz and the directional Hilbert transforms is essentially the

3Steerability designates the property of being able to synthesize the response
of any rotated version of a filter through an appropriate linear combination of
basis functions.

same as the link between the gradient and the directional deriva-
tive (more on this later).

It is also instructive to determine the Riesz transform of a
pure cosine function of frequency .
A simple Fourier-domain calculation yields

We can then apply (5) to recover a pure sine wave by steering
the directional Hilbert transform in the appropriate direction

This desirable “quadrature” behavior—as Larkin calls it
[20]—follows from the fact that the central cut of the fre-
quency response of along the direction perfectly
replicates the behavior of the 1-D Hilbert transform:

. The only limitation of
the technique is that the ideal Hilbert-transform-like behavior
falls off like , which calls for a precise adjustment
of the analysis direction .

Note that the above properties can also be stated using the
more conventional vector formulation of the Riesz transform
and that they are transposable to higher dimensions [14]. This
is not so for the final one which is truly specific to the present
2-D complex formulation and central to our argumentation (cf.
Section III-A).

Property 3 (Unitary Transform): The complex Riesz
transform is a unitary mapping from into
(Lebesgue’s space of 2-D complex-valued finite energy
functions).

This is equivalent to the property which is
obviously satisfied. Thus, the adjoint of the Riesz operator is
specified by

(6)

with the property that .

D. Monogenic Signal and Directional Hilbert Analysis

Given a 2-D signal , Felsberg and Sommer de-
fine the three-component monogenic signal

(7)

The local amplitude of the signal is given by
, while its local orientation and instantaneous

phase are specified by the following relations:

(8)

As an alternative to the elaborate quaternion formalism
proposed by Felsberg and Sommer, we prefer to view the
monogenic signal analysis as a directional transposition of
the 1-D analytic signal analysis (1). Specifically, we define

and interpret this quantity as the max-
imum response of the directional Hilbert transform operator;
i.e., .
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This maximum response occurs in the direction specified
by , as a direct con-
sequence of (5). Next, we consider the complex variable

, which is then treated
as if it was a 1-D entity. In particular, we recover the instanta-
neous amplitude and phase
of the signal along the direction . Likewise, we esti-
mate the instantaneous frequency along the direction by

where and denote the directional
derivative and gradient operators, respectively.

The conceptual advantage of viewing the monogenic
signal analysis this way is that one can easily extend
it to any other direction by taking

. In particular, we
may select a direction of analysis that is associated with an area
of interest, rather than a point location. This is justifiable when
the signal is locally coherent and may be a good strategy for
adding robustness to the orientation determination.

E. Improved Tensor-Based Estimation of the Local Orientation

The practical scheme that we propose is inspired by the
structure tensor formalism [27]. In accordance with Fels-
berg’s monogenic signal analysis, we select the orientation
that maximizes , but instead of doing it pointwise, we
optimize the response over a local neighborhood specified by
a symmetric, positive weighting function
centered on the current position. Specifically, we determine the
local orientation at by solving the optimization problem

To simplify the derivation, we introduce the weighted inner-
product

and rewrite the criterion to maximize as

where is the 2 2 symmetric matrix whose entries are
given by

with . Because of the underlying inner-product
structure, is guaranteed to be positive-definite; in fact, it
is the Riesz-transform counterpart of the local structure tensor
which is build around the gradient. The determination of the ori-
entation, therefore, amounts to maximizing the quadratic form

under the constraint , which is a classical
eigenvalue problem. The optimal direction is specified by the
eigenvector corresponding to the largest eigenvalue of

. This eigenvalue gives the magnitude of the maximum re-
sponse. By combining it with the smaller eigenvalue, we obtain
a coherency index

which provides us with a precious indication of the degree of di-
rectionality of the local neighborhood. The directional Hilbert
transform analysis will obviously perform best when the local
neighborhood has a structure that is predominantly 1-D (i.e.,

), which suggests using the coherency as a general re-
liability index.

In this paper, we will go one step further by transfering these
notions to the wavelet domain, which essentially amounts to
performing a directional Hilbert analysis on bandpass-filtered
(and critically-sampled) versions of the signal. The remarkable
aspect is that this can be done in a stable, reversible way using
bona fide wavelet bases.

III. COMPLEX RIESZ–LAPLACE WAVELETS

Our method of construction is simple conceptually. We start
with a wavelet basis that is essentially isotropic and then use the
unitary Riesz transform mapping to construct a corresponding
complex steerable wavelet basis. The technical difficulty is
to specify a good primary decomposition that replicates the
isotropic behavior of the Laplace operator; we show that this
can be done using polyharmonic splines.

