Optimal Modeling for

COMPLEX SYSTEM

DESIGN

Michelle Effios

any modern engineering problems rely on

some means of modeling to deal with sys-

tem conditions about which there is uncer-

tainty at design time. Data compression,
speech recognition, mobile communications, and market
forecasting all represent examples of problems where
modeling uncertainty plays a major role. Data compres-
sion systems use algorithms designed to match the statis-
tics of the data to be
compressed; speech recogni-
tion systems incorporate mod-
els of speech patterns; mobile
communications systems use
models of communication
channel noise characteristics;
and market-forecasting programs incorporate informa-
tion about market statistics.

In each of the above examples, statistical modeling
plays a major role in the system design problem. This role
is even more critical when the conditions under which the
system must operate are themselves unknown or
time-varying. A compression system may be used to com-
press a wide variety of different data types; a speech rec-
ognition system may be used to recognize speech from

NOVEMBER 1998

The Lessons of
Rate-Distortion Theory

speakers with different voice characteristics, accents, and
speech patterns; a mobile communication system may be
used in a variety of physical surroundings or network traf-
fic conditions; a financial model may be used to predict
stock prices through distinct modes of market behavior;
and so on. In each of these examples, and many more like
them, knowledge about the range of possible working
conditions is available at design time, but the actual con-
ditions under which the sys-
tem operates at any given
instant are typically unavail-
able a priori. For example, it is
not difficult to come up with
an estimate of the types of im-
ages that will be sent to your
printer and the relative frequencies of those data types, yet
predicting the exact nature of the next image is extremely
difficult since there is no natural order in which docu-
ments tend to arrive. Similarly, a reasonable model of the
range of speaker characteristics observed in an automated
telephone banking system may be obtained by monitot-
ing such calls over an extended time period, but accurate
prediction of the next caller’s speech characteristics is
much more difficult. Again, each system is characterized

IEEE SIGNAL PROCESSING MAGAZINE 51

1053-5888/98/$10.00©1998IEEE

by a range of possible conditions that may be reasonably
understood using large quantities of past data, but each
system may undergo changes that vary widely and errati-
cally within that range of allowed behavior.

While the basic modeling problem in any of the above
applications is difficult in its own right, the enormous
variability resulting from changing system conditions
makes the modeling task even more difficult. One ap-
proach to modeling for such complex environments is to
treat model design as a two-level problem. The high-level

Rate-distortion theory bounds
the achievable performance of
data compression systems.

problem is to model the range of possible system condi-
tions. The low-level problem is to describe the data char-
acteristics associated with any single set of system
conditions. For example, in a data compression system,
the high-level model might address the range of different
images that may be observed within a single compression
system while the low-level model might cover the model-
ing inherent in the compression system designed for any
particular image modality. This approach effectively
breaks the complex system design problem into a collec-
tion of simpler design problems by building the overall
system mode] from a collection of simpler models.

The main topic of this article is the design and use of
collections of models. While the low-level modeling
problem is application-dependent, the optimal tech-
niques for designing and using collections of models ap-
ply across an enormous variety of applications, and thus a
single approach suffices for addressing the high-level
modeling problem. This work includes a description of
the multiple-model-design algorithm and discussions of
the application of that technique both for the low-level
data compression system design applications from which
it derives and for high-level design both within data com-
pression systems and beyond.

This article begins with a brief introduction to the the-
ory describing optimal data compression systems and
their performance. Following that introduction is a brief
outline of a representative algorithm that employs these
lessons for optimal data compression system design. The
implications of rate-distortion theory for practical data
compression system design is then described, followed
by a description of the tensions between theoretical
optimality and system practicality and a discussion of
common tools used in current algorithms to resolve these
tensions. Next, the generalization of rate-distortion prin-
ciples to the design of optimal collections of models is
presented. The discussion focuses initially on data com-
pression systems, but later widens to describe how
rate-distortion theory principles generalize to mode] de-

52 1EEE SIGNAL PROCESSING MAGAZINE

sign for a wide variety of modeling applications. The arti-
cle ends with a discussion of the performance benefits to
be achieved using the multiple-model design algorithm.

While this work focuses primarily on basic concepts
rather than specific examples, a small collection of exam-
ples appears in the boxes that accompany the article.
These boxes are included to give a brieflook at implemen-
tation issues in data compression systems and to demon-
strate that the lessons of rate-distortion theory can be
applied not only to design good simple source models but
also to design good quantization matrices for JPEG-style
data compression systems, design transform codes with
performance that far exceeds that of JPEG, and in fact to
design good collections of models for a wide variety of ap-
plications where the data modeled by a system may vary
over a wide range of possibilities. (The JPEG (Joint Pho-
tographic Expert Group) algorithm [1] is an im-
age-compression standard. A brief description of JPEG
appears in Box 3.)

The brief collection of examples cited in the boxes and
elsewhere throughout this work should by no means be
considered a general survey of the data compression liter-
ature. The limited nature and scope of this work necessi-
tates the omission of a 'wide variety of works playing
extremely significant roles in the fields here touched
upon. The author apologizes for those omissions and en-
courages interested readers to seek out the many books
and papers providing general literature surveys for more
complete and balanced looks at these fields.

Data Compression: An Introduction

Data compression algorithms provide efficient data rep-
resentations for information storage or transmission,
Rate-distortion theory bounds the achievable perfor-
mance of data compression systems.

Data compression, also known as source coding (e.g.,
image or video coding), is the science of information rep-
resentation. The data compression problem may be
posed in two ways. Describe data to the greatest accuracy
possible within a given file size (or within a required time
across a noisy communication system); or, describe data
using the smallest possible file size (or transmission time)
while maintaining a desired level of reproduction-accu-
racy. In either expression of the problem, the fundamen-
tal trade-off is the same. The system trades description
length orrate (often measured in bits per symbol from the
original source alphabet; e.g., bits per pixel) for repro-
duction fidelity or low reproduction distortion (typically
measured by some simple distance measure such as
squared error, which is assumed throughout this work
unless indicated otherwise).

On an intuitive level, any data compression system
could be imagined, as illustrated in Fig. 1, as a long list
with three columns. The first column contains the row in-
dices for book-keeping purposes. The second column
contains a list of possible reproduction sequences. The

NOVEMBER 1998

third column contains the binary descriptions used to
specitv a particular reproduction. In the example in Fig.
1,7 e{l1,...,39} designates the row indices, {B(¢) } denotes
the collection of reproduction sequences, and {y() } speci-
ties the associated binary descriptions. Each reproduction
sequence in the second column may be cither a single
value (scalar) or a collection of values (vector) from the
reproduction alphabet. For example, the second column
in Fig. 1 contains a list of 64-dimensional vectors ar-
ranged in 8 x 8 squares. If cach reproduction sequence is
cqual in dimension to a single image, then the collection
of images that can be represented using the given code is
identical to the collection of reproduction sequences.
Typically, though, cach reproduction sequence is smaller
in dimension than a single image. In this case, the repro-

duction sequences may be strung together in any possible
order to create a wide variety of different images. Two ex-
amples of images created by stringing together reproduc-
tion vectors from Fig. 1 appear in Fig. 2.

The overall compression system maps incoming data
sequences into reproductions by way of their associated
binary descriptions. The list of binary descriptions is
chosen to be “uniquely decodable” (see, for example,
[2]) so that there is no uncertainty in parsing an incom-
ing bit stream into separated block descriptions or deter-
mining to which reproduction a given binary
description must correspond. Intuitively, one may think
of a uniquely decodable code as a binary tree with left
branches labeled by zeros and right branches labeled by
ones, as shown in Fig. 3. In this tree, each binary descrip-

tion represents a path start-

i B(i) i) i B(7) i)

ing at the root and ending at

i o 0 a leaf (rather than an internal

111100 14 111111010

node) of the binary tree.

110100 Thus, each leaf is labeled by

1110110 15 111010

the unique index 7 to which
the path description y(z) cor-

1111111110 . . .
responds. A binary string of

28

111110111 16 11010111

coded data may be parsed by
tracing the corresponding
path down the binary tree.

29 11111000

111111011 17 11010110

The tracing process begins at
the root of the tree and fol-
lows the left branch if the

30 11111010

11011010 18 111000

next bitis azero and the right

31 o L.
branch if the next bitis a one.

111110010 19 0

This process continues until
aleafofthe tree is reached, at
which point the end of a sin-

32 11011101

11111110 20 11110111

gle block description is real-
ized. The process continues
at the top of the tree using

33 11111100

111111111 21 1110011

the remaining bit stream.
Using such a diagram, it be-
comes obvious that one can-

34 1110010

1101010 22 111111110

not design a uniquely
decodable code such that all

10 11110111 23 1111010

indices have short binary de-
scriptions. To give short bi-
nary descriptions to some

36 110110110

11011100 24 111110110

indices one must give long
binary descriptions to other
indices in order to keep the

37 110110111

12 11101111 25 111110011

number of leaves in the tree

11101110 constant. (While it is not

38

11011110 26 1101100

truc that every uniquely
decodable code can be de-
scribed in the above manner,

39 11011111

it is true that for anv

A 1. A data-compression codebook. The first column contains the reproduction index i. The second
column contains the (8x 8) reproduction vector 3(i} The third column contains the binary de-

scription y(i}

NOVEMBER 1998

uniquely decodable code
there exists a code with the
same description lengths

IEEE SIGNAL PROCESSING MAGAZINE 53

0 evervbody’s fouse, o1 we
ically alloeata o telpphone ch
e a browdegster.
~ The sew world & onch
dynamic, We can constantly
locate the bandwidib on :
crosecond-da-microserond ha
One thing we can apree
thal wiversal serviee no ke or
means: the univeras deplovme
3 mbmmﬂwmg

ace of inrwvatiom malee i

quences (c.g., =28) vields an ex-
pected deseription length of fewer
than 0.09 bits per pixel. This process,
called lossless compression, results in
no loss in reproduction quality.
Viewed as in Fig. 1, the compres-
sion system 1is Lﬂ'LLthCl\ a collection
of very simple modcls. Here, cach
model is a single reproduction value
“codeword.” Each model in the
collection has associated with it a
cost, where the cost of a particular
model is the rate necessary to de-

A 2. Two images created using the codebook in Fig. 1. (Note that the scale in these im-
ages is very different from the scale of the reproduction vectors of Fig. 1. Each code-
word in the codebook is an 8 x 8 pixel block. Each of the above images has dimension
512x 512 pixels.) The average rate used to describe the sequence of indices leading to
the image on the left is 4.35 bits per vector or 0.07 bits per symbol. The average rate
used to describe the sequence of indices leading to the image on the right is 3.92 bits

per vector or 0.06 bits per symbol.

that fits the binary-tree format described above. Thus,
the general conclusion that short binary descriptions for
some indices necessitate long binary descriptions for
others applies to all uniquely decodable codes.)

Given the list structure of Fig. 1, compression may be
achieved in two ways. First, when the list of possible re-
production sequences is shorter than the list of possible
data scquences, the number of bits needed to uniquely
describe a member of the reproduction “codebook™ is
smaller than the number of bits needed to uniquely de-
scribe all possible input sequences. For example, there
exists a fixed-rate code such that any one of the 39 <2°
64-dimensional reproduction vectors in Fig. 1 may be
described at a rate of 6 bits per 64-dimensional vector or

6/64 = 0.09 bits per pixel. In contrast, describing one of

the 256% =27 64-dimensional data vectors from re-
production alphabet {0, ... 255} with a fixed-rate code
requires 512 bits per 64-dimensional veetor or 8 bits per
pixel. Notice, however, that the savings in description

length resulting from the restriction of the collection of
allowed reproduction sequences comes at the expense of

a decrease in reproduction accuracy. For any fixed di-
mension, the smaller the codebook, the smaller the col-
lection of possible images that can be created by
stringing together reproduction vectors from that
codebook. This restriction or “quantization” of the
space of possible reproductions may cause a loss in re-
production fidelity in describing an arbitrary input im-
age using the given codebook.

