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Adaptive Wavelet Thresholding for Image Denoising
and Compression
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Abstract—The first part of this paper proposes an adaptive, signal denoising using nonlinear techniques, in the setting of
data-driven threshold for image denoising via wavelet soft-thresh- gdditive white Gaussian noise. The seminal work on signal de-
olding. The threshold is derived in a Bayesian framework, and the noising viawavelet thresholdingr shrinkageof Donoho and

prior used on the wavelet coefficients is the generalized Gaussian -
distribution (GGD) widely used in image processing applications. Johnstone ([13]-{16]) have shown that various wavelet thresh-

The proposed threshold is simple and closed-form, and it is adap- 0!ding schemes for denoising have near-optimal properties in
tive to each subband because it depends on data-driven estimatesthe minimax sense and perform well in simulation studies of

of the parameters. Experimental results show that the proposed one-dimensional curve estimation. It has been shown to have
method, called BayesShrink is typically within 5% of the MSE payier rates of convergence than linear methods for approxi-

of the best soft-thresholding benchmark with the image assumed . . . N
known. It also outperformsgDonoho and Johnstone’ssgureShrink mating functions in Besov spaces ([13], [14]). Thresholding is

most of the time. a nonlinear technique, yet it is very simple because it operates
The second part of the paper attempts to further validate on one wavelet coefficient at a time. Alternative approaches to
recent claims that lossy compression can be used for denoising.nonlinear wavelet-based denoising can be found in, for example,

The BayesShrinkthreshold can aid in the parameter selection _ _
of a coder designed with the intention of denoising, and thus {é]é][ga(ggr]ef[;?e]h([::i],tgirse]in[lg], [24], [271-[29], [32], [33],

achieving simultaneous denoising and compression. Specifically, . )
the zero-zone in the quantization step of compression is analogous OnN @ seemingly unrelated front, lossy compression has been
to the threshold value in the thresholding function. The remaining proposed for denoising in several works [6], [5], [21], [25],
coder design parameters are chosen based on a criterion derived [28]. Concerns regarding the compression rate were explicitly
from Rissanen’s minimum description length (MDL) principle.  54qressed. This is important because any practical coder must

Experiments show that this compression method does indeed re- limited h as bits) at its di '
move noise significantly, especially for large noise power. However, 25SUme a limited resource (such as bits) at its disposal for repre-

it introduces quantization noise and should be used only if bitrate Senting the data. Other works [4], [12]-[16] also addressed the

were an additional concern to denoising. connection between compression and denoising, especially with
Index Terms—Adaptive method, image compression, image de- non!mear algorithms such as wavelet thresholding in a mathe-
noisingl image |restorati0|r'|l wavelet thresho|ding. matlcal framework. HOWeVer, these Iatter WOI’kS were not con-

cerned with quantization and bitrates: compression results from
areduced number of nonzero wavelet coefficients, and not from
an explicit design of a coder.
N IMAGE is often corrupted by noise in its acquisition or The intuition behind using lossy compression for denoising
transmission. The goal of denoising is to remove the noiggay be explained as follows. A signal typically has structural
while retaining as much as possible the important signal fegsrrelations that a good coder can exploit to yield a concise rep-
tures. Traditionally, this is achieved by linear processing suggsentation. White noise, however, does not have structural re-
as Wiener filtering. A vast literature has emerged recently glundancies and thus is not easily compressable. Hence, a good
compression method can provide a suitable model for distin-
guishing between signal and noise. The discussion will be re-
Manuscri . Lo . . :?(tricted to wavelet-based coders, though these insights can be
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i Nyl A Qm» 1 coefficients areid draws from a GGD. The goal is to find the
soft-threshold that minimizes this Bayesian risk, and we call our
methodBayesShrink

- - The proposed Bayesian risk minimization is subband-depen-

o T * dent. Given the signal being generalized Gaussian distributed

** and the noise being Gaussian, via numerical calculation a nearly

— optimal threshold for soft-thresholding is found to g =

Fig. 1. Thresholding function can be approximated by quantization WithaaQ/aX (Wher602 IS theln0|se V.a”an.ce. amg( the SIQn.al. VaI’I-.

76r0-z0Ne. ance). This threshold gives a risk within 5% of the minimal risk

over a broad range of parameters in the GGD family. To make

The theoretical formalization of filtering additiviel Gaussian this threshold data-driven, the parametess and o are esti-
noise (of zero-mean and standard deviatigwia thresholding mated from the observed data, one set for each subband.
wavelet coefficients was pioneered by Donoho and Johnstond© achieve simultaneous denoising and compression, the
[14]. A wavelet coefficient is compared to a given threshold arfPnzero thresholded wavelet coefficients need to be quantized.
is setto zeroifits magnitude is less than the threshold; otherwis#liform quantizer and centroid reconstruction is used on the
it is kept or modified (depending on the thresholding rule). THeGD. The design parameters of the coder, such as the number of
threshold acts as an oracle which distinguishes between gnantization levelsand binwidths, are decided based onacriterion
insignificant coefficients likely due to noise, and the significarflerived from Rissanen’minimum description lengt(MDL)
coefficients consisting of important signal structures. ThresRtinciple [26]. This criterion balances the tradeoff between the
olding rules are especially effective for signals with sparse 6pmpression rate and distortion, and yields a nice interpretation
near-sparse representations where only asmall subset of the c@kgperating atafixed slope on the rate-distortion curve.
ficients represents all or most of the signal energy. ThresholdingThe paper is organized as follows. In Section I, the wavelet
essentially creates a region around zero where the coefficiefitgsholding idea is introduced. Section II-A explains the
are considered negligible. Outside of this region, the thresholdégfivation of the BayesShrinkthreshold by minimizing a
coefficients are kept to full precision (that is, without quantiBayesian risk with squared error. The lossy compression based
zation). Their most well-known thresholding methods includen the MDL criterion is explained in Section Il. Experimental
VisuShrink{14] and SureShrin15]. These threshold choicesresults on several test images are shown in Section IV and
enjoy asymptotic minimax optimalities over function spacegPmpared withSureShrink To benchmark against the best
such as Besov spaces. Forimage denoising, howédseShrink possible performance of a threshold estimate, the compar-
is known to yield overly smoothed images. This is because i§9ns also includeOracleShrink the best soft-thresholding
threshold choicery/2Iog M (called theuniversal thresholdnd ~ €stimate obtainable assuming the original image known, and
o2 is the noise variance), can be unwarrantedly large due to@§acleThresh the best hard-thresholding counterpart. The
dependence onthe number of sampléswhichis more thai0? BayesShrinkmethod often comes to within 5% of the MSEs
foratypicaltestimage of size 2 x 512. SureShrinkisesahybrid Of OracleShrink and is better thaSureShrinkup to 8% most
of the universal threshold and the SURE threshold, derived frg?h the time, or is within 1% if it is worse. Furthermore, the
minimizing Stein’s unbiased risk estimator [30], and has be&yesShrinkhreshold is very easy to computBayesShrink
shown to performwelBureShrinkvill be the main comparisonto With the additional MDL-based compression, as expected,
the method proposed here, and, as will be seen later in this papfoduces quantization noise to the image. This distortion may
our proposed threshold often yields better result. negate the denoising achieved by thresholding, especially when

