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Abstract—The first part of this paper proposes an adaptive,
data-driven threshold for image denoising via wavelet soft-thresh-
olding. The threshold is derived in a Bayesian framework, and the
prior used on the wavelet coefficients is the generalized Gaussian
distribution (GGD) widely used in image processing applications.
The proposed threshold is simple and closed-form, and it is adap-
tive to each subband because it depends on data-driven estimates
of the parameters. Experimental results show that the proposed
method, called BayesShrink, is typically within 5% of the MSE
of the best soft-thresholding benchmark with the image assumed
known. It also outperforms Donoho and Johnstone’sSureShrink
most of the time.

The second part of the paper attempts to further validate
recent claims that lossy compression can be used for denoising.
The BayesShrink threshold can aid in the parameter selection
of a coder designed with the intention of denoising, and thus
achieving simultaneous denoising and compression. Specifically,
the zero-zone in the quantization step of compression is analogous
to the threshold value in the thresholding function. The remaining
coder design parameters are chosen based on a criterion derived
from Rissanen’s minimum description length (MDL) principle.
Experiments show that this compression method does indeed re-
move noise significantly, especially for large noise power. However,
it introduces quantization noise and should be used only if bitrate
were an additional concern to denoising.

Index Terms—Adaptive method, image compression, image de-
noising, image restoration, wavelet thresholding.

I. INTRODUCTION

A N IMAGE is often corrupted by noise in its acquisition or
transmission. The goal of denoising is to remove the noise

while retaining as much as possible the important signal fea-
tures. Traditionally, this is achieved by linear processing such
as Wiener filtering. A vast literature has emerged recently on
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signal denoising using nonlinear techniques, in the setting of
additive white Gaussian noise. The seminal work on signal de-
noising viawavelet thresholdingor shrinkageof Donoho and
Johnstone ([13]–[16]) have shown that various wavelet thresh-
olding schemes for denoising have near-optimal properties in
the minimax sense and perform well in simulation studies of
one-dimensional curve estimation. It has been shown to have
better rates of convergence than linear methods for approxi-
mating functions in Besov spaces ([13], [14]). Thresholding is
a nonlinear technique, yet it is very simple because it operates
on one wavelet coefficient at a time. Alternative approaches to
nonlinear wavelet-based denoising can be found in, for example,
[1], [4], [8]–[10], [12], [18], [19], [24], [27]–[29], [32], [33],
[35], and references therein.

On a seemingly unrelated front, lossy compression has been
proposed for denoising in several works [6], [5], [21], [25],
[28]. Concerns regarding the compression rate were explicitly
addressed. This is important because any practical coder must
assume a limited resource (such as bits) at its disposal for repre-
senting the data. Other works [4], [12]–[16] also addressed the
connection between compression and denoising, especially with
nonlinear algorithms such as wavelet thresholding in a mathe-
matical framework. However, these latter works were not con-
cerned with quantization and bitrates: compression results from
a reduced number of nonzero wavelet coefficients, and not from
an explicit design of a coder.

The intuition behind using lossy compression for denoising
may be explained as follows. A signal typically has structural
correlations that a good coder can exploit to yield a concise rep-
resentation. White noise, however, does not have structural re-
dundancies and thus is not easily compressable. Hence, a good
compression method can provide a suitable model for distin-
guishing between signal and noise. The discussion will be re-
stricted to wavelet-based coders, though these insights can be
extended to other transform-domain coders as well. A concrete
connection between lossy compression and denoising can easily
be seen when one examines the similarity between thresholding
and quantization, the latter of which is a necessary step in a prac-
tical lossy coder. That is, the quantization of wavelet coefficients
with a zero-zoneis an approximation to the thresholding func-
tion (see Fig. 1). Thus, provided that the quantization outside
of the zero-zone does not introduce significant distortion, it fol-
lows that wavelet-based lossy compression achieves denoising.
With this connection in mind, this paper is about wavelet thresh-
olding for image denoising and also for lossy compression. The
threshold choice aids the lossy coder to choose its zero-zone,
and the resulting coder achieves simultaneous denoising and
compression if such property is desired.

1057–7149/00$10.00 © 2000 IEEE
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Fig. 1. Thresholding function can be approximated by quantization with a
zero-zone.

