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ultimedia communications has become

one of the fastest growing sectors of the

communications industry. While the cur-

rent drivers are primarily video streaming
and videoconferencing, a number of new applications are
on the horizon. Such applications, like multimedia librar-
ies and interactive chat rooms, will need access to video
data on an object-by-object ba-
sis, where video objects are de-
fined by their shape, texture,
and motion.

Current video coding stan-
dards, such as MPEG-1,
MPEG-2, H.261, and H.263,
are block-based codecs. The
scene is divided into equal-sized square blocks for which
the texture and motion are encoded. No shape encoding
is necessary, since the block size is known a priori. Unfor-
tunately, a bit stream of such a coder does not lend itself
to object-based interaction with the data, since the shape
of the objects (and therefore the objects themselves) is
not defined.

Object-based description of video is quite natural and
there is a large amount of previous work. For example,
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Rate-Distortion Techniques
for Improving Object-Based
Treatment of Video Data

most of the source material generated in a broadcast stu-
dio is based on the so-called chroma-keying technique,
where an actor is filmed in front of a blue screen and then
moved in front of any desired background. In [1] a sec-
ond-generation image coding scheme was formulated,
where the segmentation of the image is transmitted ex-
plicitly. The underlying assumption is that the contours
of regions are very important
for subjective image quality,
whereas the texture of the re-
gions is of lower importance.
Object-based analysis-synthe-
sis coding (OBASC) [2],
which is a video coding para-
digm, also follows the idea
that the shape of moving objects is more important than
the texture and that geometric distortions are less notice-
able for a human observer than the coding artifacts of tra-
ditional block coders.

Object-based treatment of video sequences, necessi-
tated by the emerging content-driven applications, re-
quires efficient representation of object boundaries. The
ultimate goal is to allocate an available bit budget opti-
mally among the video scene components (shape, tex-
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ture, motion) and within each component. In this article,
we address the issue of operationally optimal shape en-
coding, which is a step in the direction of globally optimal
resource allocation in the object-oriented video.

After an overview of shape-based coding and
algorithms, we define the problem mathematically, intro-
duce the necessary notation, and then present the basic
idea behind the proposed algorithms. We then discuss the
constraints imposed on the code used to encode the ap-
proximation. We then introduce a definition of distortion
that fits into the proposed framework and introduce the
directed acyclic graph (DAG) formulation of the prob-
lem, which results in a fast solution approach. We also
show how the DAG algorithm can be used to find the ap-
proximation with the minimum-maximum segment dis-
tortion for a given rate as well as to find the
approximation with the smallest total distortion for a
given rate. We then present experimental results and
point out directions for future research.

An Overview of
Shape Coders and Algorithms

As already mentioned, the current video standards do not
have the capability of encoding the shape of a video object
(VO). This is one of the aspects the upcoming MPEG-4
Visual standard will address [3-6]. For the first time, an
international standard will enable the transmission of ar-
bitrarily shaped VOs. For a review of the upcoming
MPEG-4 shape-coding standard and a comparison with
the operationally optimal shape-coding techniques dis-
cussed in this article, the reader is referred to [7].

It is common practice in computer graphics to define the
shape of an object using a so called o0 map, M, given by

M, ={m,(x,y)0<x<X,0<y<T}, 0<m, £255.(1)

This alpha map is of the same size as the frame, which
is of dimension X x 7 pels. It specifies whether a certain
pel is part of the VO (m, (x, y) > 0) or not (m, (%, y) =0),
and whether the pel is transparent (m, (%, y) <255) or
opaque (m,(x,y)=255). While in computer graphics
transparent objects are important, for the purpose of
video description and coding, opaque objects are more
common, and hence most shape coders are designed for
opaque objects.

There are two- major classes of shape coders:
bitmap-based coders and contour-based coders.
Bitmap-based coders look dt the oo map as just another
black and white (or gray-scale) image that needs to be en-
coded efficiently. One can argue that to some degree
these coders break the object-oriented paradigm.
Bitmap-based shape coders are used in the very popular
group 3 fax standard [8] and in the emerging bi-level
standard JBIG [9] as well as in MPEG-4. The con-
tour-based coders, on the other hand, try to encode the
boundary of the object by following its outline. The pro-
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posed operationally optimal techniques belong to this class
of shape coders. In the following we provide a brief review
of contour-based coders. Various bitmap-based and con-
tour-based shape coders are discussed in detail in [7]:

The tradeoff between the
encoding cost and the resulting
distortion needs to be
considered.

One of the first contour coders was proposed by Free-
man [10]. He suggested the use-of chain coding for
boundary quantization and encoding, which has at-
tracted considerable attention over the last 30 years
[11-15]. The curve is quantized using the grid intersec-
tion scheme [10] and the quantized curve is represented
using a string of increments. Since the planar curve is as-
sumed to be continuous; the increments: between grid
points are limited to the eight grid neighbors, and hence
an increment can be represented by 3 bits. For lossless en-
coding of boundary shapes, an average 1.2 bits/boundary
peland 1.4 bits/boundary pelare required respectively for
a four- and an eight-neighbor grid [16]. There have been
many extensions to this basic scheme such as the general-
ized chain codes [11], where the coding efficiency has
been improved with the use of links of different length
and different angular resolution. In [14] a scheme is pre-
sented that utilizes patterns in a chain code string to in-
crease the coding efficiency, and in [15] differential chain
codes are presented, which employ the statistical depend-
ency between successive Jinks. There has also been inter-
est in the theoretical performance of chain codes. In [12]
the performance of different quantization:schemes is
compared, whereas in [13] the rate-distortion character-
istics of certain chain codes are studied. In this article, we
are not concerned with the quantization of the continu-
ous curve, since we assume that the object boundaries are
given with pel accuracy.

A polygon-based shape representation was developed
for OBASC [17, 18]. As a quality measure, the Euclidean
distance D, between the original and the approximated
contour was used. During subjective evaluations of CIF
(352 x 288 pels) video sequences, it was found that allow-
ing a peak distance of D =14 pel is sufficient to allow
proper representations of objects in low bit-rate applica-
tions. Hence, the lossy polygon approxnnatlon was devel-
oped. The polygon apprommamon is computed using the
two contour points with the maximum distance between
them as the starting point. Points are then added to the poly-
gon where the apprommatlon error between the polygon
and the contour is the hlghest This is repeated until the
shape appromanon ‘error is less than D], . In a last step,
splines are defined using the polygon points. If the spline ap-
proximation does not result in a Jarger approximation error
between two neighboring polygon points, the spline ap-
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proximation is used. This leads to a smoother representation
of the shape. Vertex coordinates and the curve type between
two vertices are arithmetically encoded.

Several other optimal as well as greedy nonoptimal
vertex-based curve approximation algorithms have been
proposed in the literature. With a fixed number of ap-
proximating line segments and no restriction on their
connectivity, an optimal (with respect to distortion) seg-
ment-placement problem was solved by Bellman in [19].

In[20, 21 ] a fan-based approach based on the concept of

overlapping visibility regions, was used in which a grudv
Mmin-max strategy arrived at a polygonal approximation
with a small number of connected line segments and
end-points on the original curve. The same problem was
solved optimally in [22] with the use of dynamic pro-
gramming. The rate for encoding the vertices of the poly-
gons was not taken into account; therefore, these
approaches are not optimal in the rate-distortion sense. In
[23] this approach was extended to allow the line
end-points to be off the original boundary and DPCM
encoding of the control points was taken into account in
the cost-minimization process.