A. General Method for Constructing Complex Wavelet Bases

The interesting consequence of Property 3 is that the complex
Riesz operator will automatically map any basis of into
another one. Indeed, we have

(9)

What is of even greater interest to us is that it will transform
any wavelet basis into another complex one, thanks to the trans-
lation- and scale-invariance properties. Specifically, let us con-
sider a dual pair of real-valued wavelets and that generate
a nonseparable biorthogonal basis of such that

(10)

with the short-hand notation . Then,
the complex wavelets and also form a
biorthogonal pair with the property that

The latter expansion is obtained by considering the complex
signal where the real-valued functions
and are both decomposed according to (10) and by making
use of the unitary property (9). A crucial ingredient for this con-
struction is Property 1, which ensures that where

.
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If, in addition, the real wavelets or are isotropic, then
we end up with a decomposition that is steerable and, therefore,
rotation-invariant, thanks to Property 2. Indeed, we can use (5)
to rotate the wavelet corresponding to the real part of
to any desired orientation:

(11)

where the right-hand side of the equality is valid provided that
the initial wavelet is isotropic. The same ar-
gument obviously also holds if we substitute by its adjoint

.
While this complex-wavelet construction technique looks

straightforward, at least formally, there are some technical dif-
ficulties associated with the specification of the corresponding
complex multiresolution analysis of because the Riesz
operator will not map a scaling function into another one; in
particular, it will destroy the partition of unity and induce some
delocalization due to the Fourier-domain singularity at the
origin (suppression of the DC component). Fortunately for us,
its effect is much less damaging on the wavelet side because of
their vanishing moment property which tempers the singularity
up to the order of the transform.

B. Fractional Differential and Integral Operators

The fractional Laplacian with is the isotropic
differential operator of order whose Fourier-domain defini-
tion in the sense of distributions is

(12)

For , it is a purely local operator that is propor-
tional to the classical -fold Laplacian. Otherwise, its effect is
nonlocal and described by the following distributional impulse
response (cf. [28])

(13)

where is the number of dimensions and
is an appropriate normaliza-

tion constant; is Euler’s gamma function.
Interestingly, the Fourier transform pair (13) is also valid for
negative provided that is noninteger; other-
wise, the left-hand side needs to be replaced by a term that is
proportional to with . This
suggests extending the definition of the fractional Laplacian to
negative orders as well, which leads to a fractional integral-like
behavior. The so-defined family of fractional operators satisfies
the composition rule which
follows from their Fourier-domain definition, with the conven-
tion that . Note that the fractional integral

with is well-defined only for functions (or
distributions) whose moments up to order are zero, due
to the singularity of the frequency response at the origin.

The operators and are of special rele-
vance because they allow us to make a direct link between the

Riesz transform and the complex-gradient (or Wirtinger) oper-
ator. Specifically, we have that

(14)

where the first equality is trivially checked in the Fourier do-
main. The converse relation is

(15)

where we are assuming that is zero-mean to avoid any
ill-posedness problem. The latter formula allows us to inter-
pret the Riesz transform as a smoothed version of the image
gradient. Interestingly, the underlying smoothing kernel, which
corresponds to a radial filtering with , is the same as
the one encountered in tomography when the reconstruction
is performed by simple backprojection [29], [30]. This points
towards a mathematical connection between the Radon and
Riesz transforms, which is discussed in [11]; recently, Wietzke
and Sommer have exploited this link to derive higher-order
signal descriptors by iterating the transform [31].

The directional versions of relations (14) and (14) are

(16)

(17)

where is the derivative of along the direction
. This is consistent with the 1-D interpretation

of the Hilbert transform being a lowpass-filtered version of the
derivative operator.

C. Polyharmonic Splines

The polyharmonic splines are the spline functions associated
with the fractional Laplacian operators. To introduce them, we
consider the cardinal setting where the spline knots are on the
cartesian grid .

Definition 1: The continuously-defined function
is a cardinal polyharmonic spline of order iff. (cf.

[32])

where is the 2-D Dirac distribution.
The interpretation is that these splines have singularities of

order at the integers and that they have one degree of freedom
per grid point. We can formally integrate the above equation
by applying the inverse operator whose impulse re-
sponse is denoted by . This leads to the following charac-
terization of the space of cardinal polyharmonic splines:
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which involves the integer shifts of the Green function of the
defining operator; i.e., . A more practical
Shannon-like representation of these splines is

where are the integer samples of and
where is the unique cardinal polyharmonic spline inter-
polator such that (Kronecker delta). This basis
function is best characterized by its Fourier transform

(18)

It is endowed with the following remarkable properties which
can all be inferred from the above definition [32].

• is a polyharmonic spline of order . This simply follows
from the fact that [the Fourier transform of

] is -periodic.
• is interpolating, which is equivalent to

(through Poisson’s summation formula).
• Its Fourier transform is bounded and

decaying away from the origin like . In partic-
ular, this implies that has up to derivatives in the

-sense.
• generates a Riesz4 basis for the space of cardinal

polyharmonic splines provided that the order
[33]–[35].

• has approximation order and has the ability to in-
terpolate all polynomials of total degree less than ([36],
Chapter 4). This follows from the property that has
zeros of order at (Strang–Fix
conditions of order ).

• decays like when is noneven
([36], Theorem 4.3), and exponentially-fast otherwise

[32], [37].
• as , meaning that it has

a th order of flatness at the origin (similar to a classical
Butterworth filter of order ).

• is symmetric and converges to the separable sinc
interpolator as the order goes to infinity [33].

