
Abstract-Quantization is  the process of replacing analog  sam- 
ples with approximate values taken from a finite set of allowed 
values.  The approximate values corresponding to a sequence of 
analog  samples  can then be specified  by a digital signal for 
transmission,  storage, or  other digital processing. In this expos- 
itory paper, the basic  ideas of  uniform  quantization, compand- 
ing,  robustness to input poweb level, and optimal  quantization 
are reviewed and explained.  The  performance of various 
schemes is  compared  using  the ratio  of signal  power to 

mean-square quantizing noise as a criterion.  Entropy coding 
and the  ultimate  theoretical  bound  on  block quantizer perfor- 
mance  are  also compared with the  simpler  zero-memory  quan- 
tizer. 

ALLEN  GERSHO,  MEMBER,  IEEE 

I. INTRODUCTION 

The  processing  and  transmission of digital signals is rapidly 
approaching a dominant  role  in  communication systems. 
Nevertheless, the physical origin of many information-bearing 
signals  (speech,  image, telemetry, seismic, etc.) is intrinsically 
analog  and continuous-time in nature.  Therefore, an effective 
interface  between the analog  and digital worlds is of  crucial 
importance in modern  signal  processing.  Very often the quali- 
ty  of analog-todigital (A/D) conversion is the critical  limiting 
factor  in overall system performance. A clear understanding of 
quantization, the  essential  mechanism of  A/D conversion, is 
needed to answer  such questions as how many bits per  second 
(or bits per  sample)  are really needed, or  how much distortion 
(or quantizing noise) is  inevitable for a given bit rate. 

Analog-todigital conversion  may  be  viewed as being made 
up of  four operations: prefiltering, sampling,  quantizing,  and 
coding. In this paper  we focus  on quantization, and specifi- 
cally  on "zero-memory" quantization. 

Quantization begins with the availability of analog  samples. 
Each  sample  may in general take  on  any of ,a continuum of 
amplitude values  ranging from - 00 to + 00. The  quantizer 
replaces  each of these  sample  values with an output value 
which is an approximation to the  original  amplitude. The  key 
feature is that each output value is one of a finite set of real 
numbers.  Hence a symbol from a finite alphabet can  be  used 
to represent  and identify  the  particular  output value that 
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occurs. A  distinct n-bit binary  word can  be  associated with 
each output value if the set of output values contains no more 
than 2'7 members. With this procedure a sequence of  analog 
samples  can  be transformed into a sequence of  binary words 
suitable for storage,  transmission, or some other form  of 
digital signal  processing. A receiver  having  the  table of output 
values  (sometimes called "quanta"  or  ' 'q'uanturn levels") asso- 

ciated with the set of binary words can then  reconstruct an 
approximation to the  original sequence of samples.  Hence with 
some appropriate form  of interpoiation, a continuous wave- 
form can  be created which approximates the waveform origi- 
nally applied to the A/D system.  The reconstruction process is 
called digital-to-analog (D/A) conversion. 

The  simplest  and  most  common form of quantizer is the 
zero-memory quantizer. In this case the output value is deter- 
mined by the  quantizer only  from one corresponding input 
sample, independent of the values taken  on  by earlier (or later) 
analog  samples applied to the  quantizer input. More sophisti- 
cated (but less well understood theoretically) is the block 
quantizer which  looks a t  a group or  "block" of  input samples 
simultaneously  and  produces a block  of output values,  chosen 
from a finite set of possible output blocks, approximating the 
corresponding input samples. In general, for a given  number of 
bits per  sample  representing the output values, a better  quality 
approximation can  be  achieved by  block  quantization.  Of 
theoretical interest is the limiting case where  the block length 
approaches infinity. Studying this limiting situation provides 
information about  the ultimate Guality of  approximation 
achievable for a given bit rate. Another class of quantizers 
which  could be  described a s  sequential quantizers  includes 
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Q ( x )  
such well-known  digitization schemes as delta  modulation, dif- 
ferential PCM, and other adaptive  versions. A sequential  quan- 
tizer stores  some information  about  the previous samples  and 
generates the present  quantized output using both the current 
input and the stored information. In this paper  we  shall  focus 
primarily  on zero-memory quantization.  Quantization with 
memory will be  discussed only  for  the purpose of examining 
how much can  be  gained through  the use of  memory. ' 6  -r 
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A zeromemory N-point quantizer Q may  be defined  by 
specifying a set of N+l decision levels xo, X I ,  . . . , XN and a 
set of N output points y1,  y2.e . . , y ~ .  When the value X of 
an input sample lies in the ith quantizing interval, namely, 

R i =  { x i - r < X ( . x i  1 , - - y 1  

the  quantizer  produces  the output value y i .  Since y i  i s  used to 
approximate samples contained in the  interval Ri, yi  is itself 
chosen to be  some  value in the interval Ri.  The  end levels x. 
and XN are  chosen  equal to the  smallest  and  largest  values, 
respectively, that the input samples  may  have. Usually, the 
sample  values  are unbounded, which we henceforth assume, so 
that x. = - 00 and XN = + 00. The N output points always  have 
finite values. If N = 2", a unique n-bit binary  word can  be 
associated with each output  point,  yielding an "n-bit quan- 
tizer." 