In [24, 25] B-spline curves are used to approximate a
boundary. An optimization procedure is formulated for
tmdmg the optimal locations of the control points by
minimizing the mean-squared error between the bound-
ary and the approximation. This is an appropriate proce-
dure when the smoothing of the boundary is the main
objective. However, when the encoding of the resulting
control points is taken into account, the tradeoft between
the encoding cost and the resulting distortion needs to be
considered. By selecting the mean-squared etror as the
distortion measure and allowing for the location of the
control points to be anywhere on the plane, the resulting
optimization problem is continuous and convex and can
be solved easily. In order to encode the positions of the re-
sulting control points efficiently, however, one needs to
quantize them, and therefore the optimality of the solu-
tion is lost. It is well known that the optimal solution to a
discrete optimization problem (quantized locations)
does not have to be close to the solution of the corre-
sponding continuous problem.

The above methods tor polvgon/spline representation
achieve good results but they cannot claim optimality. In
this article we propose a fr amework for the opgratlona lly
optimal contour encoding of object boundaries in the
intra mode. The techniques discussed here, even though
dealing with still boundary approximations, are designed
to be a part of a video codec. Hence, throughout the arti-
cle we refer to video coding as the target application, but
we concentrate on the intra mode of operation and do not
utilize the temporal correlation between frames for shape
prediction. While optimal shape-coding techniques are
able to outperform existing shape coders, the proposed
tramework also allows for additional capabilities. For ex-
ample, these techniques allow for the optimal bit alloca-
tion among objects in a scene and/or sequence [26],
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simple rate control, combination of automatic segmenta-
tion and compression [27], etc.

The techniques presented in this article for the opera-
tionally optimal boundary encoding can also be applied
to the near-lossless an.()dmg of one-dimensional signals.
An example is represented by the work in |28, 29], where
ECG signals are compressed using a min-max approach.
They can even be applied to the near-lossless encoding of
two-dimensional signals. In [23] a piecewise linear ap-
proximation was used by converting an image into a 1-D
signal with a zig-zag or a Hilbert scan. In this framework,
a near-lossless image-compression problem is easily for-
mulated using the minimum-maximum criterion. This
may be the coding technique of choice for applications re-
quiring a guaranteed accuracy of approximation at every
pixel, as opposed to a global distortion measure, such as
the mean-squared error.

Problem Formulation

In this section we formulate the problem mathematically
and introduce the necessary notation. For the purpose of
the discussion, we focus on the approximation of a given
boundary by a polygon, as depicted in Fig. 1. We note
here that the proposed shape encoding techniques are not
restricted to polygons. In fact, they can be extended to
any order curve. We use second-order B-spline curves to
illustrate this point later on. As can be seen in Fig. 1, there
are three sets involved in the proposed framework. The
boundary set B, the control pomt set PP, and the admissible
control point set A. While Bis given, we are trving to find
P, which must be a subset of A4, such that the resulting ap-

proximation curve is as close as possible to B (measured
by a distortion measure, discussed in the “Distortion”
section), for a given bit rate necessary to encode P (using a
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A ].0Overview of the proposed approximation of an original
boundary B by a polygon P.
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The sequence of vertex-based
states exhibits an optimal
substructure property.

code satisfying the constraints discussed in the “Rate”
section).

We use the notation shown in Fig. 1. We denote by
B={b, ...,b, ; _, } the connected boundary that is an or-
dered set, where bj is the j-th point of Band N, is the to-
tal number of points in B. Note that in the case of a closed
boundary, as shown in Fig. 1,4, =4, _,. We denote by
P={py,...,p, _} the curve control points used to ap-
proximate B, which is also an ordered sct. Note that for a
polygon, p, is the k-th vertex of P and N, is the total
number of vertices in P. Since P is an ordered set, the or-
dering rule and the set of control points uniquely define
the approximation.

Having established the above notation, operationally
optimal shape coding can now be formalized as the solu-
tion to the following discrete, constrained optimization
problem:

min - D(p,,...,py )

Lo Pxp i
subject to:
R(p()""’px\",—l)Sl{m,\x’ <2>

where D()is the distortion measure, quantifying the error
between the approximation and the original; R()is the bit
rate required to encode the control points P; and R, is
the maximum bit rate permitted for the encoding of the
boundary. We also present algorithms that solve the dual

problem; that is,

min  R(p,,.... 0y )
Py PNp ) !
subject to:
<
D(p()""’pl\",,—l)_Dm.\x’ (3)
where D is the maximum distortion permitted. Note

that there is an inherent tradeoft between the rate and the
distortion in the sense that a small distortion requires a
high rate, whereas a small rate results in a high distortion.
As we will see, the solution approaches for problems (2)
and (3) are related in the sense that the algorithms are
symmetric with respect to the rate and the distortion, or
the algorithm developed to solve problem (3) is used
iteratively to solve problem (2).

Definition of the Admissible Control Point Set A

Generally, the curve used to approximate the boundary
could be permitted to place its control points (P) any-
where on the plane. The optimization algorithm for this
problem to be presented later, however, has a time com-
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plexity that is quadratic (for the polygon case) in the
number of admissible control points. Hence, we would
like to keep this number as small as possible, without sac-
rificing coding cfficiency. We therefore introduce the set
of all admissible control points A, defined as the set of all
the pels that are within a given maximum distance DM
from a boundary point (see Fig. 1). Beside keeping the
cardinality of A small, this also forces the approximation
to closely follow the boundary, since all admissible con-
trol points are quite close to the original boundary.
Hence, the set of admissible control points consists of a
band of width 2+ DA around the original boundary.
Clearly, the bit rate for the operationally optimal approxi-
mation is a nonincreasing function of the size of the pro-
posed band. On the other hand, as mentioned above, the
time complexity of the optimization algorithm is qua-
dratic (for the polygon case) in the number of the admis-
sible control points, and the larger the band, the bigger
the set of admissible control points.

We propose the following procedure for defining the
set of admissible control points 4 and for assigning con-
trol points to boundary points. Since the boundary set B
is ordered, this assignment is used to order the admissible
control point set A.

l)forj=0,...,N,

s

2) S A, =bj;

3i=1,;

4) while (|»,| < DM)

5) forj=1,...,N, -2;
6) if{6, +v}eAd
7) a,=b +v;
8) i=i+1;

The »,’s in the above algorithm are offset vectors,
whichare displayed in Fig. 2. The offsct vector v, starts at
0 and ends at j. Note that the distance [[v || is a

-5

4 54 48 55 .
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A 2. Vector increments for the definition and ordering of the ad-
missible control-point set. Note that vector v starts at 0 and
ends at |.
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nondecreasing function of j. The basic idea behind the
proposcd algorithm is to draw spirals around the bound-
ary p()mts b, where the spirals are drawn in discrete incre-
ments of pels After a spiral is advanced by one increment,
the new pel & + v, is an admissible control point. If this
point is not afready in the admissible control point set A,
it is added as the element a . Note that the subscripts
identify the nearest boundary pomt and its relative offset.
This is used later on to define the segment distortion. This
procedure is repeated for the next boundary point until
there are no more boundary points. Then the procedure
starts with the second boundary point again until the dis-
tance is greater than DAM. Note that the first and last
boundary points are the first and the last admissible con-
trol points. This forces the approximation to start and end
exactly where the original boundary starts and ends.