Since the works of Donoho and Johnstone, there has beet$ small. However, for larger values of the MSE due to the
much research on finding thresholds for nonparametric estim@ssy compression is still significantly lower than that of the
tion in statistics. However, few are specifically tailored for imnoisy image, while fewer bits are used to code the image, thus
ages. In this paper, we propose a framework and a near-@ghieving both denoising and compression.
timal threshold in this framework more suitable for image de-
noising. This approach can be formally described as Bayesial. WAVELET THRESHOLDING AND THRESHOLD SELECTION
buF this only describes our mathematical formulation., .not Our | et the signal befi;, i, j =1, -, N}, whereN is some
philosophy. The formulation is grounded on the empirical obyteger power of 2. It has been corrupted by additive noise and
servation that the wavelet coefficients in a subband of a natugdle opserves
image can be summarized adequately bgreralized Gaussian
distribution (GGD). This observation is well-accepted in the g9ij = fij+ey, j=1,---, N 1)
image processing community (for example, see [20], [22], [23],

[29], [34], [36]) and is used for state-of-the-art image codetshere{e;;} are independent and identically distributed}

in [20], [22], [36]. It follows from this observation that the av-as normal (0, o*) and independent off;;}. The goal is to
erage MSE (in a subband) can be approximated by the corf@move the noise, or “denoisgy;; }, and to obtain an estimate
sponding Bayesian squared error risk with the GGD as the priofi; } of { fi; } which minimizes the mean squared error (MSE),
applied to each in aiid fashion. That is, a sum is approximated N

by an integral. We emphasize that this is an analytical approx- MSE(f) = LQ Z (fij — fi))% 2)
imation and our framework is broader than assuming wavelet N i =1

T T <

o |
0
/
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LL ;| HL, the noise energy is significant. In what follows, soft-thresh-
HL, olding will be the primary focus.
LH; HH, While the idea of thresholding is simple and effective,

HL
! finding a good threshold is not an easy task. For one-dimen-

LH, HH, sional (1-D) deterministic signal of lengtih/, Donoho and
Johnstone [14] proposed fetsuShrinkhe universal threshold,
Ty = o+/2log M, which results in an estimate asymptotically
optimal in the minimax sense (minimizing the maximum
error over all possiblél/-sample signals). One other notable
threshold is the SURE threshold [15], derived from minimizing
Stein’s unbiased risk estimate [30] when soft-thresholding
is used. TheSureShrinkmethod is a hybrid of the universal
and the SURE threshold, with the choice being dependent
Fig. 2. Subbands of the 2-D orthogonal wavelet transform. on the energy of the particular subband [15]_ The SURE
threshold is data-driven, does not depend Mn explicitly,

Letg = {gi;}i, 5, F = {fi;}i,;, ande = {e;;}, ;; thatis, and SureShrinkestimates it in a subband-adaptive manner.
the boldfaced letters will denote the matrix representation of toreover, SureShrink has yielded good image denoising
signals under consideration. LEt = Wg denote the matrix performance and comes close to the true minimum MSE of the
of wavelet coefficients ofy, whereW is the two-dimensional optimal soft-threshold estimator (cf. [4], [12]), and thus will be
dyadic orthogonal wavelet transform operator, and similatly the main comparison to our proposed method.

W fandV = We. The readers are referred to references such adn the statistical Bayesian literature, many works have con-
[23], [31] for details of the two-dimensional orthogonal waveletentrated on deriving the best threshold (or shrinkage factor)
transform. Itis convenient to label the subbands of the transfotsased on priors such as the Laplacian and a mixture of Gaus-
asin Fig. 2. The subband$H, HLy, LHy, k=1,2,---,J sians (cf. [1], [8], [9], [18], [24], [27], [29], [32], [35]). With an

are called thedetails wherek is the scale with J being the integral approximation to the pixel-wise MSE distortion mea-
largest (or coarsest) scale in the decomposition, and a subbgork as discussed earlier, the formulation here is also Bayesian
at scalek has sizeV/2% x N/2*. The subband.Z; is thelow for finding the best soft-thresholding rule under the general-
resolution residugland./ is typically chosen large enough suchized Gaussian prior. A related work is [27] where the hard-
that N/27 < N andN/27 > 1. Note that since the transformthresholding rule is investigated for signals with Laplacian and
is orthogonal{V;,} are alsdid N(0, o2). Gaussian distributions.

The wavelet-thresholding denoising method filters each co-The GGD has been used in many subband or wavelet-based
efficientY;; from the detail subbands with a threshold functioimage processing applications [2], [20], [22], [23], [29], [34],
(to be explained shortly) to obtaiﬁij. The denoised estimate is[36]. In [29], it was observed that a GGD with the shape param-
then}‘ = WX, wherew! is the inverse wavelet transformeter/ ranging from 0.5 to 1 [see (1)] can adequately describe the
operator. wavelet coefficients of a large set of natural images. Our expe-

There are two thresholding methods frequently used. Thence with images supports the same conclusion. Fig. 3 shows
soft-thresholdunction (also called the shrinkage function)  the histogram of the wavelet coefficients of the images shown in

Fig. 9, against the generalized Gaussian curve, with the param-
nr(x) = sgr(z) - max(|z| — T, 0) ©) eters labeled (the estimation of the parameters will be explained
takes the argument and shrinks it toward zero byttineshold later in the text.) A heuristic can be set forward to explain why
T. The other popular alternative is thard-thresholdunction there are a large number of “small” coefficients but relatively
few “large” coefficients as the GGD suggests: the small ones
Yr(r) =z x| > T} ) correspond to smooth regions in a natural image and the large
which keeps the input if it is larger than the thresh@ldoth- Ones to edges or textures.
erwise, it is set to zero. The wavelet thresholding procedure re-
moves noise by thresholdimmgly the wavelet coefficients of the A. Adaptive Threshold for BayesShrink
detail subbands, while keeping the low resolution coefficients The GGD, following [20], is
unaltered.

The soft-thresholding rule is chosen over hard-thresholding GG, s(x) = C(ox, B) exp{—[a(ox, B)|z|]’}  (5)
for several reasons. First, soft-thresholding has been shown to
achieve near-optimal minimax rate over a large range of Besewc < = < o0, ox > 0, 8 > 0, where
spaces [12], [14]. Second, for the generalized Gaussian prior 19
assumed in this work, the optimal soft-thresholding estimator aox, B) =o7! [F(ZS/B)}
yields a smaller risk than the optimal hard-thresholding esti- ’ XOr(/p)
mator (to be shown later in this section). Lastly, in practice, tand
soft-thresholding method yields more visually pleasant images Clox, B) = B-aolox, B)
over hard-thresholding because the latter is discontinuous and ’ o <l>
yields abrupt artifacts in the recovered images, especially when 3

LH, HH,
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Fig. 3. Histogram of the wavelet coefficients of four test images. For each image, from top to bottom it is fine to coarse scales: from left to dgatihbey
HH, HL,andLH subbands, respectively.

andI'(¢ fo e *ut~1 du is the gamma function. The pa-Laplacian (¢ = 1) distributions. The Laplacian case is particu-
rametero-X is the standard deviation anglis the shapepa- larly interesting, because it is analytically more tractable and is
rameter. For a given set of parameters, the objective is to finften used in image processing applications.

a soft-threshold” which minimizes theBayes risk Case 1: (Gaussian)X ~ N(0, 0%) with 3 = 2. Itis

P(T) = E(X _ X2 = EXEY|X(X _x) ©) straightforward to verify that

A ExEyx(X - X
whereX = nr(Y), Y|X ~ N(z, 02) andX ~ GG, 5. xEyix )y

Denote the optimal threshold l&y*, :/ / (nr(y) — =)*ply|z)p(x) dy dz (8)
T*(ox, 3) = argminr(T) @)
r = 2w <— —) 9)
which is a function of the parameters, and/3. To our knowl- 0?2’ o

edge, there is no closed form solution f6t for this chosen where
prior, thus numerical calculation is used to find its value.

