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Efficient Scalar Quantization of Exponential
and Laplacian Random Variables

Gary J. Sullivan, Member, IEEE

Abstract— This paper presents solutions to the entropy-
constrained scalar quantizer (ECSQ) design problem for two
sources commonly encountered in image and speech compression
applications: sources having the exponential and Laplacian
probability density functions. We use the memoryless property
of the exponential distribution to develop a new noniterative
algorithm for obtaining the optimal quantizer design. We show
how to obtain the optimal ECSQ either with or without an
additional constraint on the number of levels in the quantizer.
In contrast to prior methods, which require multidimensional
iterative solution of a large number of nonlinear equations,
the new method needs only a single sequence of solutions to
one-dimensional nonlinear equations (in some Laplacian cases,
one additional two-dimensional solution is needed). As a result,
the new method is orders of magnitude faster than prior ones.
We show that as the constraint on the number of levels in the
quantizer is relaxed, the optimal ECSQ becomes a uniform
threshold quantizer (UTQ) for exponential, but not for Laplacian
sources. We then further examine the performance of the UTQ
and optimal ECSQ, and also investigate some interesting
alternatives to the UTQ, including a uniform-reconstruction
quantizer (URQ) and a constant dead-zone ratio quantizer
(CDZRQ). :

Index Terms— Quantization, exponential random variables,
Laplacian random variables, Lagrange multiplier optimization,
entropy constraint.

I. INTRODUCTION

ONSIDERABLE attention has been focused on the de-
sign of optimal quantizers for sources encountered in
image, speech, and other compression applications. How-
ever, noniterative methods for designing optimal quantizers
for typical sources have been essentially nonexistent. Here
we introduce a method of solving such a problem for two
typical sources: exponential and Laplacian random variables.
Specifically, we consider scalar quantization, in which each
input random variable is separately mapped to its output ap-
proximation, as in conventional analog-to-digital conversion.
However, we concern ourselves not just with optimizing the
quantizer performance for a given number of possible output
values, but also with a limit on the information rate of the
quantizer as measured by its output entropy, resulting in an
entropy-constrained scalar quantizer (ECSQ).
A fast quantizer design method for the Laplacian source
was described by Nitadori [1], later independently derived
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by Lanfer [2], and discussed in [3], after other efforts us-
ing iterative multidimensional optimization [4]-[7]. Nitadori
used the memoryless property of exponential decay to obtain

. optimal quantizers from only a single sequence of solutions

to one-dimensional nonlinear equations. However, he did not
consider entropy-constrained quantization, and only consid-
ered the mean-square error distortion measure for optimization.
He also only considered quantizers having an even number
of levels, which implies having a decision threshold located
exactly at zero (so-called “mid-rise” quantizers). Lanfer’s
similar work also mentioned the ease with which the method
could be applied to quantizers having an odd number of
levels (so-called “mid-tread” quantizers). We generalize their
approach to obtain solutions incorporating entropy constraints
and general distortion measures, using the same memoryless
property to derive a fast method of optimal ECSQ design
for a general distortion measure. We also provide a new
formulation of Nitadori’s solution, describing the solution
using the Lambert W function.

Berger [8] considered entropy-constrained quantizers, and
noted that necessary conditions for ECSQ optimality were
fulfilled by certain quantizers having an infinite number of
levels and equal step widths, termed uniform-threshold quan-
tizers (UTQ). Such quantizers are, in fact, optimal for sources
having an exponential pdf, and the memoryless property is the
key to Berger’s observation as well. However, Berger noted
that these quantizers were not optimal for the Laplacian source,
as they fulfilled only necessary, but not sufficient conditions.
We show that even Berger’s best infinite-level quantizers
can be improved upon by careful consideration of the center
region of the Laplacian pdf. Berger also did not provide any
straightforward solution for quantizers having only a finite
number of levels, which we do provide here.

Other methods of designing optimized quantizers have
typically involved iterative refinement techniques for multi-
dimensional optimization [4]-[7], [9]-[11]. The only other
publication describing optimal ECSQ design without requiring
multidimensional optimization applied only to uniformly dis-
tributed random variables [10]. Thus this work describes the
first reasonably fast optimal ECSQ designs for sources that
are commonly encountered in practical quantization problems.
A preliminary description of the work which we report here
appeared in [12].

We begin by examining the general problem of entropy-
constrained scalar quantization in Section II. We focus on
ECSQ for the exponential random variable in Section III, and
present an algorithm and theorem which determine the solution
to the ECSQ design problem for any well-behaved difference-
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Fig. 1. A four-level MSE-optimal exponential ECSQ.

based distortion measure. In Section IV, we then show how
the optimal ECSQ for a Laplacian-distributed random variable
is found by building on our prior analysis of the exponentially
distributed random variable. Also in Section IV, we examine
the performance of the UTQ and optimal ECSQ, and also
investigate interesting alternatives to the UTQ, including a
uniform-reconstruction quantizer (URQ) and a constant dead-
zone ratio quantizer (CDZRQ). Finally, the conclusions of our
study are presented in Section V.

