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This paper describes a simple, non-parametric and generic test of the equivalence of receiver operating
characteristic (ROC) curves based on a modified Kolmogorov–Smirnov (KS) test. The test is described
in relation to the commonly used techniques such as the area under the ROC curve (AUC) and the
Neyman–Pearson method. We first review how the KS test is used to test the null hypotheses that the
class labels predicted by a classifier are no better than random. We then propose an interval mapping
technique that allows us to use two KS tests to test the null hypothesis that two classifiers have ROC
curves that are equivalent. We demonstrate that this test discriminates different ROC curves both when
one curve dominates another and when the curves cross and so are not discriminated by AUC. The inter-
val mapping technique is then used to demonstrate that, although AUC has its limitations, it can be a
model-independent and coherent measure of classifier performance.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The receiver operating characteristic (ROC) curve is the graph of
a classifier’s true positive rate (TPR) against false positive rate (FPR)
at various operating points as a decision threshold or misclassifi-
cation cost is varied (Fawcett, 2006; Swets et al., 2000). Over the
past 15 years ROC analysis has become established as an important
tool for classifier evaluation (Bradley, 1997). This is especially the
case in biomedical applications where TPR and FPR can be directly
related to the clinically meaningful measures of sensitivity and
specificity. However, current tests for the equivalence of two or
more ROC curves are limited in that they either: require domain
specific knowledge, do not work in a wide variety of situations,
are based on Normal assumptions, or are computationally expen-
sive. Therefore, this paper proposes a simple, non-parametric and
general purpose test of ROC curve equivalence based on a modified
Kolmogorov–Smirnov (KS) test.

Receiver operating characteristic curves are traditionally used
to answer two questions about classifier performance (Bradley
and Longstaff, 2004):

1. Does a classifier have better performance than random
labelling?

2. Does one classifier have better performance than another?

There are two common methods to test the null hypothesis that
the predicted class labels produced by a classifier are no better than
ll rights reserved.
random. For a single operating point, all binary classifiers produce
results that can be presented in a confusion matrix. A confusion ma-
trix is a form of contingency table showing the number of true posi-
tive and true negative instances on the leading diagonal and the
number of false positive and false negative instances in the off-
diagonals. Therefore, a v2 test (Press et al., 2007, Section 14.4.1)
can be used to test the independence of the true and predicted class
labels. We reject the null hypothesis only when there is sufficient
evidence that the predicted class labels are dependent on the true
class labels. Alternatively, we can utilise information from a num-
ber of operating points to test the null hypothesis that the area un-
der the ROC curve (AUC) is equal to 0.5 (Bradley, 1997; Bradley and
Longstaff, 2004). When estimated empirically, AUC is equivalent to
the Wilcoxon–Mann–Whitney test of ranks (Fawcett, 2006). There-
fore, an AUC of 0.5 implies that the probability that a classifier will
rank (score) a randomly chosen positive instance higher than a ran-
domly chosen negative instance is Pðsp > snÞ ¼ 0:5. Here sk ¼ mðxÞ
is the ‘‘score’’ produced by a classifier for an instance of class
k 2 fp;ng using the feature vector x. Again, we only reject the null
hypothesis when there is sufficient evidence that the classifier
can correctly rank positive and negative instances. The relationship
between ROC curves and the v2 test is explored in (Bradley, 1996).

There are typically three ways to test the null hypothesis that
two classifiers are equivalent; by comparing:

1. An appropriate measure of classifier performance, such as accu-
racy or error rate, extracted from the confusion matrix obtained
at an individual operating point (Bradley, 1997);

2. The TPR, FPR pair at an individual operating point (Bradley and
Longstaff, 2004); or

http://dx.doi.org/10.1016/j.patrec.2012.12.021
mailto:bradley@itee.uq.edu.au
http://dx.doi.org/10.1016/j.patrec.2012.12.021
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


A.P. Bradley / Pattern Recognition Letters 34 (2013) 470–475 471
3. The AUC measured over all, or a sub-set of, operating points on
the ROC curve (Bradley, 1997; Landgrebe et al., 2006).