Before examining the general case, itis insightful to consider w(o%, T) =o% + 2(1%24+1 - 0%)® LQ
two special cases of the GGD: the Gaussian= 2) and the Vitox
2 2
1it was observed that for the numerical calculation, it is more robust to obtain N 2T(1 + UXM)(T 1+ UX) (10)

the value ofT* from locating the zero-crossing of the derivative(T), than  \vith the standard normal density functiop(z, o ) —
from minimizingr (") directly. In the Laplacian case, arecent work [17] derive

fo 3 2
an analytical equation fdF* to satisfy and calculatéE* by solving such an ?1/ 2m0?) exp(—(@ /20 )) and the survival function of the
equation. standard normab(z) = [° ¢(¢, 1) dt.
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For a further comparison, the risk for hard-thresholding is
. also calculated. After some algebra, it can be shown that the
or 1 risk for hard-thresholding is

Compare Thresholds for Gaussian Prior
10 T T T T T T

Th(T) = 02 + (02 - Og()
. <2T</>(T, 0% +02) + 23 <%> - 1) .
O'X g
(13)

By setting to zero the derivative of (13) with respectiipthe
optimal threshold is found to be

Threshold Value

2 0, if ox >0
T (ox, 2) = { 00, ifox <o (14)
T anything if ox = o.

with the associated risk

" a2, ifox >0
7)h(11h) = {0’%{, if O_i S o. (15)

@

Compare Risks for Gaussian Prior

Fig. 4(b) shows that both the optimal and near-optimal soft-
threshold estimatorsyr- (-) and nr,(-), achieve lower risks
than the optimal hard-threshold estimator.

The thresholdl’s = o2 /o is not only nearly optimal but
also has an intuitive appeal. The normalized thresHBlgo,
is inversely proportional te x, the standard deviation df, and
proportional tas, the noise standard deviation. Whefr x <
1, the signal is much stronger than the noigg,/o is chosen
to be small in order to preserve most of the signal and remove
some of the noise; vice versa, whefwx >> 1, the noise dom-
inates and the normalized threshold is chosen to be large to re-
move the noise which has overwhelmed the signal. Thus, this
threshold choice adapts to both the signal and noise character-
istics as reflected in the parameterandox .

Case 2: (Laplacian) Withs = 1, the GGD becomes Lapla-

. : s L L L . Cian: X ~ LAP(z) = (1/v20x) exp{—(v/2/ox)|z|}. Again
% for the time being let = 1. The optimal threshol@™* (o, 1)
(b) found numerically is plotted against the standard deviatign

Fig. 4. Thresholding for the Gaussian prior, with= 1. (a) Compare the on the horizontal axis in Fig. 5(a). The Curveﬁf(a}(’ 1) (in

optimal thresholdl™ (v, 2) (solid —) and the threshol@s (o x ) (dotted  SOlid line —) is compared witlis (0 x) = 1/0x (in dotted line
---) against the standard deviatier on the horizontal axis. (b) Compare the- - -) in Fig. 5(a). Their corresponding expected risks are shown

risk of using optimal soft-thresholding (—Js for soft-thresholding-(. -), and in Fig. 5(b), and the deviation @’f(TB (UX)) from ther(T*) is
optimal hard-thresholding (- - ). less than 0.8%. This suggests tiaf(ox ) also works well in
) ) ) the Laplacian case. For genesgl(12) holds again.
~ Assumingo = 1 for the time being, the value dl”f(o—X, 2) The threshold choic&’(ox) = 2v/20% /0 was found in-
is found numerically for different values ofy and is plotted dependently in [27] for approximating the optimal hard-thresh-

againstox in Fig. 4(a), with olding using the Laplacian prior. Fig. 5(a) compares the optimal
1 hard-threshold7; (ox, 1), andT%(ox) to the soft-thresholds
Tp(ox) = ox (11) T*(ox, 1) andTg(ox). The corresponding risks are plotted

superimposed on top. Itis clear that this simple and closed-foifrrh':lg' 5(b), which shows the soft-thresholding rule to yield a

expression T’ is verv close to the numerically found ower risk for this chosen prior. In fact, fary larger than ap-
T*F()o— 2) Tﬁ((e(g()r;ected r?/sks (o, 2) andTs(o y) are proximately 1.3, the risk of the approximate hard-threshold is
X . X B\YX

shown in Fig. 4(b) for — 1, where the maximum deviation ofworse than if no thresholding were performed (which yields a

i 2
r(Tp(ox)) is less than 1% of the optimal risk(T*(ox, 2)). risk of o%).

o . . Whenox tends to infinity or the SNR is going to infinity,
For generals, it is an easy scaling exercise to see that (1%?n asymptotic approximation (o, 1) is derived in [17] in

becomes this Laplacian case to béi/ox. However, in the same article,
o2 this asymptotic approximation is outperformed in seven testim-
Tp(ox) = ox (12) ages by the our proposed threshd@,(ox ).
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Compare Thresholds for Laplacian Prior

Compare Thresholds for Generalized Gaussian Prior

T T T T

Threshold Value
Threshold Value

05-

o soft-thresholding N T T T T T T T T T T T T

I I :

0 0.5 1 15

(@) (@)

Compare Risks for Laplacian Prior Compare Risks for Generalized Gaussian Prior

T T T T 1 T T T

Risk

(b)
Fig. 5. Thresholding for the Laplacian prior, with = 1. (a) Compare the Fig. 6. Thresholding for the generalized Gaussian prior, with= 1. (a)
optimal soft-threshold™ (o x, 1) (—), the BayesShrinkhresholdTz(cx) Compare the approximatiofz(cx) = o2?/ox (—) with the optimal

(- - -), the optimal hard-thresholfl; (o x, 1) (---), and the threshol@z &2 (----)  thresholdT* (o x, 3) for 3 = 0.6, 1, 2, 3, 4 (---). The horizontal axis
against the standard deviation on the horizontal axis. (b) Their correspondisghe standard deviation;x. (b) The optimal risks are in-(-), and the
risks. approximation in (—).

With these insights from the special cases, the discussion N4y on the standard deviation and not on the shape pararheter
returns to the general case of GGD. it may not yield a good approximation for valueséther than

Case 3: (Generalized Gaussian) The proposed threshqith 1ange tested here, and the threshold may need to be modified
Tp(ox) in (12) has been found to work well for the general incorporates. However, since for the wavelet coefficients
case. Leb = 1. In Fig. 6(a), each dotted line () is the Op-  ica)| values of falls in the range [0.5, 1], this simple form of
timal thresholq[F*(aX, /3_) for a given fixeds3, plotted against the threshold@’s is appropriate for our purpose. For afixed set of
ox on the horizontal axis. The valugs= 0.6, 1,2, 3, 4 aré 53 meters, the curve of the risk (as a function of the threshold
shown. The threshold/s(ox) = 1/ox, is plotted with the 7y igyery flat near the optimal threshol', implying that the
solid line (—). The curve of the optimal threshold that I|e§rror is not sensitive to a slight perturbation n@4r
closest toTs(ox) is for T*(ox, 8 = 1), the Laplacian case,
while other curves deviate froffiz as/j moves away from 1.
Fig. 6(b) shows the corresponding risks. The deviation betwegh
the optimal risk-(7™*) andr(T's) grows asdmoves away from  This section focuses on the estimation of the GGD parame-
1, but the error is still within 5% of the optima(7™) for the ters,ox and/, which in turn yields a data-driven estimate of
curves shown in Fig. 6(b). Because the thresifgdddepends T (ox) that is adaptive to different subband characteristics.