D. Laplacian-Like Wavelets

Following Bacchelli et al. [35], we define the symmetric,
Laplacian-like spline wavelet of (fractional) order

(19)

where is the polyharmonic spline interpolator of order
[cf. (17)] and where is a given admissible 2-D dilation

4A Riesz basis is a fundamental concept in functional analysis that was in-
troduced by the Hungarian mathematician Frigyes Riesz; it has not much to do
with the Riesz transform that is due to Marcel Riesz (Frigyes’ younger brother),
except perhaps that the complex version of the Riesz transform maps a Riesz
basis into another one.

(or subsampling) matrix (e.g., cartesian or quincunx). We then
specify the basis functions

(20)

which are dilated (scale index ) and translated versions (space
index ) of one another. For a given , these functions are
centered on the rescaled lattice which also corre-
sponds to the location of the spline knots. Observe that the
corresponding lattice is an upsampled version of the canonical
grid which is included as a subset.

Using such (normalized) wavelets, we specify the wavelet
subspace at resolution

(21)

which involves all wavelets at scale except the ones that are
located on the canonical lattice . Note that this is a special
instance of a nonseparable wavelet construction in which the
usual wavelet channels at scale involve
basis functions that are all identical up to a shift. Likewise, we
introduce the scaling functions at resolution

and specify the corresponding approximation space

(22)

which is the subspace of polyharmonic splines with knots on the
grid at resolution : .

The remarkable property of this construction is that the sub-
spaces and are orthogonal and that their direct sum yields
the finer resolution space: ; that is, the subspace
of polyharmonic splines of order with knots on the lattice

. This is best understood by focusing on the wavelets
at resolution .

Proposition 1: The wavelets
are cardinal poly-

harmonic splines of order (i.e., with knots on the lattice ).
Moreover, they are orthogonal to whenever .

Proof: To establish the first part, we simply evaluate the
Fourier transform of

which is clearly -periodic. This proves that is a car-
dinal polyharmonic spline of order . For the second part, we
use the property that
where is the Green function of . We then perform
the inner product manipulation
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Since is interpolating and is necessarily integer,
the expression vanishes except when .

This combined with the fact that the polyharmonic splines
for provide a valid multiresolution analysis of
yields the theorem below, which is a slight extension of previ-
ously published results. Specifically, Bacchelli et al. [35], [38]
investigated the dyadic, nonfractional case (i.e., and

), while Van De Ville et al. [34] fully characterized the
underlying fractional wavelet bases, but in the quincunx case
only (i.e., ).

Theorem 1: The polyharmonic spline wavelet
given by (18) generates a Riesz basis for . Moreover,

yields a semi-orthogonal basis of
for all (fractional) orders .

The direct implication is that any function has
the following stable wavelet decompositions:

(23)

which are termed primal or dual depending on the type of
reconstruction wavelets. The complementary wavelet functions

are the unique duals of in the sense that they
satisfy the biorthogonality property:
with . While the primal wavelets are generated
from a single template, there are distinct generators for
the dual ones, as is usually the case for any general multidimen-
sional wavelet construction with . Structurally, the
wavelet decomposition/reconstruction algorithm corresponds
to an -channel perfect reconstruction filterbank. The dual
wavelets are defined implicitly through the perfect reconstruc-
tion conditions in Mallat’s fast filterbank algorithm [34], [35].

E. Complex, Riesz–Laplace Wavelet Basis of

Having set the mathematical foundations, we can now
apply the (adjoint) Riesz transform to the above polyharmonic
wavelet basis to obtain a bona fide complex transform. The cor-
responding complex, Riesz–Laplace wavelet of order
is given by

(24)

The reason for considering instead of will become clearer
in Section IV; it does not fundamentally change anything, ex-
cept for the sign of the real part of the transform. By referring
back to the argument in Section III-A, we immediately obtain
the following corollary of Theorem 1.

Corollary 1: The complex Riesz–Laplace wavelet
given by (23) generates a Riesz basis for

. Moreover,
yields

a complex Riesz basis of provided that .
Interestingly, these wavelets are special instances (up to

some proportionality factor) of the complex rotation-covariant
wavelets that we had identified and characterized mathemati-
cally in previous work [39], [40]. Our earlier formulation did

not involve the Riesz transform but rather a combination of
iterated Laplace and complex gradient (or Wirtinger) operators
of the form

(25)

The link with (23) is obtained by making use of (14) which
yields the equivalence with the case

The advantage of the present formulation is that we have identi-
fied the unitary mapping that transforms the complex wavelets
into the polyharmonic ones (and vice versa) which simplifies
the theory considerably. In particular, this allows us to step
through the mathematical properties of the polyharmonic spline
wavelets and to transpose them almost literally to the complex
case. The argument rests upon the invariance properties of the
complex Riesz transform which preserve the wavelet character
of the transform, as well as the structure of the underlying
Gram matrix (inner products between basis functions).

Property 4: (Semi-Orthogonality): The polyharmonic spline
and complex Riesz–Laplace wavelets are orthogonal across
scales

This follows from Proposition 1.
Property 5: (Smoothness): The critical Sobolev exponent of

the polyharmonic spline and complex Riesz–Laplace wavelets
of order is .