II. SCALAR QUANTIZATION

Consider an input random variable X having a smooth
pdf f(z) which is greater than zero over (0,c0) and zero
elsewhere. (We first consider only a one-sided pdf for con-
venience, without loss of generality to the similar problem
posed for other regions of support.) Let an n-level quantizer
Q) (-) be defined in terms of a set of n — 1 positive step
sizes {a; )77}
reconstruction offsets {8;}=y', as shown in Fig. 1. The n + 1
decision thresholds of the quantizer {tg’”};;o are given by

n—1
=3 o, i=0,,m )
=i

which we define as zero for ¢ = n, and the n output values of
the quantizer {yl(") 12} are given by

y™ =" 4 6., Q@

The n-level scalar quantizer Q(™)(.) is defined as a functional
mapping of an input value x > 0 onto an output representation

Q) (z), such that
QM(x) =y,

Note that the ¢ index subscript decreases to the right of the
zero-input location, and that the quantizer is defined in terms
of its step sizes {a;}7_;' and reconstruction offsets {8;}7-.
rather than the more common convention using the thresholds
{tgn)}?zo and output values {yi(")}?z“ol. If we consider some
large positive number N, this modified definition allows a
single set of N — 1 step sizes and N reconstruction offsets

to be sufficient to define an important family of N different

for £, <a < 4. 3)

(defining oip = 00) and a set of n nonnegative-
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quantizers {Q((:)}N_,
defined by (1)-(3).

We assume a difference-based distortion measure d(A),
which increases monotonically and smoothly (although not
necessarily symumetrically) as its argument deviates from zero,
and has a finite slope for a finite argument. The expected
quantizer distortion is

DY = Bx {d(X - Q™(X))} )

with each quantizer in the family

n-1 t(.”)‘
=> / d(z - y{")f(z) da )
=0

and the probability of each output value yﬁ") is
()
(ORI B

P;
DR

f(z) de. ©)

The output probabilities determine the output entropy of the
quantizer, a lower bound on the expected bit rate required to
encode the output values with arbitrarily small error

n—1 X :
H}n) = - Z pgn) log, pZ(") bits per sample. M
i=0
Modern coding methods such as arithmetic coding can achieve
rates close to this lower bound [9], [13].

Using a Lagrange multiplier A > 0 to specify the incremen-
tal relative importance of distortion and entropy, the optimal
n-level ECSQ is defined by the step sizes and reconstruction
offsets (or alternately, the thresholds and output values) which
minimize the objective function

I =DM Al ®)

Such a quantizer is optimal in the sense that no other scalar
quantizer with n levels can obtain lower distortion with
equal or lower output entropy. A solution of this problem
can be used to solve a constrained-entropy or constrained-
distortion problem unless there is no value of A > 0 for
which minimization of (8) results in equality to the constraint
value[14], [10], [11] (and the constraint is not achieved by
A = 0 for an entropy constraint or A = oo for a distortion
constraint). If the minimization of (8) requires some of the n
step sizes to be zero or infinite in value, we say that no optimal
ECSQ exists with n levels, since zero or infinite step sizes
imply equivalence to a quantizer with fewer levels (at least
unless an infinite number of steps have widths approaching
Zero).

One necessary condition for optimality is that the optimal
value of each reconstruction offset 4 must minimize the
distortion contribution of its associated step interval [6]

™)
d(z — £ — ) f (o) dw} ©)
=min™? { /0 d(m — ) o+ ) dx} (10)

where the “x” superscript indicates optimality. Any value of ¢
which minimizes the distortion contribution is equally optimal
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for use as 67 if the minimizing value is not unique. Note that
since reconstruction offsets affect only the quantizer distortion
and not the bit rate, they can be optimized for distortion alone.
For example, the most commonly used distortion measure is
mean-square error (MSE), denoted here by dmse(A) and given
by dmse(A) = |AJ?. In the MSE case, (10) becomes

5;‘:/ xf(w+t£i)1)dx// f(:c—}—tgz)l dz.
0

A second necessary condition for optimality is that the
optimal value of each step width o, ; must locate the decision

an

threshold tg") where the two nearest reconstructions have equal
rate-distortion penalty [11]

d(a;"+1

A more analytical way of justifying this expression is by
settmg to zero the partial derivative of the objective function
J with respect to the threshold ¢\, while holding the other
thresholds and the output values constant.

Typically, prior methods of ECSQ design have consisted
of multidimensional optimization algorithms which iteratively
refine a set of estimates for the quantizer parameters. Usually,
this has consisted of repeatedly alternating between values ob-
tained using the above two necessary conditions for optimality,
using some equivalent to (9) to determine appropriate output
values, and some equivalent to (12) to determine the threshold
locations [4]-[71, [9]-[11]. However, such prior methods have
operated by optimizing the output values {yz" 175 and
thresholds {t(")}l_0 directly, rather than indirectly by use
of step widths and reconstruction offsets. Note that such a
prior method, when changing a particular threshold value,
affects the probabilities and distortion contributions of just
two adjacent steps of the quantizer. However, if we use the
indirect definition and change the width «; of one step, the
probabilities and distortion contributions of all steps to the
right (steps j = 0,1,---,%) are affected.

Given the number of levels n, the optimal ECSQ for A =0
has the lowest possible distortion. In this case, if the distortion
measure is symmetric, (12) becomes merely

). (12)

Bian) ~Mlogy ({}1) = d(~6:)~Nlog, (b}

i = 6ip1+ 6. (13)
This condition was assumed by Nitadori [1] for his method of
optimal A = 0 design (i.e., when the only constraint is n) for a
Laplacian-distributed source using the squared-error distortion
measure dpyee(A). In contrast, an optimal ECSQ as defined
above is optimal for dual constraints: the given number of
levels in the quantizer (n) and the output entropy resulting
from the specified Lagrange multiplier A.

III. EXPONENTIAL RANDOM VARIABLES

The key to analysis of the exponentially distributed ran-
dom variable lies in its memoryless property, which can be
expressed as follows: given that an exponentially distributed
random variable X has a value exceeding some fixed nonneg-
ative threshold ¢, the conditional pdf of X — ¢ is the same as
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the pdf of the original random variable X
fe ('73) =p

Without loss of generality, assume p = 1.