Parameter Estimation for Data-Driven Adaptive Threshold
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The noise variance? needs to be estimated first. In some sit- §C0mpress‘fqn-based‘§
uations, it may be possible to measufebased on information £ . Denoising
i i it i z ‘A
other than the corrupted image. If such is not th.e case, itises ¢ g | waveret | ¥ Quantize | X [ Toverse f
mated from the subbanfl H; by the robust median estimator, Transform | (T, Am) | . | Transform [
also used in [14], [15], i '
Estimate
R Medlal'( |Y;J |) Parameters | :
o= 06745 ? Y;J € SUbbandHHl' (16) 5. ............................ .E

. ) . Fig. 7. Schematic for compression-based denoising. Denoising is achieved in
The parametef does not explicitly enter into the expressiornhe wavelet transform domain by lossy-compression, which involves the design

of Ts (UX) onIy the signal standard deviatiany , does. There- of parameters’, m, and A, relating to the zero-zone width, the number of
fore it sufﬁ’ces to estimate directlyy or 02 ' quantization levels, and the quantization binwidth, respectively.
X X
Recall the observation model¥s = X + V, with X andV’

independent of each other, hence bins and the binwidth, respectively), in addition to the zero-zone

thresholde. The choice of these parameters is discussed next.
) ) ) When compressing a signal, two important objectives are to
oy =ox to (17)  be kept in mind. On the one hand, the distortion between the

compressed signal and the original should be kept low; on the
whereo? is the variance ol. SinceY is modeled as zero- other hand, the description of the compressed signal should use

mean,o3 can be found empirically by as few bits as possible to code. Typically, these two objectives
are conflicting, thus a suitable criterion is needed to reach a com-
Lo promise. Rissanen’s MDL principle allows a tradeoff between
62 = — Z Y32 (18) these two objectives [26].
o= Let M be a library or class of models from which the “best”

one is chosen to represent the data. According to the MDL prin-
wheren x n is the size of the subband under consideration. ThG¥!€; given a sequence of observations, the “best” model is the
one that yields the shortest description length for describing the
52 data using the model, where the description length can be in-
Tp(ox) =< (19) terpreted as the number of bits needed for encoding. This de-
ox scription can be accomplished by a two-part code: one part to
describe the model and the other the description of the data using
the model.
. - - More precisely, given the set of observatidnswe wish to
ox = \/lnax(ffoV —52,0). (20)  find a modelX to describe it. The MDL principle chooséé
which minimizes the two-part code-length,

where

In the case that? > 4%, 6 is taken to be 0. That i€5(5x)

is 00, or, in practice] s (6 x ) = max(|Y;,]), and all coefficients LY, X) = L(Y|X) + L(X) (21)
are set to 0. This happens at times whda large (for example,
o > 20 for a grayscale image). whereL(Y'|X) is the code-length far” based onX, andL(X)

To summarize, we refer to our methodBesyesShrinkvhich ¢ o code-length foX .
performs soft-thresholding,

with the data-driven, subband-de-|, gaito's simultaneous compression and denoising method
pendent threshold,

[28] for a lengthA4 one-dimensional signal, the hard-threshold
function was used to generate the modgls= ¢ (Y), where
Ts(6x) =6%/5%. the numberK of nonzero coefficients to retain is determined
by minimizing the MDL criterion. The first termk(Y | X) is the
idealized code-length with the normal distribution [see (23)],
and the second terrh(X) is taken to beg(3/2)K log, M, of
lll. MDL PRINCIPLE FORCOMPRESSIONBASED DENOISING: \icy Klog, M are th(e tZits needed to iergdi/c;te th?location of
THE MDLQ CRITERION each nonzero coefficient (assuming an uniform indexing) and
Recall our hypothesis is that compression achieves denois{figR)log M for the value of each of thE coefficients [see [26]
because the zero-zone in the quantization step (typical in cofor justification on using (1/2)log\/ bits to store the coefficient
pression methods) corresponds to thresholding in denoising. Falue]. Although compression has been achieved in the sense
the purpose of compression, after using the adaptive threshthldt a fewer number of nonzero coefficients are kept, [28] does
Tg(c}x) for the zero-zone, there still remains the questions abt address the quantization step necessary in a practical com-
how to quantize the coefficients outside of the zero-zone aptkession setting.
how to code them. Fig. 7 illustrates the block diagram of the In the following section, an MDL-based quantization crite-
compression method. It shows that the coder needs to dedid® will be developed by minimizing.(Y, X) with the restric-
on the design parameters, A (the number of quantization tion thatX belongs to the set of quantized signals.
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A. Derivation of the MDLQ Criterion A zo
Consider a particular subband of size< n. Since the noisy A }

wavelet transform coefficients até = X + V, whereV;; are v g
iid .ZV(O7 0'2), thenY;ﬂXij ~ .ZV()(U7 0'2). Thus, 27 A P

LYIX) == 3 logp(¥i|xs) (22) P T

”1 S ) o T  b+T bya+T ¥
- \2 ) 2n? v b+
= 577105 2 (Y~ Xu)" + 5 log(2n0™), o

i, j=1

(23) .

The second term in (23) is a constant, and thus is ignored in1_
minimization. Expression (23) appears also in [21], [28]. The’
approach described here differs from theirs in the estinXate

Let M be the set of quantized coefficienfs”, and X be

o @ ) : _ . . . .
constrained inM. Plugging inX ~ asX in (23) (with constant The noise variances?, is estimated via (16). The second mo-

Fig. 8. lllustrating the quantizer.

terms removed) gives ment,o2., and the kurtosissy-, can be measured from the ob-
servations(Y;, }. The parameter x is estimated as in (20) and
Y|X Z log p(V; ) (24) #is then solved from (28).
Pt Once the GGD parameters have been estimated, the quan-
1 n X tizer has sufficient information to perform the quantization.
=5t Z (Y — ij.)? (25) The quantizer, shown in Fig. 8, consistseflevels of bins
20%log2 £ of equal sizeA on each side, resulting in a total 8fn + 1

quantization bins (one zero-zone plissymmetric levels on
There are many possible ways to quantize and enébdene each positive and negatlve side). These bins are indexed as

way is theuniform threshold quantizefUTQ) with centroid ¢— _», ... —1 0,1, ---, m. Consider the positive side and
reconstruction based on the generalized Gaussian distributie.o, b, - - -, by, denote the boundaries of the quantization
The parameters of the GGD can be estimated from the obseryggk, with centroid reconstruction valugs, vz, - - -, vm. The

noisy coefficients as described below, which is a variant of th@lue of-~, with boundaries,_; andb, is
described in [29].
For noiseless observationsy is estimated as

by
/ GGy p(z)dx

2 _ e (—1
A= ZIA (26) e = T : (29)
b GGyy () dz
and/ is solved from be—n
1 5 Equation (29) is calculated using numerical integration (e.g. the
(=10 = . . . ) .
</3> </3> trapezoidal rule) since it does not have a closed-form solution.
rX (27)  Note thath, = 0, and during quantizatio,,, is taken to bex.