The smoothness (or degree of differentiability) of a wavelet
is often characterized by its inclusion in the Sobolev spaces

which repre-
sent the class of functions with derivatives in the -sense.
We know that for by con-
struction, since it is a polyharmonic spline of order . is
included in the same Sobolev spaces as a direct consequence
of the norm-preservation property of the complex Riesz trans-
form; in particular, and

.
Property 6: (Operator Like-Behavior): The polyharmonic

spline wavelet transform implements a multiscale version of the
Laplace operator

where the smoothing kernel is , while the
Riesz–Laplace wavelet transform does the same for the Riesz
transform of the input signal



UNSER et al.: MULTIRESOLUTION MONOGENIC SIGNAL ANALYSIS 2409

Property 7: The polyharmonic spline and complex
Riesz–Laplace wavelet transforms with parameter have
approximation order . Specifically, this means that the error
of the scale-truncated approximation of a function at
resolution decays like the th power of that scale

where is a constant. As , the approximation error
tends to zero which proves that the both wavelet representations
are dense in .

This is a standard approximation-theoretic result for the poly-
harmonic splines [32], [34], [35]. It carries over to the complex
Riesz wavelets by considering the expansion of instead of
and by noting that all -norms in the above inequality remain
unchanged if we replace by or (unitary property).

Property 8: (Vanishing moments): The polyharmonic spline
and Riesz–Laplace wavelets of order have vanishing
moments.

The vanishing-moments property for the polyharmonic spline
wavelets follows from the fact that the interpolator satisfies
the Strang–Fix conditions of order (cf. Section III-C). In the
frequency domain, this translates into the vanishing of and
of all its partial derivatives up to order at the origin [41].
Applying the Riesz transform does not fundamentally affect this
behavior because the frequency response is also vanishing at the
origin. Another way to see this is to observe that
and , as a consequence
of the operator-like behavior in Property 6.

Property 9: (Fast Implementation): The polyharmonic spline
and complex Riesz–Laplace wavelet transforms are perfectly
reversible. They both have a fast filterbank implementation.

This latter aspect is further developed in Section V-B.

IV. MONOGENIC WAVELET ANALYSIS

Referring back to Section II-D, we now show how to take
advantage of the paired transforms to perform a wavelet-do-
main monogenic signal analysis. In essence, this amounts to per-
forming the monogenic analysis of the bandpass-filtered signals

where is the normal-
ized and rescaled polyharmonic spline wavelet at scale . Indeed,
since the primary (real-valued) analysis wavelet is sym-
metric, the relevant set of wavelet coefficients of the signal
can be expressed as

(26)

(27)

where and are the real and imaginary parts
of the complex-valued Riesz wavelet coefficients; the sam-
pling lattice at resolution is in accordance with
our wavelet definition (19). The above equations provide an
exact correspondence between the wavelet coefficient triples

and the sample values of
where is Felsberg’s monogenic signal, as defined by
(7). Concretely, this means that we can perform a full mul-
tiresolution monogenic signal analysis based on the above
wavelet-domain description of the signal.

There are two complementary aspects in this analysis that we
propose to handle separately: 1) the determination of the local
orientation, and 2) the Hilbert analysis along the preferential
orientation, which gives access to the local amplitude, phase and
frequency information. The main point is that we can determine
these quantities for each scale and location index .

A. Wavelet-Domain Orientation Analysis

In accordance with the scheme outlined in Section II-E, our
estimation of the orientation is based on the evaluation of the
structure matrix associated with the wavelet cell and
a given weighting sequence . The entries of this 2 2
symmetric matrix are given by

with . The estimation neighborhood is specified
by the weighting sequence , which is center-symmetric,
normalized and decreasing away from the
origin. It is chosen to be quite localized (e.g., Gaussian window
with ). The eigen-decomposition of this matrix yields
the three primary directional wavelet features.

• Orientation:

(28)

• Hilbert-transform energy:

(29)

• Coherency:

(30)

The angle gives the orientation along which the directional
Hilbert transform of the bandpass-filtered signal is maximum on
average within the local neighborhood specified by . The extent
of this response is measured by the Hilbert-transform energy.
The coherency quantifies the degree of directionality
of the signal over the neighborhood of interest. A value close
to one indicates that the structure is predominantly 1-D, which
reinforces the validity of the subsequent AM/FM analysis.

The local coherence hypothesis that is implicit in the analytic
signal formalism is more questionable when the eigenvalues

and are both large. This typically corresponds to the
signature of a localized isotropic image structure (peak or blob),
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Fig. 1. “Psychedelic Lena”: (a) “Lena” with two superimposed concentric spherical waves originating from the eyes; the propeller effect is due to the interference
of the two waves. (b) Its complex Riesz wavelet transform with � � �.

Fig. 2. Multiresolution directional analysis derived from the Riesz wavelet transform in Fig. 1(b) [the orientation is encoded in the hue channel]. (a) Pointwise
orientation. (b) Tensor-based orientation with Gaussian observation window. (c) Combined visualization of tensor-based features: orientation in hue, coherency in
saturation, and local Hilbert-transform energy in brightness.

or a corner, which may be identified using a Harris-like detector
[27], [42]. A possible wavelet-domain corner index is

where is an empirical constant in the range 0.04–0.5.
Note that a pointwise analysis can be performed by selecting

the weighting sequence to be a unit impulse. In that case,
the Hilbert-transform energy and orientation are given by the
square modulus and the phase of , respectively; the
coherency and corner index are then meaningless because the
rank of is necessarily one.