In the above algorithmic description of this scheme,
thc inner loop assigns one admissible control point

. =b, + v, to cach boundary point &,. This loop is re-
peatcd for the next vector increment v,,, aslongas the ad-
missible control points are within the band defined by the
maximum distance DM. In Fig. 3 difterent stages of the
algorithm are shown. In this example, the maximum dis-
tance DM is set to one pel and therefore only the vectors
v,,7,, 7, and v, are used in the algorithm, since all other
vectors result in a distance larger than one pel. Figure 3(a)
shows the admissible control points and their assignment
to the boundary points after the vector increment », has
been used for all boundary points. Figure 3(b) shows the
admissible control points and their assignment after vec-
tor increment v, has been used for all boundary points.
Figurc 3(c) shows the admissible control points and their
assignment after vector increment », has been used for all
boundary points, and Fig. 3(d) showe the admissible con-
trol points and their assignment after vector increment »,
has been used for all boundary points, which is the final
admissible control-point set. This set then has the follow-
ing structure, where the order is imposed by the original
boundary-set order, A= {a LY N S S

LI>712»
ﬂ2\2 ’ﬂ2~3’ﬂ3,0’ﬂ3.1 ""’ﬂlx‘(b

()(D’ 1,0° 2,0

Proposed Framework

In this section, we discuss the basic idea behind the pro-
posed shape encoding approaches. The goal is to give the
reader some insight into the development of the schemes,
instead of just presenting the resulting algorithms. We
use the definitions that were introduced in the previous
section and concentrate on polygons. It is clear that the
number of possible polygons is finite, but extremely
large. If we define the smallest possible polygon as a sin-
gle point, then, given the degree of the polygon (N ),
there are (II\\;A = — A" different selections of
p) (N LN,
N, vertices from the admissible control-points set A.
Since we have defined the polygon to be an ordered set,
the set of vertices uniquely specifies a polygon. The de-
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gree of the polygon (N ,,) is also a variable; therefore, the
total number of possible polygons is equal to

(4)

12 16|16
117
5

17

(© (d

A 3. Figures g, b, ¢, and d show the final result after the inner
loop has been finished forv , v, v, andv,, for a maximum dis-
tance DM of one pel. The pels with a tan shading indicate the
original boundary and the other pels are the admissible con-
trol points, where the number of the associated boundary point
is written inside it.

Admissible
L Control Point

(b)

A 4. The definition of a state for a polygon and a second-order
B-spline curve. Figure (a) shows that for a polygon, knowing
P._, makes the search for future control points independent
from the control points already selected. Figure (b) shows that
for a second-order B-spline, knowing p, , and p, , makes the
search for future control points independent from the control
points already selected.
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B-spline is a specific curve type from the family of para-

metric curves [30]. A parametric curve consists of one or
more curve segments. Each curve segment is defined by (n + 1)
control points where # defines the degree of the curve. The
control points are located around the curve segment and, to-
gether with a constant base matrix A, they solely define the
shape of the curve. A two-dimensional curve segment Q, with
control points (p,_,, p,, p,.,) is defined in the x — y plane as
follows:

Q.(Burs s P15 ) = [x(2), y(B)],

for 0 <z <1, and 0 otherwise. (5)

The points at the beginning and the end of a curve segment are
called knots and can be found by setting # =0 and # = 1. The
following is the definition for a second-degree curve segment,
with# the index for the different curve segments, and p, _ and
P, ., respectively, the horizontal and vertical coordinates of
control point p,,

Qu(puvl’ Pu’ Pn+l)t) =

My My, My

T-M-P

Pu—]‘,\' pu—l.y ,
2
=[t tl]‘ My My, Mz || Py Py
My M3y Mz || Pusrx Purrs (6)

Both the base matrix M, with specific constant parameters
for cach specific type of a parametric curve, and the control
point matrix P, with (» + 1) control points, define the shape of
Q, in a two-dimensional plane. Every point of the curve seg-
ment can be calculated with Eq. (6) by letting # vary from 0 to
1. Every curve segment can be calculated independently in or-
der to calculate the entire curve Q, consisting of N, curve seg-
ments, which is of the following form:

N,
Q(t’) = Zu:] QU(P»—I’ 2 Pnﬂ’tl""‘*' l)s
with0<# < N, +1. 7

Box 1 - B-Splines

Ps
Double = p;
Control
Point
Po=P1
t=0 —
t=1 —
\
Y
P27~ o Ps
/ ~ ‘d/ o~
t=2 P3 Ps
Control Point p,(k=0,1,...9) o\/
Curve Segment Q,(k=1,...8) t=t"-k+1=0...1
Knot (t=k)

A 5. A second-degree B-spline curve with eight curve segments
Q, and a double control point at the beginning of the curve.

Among common parametric curves are the Bezier curve and
the B-spline curve. For the presentation in this article we chose
a second-order (quadratic) uniform nonrational B-spline
curve [30] with the following base matrix,

05 -10 05
M=|-10 10 00|
05 05 00

8)

Figure 5 shows such a second-order B-spline curve. The
shape coding method presented in this article is independent
of the matrix M and degree #; that is, parametric curves of
higher order can be used.

Clearly an exhaustive scarch is not a teasible approach and
we need to look for a fast formulation of the solution to
the problem.

The tast-graph algorithm we will introduce in the sec-
tion on DAG formulation is based on the following ob-
servation. If we fix the current vertex of a polygon, then
changing future vertices does not change the polygon up
to and including the current vertex (see Figure 4(a)). In
other words, knowing the position of the current vertex
makes the past independent of the future. Clearly, the
knowledge ot the current vertex represents a state of this
system. Theretore, given we have an optimal approxima-
tion for all the previous vertices, finding the optimal ap-
proximation for the current vertex simply requires the
selection of the optimal approximation between all previ-
ous vertices and the current one.

In the case of a poly g(nml approximation, the curve be-
tween two state values is simply a straight line, as can be
scen in Figure 4(a). For higher-order curves, such as a
B-spline, the situation is a bit more complicated. B-splines
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are reviewed in Box 1. These are a family of parametric
curves that have proven to be very useful in boundary en-
coding [7]. In the following discussion, we concentrate on
second-order B-splines. However, the presented theory
can be generalized to higher-order curves. Also, it should
be noted that first-order B-splines are equivalent to poly-
gons.

The beginning and the end of the boundary approxima-
tion have to be treated as special cases if the first curve seg-
ment should start exactly at the first boundary point and
the last curve segment should end exactly at the last bound-
ary point. When we use a double control point (such as
p,., = p,) the curve segment Q, will begin exactly at the
double control point (see Fig. 5). We apply this property
to the beginning and the end of the curve, so that p, = p,
and by, = Py, .- These two special cases can easily be in-
corporated into the boundary-approximation algorithm.

Recall the argument made for the polygon case, which
is based on the fact that knowledge of the location of the
current vertex decouples the future from the past. A simi-
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lar argument can be made for higher-order curves, such as
the above introduced B-spline curves. Consider Fig. 4(b),
which shows a second-order B-spline curve. As men-
tioned above, three control points completely define a
curve segment. Hence, if we know the last two control
points, then the future is independent from the past. In
other words, when the last two control points are fixed,
then the approximation up to and including these two
control points does not change if future control points are
changed. Clearly in a second order B-spline curve approx-
imation, a state of the system contains the last two control
points. In general, the order of the curve is equivalent to
the dimensionality of the state space. As we will see later
on, the dimensionality is in the exponent of the time com-
plexity of the proposed algorithms, and hence it should be
kept as small as possible.

In summary, the basic idea behind the proposed algo-
rithms is the fact that one can define a state (of small
dimensionality) that makes the future of the optimization
process independent from its past. Our definition of the
state varies according to the order of the curve used to
generate approximating segments. Thus, for example,
with a second-order B-spline approximation, a state con-
sists of two consecutive control points, along with cost in-
formation. Since dimensionality of the state space directly
depends on the curve used for the approximation, we will
carefully constrain the code used for encoding the control
points, so that the order of prediction in a DPCM scheme
does not require knowledge of control points not in the
state. Hence, the state-space dimension does not expand
due to encoding. With this formulation, we will be able to
write the total rate as a sum of the segment rates. A similar
concept applies to the definition of distortion, which we
will also select such that the state space does not expand.
In other words, we will be able to write the distortion of
the approximation as a function of segment distortions.
Note the importance of the segment concept. A segment
is the curve unit between two consecutive state values. In
the case of a polygon, a segment is just an edge between
two vertices (see the line with the two arrows in Fig.
4(a)). In the case of a second-order B-spline curve, a seg-
ment is defined in Eq. (6) and drawn with arrows in Fig.
4(b). We will define the segment rate and the segment
distortion in the next two sections.