2 <%) The negative side is quantized in a symmetric way. The quan-
f tized coefficients are denoted Ky ?}. Note that the zero co-
wherer x is the kurtosis of the GGD and is estimated as efficients resulting from thresholding are kept as zeros, and that

the subsequent quantization of the nonzero coefficients does not
Z X set any additional coefficients to zero. On average, the smallest
”2 number of bits needed to codéQ is the Shannon code. Thus

] o ] ] the code-length for coding the bin indices is
The parameter values listed in Fig. 3 are estimated this way.

When the image is corrupted by additive Gaussian noise, the
second and fourth moments have the following relations:

IiX—A
O’
i, j=1

(X lm, A) Z K, log (30)
0_32/ :O'g( + 0_27 {=—m
r <l) r <§) where kK is the number of coefficients in bii The additional
Ky = i4 60203 — 30* 4 (02 — 0?) _\B) _\PJ . Pparametersn _andA need to be cod_ed also, but _it is supposed
oy 2 <§> that any positive values are equally likely, thus a fixed number of
Jéi bits are allocated foL(m, A) for each subband (8 bytes were

(28) used in the experiment).
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Now we state the model selection criteridfDLQ:

MDLQ(X®?, m, A)
1
- 202 log2

- 5 o Q
Z (Y;J - Xz?)Q + L(X " m, A),

,i=1

. 5 Q i ‘K[
with L(X“|m, A)=— Y Klog—. (31)

{=—m

To find the best model, (32) is minimized over and A to
find the corresponding set of quantized coefficients. In the in&&s
plementation, which is by no means optimized, this is done I
searching ovem = 1, 2, - - -, and for eachn, minimizing (32) &
over a reasonable range Af[such asA € [max(|Y;,|)/(m +
5), max(|Y;;])/(m — 1.5)]]. Typically, once a minimum (imn)
has been reached, tMDLQ cost increase monotonically, thus
the search can terminate soon after a minimum has been
tected.

This MDLQ compression witlBayesShrinkero-zone selec- |
tion is applied to each subband independently. The steps
cussed in this section are summarized as follows.

« Estimate the noise varianee?, and the GGD standard

Fig. 9. Original images. From top left, clockwisgoldhill, lena, barbaraand

P baboon
deviationox. R
’ g:el%lijggﬁt?e thresholtls, and soft-threshold the WaVelmFig. 9. The wavelet transform employs Daubechies’ least asym-

T . - I metric compactly-supported wavelet with eight vanishing mo-
» To quantize the nonzero coefficients, minimize (32) over : o
i ) . .~ ments [11] with four scales of orthogonal decomposition.

m andA to find the corresponding quantized coefficients A

- Q o i i To assess the performance B&yesShrinkit is compared

X", whichis the compresseq, denplsed est!matXQf ~ with SureShrin15]. The 1-D implementation oSureShrink
The coarsest subbardd.. ; is qu_alnt[zed c_ilfferently in that it is can be obtained from the WaveLab toolkit [3], and the 2-D
not thresholded, and the quantization with (32) assumes the Wjitension is straightforward. To gauge the best possible per-
form distribution. Thel L ; coefficients are essentially local av-formance of a soft-threshold estimator, these methods are also
erages of the image, and are not characterized by distributigRgchmarked against what we c@itacleShrink which is the
with a peak at zero, thus the uniform distribution is used f@fuly optimal soft-thresholding estimator assuming the original

generality. With the mean subtracted, the uniform distributiqmage is known. The threshold OacleShrinkin each subband
is assumed to be symmetric about zero. Every quantization pin

(including the zero-zone) is of width, and the reconstruction N
values are the midpoints of the intervals. e N v.2
The MDLQ criterion in (32) has the additional interpretation Tos = arguin Z (nr(Yij) = Xij) (32)
of operating at a specified point on the rate-distortion (R-D)
curve, as also pointed out by Liu and Moulin [21]. For a givewith X;; known. To further justify the choice of soft-thresh-
coder, one can obtain a set of operational rate-distortion poiniging over hard-thresholding, another benchma@a-
(R, D). When there is a rate or distortion constraint, the cosleThreshis also computedOracleThrestis the best possible
straint problem can be formulated into a minimization probleiperformance of a hard-threshold estimator, with subband-adap-
with a Lagrange multiplierAD + R. In this case, (32) can betive thresholds, each of which is defined as
interpreted as operating at = (1/202 log 2). Natarajan [25] "
and Liu and Moulin [21] both proposed to use compression Tor = arg min Z (Pr(Yi) — Xij)? (33)
for denoising. The former operates at a constrained distortion, T
D < o2, and the latter operates at= (1/202log2) on the
R-D curve. Both works recommend the use of “any reasonatyith X;; known. The MSEs from the various methods are com-
coder” while our coder is designed specifically with the purpogeared in Table I, and the data are collected from an average
of denoising. of five runs. The columns refer to, respectivebracleShrink
SureShrinkBayesShrinkBayesShrinkvith MDLQ-based com-
pressionQracleThreshWiener filtering, and the bitrate (in bpp,
or bits-per-pixel) of the MDLQ-compressed image. Since the
The 512 x 512 grayscale imagesgbldhill,” “leng” “bar- main benchmark is again§ureShrink the better one of the
bara’ and “baboori are used as test images with different nois8ureShrinkandBayesShrinks highlighted in bold font for each
levelse = 10, 20, 30, 35. The original images are shown intest set. The MSESs resulting froBayesShrinkomes to within

i, =1

i, =1

IV. EXPERIMENTAL RESULTS AND DISCUSSION
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TABLE |
FOR VARIOUS TEST IMAGES AND o VALUES, LISTS MSE oOF (1) OracleShrink (2) SureShrink (3) BayesShrink(4) BayesShrink
WITH MDLQ-CoMPRESSION (5) OracleThreshAND (6) WIENER FILTERING THE LAST COLUMN SHOWS THE BITRATE (BITS PER
PIXEL) OF THE COMPRESSEDIMAGE OF (4). AVERAGED OVER FIVE RUNS

OracleShrink | SureShrink | BayesShrink | BayesShrink | OracleThresh | Wiener | bitrate
+ Compress M
goldhill
=10 41.28 42.26 41.98 59.21 54.11 42.87 | 1.055
=20 86.35 93.21 88.59 112.43 108.32 97.06 | 0.453
=30 124.80 128.98 126.40 155.60 152.22 189.75 | 0.270
0=35 140.55 151.19 141.97 174.06 172.09 250.22 | 0.225
lena
=10 28.31 29.21 29.65 40.71 34.93 28.52 | 0.747
=20 59.56 63.95 61.73 81.66 72.57 82.11 | 0.373
=30 89.74 94.13 92.06 119.37 110.16 175.36 | 0.234
=35 104.27 107.19 106.45 138.62 127.68 236.63 | 0.201
barbara
o=10 45.96 56.21 51.27 81.43 58.04 67.84 | 1.205
=20 118.11 121.19 121.52 170.20 150.94 136.12 | 0.852
=30 190.63 201.09 192.60 250.86 253.10 241.74 | 0623
=35 226.30 246.07 229.66 289.77 300.11 308.51 | 0.516
baboon
=10 66.37 85.76 80.04 129.71 90.27 115.15 | 1.343
=20 170.28 185.16 180.15 242.62 232.60 182.29 | 0.853
=30 263.09 269.88 270.18 332.66 349.62 284.14 | 0.583
0=35 302.71 314.08 309.92 367.72 393.19 346.79 | 0.477
5% of OracleShrinkfor the smoother imagegoldhill andlena, Recall
and are most of the time within 6% for highly detailed images
such asharbaraandbaboon(though it may suffer up to 20% Yij=Xij+Vy, 7=1--,n