As a result of the memoryless property, we can build an
optimal quantizer one step at a time. First, define a function
v(a, §), which measures the distortion contribution over the
left-most step of width « and reconstruction offset 6

v(e, 8) = /00‘ d(z — 8)e™" dx

The optimal reconstruction offset §; in this case depends only
on the step width «;. Using (14), the memoryless property of
the exponential pdf allows the substitution

n —m
fe(z + tz('+)l) =€ t’“fﬁ(w)

“le=z/v  £>0,4>0. 14)

5)

(n)

in (10), which allows us to remove the term e~ ti+1 from the
minimization. Thus we denote the optimal value 67 as 6(c;),
by defining the function

o(a) = mwin_1 {v(a, )} (16)

Now, only the step widths are needed to specify the optimal
quantizer. Define the minimum value of y(c, §) as

¥(, 8(ar)).

Denote the distortion, output entropy, and objective function
of the quantizer as D{™ H™, and J&™, where the subscript
indicates the exponential pdf of the source. Define also the
Bernoulli entropy B(p) as the per-letter entropy of a Bernoulli
process (a binary discrete memoryless source) with success '
probability p, given by

B(p) =

(otherwise 0). We can then use (14) to show the key recursion
relation

Y(a) = an

—plog, (p) — (1 —p)logy (1 —p), forO<p<1

JrtD bn) + AB(e™%) + e JM . (18)

Note that only the final term of (18) depends on {a;}7_{',
so the optimal {n + 1)-level ECSQ can be found by first
determjning the optimal n-level ECSQ, and then solving for
. The design process can be initialized with n = 1,ap =
00,60 6(00), and I = v(o0), and can then be recursed
to create any number of levels. The recursive relationship is
a direct consequence of the memoryless property: given that
the input random variable has a value greater than the left-
most nonzero threshold t("+l) which is equal to «,, (an event
which occurs with Bernoulli success probability e™~), the
remainder of the quantizer defines an n-level quantizer for
an exponential random variable having the same pdf as the
original input. In order for the entire quantizer to be optimal,
the i-level quantizer defined by the size of the steps to the
right of each of its decision thresholds t (m+1) must also be
optimal for the same Lagrange multiplier /\
We now show an equivalent alternative to the method
discussed above, which does not necessarily require computing

= y{@n,
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(n)

e ~ in order to determine o . Instead, we can start with
@ = oo and proceed sequentially by obtaining o, ; using
only the value of af, for ¢ = 0,---,n — 1, to completely
determine the optimal quantizer. Using (12) and noting that

pgi)l :e_tgié(l _ 6“041’+1) (19)
pgn) _ e—(t£1>2+0/i+1)(1 _ e—o‘i) 20)
‘we obtain
« * a;'k—i—l —agyq
d(ai+1 — 5(04,-“)) — /\Ln ) +logy (1 — e %+ )}
= d(=6(a7)) = Mog, (1 - ™). 1)

The right-hand side depends only on o, and the left-hand side
only on oj, ;. Thus knowing o may be sufficient to determine
ay, ; (and we can start the process off with cig = oo). Equation
(21) may, however, be fulfilled for multiple values of 11,
in which case the best among them must be chosen as af,,;
according to the resulting Je(i+2).

For example, (21) has two solutions for «;4; when distor-
tion is measured by mean-square error and A > 0. The smaller

solution corresponds to finding a tg:;z)

J§i+2)

which maximizes

and the larger solution corresponds to minimizing it
(for A = 0, there is only one solution). The smaller solution
can be avoided by first obtaining a low rough estimate of the
solution for A = 0, and then considering only solutions larger
than that. Since the left-hand side of (21) is easily shown to be
convex with respect to «;; when using MSE distortion, no
more than two solutions exist and there can be only one with
a positive first derivative (which is the correct solution o ;).

One quantizer of particular interest is the n-level uniform
threshold quantizer (UTQ), which we define as a quantizer
having all its finite step widths equal in value, ie., a; =
& for ¢ = 1,---,n — 1 (note that oy = o00). Since the
best performance for such a quantizer is obtained by having
8; = 6(ay) for each i, we assume that all but one of the
reconstruction offsets are equal to some constant value as well,
ie,6 =6 fori=1,---,n—1. The performance of a UTQ
with this type of offsets can thus be computed in terms of
three parameters, a step size &, a reconstruction offset &, and
the rightmost reconstruction offset &y, yielding

) (@ ) + AB(e%)]
(22)

—(n—-1)&

Je(n)(&aga 60) = < 1—e @
+ e~ (Ve (00, ).

A. Optimal Finite-Alphabet ECSQ Design Algorithm
for an Exponential Source

If an n-level optimal ECSQ exists for an exponentially
distributed source using Lagrange multiplier A, then it can
be found as follows:

1) Seti =0 and & = §(c0). Note a; = 0o and J&) =
7v(00).

2) If i = n—1 then Stop—the quantizer design is complete.
Otherwise, set o1 to af,;, the solution of (21) which
minimizes J&? in (18) with 8,41 = 8(ci11).

3) Increment ¢ and return to Step 2.
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B. An “All or Nothing” Theorem of Optimal ECSQ
for an Exponential Source

We next present a theorem which determines whether an
optimal n-level ECSQ exists and also defines the optimal
scalar quantizer with no restriction on the number of levels.
First, we define the function

Ae(@) = [(1 = e7*)v(00) — v(x)l/B(e™)
and the parameter

Ama%) — max {Ae(a)}.