Rate

Aswe pointed out in the previous section, the order of the
approximation curve requires a certain dimensionality of
the state space. In general, there is a one-to-one corre-
spondence between the order of the curve and the re-
quired state-space dimension. Note that the smaller the
state space, the faster the optimal solution can be found.

A straightforward way of encoding the control points
P is with the use of a fixed-length code for each point.
Clearly this is not very efficient, since consecutive control
points are correlated. This correlation suggests the use of
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DPCM encoding of the points. In other words, the cur-
rent point is predicted, using previous points, and only
the difference between the prediction and the current
point is encoded. Because of the correlation among
neighboring control points, the prediction error will gen-
erally be small and can be coded efficiently using an en-
tropy code. Assuming that the order of the predictor is o,
then the rate for encoding the %-th segment is denoted by
7(p,_,»---» P, )- In other words, the rate for encoding the
k-th segment is defined as the rate of encoding the /-th
control point (see Fig. 4), which depends on the position
of'the last o control points, since those are used in the pre-
diction of p,. Clearly, for a first-order prediction, the rate
to encode segment 2 only depends on the current and pre-
vious control points. Furthermore, for a second-order
prediction, the segment rate only depends on the current,
and the two previous control points. The total rate can
now be written as the sum of the individual segment
rates; that is,

Np-l+o

R s Py )T r 03 E]
(Do, > Py, ) % (1, 72 o

where all control points p,,7 <0 are equal to p,, and all
control points p,,7>N, -1 are equal to p, . This
forces the higher-order curves to start at p,, and stop at
Py, Note that the rate 7(p_, , ..., p, ) is the rate used to
encode the first point p . Further note that it is already
known at the receiver that the last point is repeated o times.
Hence the rates 7(p,_,,..., p,) for k> N, — 1 are zero.

By using DPCM that is of the same order as the curve
used for the approximation, the total rate in Eq. (9) and
the curve share the same state. In other words, the same
arguments on the independence of the future of the past,
given knowledge of the present, also applies to the above
total rate expression. Again, we are able to write the total
rate as a function of its segment rates, which allows us to
define a compact state to be used for the formulation of a
fast-optimization algorithm.

Distortion

Ideally, the definition of distortion should correspond to
the visual quality of the approximation perceived by a hu-
man observer. Unfortunately, it is not well understood
how a human observer judges the quality of a boundary
approximation, especially within the framework of a
video scene, with many different objects moving at differ-
ent speeds in different directions.

Nevertheless, there are mathematical distortion mea-
sures that are very meaningful, such as the maximum dis-
tance between the original boundary and the
approximation and/or the total area between the original
boundary and the approximation [26]. Note that similar
to the rate, we propose to express the total distortion as a
function of the segment distortions. By doing so, we will
be able to formulate the total distortion using the same
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onsider Fig. 6, which shows three popular segment dis-
Ctortions for polygons. Figure 6(a) shows the maximum
segment distance between the original boundary and the poly-
gon edge. Note that each admissible control point is associated
with its nearest boundary point (p, with b, and p,_, with 4,).
This was accomplished by the admissible control-point set
construction algorithm we introduced earlier. Besides the fact
that the maximum distance has perceptual relevance, it is also
easy to calculate for a polygonal approximation [26]. Figure
6(b) shows an area-based segment-distortion measure. The
area is defined by the boundary between 4, and 4, , the line be-
tween &, and p,, the polygon edge between p, and p,_, , and
the line between p,_, and &,. There are different ways one can
calculate this area, which are either based on a continuous or a
discrete model [31]. In the continuous case, the boundary is
thought of as a polygon and hence the area can be found by
computational geometry. Clearly, the boundary is discrete and
usually the polygon edge is also quantized to pel accuracy
when displayed; hence, one can count the pels of the error area
and use this count as a distortion measure. This approach will
lead to the same distortion measure as the one used in
MPEG-4 [7]. Figure 6(c) shows a different approach that is
based on the idea of a distortion band. Basically, we draw a
band of a given maximum distortion around the original

Box 2 - Measuring Segment Distortion

boundary, and if an edge stays inside this band, then its maxi-
mum distortion is acceptable. From a computational point of
view, this is a fast method of defining the segment (and ulti-
mately the total) distortion, but special care needs to be taken
(using a sliding window) so that no trivial solutions are se-
lected [32].

While Fig. 6 shows three different segment-distortion
measures for a polygon approximation, Fig. 7 shows them for
a second-order B-spline approximation. Note that the defini-
tion of a segment is slightly more complicated for
higher-order curves, since the control points do not directly
correspond to the beginning and end of the segment. In other
words, we need to find the boundary points that correspond to
the beginning (¢ = 0) and end (¢ = 1) of the curve segment. For
example, for ¢ =0, this can be accomplished by testing each
boundary point between 4, and 4,, and picking the one that is
the closest to ¢ = 0. We name that boundary point 4,. In a simi-
lar fashion, we find 4,. Clearly, having defined the curve seg-
ment and its associated boundary points, all three previous
polygon segment distortion measures can be similarly defined
for higher-order curves. Note that the area for a second-order
B-spline approximation is outlined as follows: The boundary
between 4, and 4,, the line from 4, to t =1, the B-spline be-
tween £ =1 and ¢ =0, and the line between £ =0 and ,.

Boundary
" mb
iygon Pt PN
Pi-1 P«
(a)
b, A(Pc1:0) by
pk-1 Pk
(b) (©

A 6. Three different ways for defining the segment distortion for
a polygon-based approximation of the original boundary.
Figure (a) shows the maximum distance, Figure (b) the error
area, and Figure (c) the maximum distance band concept.

A 7. Three different ways for defining the segment distortion for
a second-order B-spline curve-based approximation of the
original boundary. Figure (a) shows the maximum distance,
Figure (b) the error area, and Figure (c) the maximum dis-
tance band concept.

state used for the rate and the approximation curve. Be-
fore we can define the total distortion, we need to define
the segment distortions. Again, the decomposition of the
total distortion into segment distortions is crucial for our
ability to formulate a fast optimization procedure.

Independent of which of the above segment distor-
tion measures is selected, they all depend directly on the
order o of the selected curve approximation; i.e.,
ap,_, ..., p,) Clearly this was the goal of breaking the
approximation into segments for which we can define a
segment distortion. As mentioned above, we can now
use these segment distortions in two different ways to
calculate the total distortion.

We will treat two different classes of total distortion
measures. The first class is based on the maximum opera-
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tor (or equivalently, on the minimum operator) and is of
the following form,

(10)

max
L0 Np T

Dipysees by, 1) = APy Py

where d(p_,,..., p,) is defined to be equal to zero. We
will refer to all distortion measures based on the above
definition as class-one distortion measures.

The second class of distortion measures is based on the
summation operator and is ot the following torm,

Np-l+o

D(py s by 1o)== XA, s P
Pos Py, 2 », pe) )
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edge (4,14)

vertex 14

tor A = B, we will drop it in the nota-
tion. In this special case, there is a
simple, one-to-one correspondence
between graph vertices and control
points (polygon vertices) and be-
tween graph edges and polygon
edges. Recall that for a polygon ap-
proximation, the state we selected
consists of the last control point.
Then we showed that DPCM encod-

ing of the control points, using a
first-order predictor, shares the same
state as the polygon approximation.