An example of directional wavelet analysis is presented in
Figs. 1–2, using color coding. The scale progression is dyadic
with a slightly redundant wavelet sampling (i.e., in-
stead of ); the primary analysis wavelet is a Mex-
ican-hat-like polyharmonic spline of order , as specified
in Section V-A. The intent here is to demonstrate the difference
between a pointwise orientation estimation with
[cf. Fig. 2(a)] and a tensor-based analysis where is a fixed

Gaussian window with [cf. Fig. 2(b)]. The latter orien-
tation map (wrapped within the interval ) is less noisy; it
is more robust and in better agreement with our visual percep-
tion of local directionality. Finally, in Fig. 2(c), we have com-
bined the three primary directional wavelet features into a single
image using the HSB channels: hue for orientation, saturation
for squared coherency, and brightness for energy. Interestingly,
the wave components, which have most of their energy in the
second subband (scale ), are clearly visible at that scale.

B. Wavelet-Domain AM/FM Analysis

The idea is now to perform an analytic signal analysis along
the direction provided by the orientation analysis and encoded
by the unit vector . The corresponding direc-
tional Hilbert component is given by

(31)



UNSER et al.: MULTIRESOLUTION MONOGENIC SIGNAL ANALYSIS 2411

This leads to the specification of the analytical wavelet trans-
form: , which is locally oriented in
the preferential direction . The wavelet-domain amplitude and
local phase are computed as

(32)

(33)

where is given by (29) with specified by (26).
Recalling that the wavelet analysis at scale is equivalent to a

bandpass filtering of the input signal, we may, therefore, use the
wavelet amplitude to extract a putative AM signal component
in the corresponding wavelet subband. The other useful infor-
mation (FM) is carried by the instantaneous frequency (or wave
number) that corresponds to the spatial derivative of in the di-
rection . After some algebraic manipulations (cf. Appendix I),
we obtain an explicit form for the instantaneous frequency:

(34)

which has the advantage of avoiding the use of the func-
tion as well as the problems associated with phase-wrapping.
The additional required quantities are the spatial derivatives of

and . These are computed economically by considering
the two auxiliary Riesz–Laplace wavelets and of re-
duced order , which are defined as

The first is real, symmetric, and is designed to calculate the
Laplacian-like term , while
the second is complex and is associated with the complex-gra-
dient term . The main point
is that these additional “derivative” wavelet transforms can be
calculated using essentially the same filterbank algorithm with
an appropriate modification of the analysis filters. This means
that the cost for obtaining an instantaneous frequency estimate
is about twice that of the original monogenic wavelet decom-
position. The advantage of the present formulation is that the
frequency formula (34) is exact and that it does not involve any
finite difference approximation of the spatial derivatives.

V. PRACTICAL IMPLEMENTATION AND RESULTS

We conclude the presentation by discussing some important
practical issues and by presenting concrete analysis examples.

A. Improving the Invariance Properties

The monogenic wavelet transform that was introduced so far
is mathematically elegant because it is tied to a basis. However,
there is a price to pay for this property which is some lack of
invariance. We will now show how to bypass this limitation.

1) Shift Invariance: Eventhough it is build around a single
wavelet, the wavelet analysis of Section III is somewhat awk-
ward to interpret because the transform is missing the wavelets
at the subsampling locations corresponding to the next coarser
grid; this is expressed mathematically in Theorem 1 by having
the spatial wavelet index restricted to the set . For
image analysis, it is tempting to include the “missing” shifts
as well (i.e., consider the complete cartesian sampling set ),
and to rearrange the wavelet coefficients into a single, image-
like subband at scale . This is equivalent to not subsampling
the wavelet subband after digital filtering. For instance, in the
dyadic case where , this description is associated with
the enlarged analysis spaces

(35)

where is the generating wavelet of order . The corresponding
notation for the (nonsubsampled) wavelet coefficients at scale

is (as before) and all previous formulas are still appli-
cable with spanning over instead of . The same
arrangement is also used for the Riesz branch of the transform.
This extension improves the shift-invariance of the decompo-
sition and its cost is moderate (total redundancy factor of 1/3).
With this sampling arrangement, the overall redundancy of the
monogenic Riesz–Laplace transform is

.
2) Rotation Invariance and Steerability: The other weak

point is that the smoothing kernel of our defining wavelet
is not isotropic. In fact, it is sinc-like since it is an interpolating
function. We propose to exploit the degrees of freedom pro-
vided by the enlarged wavelet spaces to tune the kernel’s
shape to make the wavelet more nearly isotropic. Our solution
is to select the “isotropic” polyharmonic B-spline as our
new smoothing kernel [34]. This is justified by the fact that this
B-spline spans the same spline space as , with the advantage
that is is better localized and that it converges to a Gaussian
as increases ([34], Proposition 2). The frequency-domain
formula for our new smoothing kernel is

(36)

where is the “most-isotropic” discrete Laplacian filter

(37)

The corresponding mother wavelet to be used in replacement of
the preceding one is , while the
whole monogenic analysis procedure remains the same as de-
scribed earlier. This is entirely justifiable mathematically since
the modified Mexican-hat-like wavelet also spans the analysis
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Fig. 3. Improving wavelet isotropy: (a) Primary polyharmonic spline wavelet
basis generator ������ � ���� � ������ with � � �. (b) its Mexican-hat-
like replacement � ����� � ���� � ������, which spans the same space
while being essentially isotropic.