for small o). BayesShrinloutperformsSureShrinkmost of the . ) L -
time, up to approximately 8%. We observed in the experimerft8dVi;s areiid N(0, 7). Conditioning onX = =, by Stein's
that using solely the SURE threshold yields excellent perfd€Sult

mance (sometimes yielding even lower MSE tigayesShrink N 1 _

by up to 1-2%). However, the hybrid methodSuireShrinke- Ey[llnr(Y) — =||"|X = 2] = Ey[SurdT, Y)|X = z]. (35)

sults at times in the choice of the universal threshold which C?\Woreover as we have done before. if the distribution¥as is

be E[(r)]o(;arge.tAs :cllustrate_d |T;_Tabtlle I’tﬁ" tl?ref rSIOfStHIGSthI?(;n proximated by a GGD, then the distributionio$ is approx-
methods outpertorms significantly the best hard-thrésholdifigd e q by the mixture distribution of GGD an¥(0, o2); or
rule, OracleThresh

) o Y = X 4+ V while X follows a GGD and is independent &f.
It is not surprising that the SURE threshold and the gy the Law of Large Numbers,
BayesShrinkhreshold yield similar performances. The SURE
threshold can also be viewed as an approximate optimall 2
. . — T.Y)~1-2FEyI Ev(|Y|ANT)=.
soft-threshold in terms of MSE. For a particular subband of nz WD Y) vlyrvicry + By (VIAT)" (36)

sizen x n, following [15], Taking expectation with respect to the GGD on both sides of

(35), the risk can be written as

_ ’ 3 1
Surd7,Y) = n?—2 Z Iy <y + Z ([¥i;] A T)2 (T = _QEYH??T(Y) — z|)?
n

i,j=1 i, =1
(34) _1
wherea A b denotes mifu, b), and the SURE threshold is de- " n? EySurel. Y)
fined to be the value df’ minimizing SuréZ’, Y'). =1-2FyI{y|<r + By (Y| AT)>. (37)
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Fig. 10. Comparing the performance of the various methodgotgthill with ¢ = 20. (a) Original. (b) Noisy images = 20. (c) OracleShrink (d) SureShrink
(e) BayesShrink(f) BayesShrinkollowed by MDLQ compression.

Comparing (37) with (36), one can conclude thainknown noise power is estimated). The MSE results are
(1/n%)SurdT, Y) is a data-based approximation t@7°), shown in Table I, and they are considerably worse than the
and the SURE threshold, which minimizes S@eY), is an nonlinear thresholding methods, especially wheslarge. The
alternative toBayesShrinkor minimizing the Bayesian risk. image quality is also not as good as those of the thresholding
We have also made comparisons with the Wiener filter, thethods.

best linear filtering possible. The version used is the adaptiveThe MDLQ-based compression step introduces quantization
filter, wiener2 , in the MATLAB image processing toolbox, noise which is quite visible. As shown in the last column of
using the default settings3 « 3 local window size, and the Table I, the coder achieves a lower bitrate, but at the expense
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of increasing the MSE. The MSE can be even worse than the TABLE I _ _
noisy observation for smalll vaIueS@J‘especiaIIy for the highly THE THRESHOLD VALUES OF OracleShrink SureShrinkAND BayesShrink

A . .. . . . . . RESPECTIVELY, (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT
detailed images. This is because the quantization noise is sig- SUBBANDS OF GOLDHILL , WITH NOISE STRENGTHo = 20
nificant compared to the additive Gaussian noise. For larger

the compressed images can achieve noise reduction up to ap-

Orientations

proximately 75% in terms of MSE. Furthermore, the bitrates

. L . Scales HH HL LH
are significantly less than the original 8 bpp for grayscale im-
ages. Thus, compression does achieve denoising and the pro- 1 (finest) 84.90 | 37.36 | 38.04
posed MDLQ-based compression can be used if simultaneous 2 3712 | 2116 | 1850
denoising and compression is a desired feature. If only the best 3 17311 1151 ad5
denoising performance were the goal, obviously using solely
BayeSShI’inl"{S prefel’red. 4 (coarsest) 7.84 6.24 3.40

Note that the first-order entropy coding(X Q|m, A), for (a) OracleShrink: Tos
the bitrate of the quantized coefficients is a rather loose es-
timate. With more sophisticated coding methods (e.g. predic- Orientations
tive coding, pixel classification), the same bitrate could yield a Scales HH HL LH
higher number of quantization leved, thus resulting in a lower
MSE and enhancing the performance of the MDLQ-based com- 1 (finest) || (95.66) | (95.66) | (95.66)
pression-denoise. 2 80.48 | 21.78 | 18.86
A fair assessment of the MDLQ scheme for quantization after 3 1852 | 11.46 9.14
thresholding is the R-D curve used in Hansen and Yu [17] (see 4 (coarsest) 8.44 5.58 3.56

http://cm.bell-labs.com/stat/binyu/publications.html). This R-D
curve is calculated using noiseless coefficients, and yields the
best possible in terms of R-D tradeoff when the quantization is
restricted to equal-binwidth. It thus gives an idea on how ef- Orientations
fective MDLQ is in choosing the tradeoff with respect to the Scales HH HL LH
optimal. The closeness of the MDLQ point to this R-D lower-
bound curve indicates that MDLQ chooses a good R-D tradeoff

(b) SureShrink: SURE or (universal)

1 (finest) | (95.85) | 49.69 | 51.34

without the knowledge of the noiseless coefficients required in 2 46.37 | 19.78 | 16.84
deriving this R-D curve. 3 17.43 8.45 6.91
Fig. 10 shows the resulting images of each denoising method 4 (coarsest) 7.03 2.86 3.13

for goldhill and ¢ = 20 (a zoomed-in section of the image
is displayed in order to show the details). Table Il compares
the threshold values for each subband chose@iagleShrink,

(c) BayesShrink: Tg

SureShrinkandBayesShrinkaveraged over five runs. It is clear TABLE Il

that theBayesShrinkhreshold selection is comparable to the THE VALUE OF m (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT
SURE threshold and to the true optimal threshfilgs. Some SUBBANDS OF GOLDHILL, WITH NOISE STRENGTH = 20
of the unexpectedly large threshold valueSimeShrinkcomes Orientations

from the universal threshold, not the SURE threshold, and these

are placed in parentheses in the table. Table lI(c) lists the thresh- Scales HH | HL |LH | LL

olds of BayesShrinkand the thresholds in parentheses corre- 1 (finest) 00| 40| 4.2

spond to the case wheéh; = max(|Y;;]), and all coefficients 9 30| 42| 30

have been set to zero. Table Il tabulates the values dhosen

by M DLQ for each subband of ttgoldhill image,- = 20, av- 3 34| 52150

eraged over five runs. THRdDLQ criterion allocates more levels 4 (coarsest) | 5.0 | 15.4 | 9.8 | 274

in the coarser, more important levels, as would be the case in a

practical subband coding situation. A valueref= 0 indicates

that the coefficients have already been thresholded to zero, and V. CONCLUSION

there is nothing to code. Two main issues regarding image denoising were addressed
The results folenaando = 10 are also shown. Fig. 11 in this paper. Firstly, an adaptive threshold for wavelet thresh-

shows the same sequences for a zoomed-in portion gdfing images was proposed, based on the GGD modeling of

lena with noise « = 10. The corresponding results ofsubband coefficients, and test results showed excellent perfor-

threshold selections anMDLQ parameters forlena with mance. Secondly, a coder was designed specifically for simul-

noise s = 10 are listed in Tables IV and V. Interestedtaneous compression and denoising. The propBsgédsShrink

readers can obtain a better view of the images at the websiteeshold specifies the zero-zone of the quantization step of this

http://www-wavelet.eecs.berkeley.edu/~grchang/compressDeeder, and this zero-zone is the main agent in the coder which

noise/. removes the noise. Although the setting in this paper was in the
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Fig. 11. Comparing the performance of the various methodsmawith o = 10. (a) Original. (b) Noisy imager = 10. (c) OracleShrink (d) SureShrink
(e) BayesShrink(f) BayesShrinKollowed by MDLQ compression.