The second possible means of achieving compression
involves the careful choice ot the uniquely decodable bi-
nary label for cach reproduction vector. For example, us-
ing shorter binary descriptions for more probable
reproduction sequences (c.g., £=19) at the expense
{within the uniquely decodable structure) of longer bi-
nary descriptions for scldom used reproduction se-

54 IEEE SIGNAL PROCESSING MAGAZINE

scribe that model to the decoder. For
most applications, it is unreasonable
to assume that anv single model will
be good for all possible dara sc-
quences. However, use of a jointly
designed collection of models and a
careful mechanism for choosing
among those modcls, can vield good
average performance in representing a wide variety of
possible data sequences that may be observed in the given
compression system. The more models used within a
given compression system, the better these models can
cover the space and thus the greater the reproduction ac-
curacy. At the same time, the more models used within a
solvc,n compression system, the higher the cost in rate of
using the system because the use ()f more models gener-
ally requires the use of more bits (on average) to describe
the chosen modecl; hence, the fundamental trade-oft be-
tween rate and dlst()rtl()n.

ilov()
1| 00
2 | ot
3|10
4 | 1100
5 | 1101
6 |11

A 3. Asimple uniquely decodable code, for which each binary
description y(i) corresponds to a single leaf in the tree. Using
such a code tree, a binary string may be parsed into a unique
list of codeword indices by beginning at the top of the tree, se-
quentially traveling left for each 0 and right for each 1 until
encountering a leaf, outputting the given leaf index, and then
traveling back to the root of the tree and repeating the process
for the remaining bit stream. For example, the binary string
011010111... corresponds to the sequence 2,3,3,6,... of indices.

NOVEMBER 1998

By describing, for each source distribution, the opti-
mal trade-off between the two performance measures
trom which it gets its name, rate-distortion theory pro-
vides performance goals for practical compression algo-
rithms. Yet, knowing the bounds on the performance ofa
data compression algorithm is not ecnough. The design of
good codes requires knowledge ot how to achieve (or at
least approximate) with practical codes the performance
promised by these bounds.

Ideally, rate-distortion theory would describe a design
algorithm for achieving the optimal practical data com-
pression system for any possible application. Unfortu-
nately, rate-distortion theory falls short of this ideal since
the arguments used in finding the theoretical bounds
prove the existence of good codes without demonstrating
how to find them or worrying about their practicality.
Nonetheless, many of the lessons oftered by rate-distortion
theoretic arguments are invaluable in designing practical
codes. In particular, careful examination of the proofs of
the optimal coding bounds yields important information
about the properties of optimal codes. Many of these prop-
erties are applicable in practical system designs. Applica-
tion of these results vields a wide variety of algorithms for
designing good collections of models to fill the intuitive list
in Fig. 1.

Rate-Distortion Theory: Basic Lessons

Rate-distortion theoretic proofs describe limits on the
performance achievable by source coding algorithms and
demonstrate the existence of codes that achieve those
bounds. Caretul examination of both parts of this argu-
ment vields a variety of conclusions regarding the proper-
tics of optimal codes.

While most data compression systems are not imple-
mented in the form shown in Fig. 1, most if not all practi-
cal data compression algorithms can be described in this
tormat. (Sce Boxes 1, 2, and 3 for some simple examples
of popular data compression implementations.) Use of
the table in Fig. 1 requires the detinition of some function
that takes as its input any possible data scgment and
chooses tor that data segment an appropriate model. The
model choice is specitied by its corresponding row index.
Define the mapping o such that for any x#” in a fixed
source alphabet x” (which may be either discrete or con-
tinuous), ou(x ") is the row index of the model chosen for
x". Forany row index 7, let B(z) and y(7) denote the repro-
duction and binary description, respectively, found in
columns 2 and 3 of row 7 of the table in Fig. 1. Since the
binary descriptions are, by assumption, uniquely
decodable, the function y™' () here denotes the inverse
mapping from a given binary description back to the row
index 7 to which it corresponds.

A complete compression system using the above de-
tined functions appears in Fig. 4. The system encoder
¥ o oo maps cach incoming data vector #” to a binary de-
scription y(ox ")) by way of the corresponding row

NOVEMBER 1998

indexo(x"). The length|y(a(x ")) | of the binary descrip-
tion denotes the cost in rate of describing vector ¥ with
the given encoder. The decoder oy~ maps the binary
sequence y(ox”)) to its corresponding reproduction
Blox")) by way of the index y ' (y(o(x")))y=oux").
Given some distortion measure d(x, £), the reproduction
fidelity can be measured as d(x” Blofx"))), where
dx",x")=3" d(x,X,).

The innermost segment of the compression system,
here denoted by yand ™', is a lossless code, which maps
source indices to and from their binary strings. The outer-
most segment of the compression system, here denoted
by o and B, and henceforth referred to as a guantizer,
breaks the space of possible data sequences into disjoint
subsets or guanta, representing cach region by a single re-
production value. An example of a quantizer encoder and
decoder atz = 2 appears in Fig. 5. In this figure, the outer
square represents the z-dimensional space of possible
data vectors. That space is divided into subsets, where
cach subset is the set of ™ values mapped to a particular
row index 7 by the encoder o. Each region contains a
point representing the z-dimensional reproduction vee-

A 5. Sample o. and B functions. The encoder « carves the space
of possible data vectors into subsets, each of which carries a
unique index. The decoder 3 chooses a representative value
for each region. The line segments in the above drawing mark
the region boundaries. The dot in each region shows the asso-
ciated representative value.

IEEE SIGNAL PROCESSING MAGAZINE 55

tor B(7) (described in the second column of Fig. 1) associ-
ated with the given region.

While rate-distortion theory does not provide an opti-
mal joint design algorithm for o, B, and y nor describe
how to implement these tunctions for practical applica-
tions, it does yield a variety of lessons about the optimal
system. Discussions of a few of those lessons appear in the
subsections that follow.

Lesson 1: Bigger is Better:

The High-Dimension Advantage

“It 1s simpler to describe an elephant and a chicken with
one description than to describe each alone.” —Cover
and Thomas [2]

Perhaps the most pervasive lesson of rate-distortion
theory is that joint descriptions are more efficient than
separate descriptions, even for uncorrelated random vari-
ables. In the terminology of the earlier defined system,
this means that the performance achievable at a higher di-
mension z exceeds the performance achievable at lower
dimensions. Two main factors, described next, contrib-
ute to this effect [3].

The first and perhaps easier to understand is that a
compression system that deals with data in larger
“chunks” (or vectors) can take better advantage of corre-
lation between samples than can a compression system
that deals with data in smaller pieces. To illustrate this ef-
fect, consider a typical natural image. The given image, a
photograph, is broken into vectors of dimension two
(that 1s, cach pixel is paired with a single neighbor). Fig-
ure 6 shows, from two different angles, the histogram of
two-dimensional vectors from that image. The vast ma-
jority of the pixel values in this example line up along the
x, =x, line. Many varieties of images incorporate ex-
tremely high correlation between

come of the experiment is difficult. For example, consider
the prediction of the outcome for any single experiment
{(n = 1). Since the probability p ofa head 1s given to be less
than 0.5, the best possible guess is that the outcome will
be tails. This guess is best every time the game is plaved
even though tails might be only slightly more probable
than heads and, for any p >0, the event that every toss
yields tails 1s unlikely. To quantify this poor performance,
note that this best guess is expected to be wrong propor-
tion p of the time. For # large, however, more accurate
predictions about the expected outcomes of the # coin
toss experiment are possible. In this case, (by the weak
law of large numbers) roughly proportion p of the tosses
are expected to give heads most of the time. Using this as
a guess for the experimental outcome yields an expected
probability of error that shrinks to zero as # grows with-
out bound. The predictability of long sequences of exper-
iments yields efficient coding schemes that give short
descriptions to all possible strings with roughly propor-
tion p of heads at the expense of long descriptions for
strings with any other proportion of heads. The result is a
lossless coding scheme that gives good performance for
high-dimensional data (see, for example, [2]).

The above example illustrates the high-dimensional ad-
vantage in lossless coding. A similar effect can be seen in
quantization since the encoding cells defined by o pack
better in higher dimensions than in lower dimensions [4].
This observation is illustrated by Fig. 7. The figure con-
tains two-dimensional drawings of the optimal cell shape
for coding uniformly distributed data at # = 1 and the opti-
mal cell shape for coding uniformly distributed dara at
n =2. The drawing on the left shows the optimal cell shape
associated with # = 1. In this case, the encoder is forced to
make independent decisions in dimensions one and two.

neighboring pixel values like that
seen in Fig. 6. In this case, knowing
the value of one of the two pixels
predicts, with very high accuracy,
the value of the neighboring pixel.
A compression system that treats | 160
cach pixel separately cannot take | 140
advantage of this correlation. 120

The second key advantage of
higher dimensional codes results
trom the economies that come with
scale. Even in cases of independent | 60
experiments it is far easier to pre- | 4o
dict the typical behavior in a long
sequence of experiments(x” for
la'rgc values of ») th‘an Itis to pre- | pg;
dict the outcome of any single ex- 200
periment. For example, consider #
independent tosses of a coin for
which the probability of heads is
some known constant 0< p <05.

100
80

20

50

250 g
200 ':l
150
100

50 &

100) 0

250

For n small, prediction of the out-

56 IEEE SIGNAL PROCESSING MAGAZINE

A 6. Histogram of two-dimensional pixel vector values for a photographic image.

NOVEMBER 1998

The resulting cells are square. Making optimal decisions in
two-dimensional space yields hexagonal encoding regions.
These regions are superior to the square encoding regions
found on the left in the sense that uniformly distributed
data over a hexagonal cell yields lower expected distortion
with respect to the cell center than does uniformly distrib-
uted data over a square cell of the same area with respect to
its cell center. This result is intuitively clear because the
hexagon is more similar to a circle than is the square. Going
to higher and higher dimensional spaces yields cell shapes
that are more and more “spherical.” That is,
higher-dimensional spaces admit more efficient packings
than do lower-dimensional spaces.

Lesson 2: The Optimal System

has Optimal Parts

A source code contains three components, the quantizer
encoder o, the quantizer decoder B, and the lossless code
v. The goal of data compression system design is to
choose o, B, and y to minimize the expected distortion
subject to a constraint on the expected rate (or vice versa)
in coding samples from a known source distribution. For
practical applications, knowledge about the source distri-
bution is typically embodied in a single, fixed training set
of data. Thus, the optimal system is the system (of a given
dimension) that achieves the best possible performance
on that training set. To avoid overtraining problems, sys-
tems are typically trained and tested on nonoverlapping
data sets.

For the system as a whole to be optimal, it is necessary
(though not sufficient) thata, B, and y themselves be opti-
mal. While rate-distortion theory does not provide a sin-
gle algorithm for simultaneously optimizing the triplet
(o, B, v), it does describe the optimal o for a given B and vy,
the optimal 8 for a given o and v, and the optimal y for a
given o and B.