Comparing classifiers based on a single measure of performance
can be problematic as the choice of the ‘‘best’’ measure is depen-
dent upon the application domain, class prior probabilities and
operating point (Landgrebe et al., 2006). In addition, extracting a
single measure from a confusion matrix does not capture the
implicit trade-off between positive and negative classifications
(Bradley, 1997). Comparing classifiers when both TPR and FPR
differ makes it unclear whether the observed differences are due
to classifier performance or just different operating points. That
is, are these just different operating points on equivalent ROC
curves? Comparing TPR or FPR individually has the advantage that
it effectively implements the Neyman–Pearson method (Bradley,
1997). That is, for a specific FPR, do the classifiers have the same
TPR? (or vice versa). However, again, the FPR or TPR at which to
perform the comparison is application dependant. Therefore,
because of these issues AUC has gained popularity as a single
measure of classifier performance that is extracted from the whole
ROC curve. The AUC is independent of prior class probabilities and
misclassification costs and has a probabilistic interpretation
through its equivalence to the Wilcoxon-Mann–Whitney test of
ranks (Fawcett, 2006).

Recently, a number of problems with AUC have been highlighted
in the literature. One of the most significant issues is that, as AUC
estimates Pðsp > snÞ, it’s statistical interpretation relies on an impli-
cit alternative (Berrar and Flach, 2012). This probability of correct
ranking only has meaning when the evaluation of the classifier is
undertaken on a test set consisting of both positive and negative in-
stances. In practice, end-users are primarily concerned with a clas-
sifier’s performance on a single instance of unknown class.
Therefore, error rate or TPR and FPR having meaning; how that in-
stance is ranked against a hypothetical alternative does not (Hilden,
1991). This issue is related to the fact that AUC is estimated from
the whole ROC curve and so averages performance over all possible
operating points. This is especially problematic when the differ-
ences between two ROC curves occur only over a small range of
operating points. Classic examples of this problem occur when
two different, but crossing, ROC curves have a similar AUC or when
an AUC of 0.5 is obtained from a classifier that is clearly not per-
forming random labelling (Hilden, 1991). These issues have re-
cently been described and referred to as the early retrieval
problem and the fallacy of the undistributed middle respectively (Ber-
rar and Flach, 2012). Therefore, unless one classifier dominates an-
other over all operating points, AUC will not be a sensitive test of
the equivalence of their ROC curves (Drummond and Holte, 2006;
Hand, 2009). Here, dominate is taken to mean that one classifier
has a higher TPR for all FPR, a condition that appears to occur rarely
in practice (Bradley, 1997; Hand, 2009).

It has been argued that it is ‘‘fundamentally incoherent’’ to com-
pare different classifier types using AUC as they effectively use dif-
ferent misclassification costs to generate the ROC curve (Hand,
2009; Hand and Anagnostopoulos, 2012). Again, there is an issue
of calculating AUC over the whole curve, using inappropriate mis-
classification cost ratios ranging from 0 to1. The proposed H mea-
sure, an extension of that proposed in (Hand, 2005), has two clear
advantages: misclassification costs are the same between classifi-
ers and are limited in range. However, from a Neyman–Pearson
perspective, an end-user wants to determine whether a specific
classifier, at a specified sensitivity or specificity, is better than an-
other (classifier). It is not important to an end-user that in order to
get to these operating points one classifier had to use different cost
ratios to another. Therefore, in general for two ROC curves to be
equivalent there must be no operating points, anywhere on the
curve, that have significantly different performance (TPR or FPR).
Of course, equivalent ROC curves have an equivalent AUC, but as
the issues with crossing ROC curves demonstrate: AUC is a neces-
sary, but not sufficient, condition for ROC equivalence.

A number of alternatives to ROC curves have been developed,
including cost curves (Drummond and Holte, 2006), frequency-
scaled and expected-utility ROC curves (Hilden, 1991). However,
ROC curves are a well-used and well-understood methodology
and so we must be careful not to reject them because of issues with
their most commonly applied single number summary (AUC)
(Hilden, 1991; Berrar and Flach, 2012). Therefore, this paper
proposes an improved test of equivalence between two empirical
ROC curves.

A number of alternatives to AUC have been proposed, such as
the H and diagnosticity measures (Hand, 2009; Hilden, 1991) and
probability cost PC(+) (Drummond and Holte, 2006). However,
these are all designed to be a meaningful measure of classifier per-
formance (or utility), rather than a test of ROC equivalence. That is,
they are an estimate of how well a classifier will perform, on aver-
age, over an appropriate range of misclassification costs and prior
probabilities. Note, AUC is a measure of the ranking performance
of a classifier only (Flach et al., 2011; Berrar and Flach, 2012).