The input-output characteristic Q(x )  of a quantizer has a 
staircase form. The midtread  characteristic.shown in Fig. 1 
produces  zero output  for  input samples that are in the  neigh- 
borhood  of zero;  the  midriser  characteristic  shown in Fig. 2 
has a decision level located at  zero. A quantizer i s  simply a 
memoryless nonlinearity whose characteristic  may be  viewed 
as a staircase approximation to the "identity"  operation y = x .  

When the  input sample is  located in the end  regions R1 or 
RN the  quantizer is said to be overloaded. All other  quantizing 
intervals Ri are finite  in size. 

Q ( x )  

Fig. 2. Input-output characteristic of  a midriser quantizer with N-8. 

Fundamental to an analytical study  of quantization is 
the recognition  that  the  input samples  must  be  regarded as 
random in character.  The input samples  are not known  in ad- 
vance  and thus can  be  regarded as information-bearing. Quan- 
tization is actually a mechanism  whereby information is 
thrown away,  keeping only as much as i s  really needed to 
allow  reconstruction of the original signal to  within a desired 
accuracy as measured by some fidelity criterion. We define 
p ( x )  as the first-order  probability density function (hereafter 
pdf) of each input sample to the  quantizer. Assume for con- 
venience that the mean  value of the input samples is zero  and 
that p ( x )  has  even symmetry  about  zero.  The  zero mean 
assumption  implies that any  dc  bias  has  been  removed.  The 
symmetry  assumption is  satisfied by most  common  density 
functions  including the Gaussian (normal) density. With  the 
symmetry  assumption,  the  quantizer  characteristic Q(x)  is 
normally chosen to have odd  symmetry. 

The quantization process  can  be modeled as the addition of 
a random  noise  component e = Q(x)  - x to the input sample, as 
indicated in Fig. 3. Unlike the usual  signal-plus-noise  models in 
communication  theory, here the  noise is  actually dependent 
on  the  signal amplitude. The quantization noise  may  be re- 
garded as the response  when  the input sample is  applied to the 
nonlinear  characteristic 

U(X) = Q(x)  - X 

y3 

Fig. 1. Input-output characteristic of a  midtread  quantizer  with N=9. 
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Fig. 3. Additive noise model  of  quantization.  The  quantizing noise e 
is often  approximated as being  independent of the  input samples 
when  the number of levels is large. 
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Fig. 4. Quantizing  error as a  funct ion of input  sample  value for the 
quantizer  of  Fig. 1. 

shown in Fig. 4. When the input sample lies within the interval 
x1   <x  <XN-I, the output noise is  described asgrandar noise 
and is bounded in magnitude. When the input lies outside this 
interval, the output is described as overload noise  and the 
amplitude is  unbounded. I t  is  often convenient to artificially 
model quantization noise as the sum of  granularity and  over- 
load  noise as i f  they were two separate  noise  sources. 

An effectively designed quantizer  should be "matched" to 
the particular  input  probability density function, to the extent 
that  this density is known to the  designer. In particular,  for a 
fixed number N of levels, the  choice  of  overload levelsxl and 
XN-I controls a tradeoff between the relative  amounts of 
granularity and overload  noise. 

In modeling ,quantization error as an additive noise  source 
as in Fig. 3, it is  often convenient to treat  the  noise as having a 
flat spectral  density  and as being uncorrelated with the input 
samples. This idea  was  used by  Widrow [ I ]  for  uniformly 
spaced quantization levels. More  generally, it may be shown 
that the quantizing noise is approximately  white (i.e., succes- 
sive noise samples  are uncorrelated) and uncorrelated with the 
input process if: 1) successive input samples  are only  moder- 
ately  correlated, 2) the  number of  output  points N is large, 
and 3) the output points are very  close to the midpoints  of  the 
corresponding quantization intervals. For a more  precise treat- 
ment  of  the  spectrum of  quantizing noise, see Bennett [2]. 

111 .  PERFORMANCE MEASURES 

Since the  quantization  error is  modeled as a random  varia- 
ble, a measure of the  performance  of a quantizer  must be 
based on a statistical average of some function  of  the  error. 
Most  common i s  the mean-square distortion measure D ,  de- 
fined by  the  usual expectation of the square of U(x) above: 

D = [>(x)-xJ p (xjdx.  (1) 

This quantity can  be  used to measure the  degradation intro- 
duced by  the quantizer for a fixed  input pdfp(x). Frequently, 
it is more  useful to describe the quantizer's  performance  by 
the "signal-to-noise ratio,"  often  defined as 

SNR = 10 log 10 (0' ID) (2) 

where u2 is the  variance of the input samples. Other  error 
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criteria have  also  been  considered in the  study of  quantization, 
such as the  expectation  of  the k th power of the error 
magnitude.  Frequently,  the  performance measure adopted is  a 
subjective  evaluation, and psychological  studies are  used to 
determine  preferred quantization schemes  among a set of 
schemes  considered. Another approach is  to consider the 
quality  of  approximation  of a segment of the  reconstructed 
waveform to the original waveform.  Mean-square distortion 
may  be  viewed. as a special  case of  this approach  where the 
performance  .measure is the expectation of the  sum of the 
squared errors for all sampling  instants of the  waveform 
segment.  However, this measure  does not  distinguish between 
different approximations  having  the same total squared error. 
For example, it might be subjectively  preferable to have a very 
high squared error a t  one isolated  sampling instant  than to 
have moderately  high squared errors at  several  adjacent 
sampling  instants.  Hence, a more  sophisticated distortion 
measure might be more  meaningful than the  usual  mean-square 
distortion  criterion. 