wavelet domain, the idea can be extended to other transform tgeical image coders, however, the zero-zone is chosen to be
mains such as DCT, which also relies on the energy compactiither the same size or twice the size as other bins. Thus it would
and sparse representation properties to achieve good compbesnteresting to jointly select these two values and analyze their
sion. dependencies on each other. Furthermore, a more sophisticated
There are several interesting directions worth pursuing. Theder is likely to produce better compressed images than the
current compression selects the threshold (i.e. zero-zone siagrent scheme, which uses the first order entropy to code the
Tg and the quantization bin siz& in a two-stage process. Inbin indices. With an improved coder, an increase in the number
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TABLE IV idea prevelant in coding methods, thus it would be interesting
THE THRESHOLD VALUES OF OracleShrink SureShrinkanp BayesShrink to extend this spatially adaptive threshold to the compression
RESPECTIVELY, (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT . . . .
SUBBANDS OF LENA, WITH NOISE STRENGTH o = 10 framework, without incuring too much overhead. This would

likely improve the denoising performance.

Orientations

Scales HH HL LH REFERENCES

1 (finest) 25.73 | 14.13 19.16 [1] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresh-
olding via a Bayesian approach]’ R. Statist. Sogcser. B, vol. 60, pp.

2 11.21 | 7.66 10.18 725-749, 1998.

3 6.15 | 3.58 5.89 [2] M. Antonini, M. Barlaud, P. Mathieu, and |. Daubechies, “Image coding
using wavelet transformJEEE Trans. Image Processingol. 1, no. 2,

4 (coarsest) 3.13 | 1.37 2.48 pp. 205-220, 1992.

[3] J.Buckheit, S. Chen, D. Donoho, I. Johnstone, and J. Scargle, “WavelLab
Toolkit,”, http://www-stat.stanford.edu:80/~wavelab/.

[4] A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, “Nonlinear
wavelet image processing: Variational problems, compression, and

Orientations noise removal through wavelet shrinkag¢éEEE Trans. Image Pro-

cessingvol. 7, pp. 319-335, 1998.

Scales HH | HL LH [5] S.G. Chang, B. Yu, and M. Vetterli, “Bridging compression to wavelet

thresholding as a denoising method,”Rnoc. Conf. Information Sci-

ences SystemBaltimore, MD, Mar. 1997, pp. 568-573.

(a) OracleShrink: Tos

1 (finest) || (48.99) | 15.93 | (48.99)

2 12.54 | 8571 11.23 [6] ——, “Image denoising via lossy compression and wavelet thresh-
olding,” in Proc. IEEE Int. Conf. Image Processingol. 1, Santa
3 6.65 | 4.03 6.62 Barbara, CA, Nov. 1997, pp. 604-607.
[7] ——, “Spatially adaptive wavelet thresholding with context modeling
4 (coarsest) 3.30 | 1.06 219 for image denoising,"IEEE Trans. Image Processingol. 9, pp.

(b) SureShrink: SURE or (universal) 1522-1531, Sept. 2000. ) )
[8] H. Chipman, E. Kolaczyk, and R. McCulloch, “Adaptive bayesian

wavelet shrinkage,”J. Amer. Statist. Assqcvol. 92, no. 440, pp.
1413-1421, 1997.

Orientations [9] M. Clyde, G. Parmigiani, and B. Vidakovic, “Multiple shrinkage and
Scales HE | HL LHE subset selection in wavelet&iometrikg vol. 85, pp. 391-402, 1998.
[10] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based sta-

1 (finest) (48.83) | 15.72 32.20 tistical signal processing using hidden Markov modelEEE Trans.
Signal Processingvol. 46, pp. 886—902, Apr. 1998.

2 9.93 | 4.50 7.67 [11] I. DaubechiesTen Lectures on Wavelets, Vol. 61 of Proc. CBMS-NSF Re-
gional Conference Series in Applied MathematicBhiladelphia, PA:

3 3.10 | 1.60 2.88 SIAM, 1092,

4 (coarsest) 121 | 0.58 1.25 [12] R.A.DeVore and B. J. Lucier, “Fast wavelet techniques for near-optimal
image processing,” IlEEE Military Communications Conf. RecSan

(c) BayesShrink: T Diego, Oct. 11-14, 1992, vol. 3, pp. 1129-1135,

[13] D. L. Donoho, “De-noising by soft-thresholdindEEE Trans. Inform.
Theory vol. 41, pp. 613-627, May 1995.

TABLE V [14] D.L.Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet
THE VALUE OF m (AVERAGED OVER FIVE RUNS) FOR THE DIFFERENT shrinkage, Biometrikg vol. 81, pp. 425-455, 1994.
SUBBANDS OF LENA, WITH NOISE STRENGTHo = 10 [15] ——, “Adapting to unknown smoothness via wavelet shrinkage,”

Journal of the American Statistical Asspaol. 90, no. 432, pp.

Orientations 1200-1224, December 1995.

[16] —, “Wavelet shrinkage: Asymptopia?]: R. Stat. Soc. Ber. B, vol.
Scales HH | HL| LH| LL 57, no. 2, pp. 301-369, 1995.

[17] M. Hansen and B. Yu, “Wavelet thresholding via MDL: Simultaneous
1 (finest) 00| 52| 56 denoising and compression,” , 1999, submitted for publication.

[18] M. Jansen, M. Malfait, and A. Bultheel, “Generalized cross validation
2 44| 86| 54 for wavelet thresholding,Signal Processvol. 56, pp. 33-44, Jan. 1997.
3 9.0 116 | 80 [19] I. M. Johnstone and B. W. Silverman, “Wavelet threshold estimators for

data with correlated noiseJ. R. Statist. Socvol. 59, 1997.

4 (coarsest) || 18.6 | 31.8 | 14.2 | 45.0 [20] R.L.Joshi, V. J.Crump, and T. R. Fisher, “Image subband coding using

arithmetic and trellis coded quantizationEEE Trans. Circuits Syst.
Video Techno).vol. 5, pp. 515-523, Dec. 1995.