Lesson 2.1: The Optimal Quantizer Encoder o.

Given P and y functions, the optimal quantizer encoder o
is the quantizer encoder that minimizes the system’s ex-
pected distortion subject to a constraint on the expected
rate (or equivalently minimizes the expected rate subject

A 7. Optimal one-dimensional and two-dimensional packing.

NOVEMBER 1998

Perhaps the most pervasive
lesson of rate-distortion theory
is that joint descriptions are
more efficient than separate
descriptions.

to a constraint on the expected distortion). This
minimization is achieved by mapping every input vector
x" to the reproduction index 7 that yields the best perfor-
mance for that particular input. Thus, denoting the opti-
mal value ofo.byo” and using a Lagrangian minimization
[5] with non-negative Lagrangian constant A,

o (x") =arg min[d(x" ,B) + M v() |1

The Lagrangian approach minimizes the expected distor-
tion subject to a constraint on the expected rate. The
Lagrangian constant A, which may be thought of as a
descriptor of the relative importance of minimizing the
expected rate versus minimizing the expected distortion,
is chosen as a function of the system’s target rate [5].

Lesson 2.2: The Optimal Quantizer Decoder 3

Given o and y functions, the optimal quantizer decoder 3
is the decoder that achieves the best possible expected dis-
tortion. This optimal performance is achieved through
independent optimization of the conditional expected
distortions conditioned on every possible value of o(x”).
That is, for each index 7,

B (6) =arg min E[A(X", %")+ Mv() ||(X ") =1]
=arg min E[d(X",%")|a(X ") =1].

For example, use of the squared-error distortion measure
A(x, %)= (x — X)* results in optimal decoder models (or
codewords) {B()} at the centroids of their encoding re-
gions. That is, B' ()= E[X"|o(X")=1i] for the
squared-error distortion measure.

Lesson 2.3: The Optimal Lossless Code ¢

Results on the optimal lossless codes appear in the infor-
mation theory literature. In particular, an optimal lossless
code satisfies

Iv" (6) =~ log Pr(o(X ") =)

for each . Intuitively, one can understand this result as
follows. Given an alphabet with K equiprobable symbols,
the best that one could hope to do in describing an out-
come from this alphabet would be to describe that alpha-
bet with log K bits, since log K bits suffice for describing
28 X different outcomes (throughout, log(x) = log, (x)).
There is nothing to be gained in this scenario from giving

IEEE SIGNAL PROCESSING MAGAZINE 57

shorter descriptions to some symbols than to others since
all symbols are, by assumption, equiprobable. Now con-
sider a source alphabet X with symbol probabilities
{p(x):x € X} such that p(x) is nor necessarily equal to a
constant for all x. For any x €.X, symbol x effectively
looks like one of 1/ p(x) equiprobable outcomes. For ex-
ample, a symbol with probability 1/8 in some sense looks
like one of eight equiprobable outcomes. Since log8=3
bits is the number of bits required to describe any one out
of eight equiprobable outcomes, the expectation is that
log(1/ p(x)) =—log(p(x)) bits should again suffice for
describing x in this scenario, even though the number of
source symbols in X may be larger or smaller than eight
and the symbols are not necessarily equiprobable.

Notice that the above formula often cannot be
achieved. For example, —log Pr(c(X ") = 7) may not be
an integer. Fortunately, for large values of % (seec Lesson
1), the difference between the “optimal” per symbol de-
scription length —(1/ #)log Pr(o(X *) =1) and the best
achievable per symbol description length differ by very
little. In particular, for any distribution Pr(-), there exists
a uniquely decodable code with description lengths
v (G| < f— log Pr{o(X ") = i)ﬂl, where [x] denotes the
smallest integer greater than or equal to x (see, for exam-
ple, [2]). The rate cost of using the above code rather
than the “optimal” code is at most one bit per x” vector
or 1/n bits per symbol, which is arbitrarily small for large
enough 7.

Lesson 3: Optimal Parts Do Not

Guarantee an Optimal System

The conditions described in the above lessons are neces-
sary but not sufficient for optimality.

While Lesson 1 gives some insight into the choice of
the optimal vector dimension and Lesson 2 describes the
optimal ¢ for a given and v, the optimal B for a given o
and v, and the optimal y for a given 0. and B, realization of
an optimal system is still far from attained. First, the
above conditions are necessary for optimality but are gen-
erally not sufficient. Second, Lesson 1 implies that bigger
is better when it comes to coding dimension. Thus, for
any dimension #, the potential for improvement by going
to a larger value of # always exists, resulting in a push for
higher and higher dimensions (and, as discussed later, less
and less practical codes). Third, given two optimal system
parts, Lesson 2 describes techniques for designing the
third element to be jointly optimal with the other two,
but where should the two other parts come from origi-
nally? This is the global design problem treated in the next
section. The question of coding dimension is considered
in the section titled “Trouble in Asymptopia.”

Get It Together: Lessons In Global Design

The above rate-distortion theory lessons go a long way
towards describing the optimal ¢ode. The question that

58 i IEEE SIGNAL PROCESSING MAGAZINE

remains is how to jointly design the system components
to simultaneously achieve all of the above conditions.

While a wide variety of (implementation dépendent)
code-design algorithms exist in the literature, only the
simplest and most direct method for applying the results
of Lesson 2 are discussed in this section. The resulting
design algorithm for fixed-rate codes (codes for which
|7(2) | is forced to equal a constant value for all) appears
in [6]. A further generalized variation for variable-rate
codes comes from [5]. Both are instances of the general-
ized Lloyd algorithm.

The generalized Lloyd algorithm is a code-design al-
gorithm typically run on a training set of data deter-
mined by the system designers to be representative of
the data to be coded by the desired system. The design
procedure, performed off-line during system design,
generates a quantizer o, 3 and lossless code y to match
the training data. The design begins by choosing an arbi-
trary initial codebook of a desired dimension and maxi-
mal codebook size and an initial lossless code. For
example, a codebook with index set {1,... 256} to code
four-dimensional vectors for a grey-scale image database
may be initialized at random or through a variety of sim-
ple splitting techniques (see, for example, [7]). The
lossless coder is typically initialized using a fixed-rate
code. That is, all binary descriptions {y(?)} in the given
collection are initialized to the natural fixed-length bi-
nary representations of the associated integer indices {z}.
This initialization is followed by an iterative design pro-
cedure with the following three steps.

1. Optimize the quantizer encoder o for the given
quantizer decoder 3 and lossless code y. This step is accom-
plished using the optimal encoder design of Lesson 2.1.

2. Optimize the quantizer decoder B for the. given
quantizer encoder o and lossless code y. This step is-accom-
plished using the optimal decoder design of Lesson 2.2.

3. Optimize the lossless code y for the given quantizer
encoder o and quantizer decoder f. For a fixed-rate code,
this step requires no change. For a variable-rate code, this
step is accomplished using a lossless code-design algo-
rithm that achieves the rates given in Lesson 2.3 (to
within one bit per vector).

The process iterates until convergence.

At each step of the above jterative design procedure,
the system’s expected Lagrangian distortion
E[4A(X7”,Bo(X ™))+ Aly(o(X "))]] eithetr decreases or
remains constant. Since the Lagrangian. distortion is
bounded below by zero, the iterative procedure is guaran-
teed to converge. Running the above procedure to con-
vergence typically yields a system that simultancously
satisfies all three optimal code properties. (Strictly speak-
ing, while convergence of the Lagrangian distortion is
guaranteed, convergence of the functions o, B, and vy is
not. This observation is of litte consequence, though,
since two codes with the same Lagrangian distortion are
functionally equivalent from a rate-distortion perspec-
tive.) Unfortunately, the conditions described are neces-
sary but not sufficient for system optimality.

NOVEMBER 1998

Rate-distortion theory is not
the theory of optimal practical
code design.

Nonetheless, since the above procedure finds, at cach
step, a globally opumal solution to its subsystem design
problem, the entire process guarantees convergence to a
locally optimal solution.

Notice that the generalized Lloyd algorithm solves a
number of very interesting and important problems. In
particular, the procedure answers three questions.

A How many codewords are needed?

The number of codewords needed in a fixed-rate code
is trivially determined; a fixed-rate-R (bits per symbol)
source code with dimension #, requires 2" p-dimen-
sional codewords.

The same question 1s more interesting in the case of
the number of

variable-rate codes. In this case,
codewords needed could, conceivably, be arbitrarily
large. The question, then, 1s how many codewords are
needed to optimally cover the space of data vectors given
a target per symbol bit budget.

When the optimal codebook size is finite, the question
of codebook size is solved by the iterative design proce-

dure. That is, assuming that the optimal number of

codewords 1s finite and that the codebook is initialized
with some number of codewords greater than the num-
ber needed, the convergence algorithm effectively dis-
poses of all unnccessary codewords. This codeword
removal procedure 1s au()mpllshcd as a natural outcome
of the lossless code design. In particular, extra codewords
attract fewer and fewer training samples through the iter-
ative procedure. As a codeword’s probability decreases,
its binary description length increases as the negarivc log-
arithm of the codeword probability, thereby uurgasmg
the effective cost associated with Lh()()smé the given

codeword. This increase in cost causes a further decrease
in probability and so on. The eventual outcome of this
process (neglecting the effects of local minima problems)
is that the probability of unnecessary codewords goes to
zero and thus their cost in rate goes to infinity, resulting
in an effective removal of all “extra” codewords from the
coding system.

A Which codewords should be used?

The codeword locations are given by the optimal
model equations described in Lesson 2.2, For the
squared-error distortion measure, these optimal
codewords are easily calculated as conditional expecta-
tions with respect to the underlying distribution (or aver-
ages over appropriate subscts of the training data).

A When should each codeword be used?

The codeword choice problem is solved by the optimal
encoder described in Lesson 2.1. Implementations of
truly ()ptlmal encoders typically involve a full search for
each incoming data vector over the collection of possible
codewords. Full search codes of this type, called vector
quantizers, are described 1n greater detail in Box 1.

Trouble In Asymptopia: The Cost of the
High-Dimension Advantage

According to rate-distortion theory, the existence of the
optlmal code is only guaranteed asymptotically as the cod-
ing dimension gOes 1o infinity. Yet with the rate-distortion
performance gains of high-dimensional codes come a
number of pitfalls that make the theoretical optimality of
infinite-dimensional coding a practical impossibility.
Lesson 1 motivates the push for very high-dimensional
codes. Yet, increasing the dimension z of an optimal vec-
tor-based source code increases the complexity, delay,
and memory requirements of that code. Given a target
rate of R bits per symbol, the number of reproduction
vectors in the given code grows at least as quickly as 2% .
Since the optimal encoder o is typically implemented by

he conceptually simplest form of quantizer encoder ex-

plicitly implements the optimal encoder described in
Lesson 2.1. That is, given a quantizer decoder B and
lossless code v, the encoder maps each incoming vector x”
to the index associated with the closest codeword:
o' (x") =arg mm[d (x",B(?)) + Al¥(@)|] An example of such
an encoder is shown below for a 16 codeword system with vee-
tor dimension # = 64.

The encoding function is implemented using a search over
all possible indices in the code’s collection. That is, the encoder
calculates d(x",B(#)) + A y() | for every ¢ in the code’s index
set, and chooses that 7 corresponding to the lowest weighted

Box 1 - Implementation Examples: VQ [5, 6]

distortion measure. The resulting code is called a full search
vector quantizer, or simply a VQ. The VQ’s decoder is a sim-
ple table lookup. The code table (more typically known as a
codebook) stores one reproduction vector for each index in
the code’s collection.