®) We then carefully defined the approx-

A 8. Interpretation of the boundary and the polygon approximation as a fully connected
weighted directed graph. Note that the set of all edges E equals {(a,,a Ye AL # /}
Two representative subsets are displayed: (a) {(a,,a,) € A*Vj # 4} and (b)

{(a,,0)) € A%:vj # 8}.

w(4,14)=F{d(4,14),r(4,14)}
8 ( 9 i10

7 11\

6 12

s !

edge (4,14)

vertex4f>[‘—L d@1d />14 <— vertex 14
—— r(4,14)
3 | 15
B 16
ol
i0/‘18]

A 9. Each edge has a segment rate and a segment distortion as-
sociated with it. The edge weight is then a function (F{-}) of
these rates and distortion. For class-one distortion measures,
this function is different than for class-two distortion measures.

where again d(p_,, ..., p,)1s defined to be equal to zero.
We will refer to all distortion measures based on the
above definition as class-two distortion measures.

In the remainder of this article we will show how both
classes of distortion measures can be treated using a di-
rected acyclic graph formulation with a slightly different
definition of the graph weights.

Directed Acyclic Graph (DAG) Formulation

We now show how a DAG can be used to formulate the
problem at hand. We first concentrate on the polygon ap-
proximati()n where the set of admissible control points A
is equal to the original boundary B, which implies that

a.,= b Since the second subscrlpt will always be zero
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imation distortion, such that it is per-
ceptually relevant and uses that same
state as the rate and the polygon. In
this section we now use the fact that
these three entities share the same
state to show how the selection of the
optimal polygon can be formulated
using a DAG. Having formulated the problem as a short-
est path problem through a DAG allows for the use of a
fast dynamic programming algorithm to find the opera-
tionally optimal solution.

For the proposed DAG formulation, we need to start the
search for an optimal approximation at a given control point.
If the boundary is not closed, clearly the first boundary point

a, = b, has to be selected as the first control point p, . For a
closed boundarv there is freedom in selecting the first control
point. Expcrlmcnts have shown that the performance of the
algorithm is insensitive to the selection of the first control
point, and, hence, we always use the first boundary point
(which is arbitrary) as the first control point, even for a closed
boundary.

Besides fixing the first control point of the approxima-
tion, we also requirc that the last control point p,, | be
equal to the last point of the boundarv 2, | =
This leads to a closed approximation for a d()scd bound
ary. For a boundary that is not closed, this condition, to-
gether with the starting condition, makes sure that the
approximation starts and ends at the same points as the
boundary.

The optimization problems stated in Egs. (2) and (3)
can be formulated as a shortest-path problem in a
weighted directed graph G = (V, E), where V' is the set of
graph vertices (which is equivalent to the admissible con-
trol point set A) and E is the sct of edges (see Fig. 8). As
stated above, in this example A= B and hence V = B,
since every boundary point can be a control point. The
edges between the vertices represent the line segments of
the polvgon. A directed edge i1s denoted by the ordered
pair (#, v) € E, which implies that the edge starts at vertex
u and ends at vertex ». Since every combination of differ-
ent control points can represent a line segment of a valid
polygon, the edge set E is defined as follows,
E={(a, )€ A?:Vi# g} (see Fig. 8). A path of order
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Switched
Order

o0 |19

which has rtime complexity
O(|V|* + E|). This is a significant re-
duction compared to the time com-
plexity of the exhaustive search.

Recall that we defined the con-

i

Switched l
Orderﬂ {

I

trol-point set as an ordered set for rea-
sons that will now become apparent.
We can further simplify the algorithm
by observing that we would not like
the optimal path to sclect an admissi-
ble control point a ; as a control point
when the last selected control point

12
13

BE

i

was a,, where 7> j. For example, a
i

J polygon where successive vertices are
not assigned to boundary points in in-
creasing order can exhibit rapid direc-
tion changes even when the original

boundary is quite smooth (see Fig.
10). Theretore, we add the restriction

that not every possible combination
of (@,,a ) represents a valid edge
but only the ones for which 7 <.
Hence, the edge set E is rede-
fined in the following wav:
E={(a, a,) e A*:i<j} (see Fig.
11). This restriction results in the fact
that a given control-point set
uniquely specifies the polygon. We
used this fact before to derive the

(b)

number of possible polygons in an ex-
haustive search approach.

By defining the edge set E in the
above fashion, we achieve two goals si-

A 1. Interpretation of the boundary and the polygon approximation as a weighted di-
rected acyclic graph. Note that the set of all edges E equals {(a,,a ) e Ati< /’}. Two
representative subsets are displayed: (a) {(a4 ,a;) € A%V > 4} and (b)

{(aq.a,) € A:vj > 8}

K from vertex 2 to a vertex #” is an ordered set {v“‘ sVt
such that #=»,, #'=v, and (v, ,r,)€E for
k=1,..., K. The order of the path is the number of edges
in the path. The length of a path is detined as follows,

N
2 w(v,_ . v,),
s (12)

where w(u, r): E — Ris a weight function specifying the
cost of traversing this edge from # to v. By defining this
weight function in ditterent ways, we will be able to find
the optimal approximation for class-one and class-two
distortion measures. In all cases, the directed edge (#, v)1s
associated with its segment rate »(z, v) and its segment
distortion d(x, v), as can be seen in Fig. 9. The weight
w(z, v)is then a function of the segment rate and the seg-
ment distortion. The classical algorithm for solving such a
single-source shortest-path problem, where all the
weights are non-negative, 1s Dijkstra’s algorithm [3],
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multaneously. First, the selected ap-
proximation has to follow the original
boundary without rapid direction
changes, and second, the resulting
graphis a weighted DAG. Fora DAG,
there exists an algorithm for finding a
single-source shortest-path that is cven faster than
Dijkstra’s algorithm. Following the notation in [33], we
call this the DAG-shortest-path algorithm. The time
complexity for the DAG-shortest-path algorithm is
O(| V|4 E}), which means that the asvmptotic lower
bound Q(|V]+ E|) is equal to the asvmptotic upper
bound O( | V|+ E). Recall that, generally, V equals A and
hence we would like to keep the set of admissible control
points as small as possible, as discussed earlier.

The derivation in Box 3 is focused on the polvgon ap-
proximation where A = B. As we have shown, in this spe-
cial case there exists a natural connection between the
polygon approximation and the required graph. We now
extend this to the case where A 1s constructed according to
the algorithm presented in carlier. Basically, the same
graph (see Fig. 12) can be used, but we need to extend the
vertices of the graph to include all the admissible control
points that are associated with the same boundary point,
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e now introduce the DAG-shortest-path algorithm. Let
C’(a;) represent the minimum cost to reach the admissi-
ble control point a; (which in this case is identical to the
boundary point &, since 4 = B) from the source vertex a4, via
an approximation. Clearly C’ (ay,-1) is the cost of the shortest
path from the source vertex 2, to the sink vertex ay _,. Let
g(a,) be a back pointer that is used to remember the optimal
path. Consider Fig. 12, which shows a simple DAG for a poly-
gon approximation. To find the shortest path through this
graph, (which selects the optimal control points) we use the al-
gorithm below.
1) C'(a,) =w(a_,a,);
yfori=1,...,N -1
3 Cla)=e
4)fori=0,...,N -2
5) forj=i+l1,...,N, -1

6) calculate segment distortion 4(a;, a,);

7) calculate segment rate 7(a;,4,);