In most  applications of quantization, the  number of levels 
N.is very  large so that a sufficiently  high SNR is obtained. A 
useful formula for mean-squared  error can then be  used. Equa- 
tion  (1) can  be written  in the form 

by  breaking up the  region  of integration into the  separate 
intervals R i  and noting  that Ob) = yi when x is  in Ri. For 
large N, each interval Ri can  be  made quite small (with the 
exception of the  overload  intervals R1 and  RN which are 
unbounded). Then it is  reasonable to approximate the proba- 
bility density p(x)  as being  constant within the interval Ri. On 
setting p(x) p(yi)  when x is  in R i  and approximatingp(x) 1 
0 for  x  in the overload  regions,  the  integral for each term of 
the sum (3) is readily  found, and we get 

where A i  = x i  - xi-1, the  length of  interval Ri. This approxi- 
mate formula is based on the  assumption that, for N large, a 
sufficient number of quantizing levels are available for  both 
the  granularity and  overload  noise to be very  s'mall. Equation 
(4) implies that the  overload points x. and XN are  chosen so 
that overload  noise is negligible  compared to granular  noise. 
Equation (4) will be  used later to derive an integral formula 
for  distortion. 

Of  frequent  interest is the special case of  uniform quantiza- 
tion where the decision levels are equally spaced so that the 
intervals R i  are of constant  length, i.e., Ai = A, sometimes 
called  the step  size of the  quantizer. In this case, the staircase 
quantizer  characteristic of  Fig. 1 has equal width and  equal 
height steps.  The  expression for mean-square  error  simplifies 
to A2 N-I 

12 j=2 
D = -  p&i)A. 

But 
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so that 
A2 D X -  
12 

tion of a Laplacian pdf, 

(5) dxJ = - e -21 x 1 Ih  1 
h 

Thus  the  mean-square distortion  of a uniform quantizer  grows 
as the square of the step size. This is  perhaps  the  most often 
used result  concerning quantization. This  expression  may  be 
obtained directly  by regarding  the granularity noise as a uni- 
formly  distributed random  variable  over the  interval - AI2  to 
+ A12  and neglecting  overload  noise. 

A symmetric uniform quantizer is  fully described  by  speci- 
fying the  number of levels and either the  step size A or the 
overload level V where V = XN = -xo. To avoid significant 
overload distortion,  the overload level is chosen to be a suits- 
ble multiple, y = Vlu, called  the loading factor, of  the rms 
signal level u. A common  choice is the so-called  four-sigma 
loading where y = 4. Then  the  step size is  A = 8u/(N-2) since 
the total  amplitude range of the quantizing intervals is  80 and 
there are N-2 levels in  that range.  Then-, for an n-bit quantizer 
with N = 2"  and N 9 2,  we find using (2) and (5)  that 

SN R = 6n - 7.3. (6) 

This  linear  increase  of  SNR with the  number of bits of quan- 
tization was noted by Oliver, Pierce,  and  Shannon [31 in 
1948. Note  that changing  the  loading factor  modifies the 
constant term 7.3, but does not alter  the  rate of increase of 
SN R with n. (The  rate i s  actually 20 loglo 2 X 6.0.) 

Varying the  loading factor  for a particular  input power level 
u2 is equivalent to  varying  the input power level for a fixed 
loading.  factor. In Fig. 5, the dependence of signal-to-noise 
ratio on input power level is  sketched for a uniform quantizer 
w i t h  N = 128. The  curve  takes  into  account  the  ef fect   of  

overload  noise which  rapidly becomes dominant as the  signal 
level reaches a critical value.  The  curve is based on  the assump- 

34 , 1 
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Fig. 5 .  Dependence of signal-to-noise ratio  on  the  input  power level 
for  uniform  and  p-law  quantizers  both  having 7 bits  of  quantization 
(128 levels). For  a  minimum acceptable quality  of 25 dB,  it can be 

while  the  uniform  quantizer has a range of  about 10 dB.  The curves 
seen that  the  p-law  quantizer has a  dynamic range of  about 40 dB, 

may also be used to show how SNR depends on  the choice of 

on a  Laplacian input  pdf. 
overload point  when  the  input  power level is fixed. Curves are based 

which is  occasionally used to approximate the  pdf  of speech. 
In this case it may  be  seen. that the best performance i s  
achieved  when  the loading factor  of 6.1  (15.7 dB) is  used. If 
the input power level deviates a few decibels from the antici- 
pated value  (used in designing  the quantizer), a substantial 
drop  in SNR will result. 