The theoretical formalization of filtering additiveiid Gaussian
noise (of zero-mean and standard deviation) via thresholding
wavelet coefficients was pioneered by Donoho and Johnstone
[14]. A wavelet coefficient is compared to a given threshold and
is set to zero if its magnitude is less than the threshold; otherwise,
it is kept or modified (depending on the thresholding rule). The
threshold acts as an oracle which distinguishes between the
insignificant coefficients likely due to noise, and the significant
coefficients consisting of important signal structures. Thresh-
olding rules are especially effective for signals with sparse or
near-sparserepresentationswhereonlyasmall subsetof thecoef-
ficients represents all or most of the signal energy. Thresholding
essentially creates a region around zero where the coefficients
are considered negligible. Outside of this region, the thresholded
coefficients are kept to full precision (that is, without quanti-
zation). Their most well-known thresholding methods include
VisuShrink[14] andSureShrink[15]. These threshold choices
enjoy asymptotic minimax optimalities over function spaces
such as Besov spaces. For image denoising, however,VisuShrink
is known to yield overly smoothed images. This is because its
threshold choice, (called theuniversal thresholdand

is the noise variance), can be unwarrantedly large due to its
dependenceonthenumberofsamples,,whichismorethan
foratypical test imageofsize .SureShrinkusesahybrid
of the universal threshold and the SURE threshold, derived from
minimizing Stein’s unbiased risk estimator [30], and has been
showntoperformwell.SureShrinkwillbethemaincomparisonto
the method proposed here, and, as will be seen later in this paper,
ourproposed thresholdoftenyieldsbetter result.

Since the works of Donoho and Johnstone, there has been
much research on finding thresholds for nonparametric estima-
tion in statistics. However, few are specifically tailored for im-
ages. In this paper, we propose a framework and a near-op-
timal threshold in this framework more suitable for image de-
noising. This approach can be formally described as Bayesian,
but this only describes our mathematical formulation, not our
philosophy. The formulation is grounded on the empirical ob-
servation that the wavelet coefficients in a subband of a natural
image can be summarized adequately by ageneralized Gaussian
distribution (GGD). This observation is well-accepted in the
image processing community (for example, see [20], [22], [23],
[29], [34], [36]) and is used for state-of-the-art image coders
in [20], [22], [36]. It follows from this observation that the av-
erage MSE (in a subband) can be approximated by the corre-
sponding Bayesian squared error risk with the GGD as the prior
applied to each in aniid fashion. That is, a sum is approximated
by an integral. We emphasize that this is an analytical approx-
imation and our framework is broader than assuming wavelet

coefficients areiid draws from a GGD. The goal is to find the
soft-threshold that minimizes this Bayesian risk, and we call our
methodBayesShrink.

The proposed Bayesian risk minimization is subband-depen-
dent. Given the signal being generalized Gaussian distributed
and the noise being Gaussian, via numerical calculation a nearly
optimal threshold for soft-thresholding is found to be

(where is the noise variance and the signal vari-
ance). This threshold gives a risk within 5% of the minimal risk
over a broad range of parameters in the GGD family. To make
this threshold data-driven, the parameters and are esti-
mated from the observed data, one set for each subband.

To achieve simultaneous denoising and compression, the
nonzero thresholded wavelet coefficients need to be quantized.
Uniform quantizer and centroid reconstruction is used on the
GGD. The design parameters of the coder, such as the number of
quantizationlevelsandbinwidths,aredecidedbasedonacriterion
derived from Rissanen’sminimum description length(MDL)
principle [26]. This criterion balances the tradeoff between the
compression rate and distortion, and yields a nice interpretation
ofoperatingata fixedslopeon therate-distortioncurve.

The paper is organized as follows. In Section II, the wavelet
thresholding idea is introduced. Section II-A explains the
derivation of the BayesShrinkthreshold by minimizing a
Bayesian risk with squared error. The lossy compression based
on the MDL criterion is explained in Section III. Experimental
results on several test images are shown in Section IV and
compared withSureShrink. To benchmark against the best
possible performance of a threshold estimate, the compar-
isons also includeOracleShrink, the best soft-thresholding
estimate obtainable assuming the original image known, and
OracleThresh, the best hard-thresholding counterpart. The
BayesShrinkmethod often comes to within 5% of the MSEs
of OracleShrink, and is better thanSureShrinkup to 8% most
of the time, or is within 1% if it is worse. Furthermore, the
BayesShrinkthreshold is very easy to compute.BayesShrink
with the additional MDL-based compression, as expected,
introduces quantization noise to the image. This distortion may
negate the denoising achieved by thresholding, especially when

is small. However, for larger values of, the MSE due to the
lossy compression is still significantly lower than that of the
noisy image, while fewer bits are used to code the image, thus
achieving both denoising and compression.

II. WAVELET THRESHOLDING ANDTHRESHOLDSELECTION

Let the signal be , where is some
integer power of 2. It has been corrupted by additive noise and
one observes

(1)

where are independent and identically distributed ()
as normal and independent of . The goal is to
remove the noise, or “denoise” , and to obtain an estimate

of which minimizes the mean squared error (MSE),

MSE (2)
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Fig. 2. Subbands of the 2-D orthogonal wavelet transform.