Fig. 4. Summary of relevant basis functions for the monogenic wavelet trans-
form with � � �. The real and imaginary parts of the complex Riesz wavelet
are 90 -rotated versions of each other.

spaces . Concretely, this wavelet substitution amounts to a
simple change of wavelet filters in the algorithm in a manner that
is fully reversible and transparent to the user. This simple adap-
tation results into a dramatic improvement in wavelet isotropy,
as illustrated in Fig. 3. The effect is equally helpful on the Riesz
wavelet for it substantially improves the steerability of the trans-
form; this is essential for the feature extraction process to be ro-
tation-invariant.

A global summary and visualization of the relevant basis
functions for monogenic wavelet analysis is provided in Fig. 4.
The important point is that all basis functions are related to
the smoothing kernel via some operator transforma-
tions (Laplacian and Riesz transform) that are truly scale and
rotation-invariant. This means that we have a full control of
isotropy (and steerability) through the shaping of the smoothing
kernel. In the proposed B-spline scenario, this kernel is nearly
isotropic and closely resembles a Gaussian with standard
deviation .

The frequency responses of the analysis filterbank that imple-
ment the corresponding polyharmonic wavelet transform and its
Riesz counterpart are shown in Fig. 5(a) and (b), respectively.
The primary wavelet filters have a clear bandpass behavior and
their response is very nearly isotropic, especially in the lower
portion of the spectrum. The Riesz wavelet filters are directional
along the horizontal or vertical directions. Due to the underlying

Fig. 5. Frequency responses of the monogenic wavelet analysis filters: (a) Mex-
ican-hat-like wavelet �� ����� with � � �, (b) corresponding Riesz wavelet
� � �����. The scale � is decreasing vertically from � � � down to �	.

Fig. 6. Perfect reconstruction filterbank algorithm for the primary redundant
wavelet transform. The role of the subband regression module is to convert the
redundant wavelet representation into a nonredundant one described by the in-
termediate wavelet coefficient vector � .

symmetries, the responses associated with the real and imagi-
nary part of the transform are 90 -rotated versions of each other
(in both space and frequency domains).

B. Implementation

The monogenic wavelet transform is implemented efficiently
by running two perfect-reconstruction filterbanks in parallel:
one for the primary (Mexican-hat-like) polyharmonic wavelet
transform, and one for its Riesz counterpart which requires the
use of complex arithmetics. We will now briefly describe the
implementation of the primary wavelet transform, which corre-
sponds to the block diagram in Fig. 6. The key components are
as follows.

• The analysis part that consist of a lowpass channel (filter
) and a single wavelet channel (highpass filter
).

• A reconstruction stage that implements the dual frame
operator. It includes a conventional lowpass channel
(up-sampling and filtering by ), a regression module
which produces a critically-sampled output, and, finally,
a standard wavelet reconstruction module (upsampling
and multichannel filtering by ) whose input is the

-component wavelet coefficient vector with
.



UNSER et al.: MULTIRESOLUTION MONOGENIC SIGNAL ANALYSIS 2413

The nonstandard aspect of the scheme is that there is no
downsampling in the wavelet analysis channel, which produces
a slightly redundant transform. The redundancy is removed
during the reconstruction process by the subband regression
module which outputs a sequence of critically-sampled wavelet
coefficients that is maximally consistent with in
the least-squares sense. In effect, the algorithm projects the
redundant wavelet analysis onto a nonredundant system (stan-
dard wavelet basis). Here, we will only specify the analysis
part of the algorithm which is sufficient to characterize the
process. For the synthesis part, we refer the reader to [43]
which contains all the details for designing the complementary
set of regression-based reconstruction filters.

Since we want the isotropic/monogenic wavelets to be ap-
plied on the analysis side, we choose to represent the successive
multiresolution approximations of the input signal in terms of
the dual basis function

We recall that is the unique (biorthogonal) polyhar-
monic spline such that .

The algorithm is initialized by assuming that the input
signal is bandlimited; i.e., .
The fine-scale coefficient sequence is, therefore, given
by where

is the optimal projection pre-
filter. The coarsening part of the decomposition is achieved by
successive filtering and down-sampling: .
The (symmetric) lowpass filter is specified by the two-scale
relation for the polyharmonic B-spline

and its frequency response is found by inserting the formula for
provided by (34)

(38)

where is the discrete Laplacian filter defined by (35).
Finally, the wavelet coefficients are obtained by digital filtering
of the ’s (without down-sampling)

The wavelet analysis filter is determined from the following
B-spline representation of the isotropic wavelet

(39)

Its frequency response is obtained by taking the Fourier trans-
form of this equation, which yields

(40)

The decomposition algorithm for the Riesz counterpart of the
transform is completely analogous and the process is perfectly
reversible in both cases. Since the analysis and synthesis filters
are nonseparable and specified by their frequency responses, we
have chosen to implement all filtering and re-sampling opera-
tions in the Fourier domain assuming periodic boundary condi-
tions. Our wavelet code uses FFTs; it is generic and quite effi-
cient computationally. Matlab and JAVA (e.g., ImageJ plugin)
versions of these transforms are available on the web at http://
bigwww.epfl.ch/demo/monogenic/.