(23)

24

For A> A\ no optimal entropy-constrained quantizer
exists for any number of levels n> 1. For 0 < \ < A%
an optimal quantizer exists for all possible numbers of levels
n > 1 and has an objective function Je(") that is strictly
decreasing with n. If the restriction on the number of levels
in the quantizer is removed, the optimal quantizer becomes an
infinite-level UTQ with step width &, where & satisfies

[d(@ — 5(&) - d(~6(a)))/a = \n(2). (@)

This UTQ has entropy and distortion given by
H™ &) =B(e%)/(1—e™%) (26)
DEIN(@) =v(@)/(1 - e %). @7

For A = A% an optimal quantizer exists for any number
of Tevels n. if and only if Ae(c) = AS™* for some finite a, in
which case the objective function of the optimal quantizer is
J = ~(c0), regardless of n. This optimal n-level ECSQ is
a UTQ with step width &, where @& satisfies A (&) = A=)
and also satisfies (25) and

(&, 8(c0)) = 1 28)
where the function T(c, §) is defined by

T(ef) = (e~ 1) -exp {—a[dfi‘i}féi”_;fﬁﬁ)@; .

As proof, we provide the following: When considering
adding a level to an n-level quantizer, an objective function
improvement can always be obtained for A < A\ by split-
ting the infinite-length rightmost step into two steps. Although
this may not give the best performance (as will the algorithm
described above), it establishes the existence of an optimal
(n + 1)-level quantizer, since it shows that any n-level quan-
tizer can be improved by adding another level. As more and
more steps are added to the quantizer, the step sizes decrease
menotonically toward a steady-state step size & which satisfies
the optimality requirements when adjacent steps have this
same width, and the quantizer performance approaches that of
an infinite-level UTQ. In fact, the performance must approach
that of the infinite-level UTQ at least exponentially fast with
n, as a consequence of its objective function being bounded
from above by (22), a bound which approaches infinite-level
UTQ performance exponentially fast with n. For A = A%
the ad hoc rightmost step split and the optimal procedure both
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result in quantizers with the same performance, as the optimal
finite step size will satisfy optimality requirements whether
the step size to its right is either equally wide or is infinitely
wide. For A> A\ even the first split to make a two-level
quantizer is not worth the entropy penalty, and an improvement
of any given quantizer can always be obtained by replacing
its rightmost two steps with a single infinitely wide step, thus
no optimal quantizer exists for n > 1. (Note that if A can
be obtained by a finite step size, the operational rate-distortion
curve of optimal ECSQ must be nonconvex.)

The Appendix shows the following: that AS™*) is infinite
if the distortion measure d(A) increases more than linearly
for large A (e.g., if d(A) is strictly convex); that A0
finite but is reached only by infinite « for a linearly increasing
distortion measure; and that Amax) 46 finite and can be reached
with a finite o only if the distortion measure increases less
than linearly as its argument deviates from zero [15], [16]
(the only case for which a constrained-rate or constrained-
distortion ECSQ optimization problem may not be solvable
by the objective function minimization method, since this case
implies a nonconvex optimal performance curve).

C. Exponential-pdf Quantizers for MSE

For example, when using the squared-error distortion mea-
sure duee(A) = |A[?, we obtain AT = oo, and

Ymse(@, 8) = (62 — 26 + 2)(1 — ™) — ae”*(a — 28 + 2)

(30)
Smse(@) =1 —ae /(1 —e™%) (31)
Do) =1 —a2e /(1 — e™)2. (32)

For A = 0 (the “Nitadori,” or “Lloyd-Max” quantizer design
case), each optimal step size o, ; can be obtained from (21)
as a function of the prior step size a by solving

(o1 — vi)e ™) = —pem (33)

where v; = 1+ 6mse(} ). The solution can be expressed using
the Lambert W function, yielding

ajp = vi+ W(-vie™) (34)

where W (-) denotes the real-valued solution to the transcen-
dental equation we” = z for w as a function of z such that
W(z) > —1 in the region of interest, —1/e < 2 < —2/e?. The
Lambert W function can be evaluated efficiently by methods
described in [17], and can be roughly approximated in the
region of interest by the first terms of the series
19 11 5 43 769 5
W)=-1+q- 34 t7C 209 T 1m0 !
221 4 680863 1963 4
" 8505 1 " 43545600 ¢~ 204120
226287557 5776369 A0

37623398400 ¢ 1515591000

whére ¢ = 1/2(ez+ 1) [17]. (This series can be obtained
by reversion of the power series formed by defining r =
W(z) + 1 and using the expression (r —1)e” = ez with e =

20 rd /4!.) The number of terms given above is sufficient to

(35
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approximate the W function value to within an error of less
than 10~ in the region of interest. Other interesting distortion
measures include absolute error d(A) = |A|, for which
Ama) — 15 (2) is finite but is reached only by infinite a,
and d(A) = 1 — e~ 41, which has a finite A" at a finite a.

IV. LAPLACIAN RANDOM VARIABLES

We can build upon the results of Section III to derive optimal
quantizers for random variables having a Laplacian pdf
fo(z) = e 1#V2/% 1\ /952, (36)

Without loss of generality, assume o2 = 2.

Consider first the step of the quantizer which has an output
value ¢ associated with the z = 0 input value. The boundaries
of the step are defined by two thresholds ¢; > 0 and ¢, > 0
such that ¢;+%, > 0, where any input z such that —¢; < z < ¢,
is associated with output . For the trivial case of n = 1, both
t; and ¢, are infinite. For n > 1, at least one must be finite.
Denote the number of levels to the left and right of zero as n;
and n,, such that n = n; + n, + 1.