ENC

TIIIII TR T I

NOVEMBER 1998

IEEE SIGNAL PROCESSING MAGAZINE 59

ox 1 includes a description of the traditional VQ encoder
Band decoder. In that case, the decoder, implemented as a
simple table look-up, requires very low complexity, but the en-
coder, which implements a full search over all possible models
in the collection, is much more computationally expensive.
While high encoder complexity is acceptable for many applica-
tions (e.g., videco on demand, where good system performance
does not imply a requirement that the encoder be either inex-
pensive or fast), other applications require both the decoder
and the encoder to be fast and inexpensive. For example, in
videoconferencing applications, both parties in a conversation
need to encode outgoing messages and decode incoming mes-
sages simultancously and with very low delay.

b obod b oo
nE G
o

Box 2 - Implementation Examples:
Hierarchical vQ [10]

In [10], Vishwanath and Chou describe a simple
(suboptimal) vector quantizer that replaces the full search of
the optimal VQ’s encoder with a sequence of table look-ups.
The observation made in this case is that for any digital sys-
tem, the number of possible input vectors is finite. As a re-
sult, one possible approach for encoding data vectors is to
devise a table including all possible input vectors and their
corresponding optimal codeword indices. Given such a table,
the encoder would require a single table look-up, which is
fast and inexpensive, rather than a sequence ot distortion cal-
culations, which carry a much higher computational cost.
Unfortunately, the table size required in such a system would
grow exponentially with the vector dimension. As a result,
Vishwanath and Chou replace the above single table look-up
with a sequence of table look-ups. The resulting system con-
tains a collection of small, simple tables, where each table
takes as its inputs two 8-bit values and outputs one of 256
possible indices. The tables in the system are arranged in a
simple hierarchy, shown at the left for an cight-dimensional
(n = 8) vector quantizer.

At the top level, each table takes in the indices of two input
symbols (e.g., pixel values) and outputs a single index. The in-
dices from each neighboring pair of tables are then fed into ta-
bles at the next level, and so on untl all of the pixels are
represented in the final table look-up decision. While a single
(enormous) table could achieve optimal encoding, the above
sequence of table look-ups cannot guarantee encoder
optimality. (See [10] for a discussion of hicrarchical VQ table
design and performance.)

way of a brute-force comparison of every incoming data
vector to every possible reproduction codeword (see Box
1), exponential increases in codebook size result in expo-
nential increases in encoder complexity. Similarly, the
memory required for storing the optimal decoder {B(4) } s
proportional to the product of the code’s size and dimen-
ston. Thus, exponential growth in source code size like-
wisce results in exponential growth in memory
requirements for storing the appropriate table of code
vectors. Finally, the delay associated with block source
codes of the type considered in this work gr()ws lincarly in
the coding dimension. That is, since incoming data
streams are described in fixed-length vectors of length 7,
the encoder must read in z#2 source symbols before it can
begin describing even the first symbol in that vector.
While this delay may be inconsequential for a source code
used in a storage svstem, the same delay may be prohibi-
tive for applications such as real-time video conferencing.

The Power of Imperfection:
Optimality-Performance Trade-Offs

in Source Code Design

Giving up optimal encoders and decoders for ones that are
merelv good (and clever!) vields much of the high-dimension

60 IEEE SIGNAL PROCESSING MAGAZINE

advantage without the computation, memory, and delay
costs associated with high-dimensional codes.

Given the trade-oft between rate-distortion perfor-
mance and the associated cost in complexity, delay, and
memory, the problem of source code design at first ap-
pears to be merely a matter of choosing the optimal
coding dimension. Atterall, rate-distortion theory pro-
vides methods for scarching for the oprimal source
code for any dimension, and thus it scems that the only
1unamlng question is how to find the maximal dimen-
sion for a desired complexity (or the minimal complex-
ity for a target performance).

Nonetheless, a closer look reveals a tantalizing obscr-
vation: “optimality” 1s not always the best choice. In
other words, while the optimal low-dimensional code 1s
guaranteed by definition to achieve better rate-distortion
performance than any other code at that dimension, it is
not guaranteed to achieve better performance than even a
mediocre code at a higher dimension. The vast majority
of source coding algorithms can be described as attempts
at finding suboptimal (in a rate-distortion sense)
high-dimensional codes that give the best possible perfor-
mance for a given allowed level of complexity.

The above discussion of the power of suboptimal
codes leads to one inevitable conclusion. Rate-distortion
theory is not the theory of optimal practical code design.

NOVEMBER 1998

In other words, the definition of optimality provided by
rate-distortion theory is not the definition of optimality
needed for practical coding, which requires further con-
straints. The true goal of system design is to minimize dis-
tortion subject to constraints on rate and complexity and
memory and delay (or to minimize rate subject to con-
straints on distortion, complexity, memory, and delay, or
to minimize complexity subject to constraints on rate,
distortion, memory, and delay, or ...). Unfortunarely, this
minimization is much more difficult to solve explicitly,
and thus the practical source-coding literature is full of al-
gorithmic attempts, none of which is known to be the one
truc answer to the rate-distortion-complexity-memory-
delay question.

While the number and variety of source-coding alter-
natives is almost limitless, a few basic tools represent
common threads through many of these algorithms.
Three of the most basic underlying strategies are constd-
ered next. Two algorithms employving these strategies are
described in Boxes 2 and 3.

It is important to remember that the (rate-distortion)
performance of a source code at any dimension z cannot
be better than the pertformance of the optimal #-dimen-
sional source codes described carlier. Thus, all codes de-
signed to achieve the high-dimension advantage must
themselves be high-dimensional codes. The goal here is to
design high-dimensional codes that are easier to imple-
ment and store than their optimal counterparts but
achieve performance that is almost as good (or at least
better than the performance of optimal low-dimensional
codes of the same complexity). In fact, the design of many
of these suboptimal systems includes a rate-distortion op-
timization subject to the constraints imposed by the
suboptimal coding structure (see, for example, |8] and

[9]). Descriptions of three basic techniques for tackling
this problem follow.

A 8. Tree-structured vector quantizer encoder and decoder. The
above figure shows the encoding regions and corresponding
decoder codewords associated with a depth-6 tree-structured
vector quantizer. The given code has the same (fixed) rate and
was designed on the same training set as the corresponding
encoder and decoder of Fig. 5. The encoder and decoder
shown above are designed to give the best possible expected
distortion using a sequence of six binary comparisons (rather
than the 64 separate comparisons of the full-search example)
for each incoming data vector. While the resulting code gives a
23% increase in distortion relative to the full search code (on
the same training set), the distortion increase is accompanied
by a 90% savings in computational complexity.

ransform coding is another example of a suboptimal

high-dimensional coding strategy that achieves perfor-
mance far exceeding that of low-dimensional optimal codes of
similar complexity. The encoder for a transtorm code is shown
below. In transform coding, a high-dimensional vector x” is
sent through a transform prior to coding. (In the JPEG image
coding standard, the vector dimension # = 64 and the trans-
form, indicated below by the symbol T, is a discrete cosine

T SFJ Y

— {sa

Box 3 - Implementation Examples:
JPEG and Other Transform Codes [1]

transform (DCT).) The function of the transform is to
decorrelate the data prior to scalar encoding. The resulting
transform coefficients are then quantized using an appropriate
bit allocation and a collection of uniform scalar quantizers
(here denoted SQ). The bit allocation for the JPEG algorithm
is specified in the form of a “quantization matrix,” which is de-
scribed in the file header and thus may be changed from image
to image. Many implementations of JPEG, however, fix the
quantization matrix to be constant over all images, and simply
scale that matrix up and down to achieve a variety of rates. The
transform decoder reverses the operations of the encoder, first
reversing the lossless code, then reconstructing the transform
coetficients using the appropriate set of scalar quantizers, and
finally performing an inverse transform on the data set.

The overall effect of the system is illustrated in Fig. 9,
where decorrelating the data prior to coding yiclds a system
that approximates the optimal quantizer while maintaining
very low complexity.

NOVEMBER 1998

IEEE SIGNAL PROCESSING MAGAZINE 61

A Fast Search

The complexity rcquircmcnts of the high—dimcnsional
source codes described earlier in this work and in Box 1
are primarily borne by the quantlnr encoder o, which
finds the closest codeword to any incoming data vector by
computing the distance to all candidates and then choos-
ing the one with the best performance. The scarch for the
“closest” codeword can be simplified (at the cost of
optimality) using a varicty of fast search techniques. In
tree-structured codes (see, for example, [8]), a sequence
of binary scarches takes the place of the search over all
p()sslblc codewords. The result is a suboptimal partition-
ing of the space of possible data vectors (sce Fig. 8 for an
example) in exchange for a search complexity that grows
lincarly rather than exponentially in the coding dimen-
sion. Another fast-search tuhmqm used in the hlcrardn—

cal table-lookup vector quantizer of [10], replaces all

codeword comparisons with a sequence of table look-ups
tor extremely fast searches. This technique is described in
greater detail in Box 2.
A Transformation

As discussed n Lesson 1, one key factor contributing to
the high-dimension advantagc is the ablllty of
high-dimensional codes to recognize and thus capitalize on
sample correlations. The quantizer illustrated in Fig. 5 was
designed on the data whose histogram appears in Fig. 6.
Clearly, sending each sample through a separate scalar
quantizer, which must necessarily lead to a square grid of
reproduction values and encoding cells in
two-dimensional space, would result in performance infe-
rior to the performance of the code in Fig. 5, which places
most of its codewords on and around the x, line.

Imagine instead rotating the given data set 45° prior
to coding, as shown in Fig. 9. In this casc, while a square
grid could not perfectly replicate the performance of the
two-dimensional code, the best possible square grid of
reproduction values and encoding cells would achieve
far s'upcri()r performance to that achieved prior to rota-
tion. This is precisely the justification for transform
codes (see Box 3), which use reversible decorrelating
data transformations followed by low-dimensional
source coding of the decorrelated samples. The tool of
bit allocation enhances the bencfit reaped

::_x2

Many source coding algorithms
achieve poor performance on
inhomogeneous data sets.

the new vertical axis) representing the difference between
the two pi\'cls (a “high-frcqucncv” coctticient). Since a
wide variety of images contain primarily low-trequency
information, it is reasonable to expect dittering amounts
of energy in the two coefficients in this frequency-like
representation. Clearly this expectation is met by the ex-
ample in Fig. 9. Thus, while a square grid in the new coor-

dinates is expected to yield superior performance to a
square grid 1n the old coordinates (sce Fig. 10), the opti-
mal pair of scalar quantizers should dedicate more repro-
duction values and higher rate to the tirst dimension than
to the sccond. The process of allocating dittering number
of bits to different coefficients is known as bit allocation
and is a tool common to most transtorm-based coding
schemes, as described briefly in Box 3.

250

A 9. Rotated histogram of samples from Fig. 6.

through the transformation step.
A Bit allocation

While there 1s no reason to expect energy
variation as a function of pixel location in an
image source (¢.g., there is no reason to believe
that E[(X,)*] should exceed E[(X,)* Jor vice
versa 1n thc two-dimensional data source of
Figure 6), the same cannot be said about trans- 50
form coefticients. For example, rotating the
two-dimensional space X* of Fig. 6 by 45° 50
clockwise as shown in Fig. 9 vields one coctti-
cient (on the new horizontal axis) representing
the average value of the pixels (a “low fre-

250

200 °

150

100

100

150 200 250

250

quency” coefficient) and one coefficient (on

62 IEEE SIGNAL PROCESSING MAGAZINE

A 10. Scalar encoders in the pixel and transform domains.