IV. COMPANDING 

Uniform  quantization is  not  in general the  most  effective 
way to achieve  good performance. For a given  number of 
quantizing intervals, taking into account  the input  probability 
density, nonuniform spacing of the decision levels can yield 
lower quantizing noise  and less sensitivity to variations in 
input signal statistics. An effective technique for studying 
nonuniform  quantization, used 'by Bennett [21, is to model 
the  quantizer as a memoryless nonlinearity F(x) ,  the "com- 
pressor," followed by a uniform quantizer as shown in Fig. 6. 
The nonlinearity spreads out low-amplitude sample  values  over 
a larger  range of amplitudes while  shrinking the  higher ampli- 
tude values into a smaller  range. This compressed  signal is then 
uniformly quantized.  The effect is to allocate  more  quantizer 
levels to the lower  amplitudes, which generally have higher 
probability, and fewer levels to the less frequently  occurring 
higher  amplitudes.  The output values  are then applied to the 
inverse nonlinearity F-' (x ) ,  producing an approximation to 
the  signal originally applied to the  compressor.  The  overall 
scheme in Fig. 6 is called  companding, a term  combining  the 
words  "compressing"  and  "expanding." 

The characteristic F(x )  is a monotonically increasing func- 
tion having odd  symmetry, ranging from values -V  to +V, and 

COMPRESSOR  EXPANDOR 

Fig. 6. Companding model  of  nonuniform  quantization. 

with F(V)=V and F(O)=O. This  nonlinear  operation,  being 
monotonic, is completely invertible. That is, an input sample x 
applied to the compressor  produces the response  value F(x ) ;  
the original vaiue x could be  recovered by  applying the value 
y = F ( x )  to the inverse nonlinearity, the  "expandor" F - ' ( y ) ,  
and obtaining x again.  Thus,  there is no loss of  information 
due to the  nonlinear operation itself. The uniform quantizer is 
chosen to have N-2 (z N) intervals, not  including overload 
regions, so th,at A = 2VlN. The combined effect  of the com- 
pressor  and the uniform quantizer is  equivalent to the opera- 
tion  of a particular  nonuniform quantizer whose  decision 
levels and output  points are determined by the shape of  the 
compressor.  Every  possible nonuniform quantizer can  be 
modeled in  this way by a suitable  choice of  the  function F ( x ) .  
Fig. 7 shows how  the  nonuniform quantizer  decision levels are 
related to the uniform quantizer levels. 
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An  important  approximate  formula  for mean-square  error 
in  nonuniform quantizers can  be derived based on the  preced- 
ing  model of  nonuniform  quantization.  For large N ,  we ap- 
proximate  the curve of F ( y )  in the i th  quantizin,g interval  by a 
straight-line segment with slope F ' ( y i ) ,  the  derivative of f ( y )  
evaluated a t  yi ,  where yi i s  the output  point  of the equivalent 
nonuniform quantizer. 

Then 

so that,  defining the  slope of  the compressor  curve, 

we  have 

Now  applying (4) yields 

This formula, due to Bennett [2], i s  based on the  assumption 
that N i s  large  and that the  overload distortion is  negligible. 
Given a proposed  compressor  characteristic F ( x )  and  choice  of 
overload point V ,  the formula (8 )  can  be  used to evaluate  the 
resulting quantizer distortion. The formula is also of analytic 
value for  optimizing the  compressor  characteristic. (See  Sec- 
tion VI  .) 

For speech  signals as well as many other analog  sources, 
lower amplitude values occur with higher probability  than the 
higher amplitude values so that it would be  reasonable to have 
quantizer levels more  densely  packed in the low signal  region. 
For very low signal levels, the relevant step sizes will be 

approximately uniform  with size 

The improvement in performance of the  nonuniform quantizer 
for low signal level inputs over the  uniform quantizer is then 
determined by  the  ratio 

A' 
CA =-=g(o) 

A0 

which is  called  the companding advantage. This  quantity is 
frequently used in comparing different compressor  character- 
istics.  Increasing  the  companding  advantage  concentrates more 
levels in the  low  amplitude region  and  improves the SNR for 
weak  signal inputs. At  the same time, a higher  companding 
advantage  means fewer levels in the high  amplitude region, 
tending to reduce the SNR for strong signal inputs. 

V. ROBUST QUANTIZATION 

In certain  applications, notably in speech transmission,  the 
same quantizer  must  accommodate signals with widely varying 
power levels. The use of  "robust"  quantizers, which are rela- 
tively insensitive to changes in the probability density of  the 
input'samples, has  bec,ome of great practical importance. 

To  obtain  robust performance,  the  signal-to-noise ratio  of 
the  quantizer  should ideally be independent of the particular 
pdf of the input signal. If the slope of the  compressor  curve 
were  chosen to be 

V 

blx I 
d x ) =  - (9) 

then ( 8 )  reduces to  

so that the  signal-to-noise ratio u21D reduces to the  constant 
3N2/b2, which is  in fact independent of p ( x ) .  Integrating (9) 
gives 

F(x)  = V + c log(x/V) (10)- 

for x > 0 where c i s  a constant.  This  result shows that such a 
logarithmic compressor  curve would give the  desired robust 
performance.  Of course, the  formula (8 )  neglects  overload 
noise so that the SNR will  not remain  constant but  will begin 
to drop when  the input power level becomes  large enough. 
Also, the compressor  curve (IO) i s  not  in fact realizable  since 
F ( 0 )  i s  not  finite. To circumvent the latter difficulty, a modi- 
fied compressor  curve is  used which behaves well for small 
values of x and retains  the logarithmic behavior  elsewhere. 