Again, we can examine the behavior of the quantizer in a
stepwise fashion. Define the distortion contribution

tT
d(z — e)e 1" /2 da

—t;

n(tl, tr, E) = (37)

and the ternary entropy T'(p, ¢) = B(p)+(1-p)B(q/(1-p)).
The optimal value ¢* for € is a function only of ¢; and ¢
e(ti,tr) = min™" {n(te, tr, )} (38)

We decompose the quantizer for this source into three
smaller “subquantizers.” Given that a Laplacian-distributed
input random variable X is greater than ¢, the conditional
pdf of X — ¢, is exponential. Similarly, given that X is less
than —#;, the conditional pdf of —X — ¢; is exponential.

Thus denoting the objective function of the overall quantizer
as J ]En), where the subscript indicates the Laplacian pdf, in a
manner similar to (18) we can obtain

J,gn> =0, tre) + AT (37", Fe7")
+ L (et et gin)) (39)
where jér”) denotes the objective function of an n;-level
quantizer for an exponential pdf with distortion measure
d(A) = d(—A), and J" is defined as before. If ¢, is
infinite, then n, is zero and we arbitrarily define I as
v(o0). Similarly, if ¢; is infinite, then n; is zero and jé”l)
is 4(oc0). Again we have reduced the optimization problem
to a stepwise procedure—first we design the left and right
subquantizers (per Section IIT), and then simply determine the
zero-input step thresholds ¢; and ¢, which minimize J, £n)-
Again we may consider an alternative to direct minimization
of J é") which may allow us to determine the best values for ¢;
and ¢, using only the values of the innermost left and right step
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sizes &, —1 and o, 1. For a Laplacian source, (12) becomes
t*
e = =(7.6) = A1+ s + 1o, (1-

two conditions
et et
iy~ (1)
= d(=8(an,-1)) = Alogy (1 —e7*=1)  (40)
and an analogous mirror-image relation for the left threshold
#.

If the distortion measure is symmetric, the optimal quantizer
should also be symmetric (or nearly so). Thus if n is odd,

n; = n,,t; = ty, and €* = 0, and the two relations (40)
are the same (if A = 0,7 = {7 = 6(ag;,1)). If n is even,

two equivalent mirror-image solutions exist, one having n; =
ne+1,0< 8 <t and e” >0 Gf A = 0,47 = 0,4 = o, _y,
and €* = §(aj, 1))

As the Lagrange multiplier is increased slowly from zero,
there may be up to four critical values of A (two for symmetric
distortion measures) at which sudden changes occur in the
optimal rate and distortion, as the left and right subquantizers
each collapse to a single level when their A™* is reached,
and then vanish altogether as ¢; and ¢, become infinite.

A. Bounding the Center Step Size

We now define an important test ratio § which can provide a
bound on the size of the center step for the Laplacian pdf. Note
that if we were to construct a (i 4 2)-level quantizer for the
exponential pdf, then the distortion at the edge of the optimized
step with output value y;11 would be d(af ; — 8(al)),
the probability of the output y;.1; would be pgff) = (1 -
e_azﬂ), the probability of the output y; would be p§i+2) =
e~%+1(1—e~), and (12) would be fulfilled. Consider now a
situation in which we somehow maintain the optimality of the
reconstruction values and keep the distortion values in (12) the

same but change the input pdf over the two steps, changing

the step probabilities to p},; and p] rather than pgf:f) and
P8 and define the probability ratio
= (i+2) ,, (i+2)
pz(':_l )/ pgl )

Then, after examining (12) for X > 0, we see that the first step
of the quantizer «;y; should be widened if 6 > 1, kept the
same size if § = 1, and narrowed if 6 < 1.

Now consider a quantizer for the Laplacian pdf with a
symmetric distortion measure, wherein 7, = n; (when n is
odd). Let us examine the rate-distortion balance for a threshold
value ¢, = a;, — 6(a;, ). This yields

p;h —(1- e—(w;r—é(afw))) (42)
P 1 =e~(On, =800 (1 — gm%nn-1) /2 43)
so that
(o, =8(ar,)) _ 1
§=2 (e——-—~——> (44
err=t — 1
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B. Optimal Infinite-Level Laplacian-pdf Quantizers

As the restriction on the number of levels is relaxed, the
optimal left and right subquantizers may become UTQ’s as
dictated by Section III (although their step sizes may be
different if the distortion measure is not symmetric), but the
zero-input step width ¢ 4 ¢; generally will not approach the
same value as the width of the other steps. Thus the optimal
quantizer is not a UTQ. It differs by having a different-sized
“dead-zone” around zero.

Consider such a quantizer for a symmetric distortion mea-
sure. For an infinite-level quantizer, we can then define t* =
t; = t; and observe that ¢* = 0. Then we can dispense with
the use of A altogether, by substituting (25) into (40). This
creates a single equation that relates the step size o of the
right and left subquantizers to ¢t* (half the dead-zone width)

T(a,t*) = 2(et” —1) 45)
where the function Y(a, §) is defined by (29).

C. Laplacian-pdf Quantizers for MSE

If, for example, we use the squared-error distortion measure
dmse(A) = |AJ?, we can insert (31) into (44) to show that for
A>0, the ratio § <1 always. This proves that the optimal
dead-zone (center step) width is always less than 2(c, —
(¢, )) under these conditions. (The opposite conclusion was
mistakenly reported in [12].) Thus the reconstruction values
of the optimal quantizer are actually closer together near the
middle of the quantizer than they are farther away from the
center.