The question of ROC equivalence has previously been tackled by
Campbell, 1994; Venkatraman and Begg, 1996 and Antoch et al.,
2010. However, the first two of these methods are computationally
complex as they involve bootstrap estimates and permutations
respectively. The last two do not allow the results of the test to
be mapped back to the ROC curves to highlight where the curves
differ from each other. Therefore, this paper describes a simple
technique, based on a modified KS test, that finds the correspond-
ing points on two ROC curves that are the most dissimilar. If there
is no such point found anywhere on the curve, at the specified level
of significance, then the ROC curves are deemed to be statistically
equivalent.

The paper is organised as follows: first we discuss the well-
known KS test and demonstrate how it can be used to test the null
hypothesis that the observed performance of a classifier is no bet-
ter than random. Next we go onto propose an interval mapping
technique whereby two KS tests are used to compare the TPR
and FPR of competing classifiers at all operating points. We illus-
trate the efficacy of this technique with examples where one ROC
curve dominates another and where two crossing ROC curves have
an equivalent AUC. Finally, the interval mapping technique is used
to highlight the conditions under which AUC is a coherent measure
of classifier performance.

2. Preliminaries

2.1. ROC curves

The empirical ROC curve is the plot of 1� FnðsÞ versus 1� FpðsÞ
on a test set of instances with known class membership (Hilden,
1991; Campbell, 1994; Hand, 2009). Here FkðsÞ is the cumulative
density function (CDF) of the classifier scores s ¼ mðxÞ for each
class k 2 fn; pg. An instance is classified as positive if the given
score s is greater than some decision threshold (s > t) and negative
otherwise. We denote the prior probability of class k in the data set
as pk, where pn þ pp ¼ 1.

2.2. The KS test

The KS test is defined as (Hand, 2005):

D ¼max
s

FnðsÞ � FpðsÞ
�� �� ð1Þ

The KS statistic, D, can be used to test null Hypothesis that the neg-
ative and positive CDFs are equivalent (Press et al., 2007, Section
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Fig. 1. Empirical ROC curve showing the operating point of the KS statistic (�).
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14.3.3). That is, that the classifier gives, on average, identical scores
to instances of both classes. Whilst this behaviour is indicative of a
classifier that randomly allocates instances to each class, the KS sta-
tistic is not a meaningful measure of classifier performance (Hand,
2005). Specifically, D only relates to the validity of the null hypoth-
esis for that classifier and requires modification before it can be
used to compare differences in D between classifiers (Krzanowski
and Hand, 2011). The KS statistic does, however, indicate the fur-
thest point on ROC curve from the diagonal (0,0) to (1,1) (Campbell,
1994), which is the expected ROC curve for a classifier that labels
instances randomly (Bradley, 1996).
2.2.1. Example
Fig. 1 illustrates an example where a ROC curve, with an

AUC � 0.5, is obtained from a classifier that scores 100 positive
instances with the same mean value as 100 negative instances,
but with a larger variance (specifically, Nð0;1Þ for the negative
class and Nð0;4Þ for the positive). This classifier, is unlikely to be
performing a random labelling of the test instances, as confirmed
by the KS statistic, even though the probability of correct ranking,
and hence AUC, is 0.5. This demonstrates the limitation of AUC in
this context and that the KS test correctly indicates that the nega-
tive and positive distributions differ. Clearly, the KS test and ROC
curves are related as they both utilise the class conditional CDFs:
one finds the maximum difference between them; the other plots
one against the other. However, application of the KS test to the
comparison of different classifiers raises two important questions:
how do we handle multiple class conditional distributions from
multiple classifiers? and how should the scores from the different
classifiers be compared?
3. ROC equivalence using the KS test

Suppose, we have two classifiers, Y and Z, which produce scores
sY ¼ mY ðxÞ and sZ ¼ mZðxÞ over the intervals IY # R and IZ # R

respectively. Further, suppose these scores have continuous distri-
butions with densities f ðsYÞ and gðsZÞ which are zero outside the
intervals IY and IZ . Extending the KS statistic to perform a paired
comparison between the scores sY and sZ requires that they are
mapped to the same interval (Antoch et al., 2010). However, here
our intention is to use the KS test to compare the class dependent
CDF’s produced by the two classifiers. That is, to compare FnðsÞ to
GnðsÞ and FpðsÞ to GpðsÞ, rather than comparing FnðsÞ to FpðsÞ as in
the standard KS test.