C. Wavelets Versus Scale Space

Wavelets and scale space methods are distinct approaches
to multiscale signal analysis; they both have their proponents
and specialized conferences devoted to them. Interestingly, we
can make a connection between the present approach and the

-scale space of Duits, Felsberg and collaborators because both
representations are tightly coupled to the fractional Laplacian
operator [15], [44]. Specifically, these authors perform a mono-
genic analysis in a scale space that is governed by the fractional
diffusion equation

with and the initial condition . The
corresponding monogenic scale-space flow is obtained by con-
volving the initial signal and its Riesz transform with a series
of -stable smoothing kernels whose width increases
with the scale . For , the smoothing function is the
Poisson kernel ,
while it is a Gaussian with a variance proportional to for

. Therefore, apart from the Laplacian factor in (37), the
scale-space version of the monogenic signal is qualitatively
similar to the monogenic wavelet transform developed in this
paper. However, there are four fundamental differences, which
are at the very heart of wavelet theory:

a) the proposed wavelet transform uses subsampling and is
a much less redundant representation;

b) it is a fully reversible representation;
c) it is a Hilbert-space method that involves a series of em-

bedded approximation spaces;
d) the smoothing kernels at different scales are dyadic dila-

tions of a single reference template (B-spline).
As a result, the proposed wavelet scheme is much more

efficient computationally and storage-wise. The Poisson scale
space, on the other hand, offers a more progressive scale pro-
gression; it is perfectly isotropic and predominantly lowpass
[15].
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Fig. 7. Example of wavelet-domain monogenic image analysis. Left: Input image (synthetic zoneplate); center: wavelet-domain wavenumber estimation with
calibrated frequency scale. Right: Tensor-based orientation (Hue channel).

Fig. 8. Example of wavelet-domain amplitude demodulation. (a) Input image (modulated “cameraman”). (b) Wavelet-domain amplitude estimation. (c) Tensor-
based orientation (Hue channel).

D. Experimental Results

All results presented here were obtained by performing a
three-component monogenic Riesz–Laplace transform with

using the “improved” Mexican-hat-like analysis wavelet
(Laplacian of a B-spline) described in Section V-A. We system-
atically used a tensor-based estimation of the orientation with a
fixed Gaussian neighborhood window . The displayed
orientation is wrapped within the interval and encoded
in the hue channel; this color coding is exemplified with the
circular pattern in Fig. 7, which contains a full 360-degree
range of orientations.

The example in Fig. 8 illustrates the ability of the mono-
genic wavelet transform to recover amplitude-modulated sig-
nals when the frequency/phase of the carrier is unknown and/or
slowly-varying. The test signal was generated by multiplying
the standard “cameraman” image with a circular wave propa-
gating with constant frequency. We observe that the AM-en-
coded information is retrieved in the amplitude of the trans-
form and that the original image is identifiable down to the third
level of resolution. A remarkable aspect is the robustness of the
scheme with respect to scale, especially if one considers that
the wavelet channels are bandpass filtered. Likewise, the direc-

tion of the carrier is adequately captured by the wavelet orien-
tation. We also notice some ghosting effect in the orientation
map, which corresponds to the edges of the cameraman. The
best separation is achieved at the second level of the pyramid,
which yields the maximum amplitude response.

The synthetic chirp-like zoneplate image (cf. Fig. 7) was
generated specifically to test the validity of the wavelet-do-
main local frequency estimation algorithm provided by (32).
The orientation is properly extracted at all levels, as is ob-
vious from Fig. 7(c). More importantly, we verified that the
wavenumber was correctly estimated at all scales and loca-
tions: it is increasing linearly from the center outwards. Note
that the finer-scale frequency estimation fails in the center
of the image which is understandable since it is the region
where the attenuation effect of highpass wavelet filtering is
the strongest. In general, one should expect the reliability of a
given wavenumber estimate to improve as its value gets closer
to the center frequency of the corresponding wavelet band.

Fig. 9 provides another striking example of wavelet-domain
AM/FM analysis. The input picture Barbara contains several
textured objects (jeans, table cloth, etc.) which are segmented
out by the multiscale coherency analysis. Note how the peri-
odic structures give rise to near-constant white patches in the
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Fig. 9. Example of wavelet-domain coherence analysis. (a) 512� 512 Barbara; (b) wavelet-domain coherency map; (c) composite HSB display of results (Hue:
orientation, Saturation: coherency, Brightness: amplitude).