We now turn our attention to quantizers with a large
(effectively infinite) number of levels. We find, using (45) that
the dead zone is always larger than the size of the other steps,
but we have also shown that the dead-zone size must be less
than 2(a;, — &(cy, )). Define the dead-zone ratio z such that

z=t/(a—a)) (46)

where « is the step size for the two infinite-level UTQ
subquantizers to the right and left of the center dead-zone step.
We have found that the optimal dead-zone ratio z* always lies
in the range of 0.95 < 2* < 1. Its limiting value is unity at
very high and very low bit rates, and its behavior is shown
as a function of step size in Fig. 2, and as a function of bit
rate in Fig. 3.

Berger noted that an infinite-level UTQ with a decision
threshold exactly at zero and optimal offsets (a “mid-rise”
UTQ with step width o and offset 6, specified by #; =
0,t, = a,e = 6§ = §(w)) fulfilled the necessary conditions
for optimality given above [8]. However, he noted that such
quantizers could not achieve an entropy below one bit per
sample, and also that they did not perform as well as did .a
“mid-tread” UTQ with optimal offsets (specified by ¢; = ¢, =
a/2,e = 0,6 = §(a)). He thus proposed the mid-tread UTQ
with optimal offsets as a nearly optimal scalar quantizer. This
mid-tread UTQ, which we shall call the uniform threshold
with optimal reconstruction quantizer (UTORQ), has a dead-
zone ratio which is a function of the step size «, yielding
z = a/[2(a—6(a))]. A mid-tread UTQ also has a very simple
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Fig. 2. Optimal dead-zone scale factor z* as a function of step size .

encoding rule, consisting of just scaling and rounding to the
nearest integer.

Actually, the infinite-level optimal ECSQ also has a fairly
simple encoding and decoding rule, since all steps of the
quantizer except the center step have the same step size and
the same reconstruction offset. However, some may consider
the design and operation of the truly optimal ECSQ to be
more complex than practical considerations may allow, and
thus would desire a quantizer with a simpler design method
and a simpler encoding or decoding rule. For this reason,
we now investigate what we call a uniform reconstruction
quantizer (URQ). The URQ has a very simple decoding
rule consisting of just multiplying the quantization index
by the quantizer step size. Thus all reconstruction values
of the URQ are equally spaced.

Although we have specified the output values of the URQ,
we have not yet described an encoding rule for it. The optimal
encoding rule would be difficult to design and operate, as the
constraints we have introduced by specifying the decoding
rule would mean that the best thresholds near the center of the
quantizer should not be evenly spaced. Instead, we propose a
fairly simple suboptimal thresholding rule which preserves the
optimality of the reconstruction values, and describe the type
of quantizers we investigate here as the uniform reconstruction
with unity ratio quantizer (URQ). The encoding rule is simply
that the right and left center thresholds are { = ¢ = &, =
a — §(a), and the rest of the thresholds construct the right
and left subquantizers as UTQ’s with step size «. Therefore,
the URURQ has a constant unity dead-zone ratio z. = 1. We
know that these thresholds are not optimal, as we have shown
that the optimal value of ¢ = #; = ¢, should be strictly less
than o — §(). However, the URURQ is simple to design and
operate, provides a lower bound on the performance of the
best URQ, and has a decoding rule that is compatible with the
optimal URQ encoding rule. We will show that the URURQ
has performance close to that of the optimal ECSQ, and is
significantly superior to that of the UTORQ. In light of the
excellent performance of the URURQ), not much can be gained
by attempting to find a better URQ encoding rule.

Another important quantizer is the uniform quantizer (UQ),
which can be viewed either as a UTQ with suboptimal offsets
or as a URQ with suboptimal thresholds. The UQ is a UTQ
which has its reconstruction values located at the middle of
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Fig. 3. Optimal dead-zone scale factor z* as a function of bit rate.

each step, i.e., 6 = a/2. A UQ with step size o has the same
entropy as a corresponding UTORQ, but has an additional
MSE penalty of e~*/2(8§(a) — /2)? due to its suboptimal
reconstruction offsets. However, the UQ is commonly used,
and its encoding and decoding rules are very simple. It
combines the simplicity of the UTQ encoding rule with the
simplicity of the URQ decoding rule. The UQ has also been
shown by Gish and Pierce to be asymptotically optimal for a
variety of source pdf models (including the exponential and
Laplacian pdf models) and a variety of distortion measures
at high bit rates (i.e., as the bit rate approaches infinity, the
optimal ECSQ approaches a UQ) [18].

It is also possible for us to try to approximate the opti-
mal dead-zone ratio with some approximating function. The
optimal dead-zone ratio is, of course, specified by finding
the solution of (45). However, solving or approximating the
solution to (45) closely may be viewed as overkill for de-
signing an ECSQ which is nearly optimal. For this reason,
we also consider one very simple approximation—quantizers
having a fixed constant dead-zone ratio 2., which we shall
call a constant dead-zone ratio quantizer (CDZRQ). Since the
URURQ has z. = 1, it is a special case of a CDZRQ. For
z. # 1, we can no longer use the simple URQ decoding
rule allowable for the URURQ, but we may obtain better
performance.