Let , , and ; that is,
the boldfaced letters will denote the matrix representation of the
signals under consideration. Let denote the matrix
of wavelet coefficients of , where is the two-dimensional
dyadic orthogonal wavelet transform operator, and similarly

and . The readers are referred to references such as
[23], [31] for details of the two-dimensional orthogonal wavelet
transform. It is convenient to label the subbands of the transform
as in Fig. 2. The subbands , , ,
are called thedetails, where is thescale, with being the
largest (or coarsest) scale in the decomposition, and a subband
at scale has size . The subband is thelow
resolution residual, and is typically chosen large enough such
that and . Note that since the transform
is orthogonal, are alsoiid .

The wavelet-thresholding denoising method filters each co-
efficient from the detail subbands with a threshold function
(to be explained shortly) to obtain . The denoised estimate is
then , where is the inverse wavelet transform
operator.

There are two thresholding methods frequently used. The
soft-thresholdfunction (also called the shrinkage function)

sgn (3)

takes the argument and shrinks it toward zero by thethreshold
. The other popular alternative is thehard-thresholdfunction

(4)

which keeps the input if it is larger than the threshold; oth-
erwise, it is set to zero. The wavelet thresholding procedure re-
moves noise by thresholdingonly the wavelet coefficients of the
detail subbands, while keeping the low resolution coefficients
unaltered.

The soft-thresholding rule is chosen over hard-thresholding
for several reasons. First, soft-thresholding has been shown to
achieve near-optimal minimax rate over a large range of Besov
spaces [12], [14]. Second, for the generalized Gaussian prior
assumed in this work, the optimal soft-thresholding estimator
yields a smaller risk than the optimal hard-thresholding esti-
mator (to be shown later in this section). Lastly, in practice, the
soft-thresholding method yields more visually pleasant images
over hard-thresholding because the latter is discontinuous and
yields abrupt artifacts in the recovered images, especially when

the noise energy is significant. In what follows, soft-thresh-
olding will be the primary focus.

While the idea of thresholding is simple and effective,
finding a good threshold is not an easy task. For one-dimen-
sional (1-D) deterministic signal of length , Donoho and
Johnstone [14] proposed forVisuShrinkthe universal threshold,

, which results in an estimate asymptotically
optimal in the minimax sense (minimizing the maximum
error over all possible -sample signals). One other notable
threshold is the SURE threshold [15], derived from minimizing
Stein’s unbiased risk estimate [30] when soft-thresholding
is used. TheSureShrinkmethod is a hybrid of the universal
and the SURE threshold, with the choice being dependent
on the energy of the particular subband [15]. The SURE
threshold is data-driven, does not depend on explicitly,
and SureShrinkestimates it in a subband-adaptive manner.
Moreover, SureShrink has yielded good image denoising
performance and comes close to the true minimum MSE of the
optimal soft-threshold estimator (cf. [4], [12]), and thus will be
the main comparison to our proposed method.

In the statistical Bayesian literature, many works have con-
centrated on deriving the best threshold (or shrinkage factor)
based on priors such as the Laplacian and a mixture of Gaus-
sians (cf. [1], [8], [9], [18], [24], [27], [29], [32], [35]). With an
integral approximation to the pixel-wise MSE distortion mea-
sure as discussed earlier, the formulation here is also Bayesian
for finding the best soft-thresholding rule under the general-
ized Gaussian prior. A related work is [27] where the hard-
thresholding rule is investigated for signals with Laplacian and
Gaussian distributions.

The GGD has been used in many subband or wavelet-based
image processing applications [2], [20], [22], [23], [29], [34],
[36]. In [29], it was observed that a GGD with the shape param-
eter ranging from 0.5 to 1 [see (1)] can adequately describe the
wavelet coefficients of a large set of natural images. Our expe-
rience with images supports the same conclusion. Fig. 3 shows
the histogram of the wavelet coefficients of the images shown in
Fig. 9, against the generalized Gaussian curve, with the param-
eters labeled (the estimation of the parameters will be explained
later in the text.) A heuristic can be set forward to explain why
there are a large number of “small” coefficients but relatively
few “large” coefficients as the GGD suggests: the small ones
correspond to smooth regions in a natural image and the large
ones to edges or textures.

A. Adaptive Threshold for BayesShrink

The GGD, following [20], is

(5)

, , , where

and
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(a) (b)

(c) (d)

Fig. 3. Histogram of the wavelet coefficients of four test images. For each image, from top to bottom it is fine to coarse scales: from left to right, theyare the
HH , HL, andLH subbands, respectively.

and is the gamma function. The pa-
rameter is the standard deviation and is the shapepa-
rameter. For a given set of parameters, the objective is to find
a soft-threshold which minimizes theBayes risk,

(6)

where , and .
Denote the optimal threshold by ,

(7)

which is a function of the parameters and . To our knowl-
edge, there is no closed form solution for for this chosen
prior, thus numerical calculation is used to find its value.1

Before examining the general case, it is insightful to consider
two special cases of the GGD: the Gaussian ( ) and the

1It was observed that for the numerical calculation, it is more robust to obtain
the value ofT from locating the zero-crossing of the derivative,r (T ), than
from minimizingr(T ) directly. In the Laplacian case, a recent work [17] derives
an analytical equation forT to satisfy and calculatesT by solving such an
equation.