. . . . 21] J. Liu and P. Moulin, “Complexity-regularized image denoisirgroc.
of quantization bins would not increase the bitrate penalty b)L ] IEEE Int. Conf. Image pmfessiggol_gz op. 370_3?3 Oct. 19'?7.
much, and thus the coefficients would be quantized at a finelp2] S. M. LoPresto, K. Ramchandran, and M. T. Orchard, “Image coding

resolution than the current method. Lastly, the model famy based on mixture modeling of wavelet coefficients and a fast estimation-

could be expanded. For example. one could use a collection of guantization framework,” ifProc. Data Compression ConSnowbird,
p : ple, UT, Mar. 1997, pp. 221-230.

wavelet bases for the wavelet decomposition, rather than usirgg] S. Mallat, “A theory for multiresolution signal decomposition: The

just one chosen wavelet, to allow possibly better representations wavelet representationfEEE Trans. Pattern Anal. Machine Intell.
f the signals vol. 11, pp. 674—693, July 1989.
or the signals. ' ) [24] G. Nason, “Choice of the threshold parameter in wavelet function es-
In our other work [7], it was demonstrated tispiatiallyadap- timation,” in Wavelets in Statistic#A. Antoniades and G. Oppenheim,
tive thresholds greatly improves the denoising performance over. Eds. Berlin, Germany: Springer-Verlag, 1995.

. . B. K. Natarajan, “Filtering random noise from deterministic signals
uniform thresholds. Thatis, the threshold value changesscin via data compressionEEE Trans. Signal Processingol. 43, pp.

coefficient. The threshold selection uses the context-modeling  2595-2605, Nov. 1995.



1546 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000

[26] J. RissanenStochastic Complexity in Statistical InquirySingapore:
World Scientific, 1989.

[27] F. Ruggeri and B. Vidakovic, “A Bayesian decision theoretic approa
to wavelet thresholding Statist. Sinicavol. 9, no. 1, pp. 183-197, 1999. =

[28] N. Saito, “Simultaneous noise suppression and signal compression us
a library of orthonormal bases and the minimum description length ci
terion,” inWavelets in Geophysicg. Foufoula-Georgiou and P. Kumar,
Eds. New York: Academic, 1994, pp. 299-324.

[29] E. Simoncelli and E. Adelson, “Noise removal via Bayesian wavelg
coring,” Proc. IEEE Int. Conf. Image Processingpl. 1, pp. 379-382,

Martin  Vetterli  (S’86—-M'86—SM’'90-F'95) re-

ceived the Dipl. El.-Ing. degree from ETH Zirich
(ETHZ), Zzurich, Switzerland, in 1981, the M.S.
degree from Stanford University, Stanford, CA, in

(EPFL), Lausanne, Switzerland, in 1986.

sity and EPFL, and was with Siemens and AT&T
Bell Laboratories. In 1986, he joined Columbia
University, New York, where he was an Associate

Sept. 1996. Professor of electrical engineering and Co-Director
[30] C. M. Stein, “Estimation of the mean of a multivariate normal distribuef the Image and Advanced Television Laboratory. In 1993, he joined the

tion,” Ann. Statist.vol. 9, no. 6, pp. 1135-1151, 1981. University of California, Berkeley, where he was a Professor in the Department
[31] M. \etterli and J. Kovaevic Wavelets and Subband of Electrical Engineering and Computer Sciences until 1997, and holds now

Coding Englewood Cliffs, NJ: Prentice-Hall, 1995. Adjunct Professor position. Since 1995, he has been a Professor of communica-

1982, and the Dr.Sci. degree from EPF Lausanne

He was a Research Assistant at Stanford Univer-

[32] B.Vidakovic, “Nonlinear wavelet shrinkage with Bayes rules and Bayetion systems at EPFL, where he chaired the Communications Systems Division
factors,”J. Amer. Statist. Assqaol. 93, no. 441, pp. 173-179, 1998. (1996-1997), and heads the Audio-Visual Communications Laboratory. He
[33] Y. Wang, “Function estimation via wavelet shrinkage for long-memorfeld visiting positions at ETHZ in 1990 and Stanford University in 1998.

data,” Ann. Statist.vol. 24, pp. 466484, 1996. He is on the editorial boards &nnals of Telecommunication&pplied and
[34] P. H. Westerink, J. Biemond, and D. E. Boekee, “An optimal bit alloca€omputational Harmonic Analysisind theJournal of Fourier Analysis and
tion algorithm for sub-band coding,” ifroc. IEEE Int. Conf. Acoustics, Applications He is the co-author, with J. Kogavic of the bookWavelets
Speech, Signal Processirgallas, TX, Apr. 1987, pp. 1378-1381. and Subband CodingEnglewood Cliffs, NJ: Prentice-Hall, 1995). He has

[35] N. Weyrich and G. T. Warhola, “De-noising using wavelets and crosgublished about 75 journal papers on a variety of topics in signal and image
validation,” Dept. of Mathematics and Statistics, Air Force Inst. of Techprocessing and holds five patents. His research interests include wavelets,
AFIT/ENC, OH, Tech. Rep. AFIT/EN/TR/94-01, 1994. multirate signal processing, computational complexity, signal processing for

[36] Y. Yoo, A. Ortega, and B. Yu, “Image subband coding using contextelecommunications, digital video processing, and compression and wireless

based classification and adaptive quantizatitBEE Trans. Image Pro- video communications.

cessingvol. 8, pp. 1702-1715, Dec. 1999. Dr. Vetterli is a member of SIAM and was the Area Editor for Speech,

Image, Video, and Signal Processing for the IEEEANSACTIONS ON

COMMUNICATIONS. He received the Best Paper Award of EURASIP in 1984
for his paper on multidimensional subband coding, the Research Prize of the

Alto, CA, and is now with Hewlett-Packard Co., confterence on Acoustics, Speech, and Signal Processing.
Grenoble, France. Her research interests include

image enhancement and compression, Internet appli-
cations and content delivery, and telecommunication
systems.

Dr. Chang was a recipient of the National Science Foundation Graduate Fel-
lowship and a University of California Dissertation Fellowship.

Bin Yu (A92-SM'97) received the B.S. degree in
mathematics from Peking University, China, in 1984,
and the M.S. and Ph.D. degrees in statistics from the
University of California, Berkeley, in 1987 and 1990,
respectively.

She is an Associate Professor of statistics with
the University of California, Berkeley. Her research
interests include statistical inference, information
theory, signal compression and denoising, bioin-
formatics, and remote sensing. She has published
over 30 technical papers in journals such as IEEE
TRANSACTIONS ON INFORMATION THEORY, IEEE TRANSACTIONS ON IMAGE
PROCESSING IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,

The Annals of Statistics, Annals of Probability, Journal of American Statistical
Association,and Genomics She has held faculty positions at the University
of Wisconsin, Madison, and Yale University, New Haven, CT, and was a
Postdoctoral Fellow with the Mathematical Science Research Institute (MSRI),
University of California, Berkeley.

Dr. Yuwas inthe S. S. Chern Mathematics Exchange Program between China
and the U.S. in 1985. She is a Fellow of the Institute of Mathematical Statistics
(IMS), and a member of The American Statistical Association (ASA). She is
serving on the Board of Governors of the IEEE Information Theory Society,
and as an Associate Editor fbhe Annals of Statistiand forStatistica Sinica.

S. Grace Chang(S'95) received the B.S. degree gro\n Bovery Corporation, Switzerland, in 1986 for his doctoral thesis, the
from the Massachusetts Institute of Technology|eEE signal Processing Society’s Senior Award in 1991 and 1996 (for papers
Cambridge, in 1993 and the M.S. and Ph.D. degreggii, p. | eGall and K. Ramchandran, respectively). He was a IEEE Signal
from the University of California, Berkeley, in 1995 pyqcegsing Distinguished Lecturer in 1999. He received the Swiss National
and 1998, respectively, all in electrical engineering. | aisis prize in 1996 and the SPIE Presidential award in 1999. He has been a
She was with Hewlett-Packard Laboratories, Palgenary Speaker at various conferences including the 1992 IEEE International