NOVEMBER 1998

Take It To The Next Level:
Source-Independent
Source Coding Systems

Many source coding algorithms achieve poor perfor-
mance on inhomogencous data sets. This problem can be
addressed through high-level application of the
rate-distortion theory lessons discussed carlier.
The basic techniques of data compression show surpris-
inglv little variation from data type to data type and appli-
cation to appllgatlon In fact, the vast majority of modern
compression algorithms can be described as combina-
tions and variations on the themes described in the pre-

ceding scctions. These basic tools, then, are extremely
broad in their applicability. Nonetheless, special care
must be taken in the use of these techniques when design-
ing systems for which the data characteristics are not ho-
mogeneous. (A short discussion on homogeneous and
inhomogeneous data characteristics appears in Box 4.)
All of the codes described in the previous sections are
source dependent. For example, the optimal quantizer 3
and lossless code y of Lesson 2 depend explicitly on the
source distribution. (In contrast, the optimal quantizer
encoder o depends on the source statistics only through
its dependence on the quantizer decoder and the lossless
code.) Designing a source code to match the statistics of a

ata compression system design is effectively a statistical
D modeling problem. The goal is to come up with a good
collection of models to cover the space of possible observa-
tions. A good model of the source data accurately describes its
statistical properties—specifying which possible “events” are
more probable and which are less probable. While picturing
this distribution might be difficult, an intuitive understanding
ofits existence is not. For example, there are many characteris-
tics shared by x-rays. While you might have trouble describing
those characteristics in the form of a distribution, you likely
would not have trouble distinguishing x-rays from photo-
graphs or text.

The most common assumption in source modeling is the
assumption of “stationarity.” Roughly speaking, a source is
stationary if before seeing any part of that data set the probabilis-
tic description of likely and unlikely events is space invariant.
Given a data set in which the left edge of each image is typically
brighter than the right edge, then the class of images is not sta-
tionary. If no such space-dependent statement can be made a
priori, then stationarity is a reasonable modeling assumption.

The “memory” of a distribution refers to the dependencies
between individual pixels—that is, how your prediction for
the future depends on your knowledge of what happened in
the past. Source memory can account for the substantial differ-
ences in the characteristics of different subsets of an image.
Due to the “spatially varying” look of such images, the concept
of source memory is often mistakenly treated as a symptom of
source nonstationarity. While both propertics may be ex-
ploited in source coding, the two concepts should not be con-
fused. Nonstationarity refers to an a prioi spatial dependence
of your expectations about an image. Source memory ac-
counts for variation in your expectations regarding a portion
of the image that you haven’t seen as a function of the portion
that you have seen.

For many applications, the source statistics scem to arise
from a variety of distinct modes. For example, an image might
be either an x-ray or a photograph or a schematic. In this case,
finding a single distribution that models all possible outcomes
is difficult. Instead, it is easier to think of data sets of this type
as arising from a family of distributions rather than any single
distribution. The family itself is governed by a top level distri-
bution, which describes the probability of cach its members.
For example, it might be difficult, in designing a compression
system for a home entertainment system, to come up with a

Box 4 - Source Statistics: Issues and Ideas

single distribution that models faces, landscapes, text,
computer graphics, animation, and so on. On the other hand,
coming up with a model just for text is less complex. In this
case, the larger modeling problem may be broken into a collec-
tion of smaller problems that replaces the single difficult de-
sign problem with a collection of simpler design problems.

Given this idea of a collection of distributions, one could
imagine two types of sources. In one type, all samples are
drawn from a single distribution. That is, every image has the
same characteristics as every other image, and thus a single
model suffices to describe any image in the system. Roughly
speaking, this is the definition of an ergodic source. A data set
drawn from an ergodic distribution may be considered a homo-
geneous data set. The second type of distribution combines a
collection of possible distributions and some sort of switching
process. For example, imagine the following scenario. At the
beginning of time, the goddess of chance picks some distribu-
tion at random from a family of possible distributions; for the
rest of time, samples are drawn according to the chosen distri-
bution. That is, if the goddess of chance chooses the distribu-
tion matched to x-rays, all of the samples look like x-ray
samples; if she chooses the distribution matched to text, all of
the samples look like text; and so on. This scenario, requiring a
collection of distributions and a distribution over that collec-
tion, roughly describes the class of nonergodic sources (under
conditions where the ergodic decomposition holds [19]). A
data set coming from such a distribution may be thought of as
an inhomogeneous data set.

The assumption of source ergodicity is appropriate when
the data appears to be drawn from a single source; that is,
when the data can be well-modeled by a single distribution.
The assumption of source nonergodicity is appropriate in the
case where the data statistics vary over a wider range of possi-
bilities.

The beauty of the two-stage coding process described in
the section titled “Take it to the Next Level” is that it achieves
system models analogous to the multdistribution source
models for stationary nonergodic sources without requiring a
priori knowledge of the number or types of classes to be con-
sidered. That is, in our earlier example of compression for a
home entertainment system, the system design procedure au-
tomatically divides the set of possible image types into the op-
timal categories (e.g., faces, landscapes, etc.), which need not
even be understood by the system designer.

NOVEMBER 1998

IEEE SIGNAL PROCESSING MAGAZINE 63

A]1.Sample o. and B functions. The encoder o. carves the space
of possible data vectors into subsets, each of which is given a
unique index. The decoder B chooses a representative value
for each of the regions chosen by o. The given code was de-
signed for an image including both photos and text. The
two-dimensional statistics of the training image are illustrated
by the histogram shown in Fig. 12. The above code suggests a
much lower degree of correlation between samples x, and x,
than suggested by the code in Fig. 5. This observation is con-
sistent with the histogram differences between Figs. 12 and 6.

particular source yields good performance on that
source, but may result in

While the above example illustrates the source depend-
ency problem in the optimal coding paradigm presented
carlier, the source dependency problem pervades
nonoptimal source codes as well. For example, the best
transforms for use in transform coding are data specific.
The same rotation that aligns one set of data statistics
with the axes for better scalar quantization performance
makes another set of data statistics less suitable for scalar
quantization and bit allocation. Even the use of standard
transforms like the DCT (used, for example, in the JPEG
image coding standard discussed briefly in Box 3) belies
implicit assumptions about the expected source statistics.
The DCT is a good decorrelating transform for smooth,
slowly varying source statistics but achieves poor perfor-
marnce on sources characterized by sharp edges or abrupt
changes. Thus, inherent in all of the codes discussed are
explicit or implicit assumptions about the types of data to
be compressed.

Any of the above-described codes can be optimized to
match the statistics of a given data source. An optimal
source code (vector quantizer) can be trained to obtain
the optimal quantizer encoder and decoder and the opti-
mal lossless code for the given set of data statistics; a
transform can be designed to achieve the best possible
data decorrelation; the optimal bit allocation depends on
the transform coefficient statistics; the tables of a hierar-
chical code can be optimized for a given training sct of
data; and so on. Thus, one way to treat the problem of
source variability is to combine all of the data into a single
training set and design the best possible code for that
training set. Using this approach, source-dependent com-

poor performance when the
same code is used for any
other type of data. For exam-
ple, the image statistics of
Fig. 6 are well matched to
the quantizer described in
Fig. 5, and this code achieves
good compression perfor- | 140
mance in coding that source. | 120
(In fact, the statistics shown
in Fig. 6 are precisely the sta-
tistics for which the code in | 80
Fig. 5 was designed.) The | 60
same data, however, are not
well-compressed (a 400%
increase in distortion at the
given rate) using the
quantizer shown in Fig. 11, | 250
which was designed for an 200
image scanned from a maga-
zine page containing both
photographic images and
text. The two-dimensional

160

100

40
20

50

250 £

200

150

100

50

250

statistics of the second image

appear in Fig. 12. photos and text.

64 IEEE SIGNAL PROCESSING MAGAZINE

A 12. Histogram of two-dimensional pixel vector values for an image including both

NOVEMBER 1998

ponents of a compression system are designed to do well
on average across the training set but may not achieve, on
any particular member of that set, performance as good as
the performance achievable with a code designed specifi-
cally for that data. For example, the DCT transform used
in JPEG yields a transform code that does well on average
across a wide variety of images, but does not do as wellon
computer graphics as a transform code using a transform
designed specifically for computer graphics.

Another approach for dealing with the problem of
source variability in data compression systems is the
adaptive approach. An adaptive technique involves a
changing codebook that is continually redesigned in an
attempt to match changing source statistics (see, for ex-
ample, [7]). The advantage of adaptive algorithms is
that (when they work very well), they track changing
source statistics—providing continuous, matched cov-
erage for every source encountered. Typically, adaptive
codes work best on statistics that vary slowly over time
or space and for which source changes can cither be
tracked independently by or communicated efficiently
to the system decoder. The potential pitfalls of such ap-
proaches lic in the complexity, rate, and distortion
trade-offs. Designing algorithms that adapt quickly
enough to track changing source statistics while main-
taining reasonable complexity, low code description
rates, and general system stability is clearly a nontrivial
problem. Further, many adaptive techniques fail to take
advantage of the modal nature of data types such as im-
ages, where a particular image might share less in com-
mon with nearby images in the data stream and more in
common with images elsewhere in the data set.

A third approach to the problem of source variability is
to apply the lessons of rate-distortion theory at a higher
level in the system in an attempt to design a single code
that does as well on all possible source statistics as if it
were specifically designed for the source in operation at
any given time. As described in previous sections,
rate-distortion theory treats the problem of designing
small collections of very simple models (codewords) to
cover the space of possible data samples. The same basic
techniques may be applied to the higher-level problem of
designing small collections of more sophisticated models
(e.g., compression systems) to cover the space of possible
compression systems. The focus of the remainder of this
section is on this approach.

Intuitively, the design and use of any single code to do
well on average across a collection of possible data types is
equivalent to a coarse, high-level quantization. To under-
stand this idea, imagine an abstract space of possible
codes such that for each data type in the collection, there
exists a single code designed specifically for that data type.
Choosing one representative code to be used on all in-
coming data is equivalent to performing a rate-zero
quantization on the space of possible codes. The single
code chosen acts as an approximation to the optimal code
for the data type in operation. Since only one code has

NOVEMBER 1998

For many applications,
multiple-model systems yield
significant performance
improvements over their
single-model counterparts.

been chosen, no rate need be spent in describing the cho-
sen code to the decoder.

The trade-off between the rate spent on describing
codewords and the distortion achieved by those
codewords has a parallel in the trade-off between the rate
spent in describing a code and the performance of the
chosen code. A single code used to compress every source
in the space of possible sources requires no rate for code
description but achieves in return poor average perfor-
mance in coding source samples from the given family of
distributions. Replacing the single code with a large col-
lection of codes (a “codebook of codebooks™) increases
(from zero) the amount of rate required to describe the
code, but simultaneously improves the rate-distortion
performance of the code used to describe the data. Sys-
tems of this type are called two-stage coding algorithms,
since data descriptions are sent in two stages: the
first-stage description specifies a code in the given collec-
tion of codes; the second-stage description contains the
data encoded using the code described in the first stage.