Laplacian ( ) distributions. The Laplacian case is particu-
larly interesting, because it is analytically more tractable and is
often used in image processing applications.

Case 1: (Gaussian) with . It is
straightforward to verify that

(8)

(9)

where

(10)

with the standard normal density function
and the survival function of the

standard normal .
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(a)

(b)

Fig. 4. Thresholding for the Gaussian prior, with� = 1. (a) Compare the
optimal thresholdT (� ; 2) (solid —) and the thresholdT (� ) (dotted
� � �) against the standard deviation� on the horizontal axis. (b) Compare the
risk of using optimal soft-thresholding (—),T for soft-thresholding (� � �), and
optimal hard-thresholding (- - -).

Assuming for the time being, the value of
is found numerically for different values of and is plotted
against in Fig. 4(a), with

(11)

superimposed on top. It is clear that this simple and closed-form
expression, , is very close to the numerically found

. The expected risks of and are
shown in Fig. 4(b) for , where the maximum deviation of

is less than 1% of the optimal risk, .
For general , it is an easy scaling exercise to see that (11)
becomes

(12)

For a further comparison, the risk for hard-thresholding is
also calculated. After some algebra, it can be shown that the
risk for hard-thresholding is

(13)

By setting to zero the derivative of (13) with respect to, the
optimal threshold is found to be

if
if

anything if
(14)

with the associated risk

if
if

(15)

Fig. 4(b) shows that both the optimal and near-optimal soft-
threshold estimators, and , achieve lower risks
than the optimal hard-threshold estimator.

The threshold is not only nearly optimal but
also has an intuitive appeal. The normalized threshold, ,
is inversely proportional to , the standard deviation of , and
proportional to , the noise standard deviation. When
, the signal is much stronger than the noise, is chosen

to be small in order to preserve most of the signal and remove
some of the noise; vice versa, when , the noise dom-
inates and the normalized threshold is chosen to be large to re-
move the noise which has overwhelmed the signal. Thus, this
threshold choice adapts to both the signal and noise character-
istics as reflected in the parametersand .

Case 2: (Laplacian) With , the GGD becomes Lapla-
cian: LAP . Again
for the time being let . The optimal threshold
found numerically is plotted against the standard deviation
on the horizontal axis in Fig. 5(a). The curve of (in
solid line —) is compared with (in dotted line

) in Fig. 5(a). Their corresponding expected risks are shown
in Fig. 5(b), and the deviation of from the is
less than 0.8%. This suggests that also works well in
the Laplacian case. For general, (12) holds again.

The threshold choice was found in-
dependently in [27] for approximating the optimal hard-thresh-
olding using the Laplacian prior. Fig. 5(a) compares the optimal
hard-threshold, , and to the soft-thresholds

and . The corresponding risks are plotted
in Fig. 5(b), which shows the soft-thresholding rule to yield a
lower risk for this chosen prior. In fact, for larger than ap-
proximately 1.3 , the risk of the approximate hard-threshold is
worse than if no thresholding were performed (which yields a
risk of ).

When tends to infinity or the SNR is going to infinity,
an asymptotic approximation of is derived in [17] in
this Laplacian case to be . However, in the same article,
this asymptotic approximation is outperformed in seven test im-
ages by the our proposed threshold, .
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(a)

(b)

Fig. 5. Thresholding for the Laplacian prior, with� = 1. (a) Compare the
optimal soft-thresholdT (� ; 1) (—), the BayesShrinkthresholdT (� )
(� � �), the optimal hard-thresholdT (� ; 1) (- - -), and the thresholdT h (-�-�)
against the standard deviation on the horizontal axis. (b) Their corresponding
risks.

With these insights from the special cases, the discussion now
returns to the general case of GGD.

Case 3: (Generalized Gaussian) The proposed threshold
in (12) has been found to work well for the general

case. Let . In Fig. 6(a), each dotted line ( ) is the op-
timal threshold for a given fixed , plotted against

on the horizontal axis. The values are
shown. The threshold, , is plotted with the
solid line (—). The curve of the optimal threshold that lies
closest to is for , the Laplacian case,
while other curves deviate from as moves away from 1.
Fig. 6(b) shows the corresponding risks. The deviation between
the optimal risk and grows as moves away from
1, but the error is still within 5% of the optimal for the
curves shown in Fig. 6(b). Because the thresholddepends

(a)

(b)

Fig. 6. Thresholding for the generalized Gaussian prior, with� = 1. (a)
Compare the approximationT (� ) = � =� (—) with the optimal
thresholdT (� ; �) for � = 0:6; 1; 2; 3; 4 (� � �). The horizontal axis
is the standard deviation,� . (b) The optimal risks are in (� � �), and the
approximation in (—).

only on the standard deviation and not on the shape parameter,
it may not yield a good approximation for values ofother than
the range tested here, and the threshold may need to be modified
to incorporate . However, since for the wavelet coefficients
typical values of falls in the range [0.5, 1], this simple form of
the threshold is appropriate for our purpose. For a fixed set of
parameters, the curve of the risk (as a function of the threshold

) is very flat near the optimal threshold , implying that the
error is not sensitive to a slight perturbation near.