Fig. 4 shows the performance of Optimal ECSQ and UQ
with respect to the distortion-rate bound Dy (R) for the
Laplacian source. The z-axis of the plot shows the entropy
rate R = Hj, in bits per sample, and the y-axis shows the
quantization signal-to-noise ratio

QSNR = 10log;, (¢2/D5)) dB 7

where D%‘X’) is the quantizer mean-square error distortion.
The points plotted for the distortion-rate bound Dr,(R) were
computed using the Blahut—Arimoto algorithm [19]-[21] using
a discretization of the source in a manner similar to that de-
scribed in [9]. We only show optimal ECSQ and UQ in Fig. 4,
as the performance of UTORQ and URURQ would be visually
indistinguishable from that of optimal ECSQ on such a plot.
We see from Fig. 4 that ECSQ has performance very close
to the D (R) bound at low bit rates, and then gradually lags
in performance at higher bit rates, as noted in [10]. In fact,
just as we were able to show that the maximum Lagrange
multiplier for the exponential pdf was infinite for convex
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Fig. 5. ECSQ QSNR performance gap relative to Dy, (R) bound.

distortion measures, we can do the same for the Laplacian
pdf. This implies two important conclusions:

1) That the slope of the Dr,(R) bound for convex distortion
measures (such as MSE) is infinite at R = 0 (since the
slope must be at least as large in magnitude for Dy (R)
as it is for ECSQ).

2) That the ECSQ performance curve fits the D, (R) bound
closely near zero, since both its value and its slope are
the same as those of Dy, (R) at the limit.

It is also worth noting that we can show that for the absolute
error distortion measure d(A) = |A|, the maximal ECSQ
Lagrange multiplier for the Laplacian pdf is In (2). This shows
that the ECSQ performance curve for absolute error also fits
its D (R) bound closely at low bit rates, since the bound
Dp(R) = 027%/4/2 has that same slope [19].

As observed by Goblick and Holsinger for Gaussian
sources, and later derived precisely for more general pdf
models by Gish and Pierce, the performance gap approaches
log, 4/7me/6 = 0.2546 bits per sample, or 20log,, 1/me/6 =
1.5329 dB at high bit rates [22], [18]. In order to examine
the performance gap more closely, we plot just the gap itself
in Fig. 5, as given by 10log,, (D'° /D, (R)). Fig. 5 shows
the performance gaps for both the optimal ECSQ and the
UTORQ. It does not show the performance gap for URURQ,
‘because its performance would be visually indistinguishable
from that of optimal ECSQ on such a plot.

In order to better show the comparative performance of
the scalar quantizers, we plot in Figs. 6-8 just the QSNR
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Fig. 7. ECSQ QSNR performance gap relative to optimal ECSQ.

gap in the performance of various quantizers, measured with
respect to the QSNR of the optimal ECSQ. Fig. 6 compares
the performance of UQ to that of UTORQ. While the UQ
is up to 0.87 dB worse than optimal ECSQ, the UTORQ
stays within 0.0625 dB of optimality. However, the URURQ is
even better. It significantly outperforms the UTORQ, so much
so that its performance would be essentially indistinguishable
from optimality in Fig. 6. The URURQ performance is shown
alongside that of UTORQ in Fig. 7. Although the QSNR of
the UTORQ becomes as much as 0.0625 dB lower than that
of the optimal ECSQ near 1.36 bits per sample, the URURQ
stays within about 0.0022 dB of optimality at all bit rates (as
shown in Fig. 7). ‘
Gish and Pierce showed that the optimal ECSQ should
approach a UQ at high bit rates for a wide range of sources and
distortion measures (a UQ being a UTQ with reconstruction
values located midway between each pair of thresholds). This
would seem to call into question our-assertion that the optimal
quantizer is not a UTQ in general, and that the URURQ is
an improvement upon the UTQ. However, we note that using
(31) it is easily shown that :

Omse() — /2 asa — 0.

(48)

Thus the reconstruction values of the UTORQ and URURQ
will approach the midpoints of each step at high bit rates,
and the URURQ dead-zone size 2(o — §(c)) will approach
the same width « as the other steps. Therefore, the URURQ
and UTORQ approach the UQ at high bit rates, as does the
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TABLE 1
QSNR ForR Dy (R) MSE BOUND AND VARIOUS SCALAR QUANTIZERS
Rate (bps) ]| DL(R) | Opt-ECSQ UQ UTORQ | URURQ | z = 0.073
0.015625 0.183 0.168115 { 0.075633 | 0.168105 | 0.168115 0.168115
0.031250 0.333 0.303178 | 0.148466 | 0.303131 | 0.303177 0.303178
0.062500 0.601 0.543407 | 0.291451 | 0.543193 | 0.543402 0.543407
0.125000 1.082 0.970287 | 0.574113 | 0.969308 | 0.970267 0.970284
0.250000 1.953 1.734472 | 1.143077 | 1.730069 | 1.734387 1.734457
0.500000 3.562 3.133696 | 2.332080 | 3.115493 | 3.133349 3.133622
1.000000 6.631 5.820695 | 4.977373 | 5.767671 | 5.819458 5.820445
2.000000 [f 12.668 11.371078 | 10.952085 | 11.326802 | 11.368971 | 11.370924
4.000000 || 24.711 23.193305 | 23.155672 | 23.191333 | 23.193113 | 23.193067
8.000000 || 48.793 47.260480 | 47.260317 | 47.260479 | 47.260479 | 47.260418
0.003 i 1) that A" is infinite if the distortion measure d(A)
increases more than linearly as its argument deviates
0.0025 - . from zero;
2) that A% is finite and can be reached with a finite «
0002 | T only if the distortion measure increases less than linearly
anNpP:).oms - i as its argument deviates from zero; and
(dB) 3) that A{™* s finite but is reached only by infinite o in
0.001 . (23) for a linearly increasing distortion measure.
We attribute the key steps of the proof of the first two of
0-0005 2 = 0.973 these assertions to aid provided by Ramchandran and Orchard
0 [15], and the key steps of the proof of the third assertion to

Bits per sample

Fig. 8. ECSQ QSNR performance gap relative to optimal ECSQ.

optimal ECSQ. This limiting tendency of the optimal ECSQ to
approach a UQ also holds for many other distortion measures,
as can be shown using the reasoning found in [18].