The quantization interpretation leads to a variety of
interesting rate-distortion theoretic results [11] in addi-
tion to an optimal design strategy [11, 12]. A brief look
at the theory underlying the two-stage approach to
source coding appears in the next section. The following
section contains a description of the optimal design al-
gorithm for a wide variety of two-stage source codes. A
discussion of possible applications of this algorithm to
other modeling problems follows. Before tackling these
descriptions, it is worthwhile to pause to establish a bit
of historical perspective.

The benefits of combining collections of codes into a
single coding strategy appear both in rate-distortion the-
ory and in practical code design. For example, basic proofs
of the rate-distortion theorem for stationary ergodic
sources with memory (see Box 4 for an intuitive look at the
concept of ergodicity) use collections of codes to achieve
good performance on the ergodic modes of an #-dimen-
sional vector source created by combining nonoverlapping
n-dimensional sequences of samples into vectors (see
[13]). (For sources with memory, the ergodicity of the
original source does not guarantee the ergodicity of an
n-dimensional vector source for arbitrary values of #.) The
derivation of the rate-distortion function for stationary
nonergodic sources on Polish alphabets [14] arises from a
similar ergodic decomposition argument.

IEEE SIGNAL PROCESSING MAGAZINE 65

Box 5 - Two-Stage Optimal Source Coding:
The WuvQ Algorithm [11, 12]

he weighted universal vector quantization (WUVQ) algo-
rithm is a two-stage code consisting of a collecrion of vec-
tor quantizers. The design of such a code is accomplished
using the algorithm described in the section titled “Through

25 —T T T T T - T T

SQONR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Rate (bpp)

the Looking Glass,” where the codebook optimization step is
itself accomplished with the generalized Llovd algorithm on
cach of the codebooks in the collection. The result is a nested
generalized Lloyd algorithm.

The graph appearing to the left shows the results of a vari-
able-rate WUVQ on a sequence of medical images. The sys-
tem, trained on a collection of 20 256 x 256 magnetic
resonance (MR) images and tested on a disjoint set of five MR
images of the same size, uses vector dimension # =4 and
makes new code decisions every k =4 four-dimensional vec-
tors. The following graph contains the rate vs. sig-
nal-ro-quantization noise ratio (SQNR) results. Rate is
reported in terms of entropy and SQNR is calculated as
-10log(D/ Dy), where D is the expected distortion at the
given rate and D, is the expected distortion at rate 0.
Codcbook sizes for first- and second-stage codebooks in the
case of variable-rate coding were initialized to 256 and 4 re-
spectively. Thus we have a large collection of very simple mod-
cls rather than the single, more complex model of the
variable-rate VQ (ECVQ), which uses up to 256
four-dimensional codewords. More than 7 dB performance
improvement results from this choice.

The use of the generalized Lloyd algorithm with an-
other optimization strategy inside the quantizer decoder
optimization step appears in a variety of practical sys-
tem-design algorithms. A few of these algouthms are de-
scribed in detail in upcoming sections and in Boxes 5, 6,
and 7. Other examples include use of the generalized
Llovd algorithm and the Levinson algorithm for design-
ing linear predictors for speech [15], the generalized
Llovd algorithm and the Baum-Welch algorithm for de-
signing hidden Markov models for speech recognition
[16], the generalized Lloyd algorithm and the Huffman
algorithm for designing entropy codes for subband cod-
ing |17], the generalized Llovd algorithm and condi-
tional expectation for designing probability mass
functions for classitication tree design [12], and the gen-
cralized Llovd algorithm and the generalized Llovd algo-
rithm for designing individual vector quantizers for a

residual vector quantizer [18]. Unfortunately, many of

these algorithms fail to incorporate the first-stage coding
rates (or their equivalents) in their design strategies. A
briet discussion ot the importance of including the
first-stage coding performance measures in the overall

optimization procedure accompanies the discussion of

two-stage algorithms.

Codebooks of Codebooks:

Two-Stage Universal Source Coding

By “covering” the space of possible source codes, optimal
two-stage codes vield performance that asvmptotically

appu)anlus the best possible performance for every
source in some broad class of possible sources.

66 IEEE SIGNAL PROCESSING MAGAZINE

Conceprually, the one-stage compression systems and
the two-stage compression systems described carlier are
very similar. In each case, the system contains a list of pos-
sible models and their associated binary descriptions. The
main difference between the systems is the type of model
included in the list. In the one-stage quantizer, cach
model is a single codeword of some fixed dimension 2, as
shown in Fig. 1. Here choosing a modcl is equivalent to
choosing a reproduction vector or codeword. In the
two-stage quantizer, cach model 1s itself a distinet #-di-
mensional compression system or codebook, as shown in
Fig. 13. Here choosing a model 1s equivalent to choosing
analgorithm for encoding the given data; ¢.g., choosing a
particular vector quantizer from a collection of available
veetor quantizers. The one-stage code’s encoder individu-
ally maps cach z-dimensional source vector to a reproduc-
tion vector. The two-stage code’s encoder maps cach
supervector of k n-dimensional vectors to a single z-di-
mensional source code. (The incoming sequence of sam-
ples s here called a supcrvcct()r to indicate that the
dimension &z of the incoming data vector may difter from
the dimension # of the codes contained in the two- stage
code’s collection.) All & n-vectors are then reproduced us-
ing the chosen source code (but not necessarily the same
reproduction). In going from a single quantizer to a col-
lection of quantizers, one must either increase the overall
complexity of the system or decrease the complexity of
cach quantizer in the collection.

Rate-distortion theory, in particular the theory ot uni-
versal source codes, treats the case where the two-stage
code 1s a collection of optimal vector quantizers like the
ones described earlier. In this case, two-stage coding

NOVEMBER 1998

vields algorithms that are, in some sense,
source-independent. That is, the resulting “universal”
codes achieve performance that asymptotically ap-
proaches the optimal performance for every source in a
given class of possible sources. Roughly speaking, the
argument proceeds as follows. Consider a two-stage
code with first-stage coding dimension % and sec-
ond-stage coding dimension #. The two-stage code con-
tains a collection of n-dimensional optimal vector
quantizers. The incoming data sequence is divided into
kn-dimensional supervectors, each of which comprises %
n-dimensional vectors. In describing a particular
supervector, the encoder first describes the single #-di-
mensional vector quantizer in the code’s collection that
gives the best performance on average across those kvec-
tors. The encoder then describes cach z-vector using the
chosen code. As the dimensions & and # grow without
bound, the cost (in rate) of describing a particular
quantizer in the collection of quantizers is amortized
over more and more symbols. As a result, the optimal
number of quantizers to use in the collection likewise
grows without bound, thereby filling more and more
denscly the space of possible quantizers and achieving

Since all binary descriptions
are assumed to be uniquely
decodable, the concatenated
sequence of binary descriptions
is likewise uniquely decodable.

performance closer and closer to the optimal perfor-
mance on cach source in the given class.

Unfortunately, as the above argument indicates, uni-
versal performance 1s achieved only in the limit as the vee-
tor dimension grows without bound. Thus, universal
coding theory suffers from the same curse of
dimensionality suftered by the earlier described optimal
vector quantizers. Getting the best possible performance
requires use of the optimal universal code at the highest
possible dimension. Nonetheless, as the argument of the
“Power of Impertection” section suggests, the “optimal”
code ina rate-distortion sense is not necessarily optimal in

s mentioned in Box 3, the header of a JPEG compressed

data file contains a description of the quantization ma-
trix (bit allocation) used in compressing the given file. As a
result, this quantization matrix may be changed from image
to image, vielding good performance on a wide variety of
different image types.

Unfortunately, many commercial implementations of
JPEG fail to take full advantage of the flexibility afforded by
this feature, using only a single quantization matrix (scaled up
and down to achieve a variety of rates). The price to be paid for
this omission is illustrated in the following graph from [20,
22], which compares a scheme using a single bit allocation (la-
beled “single BA”) to the weighted universal bit-allocation al-

25 T T ! ! !

SQNR

Box 6 - Getting the Most Bang for
Your JPEG Buck

gorithm (WUBA), a two-stage coding scheme with an opti-
mal collection of bit allocations. Both the single bit- allocation
scheme and WUBA use input vector dimension z = 64 as does
JPEG. The single bit allocation algorithm uses the same
quantization matrix for all image blocks. The WUBA uses, on
cach 64-dimensional vector, the bit allocation (from the code’s
collection) that best matches the given data vector (k =1).
(Notice that the WUBA takes the notion of quantization ma-
trix variation beyond that allowed in the baseline JPEG algo-
rithm since the WUBA allows a change of bit-allocation
scheme at each vector rather than requiring the same bitalloca-
tion throughout a single image.) The following graph com-
pares systems optimized with respect to the same training set
using the squared-error distortion measure. This distortion
measure may be easily replaced with perceptual distortion
measures such as the one described in [20].

The graph to the left illustrates the 2-3 dB gains achievable
on the data set described in Box 5 using a collection of bit allo-
cations rather than just a single bit allocation. These gains are
somewhat surprising given the homogeneity of the data set (a
sequence of MR brain scans). Given the above improvements
and the fact that JPEG does allow some quantization matrix
variation [1}, the fixed quantization matrix strategy of many
JPEG implementations seems poorly motivated. This system
design choice results not from any argument regarding the
rate-distortion benefit of a single quantization matrix choice
but instead from a perspective of computational expense. In
particular, designing the optimal quantization matrix for each
incoming image is computationally expensive. Two-stage
codes represent an alternative to this approach that achieves
most of the performance benefits at a fraction of the
(run-time) computational expense.

NOVEMBER 1998

IEEE SIGNAL PROCESSING MAGAZINE 67

Whilc the WUBA algorithm described in Box 6 achieves
impressive gains over the (optimal) single bit-allocation
version of JPEG, it also leaves room for performance improve-
ment. In particular, the DCT, inherited from JPEG, is not an
optimal decorrelating transform for all data types. In fact, the
optimal transform is itself data-dependent. The graph shown to
the right gives the performance of a weighted universal trans-
form code (WUTC) as compared to a variety of the other codes
discussed in previous boxes. The weighted universal transform
code is a two-stage source code containing a collection of trans-
form codes. Each transform code uses an optimal decorrelating
transform (the Karhunen-Loeve transform) in addition to an
optimal bit allocation scheme. In each code, both the transform
and the bit allocation are matched to the statistics of the data to
which the particular code is applied. The performance of an op-
timal single transform code (labeled “single TC”) is also in-
cluded. The following experiments used a combined text and
image data set for both training and testing. The training and
test sets do not overlap.

The three images included below show the results of the
above approach. The image on the far left is the original. The
image in the center results from optimal transform coding us-
ing a single transform and bit allocation at rate 0.20 bits per

Box 7 - Beyond JPEG:
Optimal Two-Stage Transform Codes [20, 26]

pixel. The image on the right results from weighted universal
transform coding using up to 64 transform codes at rate 0.23
bits per pixel.

Rate (bpp)

raw the lines of demaz:camum

work? . work?

—Matt Miller,

raw thﬁ lines of demam‘awi:

raw the lines of demarcation ir
work?
~—Matt Miller —Mait Miller,

a rate-distortion-complexity sense. Thus, suboptimal
variations on the two-stage approach to universal coding
theory may achieve performance at a given level of com-
plexity that far exceeds that of the rate-distortion optimal
code of the same complexity. Design of optimal and
suboptimal codes based on the two-stage approach to
source coding is considered in the next section.

Through the Looking Glass:

Generalizing the Generalized

Lloyd Algorithm

Two-stage code design is accomplished using the iterative
design algorithm described carlier, which is modified
only in its definitions of “codewords™ and its measure-
ments of rate and distortion.