B. Parameter Estimation for Data-Driven Adaptive Threshold

This section focuses on the estimation of the GGD parame-
ters, and , which in turn yields a data-driven estimate of

that is adaptive to different subband characteristics.
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The noise variance needs to be estimated first. In some sit-
uations, it may be possible to measurebased on information
other than the corrupted image. If such is not the case, it is esti-
mated from the subband by the robust median estimator,
also used in [14], [15],

Median
subband (16)

The parameter does not explicitly enter into the expression
of , only the signal standard deviation, , does. There-
fore it suffices to estimate directly or .

Recall the observation model is , with and
independent of each other, hence

(17)

where is the variance of . Since is modeled as zero-
mean, can be found empirically by

(18)

where is the size of the subband under consideration. Thus

(19)

where

(20)

In the case that , is taken to be 0. That is,
is , or, in practice, , and all coefficients
are set to 0. This happens at times whenis large (for example,

for a grayscale image).
To summarize, we refer to our method asBayesShrinkwhich

performs soft-thresholding, with the data-driven, subband-de-
pendent threshold,

III. MDL P RINCIPLE FORCOMPRESSION-BASED DENOISING:
THE MDLQ CRITERION

Recall our hypothesis is that compression achieves denoising
because the zero-zone in the quantization step (typical in com-
pression methods) corresponds to thresholding in denoising. For
the purpose of compression, after using the adaptive threshold

for the zero-zone, there still remains the questions of
how to quantize the coefficients outside of the zero-zone and
how to code them. Fig. 7 illustrates the block diagram of the
compression method. It shows that the coder needs to decide
on the design parameters (the number of quantization

Fig. 7. Schematic for compression-based denoising. Denoising is achieved in
the wavelet transform domain by lossy-compression, which involves the design
of parametersT; m; and�, relating to the zero-zone width, the number of
quantization levels, and the quantization binwidth, respectively.

bins and the binwidth, respectively), in addition to the zero-zone
threshold . The choice of these parameters is discussed next.

When compressing a signal, two important objectives are to
be kept in mind. On the one hand, the distortion between the
compressed signal and the original should be kept low; on the
other hand, the description of the compressed signal should use
as few bits as possible to code. Typically, these two objectives
are conflicting, thus a suitable criterion is needed to reach a com-
promise. Rissanen’s MDL principle allows a tradeoff between
these two objectives [26].

Let be a library or class of models from which the “best”
one is chosen to represent the data. According to the MDL prin-
ciple, given a sequence of observations, the “best” model is the
one that yields the shortest description length for describing the
data using the model, where the description length can be in-
terpreted as the number of bits needed for encoding. This de-
scription can be accomplished by a two-part code: one part to
describe the model and the other the description of the data using
the model.

More precisely, given the set of observations, we wish to
find a model to describe it. The MDL principle chooses
which minimizes the two-part code-length,

(21)

where is the code-length for based on , and
is the code-length for .

In Saito’s simultaneous compression and denoising method
[28] for a length- one-dimensional signal, the hard-threshold
function was used to generate the models , where
the number of nonzero coefficients to retain is determined
by minimizing the MDL criterion. The first term is the
idealized code-length with the normal distribution [see (23)],
and the second term is taken to be , of
which are the bits needed to indicate the location of
each nonzero coefficient (assuming an uniform indexing) and
(1/2)log for the value of each of the coefficients [see [26]
for justification on using (1/2)log bits to store the coefficient
value]. Although compression has been achieved in the sense
that a fewer number of nonzero coefficients are kept, [28] does
not address the quantization step necessary in a practical com-
pression setting.

In the following section, an MDL-based quantization crite-
rion will be developed by minimizing with the restric-
tion that belongs to the set of quantized signals.
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A. Derivation of the MDLQ Criterion

Consider a particular subband of size . Since the noisy
wavelet transform coefficients are , where are
iid , then . Thus,

(22)

(23)

The second term in (23) is a constant, and thus is ignored in the
minimization. Expression (23) appears also in [21], [28]. The
approach described here differs from theirs in the estimate.