We can also design a CDZRQ by searching for the best
constant dead-zone ratio 2. in the minimax sense—minimizing
the maximum QSNR penalty. (However, a CDZRQ with z, #
1 does not approach a UQ at high bit rates.) The performance
of a minimax CDZRQ, specified by z, = 0.973, is shown
in Fig. 8. Its QSNR performance is always within 0.0003 dB
of optimality, and its performance would be indistinguishable
from optimality if plotted in any of the other figures.

In order to facilitate comparative research efforts, we pro-

vide some numerical results for these various quantizers in
Table L.

V. CONCLUSIONS

We have described a noniterative approach to the design
of ECSQ’s for two common sources by exploiting the mem-
oryless property of the exponential pdf. The new method is
extremely fast and is optimal for a general difference-based
distortion measure and for a restricted or unrestricted number
of quantization levels. In addition to designing and measuring
the performance of optimal ECSQ, we have evaluated the
performance of the popular UTQ method and have described
improved simplified quantizers, the URURQ and CDZRQ,
which have better performance than the UTQ.

APPENDIX

by é max)

This Appendix proves the following assertions regarding
AP of (24):

aid provided by Chen and Chou [16]. (The assertions were
originally formed by examining A.(a) for various examples
of distortion measures.)
We begin by noting from (24) that
Amax) > lim A (a)

a—00

and that the denominator B(e~%) of (23) obeys

B(e ™) — ae™®/In(2) as a— oo.

(49)

We then note that the numerator of (23) can be separated
into three terms as y(o0) — (o) — e~*y(oc0), where the final
term e~ “y(co) approaches zero much more rapidly than the
denominator for large «, provided y(oo) is finite. We thus
focus on the remaining expression y(co) — y(a). We define
the property “increasing more than linearly” by d(A)/A — oo
and “increasing less than linearly” by d(A)/A — 0 as
A — oo.

We now show that y{co) — v(a) becomes much greater
than ae™ for large o when the distortion measure increases
more than linearly, causing A2 ¢ be infinite. Since () £
(e, §) for any 8, we have

(50)
(5D

7(00) =v(@) 2 7(00) =(e, (20))
:/ d(z—6(c0))e™" dx

:d(oz—(?(oo))e_o‘+/00 d'(z—6(00))e " dx
(52)

>d(a—6(c0))e™® (53)

using integration by parts, where d'(A) is the first derivative
of d(A), which we have assumed exists and is positive and
finite for finite A > 0. Thus if d(A) increases more rapidly
than linearly for large A, then the numerator of (23) dominates
(provided 8(co) is finite), yielding Ama0) — o,
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We take a similar approach to the converse assertion.
Consider a distortion measure d(A) which increases less than
linearly for large -A. Since we have assumed that the slope is
finite for a finite argument, and since the distortion measure
increases less than linearly for large A (making the slope finite
for an infinite argument as well), we can find a finite maximum
slope constant C,,, and a distortion offset constant C,, such
that d(A) < Cr(C, + CrA) and d'(A) < Cp, for A > 0.
We also note that A.(c) is finite for any finite o, and obtain

v(00) — v(a) <v(00,68(a)) — (@) (54)
= / d(z — 6(a))e” " dx

=d(a — §(a))e™ + /00 d'(z —6(a))e " dz

(55)

(56)
< Cl(Co + o — 8(a))e™® 4 e~ (@8]
(57)
<Cnla+C, + 66(00)]6_0‘ (58)
and thus
lim Ae(a) € CpIn(2) (59)

and therefore, A is finite.

For the borderline case in which distortion increases pre-
cisely linearly (although not necessarily symmetrically), we
can describe the distortion measure in terms of a slope scaling
C,, > 0, an offset constant C,, and a skew b> 0 as

- [ Co—CnA, for A<O
din(A) = {Co +bCrA, for A > 0.

From this we can obtain

Yiin(0, 8) = Co(1 — e™%) + Cru[(1 + b)e™® — (1 + be™*)

(60)

(1= 6) — bae™®], for0<é<a (61)
B 1+b
6[in(01) —11'1 (m) (62)
1+
() () = —o a
DE(a) =Cy + Cm[(l + be")In (1 +b6_a)
- oze_"‘} /(1 ) (63)
Ae(a) = Crp{lba — (1 + b)In(1 + b)le™®
+(14+be™®)In(l+be™*)}/B(e™). (64)
Beginning with

ali—>1rolo Ae(a) =bC,, In(2) (65)
lim Ao(0) =0 (66)

we need to prove that A.(a) <bCp,In(2) for a € (0,00).
Defining p = e~ and multiplying both sides of the inequality
by B(p), we find that this is equivalent to proving for p €
(0,1) that

(14 bp)In (1 4+ bp) = p(1+b) In (1 + )

+b(1 - p)In(1—p)<0. (67)
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The function composed of the first and second terms of this
expression is concave and has zero-valued limits at zero and
one, and thus is negative for p € (0,1), and third term of the
expression is also always negative. Thus the entire expression
is negative and the assertion is proved.
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