Fig. 10. Example of wavelet-domain amplitude demodulation. Left: Experimental digital holography micrograph; center: wavelet-domain amplitude estimation.
Right: Tensor-based orientation (Hue channel).

coherency map and to nicely saturated colored regions in the
composite orientation display. The crisper aspect of the latter is
due to its brightness being controlled by the wavelet amplitude;
this is a more local feature than the coherency which is defined
over a local neighborhood. The primary contours of the picture
are also properly detected in the multiscale maps.

The next example illustrates the applicability of the technique
to the processing of real-world interferometric data. The image
on the left of Fig. 10 was acquired using a digital holography
microscope. It is a hologram that results from the interference
between the wave reflected by the object to be imaged (a pat-
terned nano-structure) and a reference plane wave (or carrier)
[45]. The light intensity of the object can be reconstructed by
using an appropriate demodulation and filtering algorithm [46].
Fig. 10 illustrates the ability of the monogenic wavelet trans-
form to perform such a blind multiresolution reconstruction via
its wavelet amplitude. The orientation map indicates that the
carrier is a diagonally-oriented plane wave. We can also esti-
mate its frequency from the wavenumber map (data not shown)
which is essentially constant within the first three bands. Note
that the transform also separates out some artifactual lower-fre-
quency interferences that are superimposed onto the input signal
and partly visible as circular patterns. In the present case, these

components get transfered into the two lower resolution levels
of the pyramid; they are probably due to some dust particle in-
tersecting the optical path of the laser beam.

The final illustration is the multiresolution analysis of a fin-
gerprint image which contains oriented ridge-like structures (cf.
Fig. 11). At finer scale, the wavelet modulus acts as a contour
detector, while it eventually fills in the whole finger print area as
the scale gets coarser (level 3). The multiresolution orientation
map nicely captures the directionality of the underlying pattern;
it also gets smoother and less noisy with increasing scale. The
third level estimate is probably the one that looks the most satis-
factory from a visual point of view. For more advanced feature
extraction, we refer to the work of Larkin et al. which describes
a related phase-based framework for fingerprint analysis; it in-
cludes specific detectors for branch cuts, loops and delta struc-
tures [47].

VI. CONCLUSION

We have set the mathematical foundations of a monogenic
wavelet transform that gives access to the local orientation,
amplitude and phase information of a 2-D signal within a
proper multiresolution setting. The transform is build around
the monogenic extension of a polyharmonic spline wavelet
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Fig. 11. Example of wavelet-domain monogenic image analysis. Left: Original fingerprint image; center: wavelet-domain amplitude estimation. Right: Tensor-
based orientation (Hue channel).

basis of . The decomposition is reasonably fast, mod-
erately redundant (a factor 3 or 4, depending on the sampling
configuration), and fully reversible.

An important property is that the complex Riesz branch of
the transform, which is akin to a multiscale gradient, is steer-
able. We have shown that this decomposition can yield a new set
of tensor-based features (orientation, Hilbert-transform energy,
and coherency) that offer interesting perspectives for local ori-
entation, texture and structure analysis; this extraction process
is robust and essentially rotation-invariant. The latter property is
not fulfilled by the great majority of features obtained by con-
ventional separable wavelet processing.

The distinguishing aspect of the present decomposition,
when we compare it to the other currently-available complex or
quaternion wavelet transforms, is the presence of the Laplacian
branch of the transform, which yields the primary component
in the monogenic signal formalism. It essentially acts like
an isotropic filterbank which decomposes the signal into a
series nondirectional wavelet subbands. The complementary
role of the Riesz wavelets is to estimate the predominant local
orientation within the given band and to compute the corre-
sponding directional Hilbert transform through an appropriate
steering mechanism. The monogenic feature extraction process
ultimately gives access to the modulation parameters of the
signal: amplitude, phase and instantaneous frequency, which
are difficult to extract otherwise. Potential applications include
various type of coherent image analyses—in particular, the
processing of interferograms and fringe patterns—as well
as image enhancement and denoising since the transform is
reversible. More generally, one may build upon the important
body of work on the monogenic signal and take advantage of
the Riesz–Laplace transform for transposing some of these
methods to the wavelet domain, which may result in novel
algorithms.

APPENDIX I
DIRECTIONAL HILBERT ANALYSIS

The monogenic wavelet components are denoted by
. Our goal is to determine the amplitude , the

phase and the instantaneous frequency in the direction
specified by where is our local orientation
estimate—not necessarily equal to . To that
end, we first define

(41)

which is the Hilbert transform of in the direction . Next,
we introduce the complex signal , which is the di-
rectional counterpart of the analytic signal in 1-D. The ampli-
tude and phase information is encoded in the polar representa-
tion , which yields

The instantaneous frequency is obtained by taking the deriva-
tive of along the direction of analysis: . To get a more
practical formula, we first evaluate the phase gradient using the
property that

with the differential notation
. We obtain the directional derivative by taking the

inner product with , which gives

where is a symmetric matrix (analogous to

the Hessian) due to the properties of the Riesz transform. If we
now assume that the underlying signal is locally coherent (in the
sense that it has a 1-D structure along the direction , then
is of rank 1 and . This
leads to the simplified formula

(42)
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Thus, the critical ingredient for this determination is to provide
a numerical procedure for computing the derived quantities

and , which can be done in an efficient way
using two reduced-order wavelet transforms, as specified in the
text.
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