8) calculate w(a,, a;) as a function of d(a,, a;)
and r(a,,a;;

9) if (C'(a,) +w(a,,a)) <C(a)));

10) C(a,)=C'(a)+w(a,,0,);

11) q(ﬂj):ﬂi;

The optimal path (the control-point set) {pg, ..., px .}
can be found by backtracking the pointers g(a,) in the follow-

ing recursive fashion (by definition py | =ay, , =by, ,and
bo =ay =by),
b =400 (13)

starting with p, _, and stopping when p is reached. The for-
mal proof of the correctness of the DAG-shortest-path algo-
rithm, on which the above scheme is based, can be found in
[33]. We will reason more intuitively how this approach
works. In line (1) the cost for encoding the starting point of
the boundary is assigned to the minimum cost of the first con-
trol point. In lines (2) and (3) the minimum cost for reaching

Box 3 - The DAG-Shortest-Path Algorithm

A 12. A simple DAG for a polygon approximation where A = B.
The weights are defined as a function of the segment rate
and the segment distortion.

any of the admissible control points is set to infinity. The “for
loop” in line (4) selects the admissible control points in se-
quence as possible control points from which a polygon edge
starts, and the “for loop” in line (5) selects possible control
points where the polygon edge ends. Hence, these two loops
select each edge in the edge set E exactly once. Therefore, lines
(6) to (11) are processed for every edge. Lines (6) to (8) are
used to calculate the weight of the edge, (4, ,#;). The most
important part of this algorithm is the comparison in line (9).
Here we test if the new cost,C ' (a,) + w(a,, a,), to reach admis-
sible control point a4, given that the last control point was 2, is
smaller than the smallest cost used so far to reach 2, C'(a)). If
this cost is indeed smaller, then it is assigned as the new small-
est cost to reach admissible control point a,
C'(a)) =C (&) + w(a;, ;). We also assign the back pointer of
a;,4(a;) to point to a; since this is the previous control point
used to achieve C'(a,). This algorithm leads to the operation-
ally optimal solution because, as stated earlier, when the cost (
C'(a,)) of avertex (a;) is given, then the selection of the future
vertices (a,,4 < § < N ,) is independent of the selection of the
past vertices (a,,0 <k <1).

The analysis of the above algorithm shows that therce are
two nested loops, which results in a time complexity of
O(N?). We use the number of edge-distortion evaluations as
measure for the time complexity, since this is the most
time-consuming operation.

(ie.,a isreplaced by thesetia ,a, o, ,..}). Theex-
tended graphis displaved in Fig. 13, wherea | anda | were
not extended since they are the source and sink vertices,
equivalent to the beginning and end of the original bound-
ary. In Fig. 13, we only show the edges originating ina |,
and terminating in a 5 o t0 keep the graph readable. Note
that the edge (2,4, ) in Fig. 12 is replaced by the shown
set of edges (a, By ) Vi, . To fill the entire graph with
edges, this replacement is done for each edge in the original
graph in Fig. 12.

The next extension of the above algorithm is tor
higher-order curves. Recall that we defined the order of
the curve to be equal to the order of prediction o and we
are using a second-order B-spline as an example of a
higher-order curve. As discussed in the “Proposed
Framework™ section, the state of an order o curve includes
the last 0 control points. We then showed that the same
state can be used for encoding these control points with
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an order 0 DPCM scheme. We proposed to define the to-
tal distortion as a function of segment distortions, such
that the total distortion measure shares again the same
state. We now discuss for a second-order curve how the
DAG needs to be changed to be able to tind the optimal
solution. To simplify the graph, we again assume A = B,
and after we develop this graph it can be extended to in-
clude A o B, as was done above. As pointed out, the state
consists of the knowledge of the last two admissible con-
trol points (p, , =a,,p, | = a), 7 > hence, all feasible
values this state can take on are the vertices in the graph
shown in Fig. 14. The edges between the vertices then
represent a segment of the curve, for which we have de-
fined a segment rate (#(p,_, , p,_, , p,)) and ascgment dis-
tortion (d(p, ,, p, > P,))- These edges are than labeled
with an edge weight (w(p, ,, p, . p,)) (for clarity rea-
sons, in Fig. 14, we only labeled five edges with their re-
spective weight, but clearly, cach edge has a weight
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associated with it), which is a function
of the segment distortion and the seg-
ment rate.

In the next section, we will dis-
cuss how to select the function so
that the DAG-shortest-path algo-
rithm can be used to find the opti-
mal approximation for distortion
measures of both classes. Note the
difference in connectivity in Figs. 12
and 14. In Fig. 12, each vertex has
an edge for cach future vertex, while
in Fig. 14, cach vertex has an edge
for each future vertex, sharing the
middle control point. In other
words, two consecutive vertices de-
fine three control points, which in
turn is enough to define a segment

[

a4 a ag

7" T {agg’

' a1 < 8 1 : ag 4

i a2
&._ a3 ;

for a second-order curve. The rate
and distortion of this segment is
then assigned to the edge between
the two vertices. Again, the
DAG-shortest-path algorithm is
used to find the optimal approxima-
tion, where for this example the or-
der of the state is two, which results
in a time complexity of O(N %). In general, the time
complexity of a curve approximation of order o is
O(N‘"). Therefore, the smaller the set of admissible
control points, and the smaller the order of the approxi-
mation curve, the faster the algorithm. On the other
hand, the larger the admissible control-point set and
the higher the order of the curve, the (potentially)
better the approximation of the original boundary.

Distortion Measures Based
on the Maximum Operator

In this section we introduce two algorithms to solve the
problems stated in Eqs. (2) and (3) for class-one distor-
tion measures, such as the maximum absolute distance.
These algorithms are specific implementations of the gen-
eral optimal bit-allocation algorithm among dependent
quantizers for the minimum-maximum distortion crite-
rion we proposed 1n [34]. Again, we first focus on the
poly, gon case and then extend the result to higher-order
approximations. As pointed out before, we will employ
the pr()poscd DAG tormulation to find the optimal ap-
pr()x1mat10n The key to using this formulation is the def-
inition of the wughr function.

The Minimum-Rate Case

First we consider the minimum-rate case that is stated in
Eq. (3). The goal of the proposed algorithm is to find the
approximation whose control points can be encoded with
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A 13. A simple DAG for a polygon approximation, where A > B. For this example we se-
lected A = {a,, a,,,0a,,,a,,,0,,,0,,,0,,,0,5, 05,05, a, , }. Furthermore, we only
show the edges originating in a,; and terminating in a, ,, to keep the graph readable.
Note that the edge (a, a,) (for A = B) is replaced by the shown set of edges
(a,;,a,,), Vi, j. To fill the entire graph with edges, this replacement is done for each
edge in the original graph.

the smallest number of bits. This selection is constrained
by the fact that the selected approximation must result in
a distortion smaller or equal to the maximum distortion.
To this end, we propose the following definition of the
weight function:

oo . d(p/rl 5 P/\) > I)nmx

W<pk71 ’pk) {V(pk_l aPk) d(P/‘_l s[’k) Sl)m.\x. (]4)
The above definition of the weight function leads to a
length of infinity for every path that includes a segment
resulting in an approximation error larger than D, .
Theretore the DAG-shortest-path algorithm will not se-
lect these paths Every path that starts at vertex #, and
ends atvertexa and does not result in a path lulgth of
infinity results i m 2 path length equal to the rate of the ap-
proximation it represents. Therefore, the shortest of all
those paths corresponds to the approximation with the
smallest bit rate, which is the solution to the problem in
Eq. (3).