A compressor  curve widely used for speech digitization is  
the p-law curve (see Fig. 8 )  given by 

for x > 0. As  always, F ( x )  i s  an odd function so that F ( x )  = 
-f ( -x)  for negative x .  This  characteristic was first described 
in the literature  by  Holzwarth [51, studied  extensively by 
Smith [ 121 , and reportedly was  used by  Bennett as early as 

24 IEEE COMMUNICATIONS  SOCIETY  MAGAZINE,  SEPTEMBER 1977 



I .o 

0.9 

0.8 

0.7 

- 0.6 
x 

LL 
d 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 
Fig. 8 .  p a w  compressor curve. 

1944 in unpublished work. For y %- 1 ,and px %- V, F(x) ap- 
proximates  the form  (IO).'From  (8). the  mean-square  granular 
quantizing  noise can  be calculated,  leading to the  result 

where (Y is the ratio of mean  absolute  value to rms  value of the 
input samples and y is the loading factor  defined earlier. The 
effects of different choices of p (corresponding to different 
companding advantages)  has  been  exami,ned by  Smith [12]. 
Typical values of p are'  100 for  7-bit and  225 for  8-bit speech 
quantizers. PCM  systems in the United States,  Canada,  and 
Japan  use y-law companding. 

Another  robust  logarithmic  characteristic due to Catter- 
mole  [61 is  A-law companding  where 

( l + ? i g A  ' 0 <x  5 V/A 
F(xl= { 

A typical value for A i s  87.6 for a 7-bit speech quantizer.  The 
A-law characteristic is  used in European PCM telephone sys- 
tems. Both  A-law and p-law have the  desired  robust quality 
and  can  achieve more  or less the same performance. 

To illustrate the advantage of a robust  quantizer,  Fig. 5 
shows  curves of SNR versus input signal power level for  both 
uniform and p-law quantizers  when  the  number of levels is 
128.  For a wide range of power levels, a high SNR of the p-law 
quantizer i s  maintained,  while  the SNR of the uniform quan- 
tizer drops rapidly with diminishing  power levels. In order to 
achieve the same quality over a significant  dynamic range,  an 
1 I-bit  uniform quantizer  must be  used. Thus a saving of 4 bits 
per  sample is achieved  by  using nonuniform quantization. 
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In practice,  companders  are now designed as piecewise 
linear  approximations to a desired  characteristic. These  "seg- 
mented"  companding laws  are conveniently  implemented with 
digital circuitry. The  coded  binary word has certain bits that 
identify to which segment the.analog sample  belongs  and the 
remaining bits identify  which level within the segment repre- 
sents the analog  sample. 

VI. OPTIMUM'QUANTIZATION 

For  applications  where  one  particular probability density 
function is  known to describe  adequately  the distribution of 
input samples to be quantized, it is natural to seek the best 
possible  quantizer  characteristic for  that density. Two ap- 
proaches  have  been taken to thi,s  problem:  one uses the as- 
sumption that N i s  large and'leads to  explicit solutions;  the 
other is valid for any N, and  leads to algorithmic  procedures 
for  finding the optimum decision levels and output points. We 
begin with the latter approach. 

In a little known Polish article, Lukaszewicz  and  Steinhaus 
[71 in 1955 found necessary conditions for  optimality of a set 
of decision levels and output points for  both the mean-square 
and  the  mean-absolute  error criterion. [In the latter case, 
[Q(x)-xI2 is replaced  by I Q(x) -x I  in (I).] Independently, 
in 1957 Lloyd [4], using  the  mean-square error  criterion, 
found necessary conditions for  optimality and  an effective 
algorithm for computing the optimal solution. In 1960,  Max 
[81  independently formulated the necessary conditions for 
optimality  for a kth absolute  mean  error criterion  (including 
k=2), and  rediscovered the same algorithm used by Lloyd. In 
addition, Max  examined  the optimization of the step size for 
uniform quantization.  Max also tabulated  the optimum quan- 
tizer levels for the Gaussian distribution  for various values of 
N. 

For  the mean-square error criterion, with some fixed value 
of N ,  the necessary conditions  for  optimality on  the values of 
~ 1 . ~ 2 , .  . .,XN-I and y1 ,y2,. ,YN are found simply  by set- 
ting derivatives of D as given in (3) with respect to each of 
these  parameters to zero.  The  resulting  conditions are as fol- 
lows. 

1) Each output level of yi must be the centroid or  center  or 
mass of the interval Ri  with respect to the input  densityp(x). 
In other  words, yi  i s  the conditional mean  value of the input 
random  variable x given that x is  in the  region Ri.  

2) Each 'decision level xi  must be halfway  between  the two 
adjacent output points. 

These conditions  do not give the optimum values explicitly, 
since the value of  the  output  point yi for an interval Ri 
depends on  the value of the decision levels xi-1 and xi 
defining Ri,  and  the  decision levels x i  depend  on  the output 
levels yi  and yi+l.  However,  these conditions are  used in the 
Lloyd-Max  algorithm (see Max [8] ) for computing iteratively 
a set of parameters that simultaneously  satisfy both condi- 
tions.  Using t t ie  Lloyd-Max algorithm, Paez and  Glisson [9] 
tabulated  the optimum quantizer  parameters for the  Laplacian 
and a particular form  of the gamma density. 