68 1EEE SIGNAL PROCESSING MAGAZINE

Almost any algorithm can be built into a two-stage
code. In particular, any of the codes discussed up to this
point can be considered as potential candidates. For ex-
ample, one could devise a two-stage code using a collec-
tion of vector quantizers (sce Box 5), a two-stage code
using a collection of JPEG quantization matrices (sce Box
6), a two-stage code using a collection of optimal trans-
form codes (sce Box 7), or even a hybrid two-stage code
containing some combination of codes of difterent variet-
ics. In cach case, the general design strategy is the same. A
description of this strategy follows.

The earlier description of a basic compression system
as an indexed list of possible reproduction vectors and
their corresponding binary descriptions (shown in Fig. 1)
parallels the similar illustration of a two-stage code in Fig.
13. The first column contains the row index 2, the second

NOVEMBER 1998

column contains the code B(z), and the third column con-
tains the uniquely decodable binary description (7). An
ulu)dmg tunction o plays the role of interface between a
given data sut and the above described list. For any
A= (x x L x)) e XM ax Y equals the row index
of the n- dllnLllSl()[l&l u)dg chosen for describing the %
n-vectors x|, x, ..., %, . The choice of a code index 7 is
typically made mdcpundcntlv for each fen-vector [20].
(For a discussion on the use of higher-order statistics in
two-stage coding, sce [21].) The description of a single
fen-vector x* using a two-stage code is the concatenation
of the binary description y(a(x")) of the chosen code in-
dex tollowed by the binary descriptions of x/" ..., x, us-
ing the described code B((x x™)). This process is reversed
at the decoder. That is, the

et

rate necessary for describing the chosen code (using a
lossless code matched to the code probabilities) and the
rate necessary to code the data using that code. The dis-
tortion associated with a given code is the total distor-
tion achieved in coding the £ z-dimensional vectors
x/",...,x/ using that code. The optimal encoder for a
two-stage code is implemented using a full search analo-
gous to the full search of the optimal encoder of a vector
quantizer (see Box 1). Suboptimal first-stage coders are
also possible. For example, the code choice could be ac-
complished using a tree search, table look-up, or any
other variety of fast scarch technique.
The optlmal first-stage lossless code is a uniquely
decodable lossless code that represents each index by a bi-

given binary sequence is de-

coded by first decoding the i B(i) (i)

i B(H) ¥ i B)

index of the chosen code, and
then using that code’s de- 1
coder to interpret the binary

111100

14 | ICode 14(] 111111010 27 | [Code 27| [110100

descriptions of the vectors
x/",...,x). Since all binary 2

descriptions are assumed to

Code 2 || 1110110

—

15 | |Code 15|] 111010 28 | |Code 28] 1111111110

be uniquely decodable, the

concatenated sequence of bi- 8 [|Code3 || 111110111

16 | [Code 16f] 11010111 29 | |Code 29| 111111000

nary descriptions is likewise
uniquely decodable.

4 || Code4 |] 111111011

Given an algorithm for de-

17 | |Code 17| 11010110 30 | |Code 30| [11111010

signing a single good code of
a particular type (¢.g., an op- 5
timal vector quantizer or a

Code 5 || 11011010

18 | [Code 18| | 111000 31 | |Code 31| |10

good JPEG quantization ma-

trix to match the statistics of a 6 [|Code6 || 111110010

19 | [Code 19| O 32 | |Code 32| 11011101

given training set), the ques-
tions under consideration
here are how to design the

7 Code 7 || 11111110

20 | [Code20f| 11110111 33 | |Code 33(11111100

best collection {B(i)} ()f codes
of that tvpe, h()w to design
the best binary descriptions

8 Code 8 |] 1111111111

21 | |Code 21| 1110011 34 | |Code 34| 1110010

{y(&)} for those codes, and
how to design the encoder o 9
to best choose among the

Code 911 1101010

22 | |Code 22| | 111111110 35 | [Code 35({1100

codes in the collection.

10 | [Code 10| 11110111

Given a collection of

23 | |Code 23| | 1111010 36 | |Code 36 [110110110

codes, the optimal encoder o
has the property that for cach
X e x™ o(x™)is the index

11 Code 11| | 11011100

24 | |Code 24 37 | |Code 37| |110110111

111110110

()t the u)dg that achieves the
best Lagrangian Pcrfor- 12
mance in coding x™. The

Code 12|]| 11101111

25 | |Code 25(| 111110011 38 | [Code 38[]11101110

Lagrangian performance
measure cquals the weighted 13
sum of the rate and distor-

Code 13| | 11011110

26 | [Code 26| 1101100 39 | |Code 39| | 11011111

tion assoctated with a given

code choice. The rate assoct-
ated with a particular code
choice equals the sum of the scription y(7)

NOVEMBER 1998

A 13. A two-stage source-coding codebook. The first column contains the code index i. The second
column contains the n-dimensional source code B(i) The third column contains the binary de-

IEEE SIGNAL PROCESSING MAGAZINE 69

The generalized Lloyd algorithm
solves a number of very interest-
ing and important problems.

nary description of length approximately equal to the neg-
ative logarithm of -the probability of that index. For
example, if the code with index 7 = 1 is used to code pro-
portion p(1) of the kn-dimensional supervectors, then the
optimal description length for this code is (— log p(1)) bits.
Thus, no matter how complex the codes in a given collec-
tion, the rate needed to describe any member of that collec-
tion is a function merely of the probability of that model.

Given an encoder o, and binary code v, the optimal col-
lection {B(#)} of codes is the collection of codes that
achieves the best possible Lagrangian performance. In par-
ticular, for each 7, B(7) should be the code that achieves the
optimal performance possible for the data
{x* e x*":0a(x") = i} that maps to it. For any fixed coding
dimension », the rate-distortion optimal code B(7) is the
optimal #-dimensional vector quantizer matched to the
souirce statistics of the data that mapped to the given code.
In a (rate-distortion) suboptimal code, each code in the
two-stage code’s collection may itself be a suboptimal
code; e.g., a transform code. For a given suboptimal code
type, the optimal collection of codes must similarly have
the property that each code in the collection is optimal
(subject to the given code structure) for the data that maps
to it. For example, in a two-stage code containing a collec-
tion of transform codes, each transform code in the collec-
tion should be optimized for the data that maps to it.

A further generalized version of the generalized Lloyd
algorithm, or more correctly its entropy-constrained vari-
ation, may be used to optimize two-stage codes of any va-
riety. The process initiates with an arbitrary collection
{B(5)} of models—in this case a collection of codes of a
desired type or types—and their uniquely decodable bi-
nary descriptions {y(?)}. The algorithm is again an itera-
tive descent technique, which is run to convergence. Each
iteration requires three steps.

Step 1: Optimize the encoder o for the given collec-
tion {B(7) } of codes and their binary descriptions {y(?) }.

This step is optimally accomplished using a full search
over all of the codes in the collection. That is, each Zx-di-
mensional supervector is encoded using each of the codes
in the collection and the Lagrangian performance of cach
such code on the given data vector is calculated. Each
supervector x* is mapped to the index of the code yield-
ing the best Lagrangian performance on that supervector.

Step 2: Optimize the collection of codes {3(7)} for
the given encoder o and lossless code vy.

If the codes in the given collection are vector
quantizers, this step is accomplished using the general-
ized Lloyd algorithm to optimize each vector quantizer
for the data that mapped to it. That is, codebook B(7) is re-
designed using the generalized Lloyd algorithm on the

70 IEEE SIGNAL PROCESSING MAGAZINE

subset {x*":0(%"") =4} of the original training set. If the

given code collection contains other varieties of codes,

then the optimal design algorithms for those code types
are used in the place of the generalized Lloyd algorithm. .

Step 3: Optimize the binary descriptions {y(s)} for
the given encoder o and decoder f3.

This step is accomplished by matching an entropy
code to the probabilities of the codes in the given collec-
tion. The model probabilities are estimated on the train-
ing set. That is y is designed such that
|v(9) | = —log Pr(o(X ™) =4) for each 4.

One key decision in designing a collection of codes is
the choice of the number of codes. As the arguments of
previous section suggest, the theoretically optimal num-
ber of codebooks in a two-stage code is a function of the
space of possible sources (a more homogeneous data set
can be covered with fewer codes than can a less homoge-
neous data set) as well as the coding dimension. In prac-
tice, the number of codes used ina two-stage code is more
commonly the combined result of complexity constraints
and design outcomes. By including the rate used to de-
scribe the model in the rate calculation, the above system
inherits from its predecessor a codebook size optimiza-
tion mechanism. That is, the number of models used in
the system can itself be optimized through the iterative
descent procedure. Often, the number of codes is also
controlled by concerns about complexity. (It is interest-
ing to note that the performance of a collection of very
simple codes often exceeds the performance of much
more complex single-code algorithms.) In practice,
two-stage compression algorithms are typically initial-
ized with the largest collection {B(7) } of source codes that
is computationally feasible. Through the iterative descent
design process, the probabilities of any “extra” codes tend
to zero, their associated rates approach infinity, and the
codes are effectively removed from the system.

Ifk =1, a two-stage system using a collection of n-di-
mensional codes can be redrawn as a one-stage system
of the same dimension. For any % >1, however, the
same is not the case. Further, even atk =1, the existence
of an equivalent one-stage code does not imply the exis-
tence of a low-complexity implementation correspond-
ing to that code. For example, using k=1 and a
collection of transform codes yields a code that is not
easily implemented directly.

A variety of practical codes can be built using this ap
proach (see [20] for a summary). The resulting systems
yield vast performance improvements, even on-data sets
that seem quite homogeneous. For example, a two-stage
code containing a collection of vector quantizers yields a
10 dB performance improvement over a single vector
quantizer when both systems are trained on a collection
of 20 sagittal magnetic resonance brain scans and tested
on a (nonoverlapping) collection of five scans of the
same type. Examples of two-stage source codes designed
using the above technique appear in Boxes 5,6,and 7. A
discussion of the design and use of multiple-model sys-

NOVEMBER 1998

tems for applications other than source coding appears
in the next section.

Beyond Source Coding: A Look at the World
Through R(D) Colored Glasses

Given appropriate definitions of “rate” and “distortion,”
a wide variety of modeling problems may be viewed
through the lens of rate-distortion theory. This nontradi-
tional perspective lends valuable insight into the solution
of numerous engineering problems in which modeling
uncertainty plays a major role.

At first glance, rate-distortion theory appears applica-
ble only to the compression problems from which it
arises. Yet the idea that better performance mey be achieved
by using a collection of simple models vather than a single
all-encompassing model is a fundamental lesson of
vate-distortion theory that is mpplicable to an enovmous vaviety
of problems in which uncertainty plays a critical vole. The de-
sign and use of multiple-model systems as a general tool
for uncertainty management are explored in this section.

As the compression example discussed throughout
this work demonstrates, the underlying principle behind
multiple model systems is extremely simple. In applica-
tions where uncertainty plays a major role, there are often
performance benefits to be gained by separating sources
of uncertainty and designing a collection of simple mod-
els rather than a single, more complex model. In speech
recognition, that might mean designing different recog-
nition systems for men and women and optimizing sys-
tems for different regional accents; for mobile
communications, that might mean designing a collection
of different channel codes for use under varying channel
characteristics; and so on. The questions that arise in con-
sidering the use of a multiple model system for any of
these applications are the same as the questions consid-
ered for multiple-model compression systems:

A How many models should be designed?

A Which models should be used?