Clearly, the extension of this to higher-order schemes
is straightforward, since, in previous sections, we took
great care of defining the segment rate and segment dis-
tortion. Hence, we generally propose the following defi-
nition of the weight function:

WP o> Dy)
— e ’Pl.') >1)|n.n\
- {V(pw,...

> Pl) S I)mn

ap,., -

7Pl:) d(P/,,,,ﬁ"‘
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algorithm that finds the polygonal
approximation that results in the
minimum rate for any D . We
dcnotc this ()ptlmal rate by
R (D, ) We pr()ved in [34, 26]
that the rate R'(D,. ) is a
nonincreasing function of D
which means that D[lm\ D} im
plies R* (D} )2 R’ (Dm“ .
Since the R (D_. ) is a
nonincrcasing function, we can use bi-
section [35] to find thL optimal D/
such that R (D, ) =R, . Since this
is a discrete optimization problem, the
function R" (D, ) is not continuous
and exhibits a staircase characteristic
(sce Fig. 15). This implies that there
mlght not exist a D) such that

max Y

A 14. A simple DAG for a second-order B-spline approximation, where A = B. We only la-
bel the five top edges with their respective weight function, but clearly, each edge has

a weight function associated with it

A

R*(Dyax)

max

R*(Dhay)

o

max

D

A 15. The R'(D,,,) function, which is a nonincreasing function ex-
hibiting a staircase characteristic. The selected R, falls onto a
discontinuity and therefore the optimal solution is of the form
R'(D;,)<R.,.instead of R'(D., )= R,

max max/ max

The Minimum-Distortion Case

We now consider the minimum-distortion case that is
stated in Eq. (2). The goal of the proposed algorithm is to
tind the approximation with the smallest distortion for a
given bit budget for encoding its control points. Some-
times this is also called a rate-constrained approach. Re-
call that for class-one distortion measures the total
distortion is defined as the maximum of the segment dis-
tortions. Hence, in this section we propose an efficient al-
gorithm that finds the approximation with the smallest
maximum distortion for a given bit rate.

We proposc an iterative solution to this problem thart is
based on the fact that we can solve the dual problem
stated in Eq. (3) optimally. Consider D in Eq. (3) to be
a variable. We derived in the previous subsection an
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R (D). )=R,...Inthis casc the pro-
posed algorithm will still find the opti-
mal solution, which is of the form
R (D, )R, . but only after an
infinite number of iterations. There-
fore,ifaD,  suchthatR (D, )= R, isnotfound after
a given maximum number of iterations, the algorithm is
terminated. In this case, due to the discrete nature of opti-
mization, after a number of iterations further bisecting the
range of D .. does not lead to corresponding refinements
in the values of R* (D, ), in which case the algorithm ter-
minates. It also terminates as soon as R, is approximated
within specified accuracy.
Clearly, the time complexity of this approach for a fixed
D, is the same as for the DAG shortest-path algorithm.
The shortest-path algorithm is invoked several times by the
bisection algorithm to find a D, which results in
R (D)..)=R,,..Hence, the total time complexity is a lin-
ear function of the number of required iterations.

max

max

max

Distortion Measures Based
on the Summation Operator

We now introduce an algorithm to solve the problems
stated in Eqs. (2) and (3) for class-two distortion mea-
sures, such as the total number of error pels. The pre-
sented algorithm is symmetric in the rate and the
distortion and hence the same technique can be employed
for the minimum-distortion case (Eq. (2)) and the mini-
mum-rate case (Eq. (3)). We will therefore only solve the
minimum-distortion case, and the minimum-rate case
can be solved be applying the following relabeling to the
function names: D(p,,.. Py, - DER(Ppy s P )
and R(p,, , . Py, a) «D(p,,. ,p\ 1 )- Again, we first
focus on the p()lvgon case and thm éxtend the result to
higher-order approximations. As pointed out before, we
will employ the proposed DAG formulation to find the
optimal approximation. Again, the key to using this for-
mulation is the definition of the weight function.
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A 16. A simple second-order DPCM scheme is used to encode the
control points. The angle o. must take a value out of the follow-
ing set: {-90,-45,45,90}. This is encoded with two bits. The
length B is a number between 1 and 15 and is encoded using
between 2 and 5 bits.

The algorithm we propose is based on the Lagrange
multiplier method. Like every Lagrangian-based ap-
proach the resulting solutions belong to the convex hull
of the operational rate-distortion function. For cases
where the Lagrangian bound is not tight enough, in [34,
26] we have proposed a tree-pruning-based scheme that
can find all optimal solutions.

Lagrange Multiplier Approach

In this section we derive a solution to problem (2) that is
based on the Lagrange multiplier method [36-38] and
the shortest-path algorithm presented carlier. We use the
Lagrange multiplier method to relax the constraint so
that the unconstrained problem can be solved using the
DAG-shortest-path algorithm.

We first define the Lagrangian cost function

/k(pn*"'wpx,.q)
=D(pyseas Py, )FRR(Pyss Py ), (16)

where A is the Lagrange multiplier. It has been shown in
[36, 37] that if there is a ™ such that,

{p(.)""’p_.\‘,.—l} =arg ; »n‘]/i,“ /, <Pn)v-'ﬂp.\'1,71>a (17)

an.d which leads to R(pyeas Py, ) =R then
{ppsemen p;,p _, His also an optimal solution to (2). Tris well
known that when A sweeps from zero to infinity, the solu-
tion to the problem in Eq. (17) traces out the convex hull
of the operational rate-distortion tunction, which is a
nonincreasing tuncrion. Hence, bisection [ 35] or the very
fast convex scarch we presented in [34, 39, 40] can be
used to find A . Therefore, if we can find the optimal solu-
tion to the unconstrained problem in Eq. (17), then we
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can find the optimal 1" and the convex hull approxima-
tion to the constrained problem of Eq. (2).

To be able to employ the above proposed DAG short-
est-path algorithm, we define the weight function as fol-
lows,

WP D) =P P+ A7 (p s Py (18)
Since the shortest-path algorithm results in an approxi-
mation that minimizes the following sum,

Ny -l

;W<p/;—l’[7/:)’ (19)

this approximation is the optimal solution to the uncon-
strained problem of Eq. (17).

Boundary Approximations (Min-Max Criterion) 1
or
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A 17. Kid 2 in frame 17. Encoding was done using the maximum
distortion measure. The distortion band has D,,, = 3.

R-D Curves for 100 Frames of the “Kids” Sequence
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A 18, Average operational rate-distortion curves for the first 100
frames of the “Kids” sequence.
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The extension of this to higher-order schemes is again
straightforward. Hence, the following definition of the
weight function is generally proposed:

w(p,_, ""’P}z)zd(P&—a""’pk)+}\’ T (Pigsr Py (20)

Clearly, the time complexity of the Lagrangian ap-
proach for a fixed A is the same as for the DAG short-
est-path algorithm. The shortest-path algorithm is
invoked several times by the bisection algorithm to find
the optimal A" and hence the time complexity is a linear
function of the number of required iterations.

Now that we have discussed the different approaches /

for class-one and class-two distortion measures, it be-
comes clear that they are strongly related [41]. The
class-two approaches are based on the Lagrange multi-
plier method. The Lagrange multiplier method is used
to transform the constrained optimization problem into
a set of unconstrained optimization problems
parameterized by the Lagrangian multiplier A. These
unconstrained problems are then solved optimally using
ashortest-path algorithm. The optimal 1", which results
in the solution of the original constrained problem, is
then found using an iterative approach, such as bisec-
tion, where for each iteration the unconstrained prob-
lem needs to be solved. For the class-two approaches,
both the minimum-rate and the minimum-distortion
problems are solved by the same algorithm. This is one
of the main differences between the class-two and the
class-one approaches. For the class-one approaches, the
minimum-rate problem, which is a constrained optimi-
zation problem, can be transformed into an uncon-
strained problem using an elegant definition of the edge
weights. Then, this unconstrained problem can be
solved directly using the same shortest-path algorithm
as above. In other words, no iteration is necessary to
solve the minimum rate problem. The minimum distor-
tion problem is then solved using the fact that the we can
find the optimal solution to the minimum-rate problem,
which results in a nonincreasing operational
rate-distortion function. The solution to the mini-
mum-rate problem is also found by an iterative search
for the optimal D, using bisection. For each iteration,
the minimum-rate problem (i.e., the unconstrained
problem) is solved using the shortest-path algorithm.