Let be the set of quantized coefficients , and be

constrained in . Plugging in as in (23) (with constant
terms removed) gives

(24)

(25)

There are many possible ways to quantize and encode. One
way is theuniform threshold quantizer(UTQ) with centroid
reconstruction based on the generalized Gaussian distribution.
The parameters of the GGD can be estimated from the observed
noisy coefficients as described below, which is a variant of that
described in [29].

For noiseless observations, is estimated as

(26)

and is solved from

(27)

where is the kurtosis of the GGD and is estimated as

The parameter values listed in Fig. 3 are estimated this way.
When the image is corrupted by additive Gaussian noise, the

second and fourth moments have the following relations:

(28)

Fig. 8. Illustrating the quantizer.

The noise variance, , is estimated via (16). The second mo-
ment, , and the kurtosis, , can be measured from the ob-
servations . The parameter is estimated as in (20) and

is then solved from (28).
Once the GGD parameters have been estimated, the quan-

tizer has sufficient information to perform the quantization.
The quantizer, shown in Fig. 8, consists of levels of bins
of equal size on each side, resulting in a total of
quantization bins (one zero-zone plussymmetric levels on
each positive and negative side). These bins are indexed as

. Consider the positive side and
let denote the boundaries of the quantization
bins, with centroid reconstruction values . The
value of with boundaries and is

(29)

Equation (29) is calculated using numerical integration (e.g. the
trapezoidal rule) since it does not have a closed-form solution.
Note that , and during quantization, is taken to be .

The negative side is quantized in a symmetric way. The quan-
tized coefficients are denoted by . Note that the zero co-
efficients resulting from thresholding are kept as zeros, and that
the subsequent quantization of the nonzero coefficients does not
set any additional coefficients to zero. On average, the smallest

number of bits needed to code is the Shannon code. Thus
the code-length for coding the bin indices is

(30)

where is the number of coefficients in bin. The additional
parameters and need to be coded also, but it is supposed
that any positive values are equally likely, thus a fixed number of
bits are allocated for for each subband (8 bytes were
used in the experiment).
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Now we state the model selection criterion,MDLQ:

with (31)

To find the best model, (32) is minimized over and to
find the corresponding set of quantized coefficients. In the im-
plementation, which is by no means optimized, this is done by
searching over , and for each , minimizing (32)
over a reasonable range of[such as

]. Typically, once a minimum (in )
has been reached, theMDLQ cost increase monotonically, thus
the search can terminate soon after a minimum has been de-
tected.

This MDLQ compression withBayesShrinkzero-zone selec-
tion is applied to each subband independently. The steps dis-
cussed in this section are summarized as follows.

• Estimate the noise variance , and the GGD standard
deviation .

• Calculate the threshold , and soft-threshold the wavelet
coefficients.

• To quantize the nonzero coefficients, minimize (32) over
and to find the corresponding quantized coefficients

, which is the compressed, denoised estimate of.

The coarsest subband is quantized differently in that it is
not thresholded, and the quantization with (32) assumes the uni-
form distribution. The coefficients are essentially local av-
erages of the image, and are not characterized by distributions
with a peak at zero, thus the uniform distribution is used for
generality. With the mean subtracted, the uniform distribution
is assumed to be symmetric about zero. Every quantization bin
(including the zero-zone) is of width , and the reconstruction
values are the midpoints of the intervals.

TheMDLQ criterion in (32) has the additional interpretation
of operating at a specified point on the rate-distortion (R-D)
curve, as also pointed out by Liu and Moulin [21]. For a given
coder, one can obtain a set of operational rate-distortion points

. When there is a rate or distortion constraint, the con-
straint problem can be formulated into a minimization problem
with a Lagrange multiplier, . In this case, (32) can be
interpreted as operating at . Natarajan [25]
and Liu and Moulin [21] both proposed to use compression
for denoising. The former operates at a constrained distortion,

, and the latter operates at on the
R-D curve. Both works recommend the use of “any reasonable
coder” while our coder is designed specifically with the purpose
of denoising.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The grayscale images “goldhill,” “ lena,” “ bar-
bara” and “baboon” are used as test images with different noise
levels . The original images are shown in

Fig. 9. Original images. From top left, clockwise:goldhill, lena, barbaraand
baboon.

Fig. 9. The wavelet transform employs Daubechies’ least asym-
metric compactly-supported wavelet with eight vanishing mo-
ments [11] with four scales of orthogonal decomposition.