A What are the price and payoff of multiple-model systems?
While it is not difficult to come up with ad-hoc answers to
some of these questions, experimental results {20,23,24]
indicate that there are enormous gains to be achieved by
using optimal collections of models rather than collec-
tions that are merely intuitively satisfying.

Under the conditions where it applies, the same theory
used to provide optimal answers to the above questions
for the source coding problem may be used to tackle these
questions for other applications. The system require-
ments necessary for successful application of that theory
are enumerated below.

1. There must exist a performance criterion (analo-
gous to the Lagrangian performance of a rate-distortion
problem) such that:

(a) the goal of system design is the minimization of the
given criterion (The restriction to problems described as
minimizations rather than maximizations is included for

NOVEMBER 1998

The lessons of rate-distortion
theory lead to optimal methods
for designing collections of very
simple source models.

convenience. No loss of generality results from this re-
striction since any maximization becomes a minimization
upon negation of the associated performance criterion.);

(b) the value of the performance criterion is bounded
below.

2. There must exist a model redesign algorithm such
that given a pre-existing model and a set of data, the given
algorithm redesigns the model such that the new model
gives performance at least as good as the performance of
the original model on the given data set.

3. There must exist a testing procedure such that given
a collection of models and any possible scenario, some
means of determining which model yields the best perfor-
mance in the given scenario is available.

The above requirements are necessary and sufficient
for application and convergence of the multiple model
design algorithm described in the previous section. The
algorithm is not described in detail again here, but a
rough outline follows. First, separate the training set into
a collection of disjoint subsets. The initial subsets may be
arbitrary, or they may be chosen to match the designer’s
intuition. For example, the data in a speech training set
may be separated by regional accent, speaker age, or
speaker gender. The number of initial subsets chosen
should equal the maximal number of models acceptable
(from a computational standpoint) in the system. Design
an initial model for each subset of the training data. Then
reclassify the data in the training set, grouping each mem-
ber of the training set with the model that achieves the
best performance on that data. Calculate the proportion
of data that maps to each model in the system and use that
proportion as an estimate of the model probability. Iter-
ate the procedure—repeatedly designing each model to
match the data that mapped to it and then remapping the
data until convergence of the performance criterion.

The requirements described in conditions 1-3 are pre-
cisely the conditions needed to implement the above pro-
cedure and guarantee its convergence. The requirement
in 1(a) provides a means for evaluating system perfor-
mance and an explicit design goal. The requirement in
1(b) is necessary to guarantee convergence of the multi-
ple model design algorithm. The design algorithm in 2 is
necessary for redesigning each model for the data that
mapped to it, and the requirement of system improve-
ment is necessary for the algorithm’s convergence. If the
design algorithm guarantees not only a good solution but
a globally optimal solution (or that algorithm may itself
be described in a sequence of steps such that each step
guarantees a globally optimal solution), then the multi-

IEEE SIGNAL PROCESSING MAGAZINE 71

ple-model-design algorithm is guaranteed not only to
converge but to converge to a locally optimal solution.
The requirement in 3 is necessary for designing a method
tor choosing among the models in a given collection.

A final characteristic of most systems employing the
multiple-model approach is a dependence of the perfor-
mance criterion on the model probabilities. For example,
in two-stage source codes, the Lagrangian performance
includes the first-stage source description, which is
roughly equal to the negative logarithm of the probability
of the chosen model. Inclusion of this probability in the
performance criterion in a manner that favors high proba-
bility models over models with low probabilities yields
multiple-model systems in which the optimal number of
models at a particular dimension is bounded.

As mentioned at the end of the section titled “Take it to
the Next Level,” the multiple-model approach has been
applied in a variety of applications. Applications incorpo-
rating the use of first-stage coding rate (or its equivalent)
include image compression [20], communications over
randomly varying channels [25], and speaker- and con-
text-independent continuous speech recognition [23,
24]. In each of these applications, the performance im-
provements garnered by going from single- to multi-
ple-model systemis are striking:

A up to 10 dB compression performance improvement
may be observed between one- and two-stage codes of the
same type [20];

Aup to 9 dB performance improvement of multi-
ple-model systems over single-model systems may be ob-
served in joint source and channel coding performance
for a system with variable channel characteristics [25];
A 2 50% decrease in word-error probability may be ob-
served using collections of HMMs rather than a single
HMM in speaker-independent continuous speech recog-
nition [23, 24];

Conclusions

Rate-distortion theory quantifies the optimal trade-off
between modeling cost and modeling resources in data
compression systems. While the theory does not provide
the optimal system for achieving the bounds it describes,
rate-distortion theory does highlight a number of im-
portant aspects of optimal source coding systems, in-
cluding the performance benefits to be gained from
high-dimensional coding and the properties of optimal
quantizers and lossless codes. The generalized Lloyd al-
gorithm combines the lessons of rate-distortion theory
into an iterative descent technique for designing (lo-
cally) optimal data compression systems from a
rate-distortion perspective.

It is interesting to note that the data compression sys-
tem that achieves the optimal performance at a given
complexity is often a suboptimal code from a pure
rate-distortion perspective. This seeming anomaly arises
from the fact that rate-distortion theory largely ignores is-

72 IEEE SIGNAL PROCESSING MAGAZINE

sues of computational complexity. As a result, perfor-
mance gains may be achieved by giving up optimal en-
coding and decoding in exchange for the ability to code at
higher dimensions. The goal in designing such
suboptimal codes is to-achieve the bestpossible
rate-distortion trade-off subject’ to the ‘constraints im-
posed by the coding structure.

The lessons of rate-distortion theory lead to optimal
methods for designing collections of very simple source
models. Applying these same techniques.to more general
data models yields an optimal algorithm for designing
collections of more general data models for use in a wide
variety of applications. Thus, rate-distortion. theory pro-
vides a theoretical framework for deciding how best to
break any single, complex modeling problem into a col-
lection of simpler modeling problems. The resulting sys-
tems are computationally inexpensive to use since all of
the design is done off-line rather than during the coding
process (as in adaptive systems). Further, the design re-
quires no expert intervention. The algorithm finds the
optimal way to divide a problem automatically. For many
applications, such as image compression, speech recogni-
tion, and joint source and channel coding, the resulting
multiple-model systems yield significant performance
improvements over their single-model counterparts.

Acknowledgments

This material is based upon work partially supported by
NSF CAREER Award MIP-9501977, a grant:from.the
Charles Lee Powell Foundation, and a donation through
the Intel 2000 program.

M. Effros-is with the Department of Electrical Engi-
neering of the California Institute of Technology in Pasa-
dena, California, USA (e-mail:effros@z.caltech.edu).

References

1. W.B. Pennebaker and J.L. Mitchell, JPEG Szl Tmage Compression Standmvi.
Van Nostrand Reinhold, New York, 1993,

2. T.M. Cover and J.A. Thomas; Elements of Information Theory. Wiley, 1991.

3. T.D. Lookabaugh and R.M. Gray, High resolution quantization theory and
the vector quantization advantage. IEEE Transactions on Information Theory,
TT-35(5):1020-1033, September 1989. :

4. A. Gersho, Asymptotically optimal block quantization. IEEE Tyansactions on
Information Theory, 25(4):373-380, July 1979:

5. P.A. Chou, T. Lookabaugh, and R.M. Gray, Entropy-constrained vector
quantization. IEEE Transactions on Acoustics Speech and Signal Processing,
37(1):31-42, January 1989.

6. Y. Linde, A. Buzo, and R.M.: Gray, An algorithm for vector quantizer de-
sign. IEEE Tra ions on C ications, 28:84-95, Ianuarr}'rfl«980.

7. A. Gersho and R.M. Gray, Vector Quantization ani Signal Compyession.
Kluwer Academic Publishers, Boston, 1992.

8. P.A. Chou, T. Lookabaugh, and R.M. Gray, Optimal pruning with applica-
tions to tree structured source coding and modeling. IEEE Transactions on
Information Theory, TT-35(2):299-315, March 1989.

NOVEMBER 1998

9. K. Ramchandran and M. Vetterli, Best wavelet packet bases in a
rate-distortion sense. IEEE Transactions on Image Processing, 2(2):160-175,
April 1993.

10. M. Vishwanath and P.A. Chou, An efficient algorithm for hierarchical
compression of video. In Proceedings of the IEEE International Conference on
Tmage Processing, volume 3, pages 275-279, Austin, TX, November 1994.

11. P.A. Chou, M. Effros, and R.M. Gray, A vector quantization approach to
universal noiseless coding and quantization. IEEE Transactions on Informa-
tion Theory, IT-42(4):1109-1138, July 1996.

12. P.A. Chou, Optimal partitioning for classification and regression trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4), April
1991.

13. T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compres-
sion. Prentice-Hall, Englewood Cliffs, NJ, 1971.

14. M. Effros, P.A. Chou, and R.M. Gray, Variable-rate source coding theo-
rems for stationary nonergodic sources. IEEE Transactions on Information
Theory, IT-40(6):1920-1925, November 1994.

15. A. Buzo, A H. Gray Jr., R.M. Gray, and].D. Markel, Speech coding based
upon vector quantization. IEEE Transactions on Acoustics Speech and Signal
Processing, 28:562-574, October 1980.

16. L.R. Rabiner, J.G. Wilpon, and B.-H. Juang, A segmental K-means train-
ing procedure for connected word recognition. AT T Technical Journal,
64(3):21-40, May 1986.

17. R.J. Safranek and J.D. Johnston, A perceptually tuned sub-band image
coder with image dependent quantization and post-quantization data com-
pression. In Proceedings of the IEEE Inteynational Confevence on Acoustics,
Speech, and Signal Processing, pages 1945-1948, Glasgow, May 1989.

NOVEMBER 1998

18. W.-Y. Chan and A. Gersho, Constrained-storage quantization of multiple
vector sources by codebook sharing. IEEE Tr: jons on C ications
COM-39(1):11-13, January 1991.

19. R.M. Gray, Probability, Random Processes, and Ergodic Properties.
Springer-Verlag, New York, 1988.

20. M. Effros, P.A. Chou, and R.M. Gray, Universal image compression.
1996. Submitted to the IEEE Transactions on Image Processing, December
18, 1996. In review.

2

—

. M. Effros, Conditional weighted universal source codes: second order sta-
tistics in universal coding. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 4, pages 2733-2736, Mu-
nich, Germany, April 1997.

22. M. Effros and P.A. Chou. Weighted universal bit allocation. In Proceedings
of the IEEE International Confevence on Acoustics, Speech, and Signal Pro-
cessing, volume 4, pages 2343-2346, Detroit,MI, May 1995.

23.].C. Fang, Speakey independent conti speech v using multiple
hidden Markoy models. Senior Thesis, Dept. of Electrical Engineering, Cali-

fornia Institute of Technology, Pasadena, CA, 1998.

24.J.C. Fang and M. Effros, Speaker and context independent continuous
speech recognition using multiple hidden Markov models. In preparation
for submission to ICASSP-99 and IEEE Transactions on Pattern Analysis and
Machine Intelligence.

25. M. Effros, Robustness to channel variation in source coding for transmis-
sion across noisy channels. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Sigmal Processing, volume 4, pages 2961-2964,
Munich, Germany, April 1997.

26. M. Effros and P.A. Chou, Weighted universal transform coding: universal
image compression with the Karhunen-Loeve transform. In Proceedings of
the IEEE International Conference on Image Processing, Washington, D.C.,
October 1995.

IEEE SIGNAL PROCESSING MAGAZINE 73