Lloyd also  observed that the  conditions,  while necessary, 
are not  sufficient conditions for a minimum. In fact, he gave a 
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counterexample of a probability density function and  an as- 
sociated  quantizer that satisfies the  conditions and is not 
optimal. Fleischer [IO] obtained sufficient conditions  which, 
if satisfied, will guarantee that  the quantizer is in fact optimal. 
In particular, he  showed that, if the input densitypk) satisfies 
the property  that 

d2 

dx2 
- ~ I O ~ P ( ~ ) I  <o (14) 

for al l  x, in  other words, if log p(x )  is  concave, then only one 
quantizer  exists which satisfies  the Lloyd-Max  conditions 1 )  
and 2) and that quantizer is  indeed optimal. It should be noted 
that  the converse is not true, so that it is possible to have a 
density p(x)  not satisfying (14) and yet a unique optimal 
quantizer  may exist. Nonetheless, condition (14) holds for the 
Gaussian density as well as for many  other  common  densities. 
Hence, the  tabulated  quantizer  parameters  given  by  Max for 
the Gaussian density are in  fact  unique and optimal. 

An alternate  approach to the search for  optimal quantizers 
begins with the use of Bennett's formula (8), which is based on 
the  assumption that N is large. Minimization of (8) over the 
class of al l  curves of compressor  slope g(x) that s,atisfies a 
suitable constraint yields  the  result that the optimum com- 
pressor slopeg*(x) is proportional to the cube root  of the pdf: 

9 * (s) = c rP M I  7/3. 
By integrating g*(s), one obtains  the  compressor  characteristic 

F*(s) =cy [ p (~ l ) l ~ /~d~ l ,  fors > O  (15) 

where c1 i s  the  constant chosen so that F (V)  = V. Equation 
(15) was first obtained by Panter  and Dite [Ill in a classic 
and often overlooked  paper. Their approach  started with (4) 
and did  not make  use of Bennett's formula.  Direct  minimiza- 
tion of ( 8 )  was first examined by Smith [12 ] .  Roe 1131, while 
unaware of the  works of Panter  and Dite and Smith, derived a 
formula for the optimal decision levels that is  equivalent to the 
result (15), but does not use the  companding model. Algazi 
[I41 used the  companding  model to obtain results  on optimal 
quantizers for a general  class of  error criteria. his results 
include (15). 

Finally, we note  that (15) determines  the optimum quan- 
tizer for a given  choice of overload point V. A separate 
one-dimensional minimization  of D can  be  used to obtain the 
best  overload point. (See [ 141 .) From Fig. 7, it is evident  that 
once  the  compressor  curve is known, the  decision levels and 
output  points are readily  obtained by a mapping of the 
uniform quantizer  parameters. Computation  of the minimum 
mean-square error  obtained with this approach  leads to values 
in good  agreement with Max's tabulations (for the Gaussian 
pdf), even for values of N as small as 6. For N = 6, the 
individual decision levels are within 3 percent of the correct 
values (see Roe [ 121 ). Naturally, as N increases, the  discrep- 
'ancy  approaches  zero,  since (15) i s  based on the  assumption 
that N is large. 

An example of  optimum  quantization studied by  Smith 
[I21 is based on  the  Laplacian pdf. The optimum compressor 
according to (15) has the form 

LS 
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giving rise to the "m-law"  quantizer. Fig. 9 shows the  depend- 
ence of SNR on input power level for the robust  y-law quan- 
tizer with  y = 255 and for the optimum  m-law quantizer with 
m = 10 ,when  the input density is  Laplacian.  Comparison of 
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Fig .  9. Dependence of SNR oninput  power level for /I-law and m-law 
quantizers  when  the  input  pdf is Laplacian  and  the  number  of levels 
is 128 (7  bits).  The  m-law  quantizer is optimal  for  the  Laplacian  pdf 
with  input  power level 26.5  dB.  At this  power level there is a 4 dB 

quantizer. 
improvement in SNR over the  suboptimum  but  more  robust  p-law 

SNR performance of p-law and m-law quantizers shows that, 
for /I = 255 and m = IO, the m-law curve has a 5 dB advantage 
at  the power level for which it i s  designed.  The y-law quantizer 
maintains i t s  reasonably  high SNR  over a broad range of power 
levels, while the rn-law quantizer becomes inferior  for  input 
power levels about 10 dB below  or 5 dB above the designed 
value.  Comparing the  m-law SNR curve in Fig. 9 with the 
uniform quantizer SNR curve in Fig. 5 shows that there is less 
than a 6 dB  improvement in using  the optimum quantizer 
rather than  the uniform quantizer. In some applications this 
gain might not  justify the extra cost of implementing a spe- 
cially designed nonuniform quantizer as opposed to the 
simpler uniform quantizer. 