To assess the performance ofBayesShrink, it is compared
with SureShrink[15]. The 1-D implementation ofSureShrink
can be obtained from the WaveLab toolkit [3], and the 2-D
extension is straightforward. To gauge the best possible per-
formance of a soft-threshold estimator, these methods are also
benchmarked against what we callOracleShrink, which is the
truly optimal soft-thresholding estimator assuming the original
image is known. The threshold ofOracleShrinkin each subband
is

(32)

with known. To further justify the choice of soft-thresh-
olding over hard-thresholding, another benchmark,Ora-
cleThresh, is also computed.OracleThreshis the best possible
performance of a hard-threshold estimator, with subband-adap-
tive thresholds, each of which is defined as

(33)

with known. The MSEs from the various methods are com-
pared in Table I, and the data are collected from an average
of five runs. The columns refer to, respectively,OracleShrink,
SureShrink, BayesShrink, BayesShrinkwith MDLQ-based com-
pression,OracleThresh, Wiener filtering, and the bitrate (in bpp,
or bits-per-pixel) of the MDLQ-compressed image. Since the
main benchmark is againstSureShrink, the better one of the
SureShrinkandBayesShrinkis highlighted in bold font for each
test set. The MSEs resulting fromBayesShrinkcomes to within



CHANG et al.: ADAPTIVE WAVELET THRESHOLDING FOR IMAGE DENOISING AND COMPRESSION 1541

TABLE I
FOR VARIOUS TEST IMAGES AND � VALUES, LISTS MSE OF (1) OracleShrink, (2) SureShrink, (3) BayesShrink, (4) BayesShrink
WITH MDLQ-COMPRESSION, (5) OracleThresh, AND (6) WIENER FILTERING THE LAST COLUMN SHOWS THE BITRATE (BITS PER

PIXEL) OF THE COMPRESSEDIMAGE OF (4). AVERAGED OVER FIVE RUNS

5% ofOracleShrinkfor the smoother imagesgoldhill andlena,
and are most of the time within 6% for highly detailed images
such asbarbara andbaboon(though it may suffer up to 20%
for small ). BayesShrinkoutperformsSureShrinkmost of the
time, up to approximately 8%. We observed in the experiments
that using solely the SURE threshold yields excellent perfor-
mance (sometimes yielding even lower MSE thanBayesShrink
by up to 1–2%). However, the hybrid method ofSureShrinkre-
sults at times in the choice of the universal threshold which can
be too large. As illustrated in Table I, all three soft-thresholding
methods outperforms significantly the best hard-thresholding
rule, OracleThresh.

It is not surprising that the SURE threshold and the
BayesShrinkthreshold yield similar performances. The SURE
threshold can also be viewed as an approximate optimal
soft-threshold in terms of MSE. For a particular subband of
size , following [15],

Sure

(34)
where denotes min , and the SURE threshold is de-
fined to be the value of minimizing Sure .

Recall

and s areiid . Conditioning on , by Stein’s
result,

Sure (35)

Moreover, as we have done before, if the distribution ofs is
approximated by a GGD, then the distribution ofs is approx-
imated by the mixture distribution of GGD and ; or

while follows a GGD and is independent of.
By the Law of Large Numbers,

Sure (36)

Taking expectation with respect to the GGD on both sides of
(35), the risk can be written as

Sure

(37)
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Fig. 10. Comparing the performance of the various methods ongoldhill with � = 20. (a) Original. (b) Noisy image,� = 20. (c) OracleShrink. (d) SureShrink.
(e) BayesShrink. (f) BayesShrinkfollowed by MDLQ compression.

Comparing (37) with (36), one can conclude that
Sure is a data-based approximation to ,

and the SURE threshold, which minimizes Sure , is an
alternative toBayesShrinkfor minimizing the Bayesian risk.

We have also made comparisons with the Wiener filter, the
best linear filtering possible. The version used is the adaptive
filter, wiener2 , in the MATLAB image processing toolbox,
using the default settings ( local window size, and the

unknown noise power is estimated). The MSE results are
shown in Table I, and they are considerably worse than the
nonlinear thresholding methods, especially whenis large. The
image quality is also not as good as those of the thresholding
methods.

The MDLQ-based compression step introduces quantization
noise which is quite visible. As shown in the last column of
Table I, the coder achieves a lower bitrate, but at the expense
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of increasing the MSE. The MSE can be even worse than the
noisy observation for small values of, especially for the highly
detailed images. This is because the quantization noise is sig-
nificant compared to the additive Gaussian noise. For larger,
the compressed images can achieve noise reduction up to ap-
proximately 75% in terms of MSE. Furthermore, the bitrates
are significantly less than the original 8 bpp for grayscale im-
ages. Thus, compression does achieve denoising and the pro-
posed MDLQ-based compression can be used if simultaneous
denoising and compression is a desired feature. If only the best
denoising performance were the goal, obviously using solely
BayesShrinkis preferred.

Note that the first-order entropy coding, , for
the bitrate of the quantized coefficients is a rather loose es-
timate. With more sophisticated coding methods (e.g. predic-
tive coding, pixel classification), the same bitrate could yield a
higher number of quantization level, thus resulting in a lower
MSE and enhancing the performance of the MDLQ-based com-
pression-denoise.