Experimental Results

In this section we present coding results for a polygonal
and a second-order B-spline based implementations of
the presented algorithms. We use the first 100 frames of
the MPEG-4 test sequence “Kids.” All the results to be
shown represent averages over these 100 frames. The se-
quence is in SIF format (352 x 240 pels) and the binary o
plane is provided; i.e., no segmentation step is necessary.

We define the boundary as the outermost pels of an ob-
ject. Note that one could define the boundary as the line
between the background pels and the outermost object
pels, and the proposed algorithms would still work. So far
we have only defined the constraints a particular con-
trol-point encoding scheme needs to satisfy. For the re-
ported results, we used two simple first- and
second-order DPCM schemes for polygonal and B-spline
approximations, respectively. Consider Fig. 16, which
shows the situation at hand, for the B-spline case. The
segment rate 7(p, ,,p, ), Which is required to en-
code control point p,, given the control points p, , and
P..s> consists of 2 bits for encoding the angle o
(+45,-45,+90,-90) and 2 to 5 bits for encoding the
length B (1, ... ,15) [34]. For the first-order prediction,
the absolute angle is used instead, requiring 3 bits (0, +
45,45, 490, -90, +135, -135, 180). Furthermore, we
need to encode the starting point for each boundary, which
in SIF requires 17 bits (9-+8 bits for the two dimensions).
Note that these bits are not included in the following
rate-distortion plots. In the experiments presented below,
we fixed the width of the admissible control pointset to 1.5
pels, which results in the fact that all eight neighboring pels
of a boundary point are included in the set.

A 19. The original o plane for the 17th frame in the sequence.

A 20. The encoded o plane for the 17th frame in the sequence

Since the o plane represents the V_id.eo objects as a bit using D,,,, = 08. The algorithm required 858 bits resulting in a
plane, we first extract the boundaries from the o plane. d, of 0.0257.
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A 21. Average operational rate-distortion curves for the first 100
frames of the “Kids” sequence.
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A 22. Kid 2 in frame 17. Encoding was done using the additive
distortion measure.
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A 23. Average operational rate-distortion curves for the first 100
frames of the “Kids"” sequence.
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In the first experiment, we use a distortion measure
based on the maximum operator. We define the segment
distortion using the band concept introduced earlier.
Hence, we draw a band of distance D around the origi-
nal boundary and cach segment that leaves this band has a
segment distortion of infinity assigned to it. Figure 17
demonstrates this concept for D, =3 pels and shows
two optimal approximations (polvgonal and B-spline)
within the distortion band. This figure also shows the ef-
fect of upper-limiting the run lengths in the vari-
able-length code (VLC) table used for encoding control
points. Since only runs up to 15 arc allowed in the imple-
mentation, with some run lengths smailer than 15 also ex-
cluded, some long straight-line approximations were
composed of consecutive runs of 15 along the same direc-
tion. We then use the above proposed DAG algorithm to
find the set of control points that results in the smallest bit
rate for this given maximum distortion D, . We do this
for different D = 0.8,1,1.5,2,2.5 and 3 pels. The re-
sulting averaged operational rate-distortion curves are
displayed in Fig. 18 for polygonal and B-spline approxi-
mations. For comparison purposes, we also show in Fig.
18 the averaged operational rate-distortion curve for the
case when the set of admissible control points A 1s equal
to the set of the original boundary points B (0 marks).
Clearly, choosing a wider admissible control-point band
leads to better performance in the operational
rate-distortion sense. Note that we find the optimal po-
lygonal and second-order B-spline approximations such
that the rate required to encode the control points is mini-
mized for a given maximum distortion D . While the
employed maximum distortion measure is a very useful
objective criterion, we also display a single a planc for vi-
sual inspection. Figure 19 shows the original o plane for
the 17-th frame and Fig. 20 shows the same plane after
encoding and decoding, usinga DD of 0.8. The required
bit rate is 858 bits and the resulting 4, is 0.0257.

In the second experiment, we use a distortion measure
that is based on the summation operator. To create the re-
sulting averaged operational rate-distortion curves
(shown in Fig. 21) we swept the Lagrangian multiplier A
from zero to infinity in discrete steps. For each A we en-
coded cach frame in the sequence and cach boundary in
each frame. We then recorded the resulting average rate
and distortion (the average is with respect to the 100
frames). Theretore, the resulting bit allocation is optimal
among all objects and all frames. Figure 22 shows the re-
sulting polygonal and B-spline approximations when this
distortion measure was employved.

Finally, in Fig. 23 we combine all the results trom the
previous two experiments using the 4, distortion metric.
The reason for doing this is that 4, is the metric used by
MPEG-4 for evaluating the various shape encoding tech-
niques. As cxpected, cach minimum summation
technique outperforms its corresponding mini-
mum-maximum one. In addidon, in Fig. 23, a result 1s
shown (linc with @) obtained using a ditterent VLC table
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than the one used in the rest
of the curves. This was done
to point to the potential ben-
efits of using more efficient
VLCs.

100

150

Summary and Future

200 Directions

We proposed a framework
for the rate-distortion oper-
ationally optimal encoding
of shape information in the
intra mode. We have
shown that each curve ap-
proximation has a natural
order. If the control-point
encoding scheme is
matched to this order and
the distortion is carefully
defined, then the optimal
approximation can be
found using a
DAG-shortest-path algo-
rithm. We have shown that
the minimum-maximum
distortion optimization
problem and the minimum
total (average) distortion optimization problem can both
be solved by similar means, using an appropriate defini-
tion of the DAG weight function.

The proposed framework is very powerful in that it can
be extended to solve various formulations of the shape
coding problem optimally. For example, in [26] we have
shown in detail that the jointly optimal encoding of sev-
eral shapes is a direct extension of the work presented
here. In fact, we have used this optimal encoding of sev-
eral shapes in the second experiment reported above
(minimum-average distortion). While we have shown
fixed-order optimization in this article, a meaningful ex-
tension of this work is in the direction of mixed-order ap-
proximations. Additional work has been done including
the so-called lexicographic [42] optimality criterion in
the minimum-maximum distortion optimization. This
can be achieved easily in the proposed framework.

The extension of the methodology used here to find
the operationally optimal shape approximations in the
intra mode to the inter mode is a promising direction of
future work and is currently under investigation. In [27]
we have extended the shape encoding scheme to include
the segmentation algorithm. In other words, we jointly
find and encode optimally the shape of a given object.
Figure 24 illustrates how a variable-width admissible
control-point band is used for that purpose. While the
proposed algorithms are already able to outperform any
other lossy intra-mode shape encoding scheme in the
rate-distortion sense, these schemes can still improve sig-

250

300

350

400LC 1 .
50 100 150

A 24. The width of the control
point band is inversely re-
lated to the confidence in
the location of the boundary
pixels [27].
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nificantly. We are currently focusing on the control-point
encoding scheme, which is a very simple DPCM scheme.
We expect that other optimized schemes will result in fus-
ther performance gains [43].
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Computer Engineering in Evanston, Illinois, USA.
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