A convenient,and general  way to describe  the  performance 
of  optimal quantizers is based  on  the application of the opti- 
mal  compressor  slope g * ( y )  to the Bennett formula (8 )  for 
mean-square distortion. The result is  that the minimum granu- 
lar distortion  for optimal N-point quantization and for large N 
is given  by 

where  p,(x)  denotes the input density  normalized t o  have unit 
variance,  and y is the  loading factor discussed  above. This 
formula,  first derived by Panter  and Dite [Ill, i s  useful for 
estimating the number of  quantization levels needed for a 
desired  performance (i.e., SNR specification). The integral in 
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square  brackets, L ,  depends only on  the shape of the input tainable approaches or equals the  entropy of  the quantizer 
density function and not on  the  actual  power level. It can  be output, 
seen from  (16)  that the SNR for an optimal quantizer has the N 
form 10 log1@V2 - C where C is a constant  determined  by H = - C 1 P i  lOg2Pi. 
p,(x) using (16).  Letting n = log2N gives the result 

SNR=6n - C 

where C = 10 loglo  (L3/12). The 6  dB per bit improvement in 
SNR is the same as for the  nonoptimum  uniform quantizer 
where the SNR is given by  (6). However,  the  value of C 
obtained from  (16) is as small as possible  since (1 6) gives the 
minimum granular distortion attainable for any  zero-memory 
quantizer.  For the Gaussian density, C is found to be  4.35  dB 
by approximating (1 6)  using V = m. 

VII. QUANTIZATION  WITH MEMORY 

In block quantization,  more  commonly  considered for 
image digitization rather  than speech, a block of k input 
samples (XI, x2, . . ,xk) = x (which may  be  regarded as a 
vector in k dimensions) is simultaneously  quantized,  producing 
an output "point" or vector ( y i l ,  yi2, a . . ,yik) = yi approxi- 
mating x .  Thus, the  output y i i  is an approximation to x i  for 
each i = 1, 2,. . . ,k. An  N-point quantizer selects  one of N 
output "Points" YI, y2,. e ,)f~ to approximate x .  Unlike 
zero-memory  quantization, the value yo depends not  only on 
the  corresponding input sample xi, but also  on  the values of al l  
other samples x i  in the block. Even if the input samples  are 
statistically independent, an  advantage  can  be  gained  by quan- 
tizing a block a t  a time rather  than  one sample at  a time. A 
convenient measure of the distortion  of  the block  quantizer is 

D = -  I3 ei 

where e? is the mean-square  error in the i th sample.  The 
performance of block quantization could be compared with 
zero-memory  quantization  by  examining  how  the bit rate  or 
average number of bits  per sample, B = (log2N)/k, depends  on 
D,  the distortion per  sample. Clearly, as the block length k 
increases, the  minimum bit rate needed for a given distortion 
will decrease. In the limit as k + w, the'minimum  bit rate B 
approaches a limiting value R depending on D .  The function 
R ( D )  is the rate-distortion  function due to Shannon (who 
defined it in a different  way). For  certain classes of  input 
process x i  , explicit solutions for R ( D )  have  been found and 
for many  other cases upper  and  lower  bounds are available. 
For a treatment of rate-distortion  theory, see Berger [151. 

One  simple  technique for reducing  the bit rate without the 
full complexity of block  quantization is  by entropy-coding  the 
successive output symbols of a zero-memory  quantizer.  The 
output  of an N-point zero-memory  quantizer is one of N 
different symbols y1,  y2, . - JN, each having a corresponding 
probability PI, p2, . . . , p ~  of occurring.  Instead of  transmit- 
ting log2N bits per  sample (or the next largest  integer if 
log2N i s  not an integer) to identify each output sample, 
variable-length codes  such as the  Huffman code  can  be  used. 
Such a code  assigns a word with more bits to a low  prob- 
ability symbol and  fewer bits to a high probability sym- 
bol. The  resulting average number of bits per  sample at- 

7 k? 

k i=l - 

This scheme  requires buffering in order to produce a steady 
output  bit stream. 

In general, optimal quantizers do  not result in equal prob- 
abilities for the output symbols, in which case H is always 
smaller than  log2N. For example, a 16-point Optimal  quan- 
tizer for Gaussian  samples  produces output symbols with 
entropy  4.73 bits (from Max [ 8 ] )  compared to the 5 bits per 
symbol needed for equal-length  coding.  Once entropy coding 
is  to be  used, the  preceding optimization  theory is no  longer 
relevant. It is more  appropriate to find a compressor  curve 
which leads to minimum mean-square error for a constraint  on 
output  entropy rather  than  on  number of  output points.  This 
leads to the  surprising  result that the uniform quantizer i s  
nearly optimal! See Gish'and Pierce [I61 . 

Finally, another class of quantizers with memory are the 
sequential  quantizers such as delta  modulation, differential 
PCM,  and the  various  adaptive  versions of these  schemes. In 
essence, al l  of these  schemes take  advantage of correlation in 
the successive input samples by  using a feedback loop around 
the  quantizer.  However, this is  a subject for a separate  paper. 

Vlll. QUANTIZER PERFORMANCE 

From a user's viewpoint, the performance of a quantizer is 
determined  by  the  number of  bits per  sample  needed to 
digitize a given  analog  source so that it can  be reproduced with 
a prescribed maximum amount of  distortion (or minimum 
SNR)., Alternatively, the performance. is determined by how 
high an  SNR  can  be achievedlfor a prescribed average bit rate 
B measured in  bits per  sample. We take  the latter approach 
here  and  survey  some key  results  on  achievable  quantizer 
performance.  For  convenience, we focus only  on  the case of 
input samples with a Gaussian pdf  and  the  mean-square 
distortion measure.  The  issue of robustness is  not considered 
in this discussion. 