A fair assessment of the MDLQ scheme for quantization after
thresholding is the R-D curve used in Hansen and Yu [17] (see
http://cm.bell-labs.com/stat/binyu/publications.html). This R-D
curve is calculated using noiseless coefficients, and yields the
best possible in terms of R-D tradeoff when the quantization is
restricted to equal-binwidth. It thus gives an idea on how ef-
fective MDLQ is in choosing the tradeoff with respect to the
optimal. The closeness of the MDLQ point to this R-D lower-
bound curve indicates that MDLQ chooses a good R-D tradeoff
without the knowledge of the noiseless coefficients required in
deriving this R-D curve.

Fig. 10 shows the resulting images of each denoising method
for goldhill and (a zoomed-in section of the image
is displayed in order to show the details). Table II compares
the threshold values for each subband chosen byOracleShrink,
SureShrinkandBayesShrink, averaged over five runs. It is clear
that theBayesShrinkthreshold selection is comparable to the
SURE threshold and to the true optimal threshold . Some
of the unexpectedly large threshold values inSureShrinkcomes
from the universal threshold, not the SURE threshold, and these
are placed in parentheses in the table. Table II(c) lists the thresh-
olds of BayesShrink, and the thresholds in parentheses corre-
spond to the case when , and all coefficients
have been set to zero. Table III tabulates the values ofchosen
by for each subband of thegoldhill image, , av-
eraged over five runs. TheMDLQcriterion allocates more levels
in the coarser, more important levels, as would be the case in a
practical subband coding situation. A value of indicates
that the coefficients have already been thresholded to zero, and
there is nothing to code.

The results forlena and are also shown. Fig. 11
shows the same sequences for a zoomed-in portion of
lena with noise . The corresponding results of
threshold selections andMDLQ parameters forlena with
noise are listed in Tables IV and V. Interested
readers can obtain a better view of the images at the website,
http://www-wavelet.eecs.berkeley.edu/~grchang/compressDe-
noise/.

TABLE II
THE THRESHOLDVALUES OF OracleShrink, SureShrink, AND BayesShrink,

RESPECTIVELY, (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT

SUBBANDS OF GOLDHILL , WITH NOISE STRENGTH� = 20

TABLE III
THE VALUE OF m (AVERAGED OVER FIVE RUNS) FOR THEDIFFERENT

SUBBANDS OF GOLDHILL , WITH NOISE STRENGTH� = 20

V. CONCLUSION

Two main issues regarding image denoising were addressed
in this paper. Firstly, an adaptive threshold for wavelet thresh-
olding images was proposed, based on the GGD modeling of
subband coefficients, and test results showed excellent perfor-
mance. Secondly, a coder was designed specifically for simul-
taneous compression and denoising. The proposedBayesShrink
threshold specifies the zero-zone of the quantization step of this
coder, and this zero-zone is the main agent in the coder which
removes the noise. Although the setting in this paper was in the
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Fig. 11. Comparing the performance of the various methods onlenawith � = 10. (a) Original. (b) Noisy image,� = 10. (c) OracleShrink. (d) SureShrink.
(e) BayesShrink. (f) BayesShrinkfollowed by MDLQ compression.

wavelet domain, the idea can be extended to other transform do-
mains such as DCT, which also relies on the energy compaction
and sparse representation properties to achieve good compres-
sion.

There are several interesting directions worth pursuing. The
current compression selects the threshold (i.e. zero-zone size)

and the quantization bin size in a two-stage process. In

typical image coders, however, the zero-zone is chosen to be
either the same size or twice the size as other bins. Thus it would
be interesting to jointly select these two values and analyze their
dependencies on each other. Furthermore, a more sophisticated
coder is likely to produce better compressed images than the
current scheme, which uses the first order entropy to code the
bin indices. With an improved coder, an increase in the number
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TABLE IV
THE THRESHOLDVALUES OF OracleShrink, SureShrink, AND BayesShrink,

RESPECTIVELY, (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT

SUBBANDS OF LENA, WITH NOISE STRENGTH� = 10

TABLE V
THE VALUE OF m (AVERAGED OVER FIVE RUNS) FOR THEDIFFERENT

SUBBANDS OF LENA, WITH NOISE STRENGTH� = 10

of quantization bins would not increase the bitrate penalty by
much, and thus the coefficients would be quantized at a finer
resolution than the current method. Lastly, the model family
could be expanded. For example, one could use a collection of
wavelet bases for the wavelet decomposition, rather than using
just one chosen wavelet, to allow possibly better representations
of the signals.

In our other work [7], it was demonstrated thatspatiallyadap-
tive thresholds greatly improves the denoising performance over
uniform thresholds. That is, the threshold value changes foreach
coefficient. The threshold selection uses the context-modeling

idea prevelant in coding methods, thus it would be interesting
to extend this spatially adaptive threshold to the compression
framework, without incuring too much overhead. This would
likely improve the denoising performance.
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