From  rate-distortion  theory it is  known that, in the limit as 
the block length approaches infinity, block quantization  of a 
Gaussian  source with statistically independent samples  can 
achieve the bit rate 

where D i s  the average  mean-square distortion per  sample (and 
D < u2 ). Converting to SN R then gives the result 

which i s  also a lower bound on  attainable SNR for any 
realizable  quantization scheme  regardless of the  input  pdf as 
long as the samples  are independent. If the source  samples  are 
correlated, a higher  SNR  can  always  be  achieved. See Berger 
[ I  51 . 

If a zero-memory uniform quantizer i s  used with entropy 
coding of the output symbols,  an efficient quantization 
scheme is achieved. By optimizing the  overload point,  Goblick 
and  Holsinger [I71 found  that HI,  the  highest output  entropy 
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attainable with  uniform quantizing,  satisfies  the  equation 
1 7  

4 2  
H *=-  +- 1092 (02/D). 

With  entropy coding, H*  may  be taken as the attainable bit 
rate B so that solving for SNR gives 

SN  R2 = 6B - 1.50. (18) 

Hence  the uniform quantizer with entropy  coding achieves  an 
S N R  only 1.5 dB  below the very  best attainable  performance 
with block  quantization. 

If the best nonuniform quantizer for minimizing  distortion 
is combined with entropy coding, taking the bit rate as the 
output entropy gives the  result 

SNR3 = 6B - 2.45 (19) 

where (19) was empirically found to fit the data  tabulated  by 
Max. for quantizers with more than eight levels. Clearly,  the 
nonuniform quantizer is inferior when entropy coding i s  being 
used. 

Of course, entropy coding adds a significant  amount of 
complexity to the implementation of a quantizer. Without 
entropy coding, we  have  seen that the  highest SNR achievable 
with  nonuniform quantization is  given  using (1 6) by 

SN  R4 = 6B - 4.35. (20) 

Recall that (1 6) is  based on  the  assumption of large N and it 
neglects  overload  noise.  The  exact SNR values for N between 2 
and 36 can  be obtained from Max's  tables. I t  turns out  that 
(20) is about 3.6 percent too small for N = 12 and  becomes 
progressively  more  accurate as N increases. See Fig.  10. 

0 1 2 3 4 5 6 7 
BIT RATE 

Fig. IO. Quantizer  performance  in SNR as a  function  of  the average 
number  of  bits  per sample needed to encode an analog source. Curve 
A is the best theoretically  attainable  performance  for  a Gaussian 
source with independent samples. It is also a  lower  bound  for  any 
source with independent samples. Curve B is the  performance 
achieved for Gaussian  samples with  a  uniform  quantizer  followed  by 
entropy  encoding.  Curve C, based on (16). is asymptotically for a 
large number  of levels the  optimal  performance  obtainable  with 
nonuniform  quantization  of Gaussian  samples without  entropy  cod- 
ing. Circled  points are based on  Max's  tabulated values for  optimal 
nonuniform  qualtization of  Gaussian  samples without  entropy 
encoding. 
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Finally,  the simplest  quantization scheme, using a uniform 
quantizer without entropy coding, gives the least favorable 
performance.  Using a loading factor of 4 and  neglecting  over- 
load  noise  led to the SNR formula (6): 

SN R 5  = 6B - 7.3. (21) 

However,  the optimum loading factor depends on the number 
of levels used and  the  effect of overload distortion. Goblick 
and  Holsinger [ 171 fitted the  curve 

B = 0.125 + 0.6 10g2(02/DI 

to Max's  tabulated  data for  uniform quantizers with optimized 
loading factor. Converting this expression to a SNR formula 
gives 

SN R 6 =  5B - 0.63. (2?) 

Since  Max's  tables go up to N = 36, it is not  known  how 
accurate (22) is for B > 5.2.  For B < 6.7, (22) gives higher 
SNR values than (21).  which shows that four-sigma  loading is 
not an optimal choice for a Gaussian pdf. 

Summarizing, we  have seen that  uniform quantizing fol- 
lowed  by entropy coding can  achieve SNR values within 1.5 
dB of the best performance theoretically attainable with any 
quantization scheme whatever. For an additional.3 dB  penalty 
in SNR, an optimum  nonuniform quantizer without the com- 
plexity  of  entropy coding can  be  used. Simplest of all, the 
uniform quantizer can  achieve  an SNR within -7 dB.or so of 
the  best  performance theoretically attainable. 

It should be  emphasized that  this modest  difference in 
performance  between  the  simplest  and  most  complex  quan- 
tization schemes is based on  the assumption that the input 
samples  are statistically independent.  Zero-memory  quantiza- 
tion can  be  grossly  inadequate  when  there is substantial cor- 
relation  between successive input samples. However, the utility 

of zero-memory  quantizers does  Vot  end when  the input. is  
correlated. In such situations,  the  zero-memory  quantizer is 
still used as a component  part of more  sophisticated  quantiza- 
tion schemes. Sequential'quantization schemes al l  use a zero- 
memory  quantizer of one form or another  imbedded in a 
feedback  loop. Also, block  quantization schemes generally 
attempt to transform the  vector of  input samples.into a new 
vector with independent  components. These components are 
then individually quantized with a zero-memory  quantizer. 
Indeed,  the  basic  zero-memory  quantizer  plays a ubiquitous 
role in the digital coding of analog  sources. 
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