Under the null hypothesis of equivalent ROC curves, for any
operating point on ROCY there exists an identical operating point,
with the same TPR and FPR, on ROCZ . Therefore, any threshold
tY 2 IY has an equivalent threshold tZ 2 IZ , i.e.,

8tY 2IY 9 tZ 2IZ where FnðtY Þ¼GnðtZÞ&FpðtY Þ¼GpðtZÞ ð2Þ

As the distribution functions are strictly increasing on IY and IZ ,
there exists an increasing transformation function sðtÞ that maps
IZ ! IY (Antoch et al., 2010) such that FnðtÞ ¼ GnðsðtÞÞ and
FpðtÞ ¼ GpðsðtÞÞ, i.e.,

sðtÞ ¼ G�1
n FnðtÞð Þ ¼ G�1

p FpðtÞ
� �

8t 2 IY ð3Þ

Applying this transformation to the mixture distributions for each
classifier gives,

FðtÞ ¼ pnFnðtÞ þ ppFpðtÞ ¼ G sðtÞð Þ ¼ pnGn sðtÞð Þ þ ppGp sðtÞð Þ ð4Þ

That is, if the ROC curves are equivalent, application of the transfor-
mation sðtÞ will map both classifier’s scores to the same interval
(IY) with identical class conditional and mixture distributions.
Note, (4) assumes the case of a paired comparison, that is different
classifiers evaluated on the same test set (as implied in the defini-
tion of the scores sY and sZ). Indeed, (Berrar and Flach, 2012) have
cautioned against comparing ROC curves when the classifiers were
not trained and tested on the same (paired) data. Importantly, there
is no requirement that equivalent ROC curves behave in exactly the
same manner, only that they agree on the same proportion of neg-
ative and positive instances (Antoch et al., 2010).

In practice the transformation sðtÞ is estimated from a set of
data. That is, from the empirical mixture distribution

ŝðtÞ ¼ bG�1 bF ðtÞ� �
8t 2 IY : ð5Þ

This transformation can then be used to map IZ ! IY enabling the
scores from both classifiers to be directly compared.

sZY ¼ ŝðsZÞ ð6Þ

The transformed scores (sZY ) have the same value and rank order as
sY , but potentially different class labels, as the scores come from dif-
ferent classifiers. In this way, the classifiers are given identical mix-
ture distributions, regardless of the validity of the null hypothesis
and the class conditional distributions are only identical when the
ROC curves are equivalent (when mYðxÞ � mZðxÞ). Put another
way, as the (monotonic) transformation, ŝðtÞ, preserves rank order
sZ ! sZY it does not alter classifier Z’s ROC curve or AUC (Campbell,
1994); it simply maps the scores from both classifiers to the same
interval.

The test for ROC equivalence then consists of two independent
KS tests,

Dn ¼max
sY

FnðsY Þ � GnðsZYÞj j ð7Þ

Dp ¼max
sY

FpðsY Þ � GpðsZYÞ
�� �� ð8Þ

The KS statistics Dn and Dp indicate the maximum distances
between the two classifier’s negative and positive CDFs respec-
tively. These can then be used to calculate the p-value of the ob-
served Dn and Dp and hence accept or reject the null hypothesis
that the distributions (and hence ROC curves) are the same (Press
et al., 2007, Section 14.3.3). The advantage of having two KS tests
applied independently to the negative and positive CDFs is that
the critical values of Dn and Dp are based on the number of instances
in each class. For example, in the case of skewed class priors, the
class conditional distributions will be estimated from significantly
different numbers of instances. Therefore, for a given value of D,



−4 −3 −2 −1 0 1 2 3 40

0.2

0.4

0.6

0.8

1

Score

C
um

ul
at

iv
e 

de
ns

ity

Negative

sY
sZ
sZY

−4 −3 −2 −1 0 1 2 3 40

0.2

0.4

0.6

0.8

1

Score

C
um

ul
at

iv
e 

de
ns

ity

Positive

sY
sZ
sZY

Fig. 3. Class conditional CDFs for classifiers Y (sY ) and Z (sZ); and for Z mapped to
the same interval as Y (sZY ).
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the class with the larger number of instances will have a lower p-
value. Of course, as the null hypothesis now involves two compar-
isons, a Bonferroni correction (or similar) should be applied to
maintain the type I error rate. That is, each individual hypothesis
should be tested at the a=2 level of significance.

3.1. Examples

Fig. 2 demonstrates empirical ROC curves from two classifiers Y
and Z, where Z dominates Y. Clearly, comparing the performance of
these classifiers at any individual operating point, using error rate
or the (TPR, FPR) pair, or over a number of operating points using
AUC, will indicate the superiority of classifier Z. In this example,
the scores from classifier Y are Nð0;1Þ for the negative class and
Nð1;1Þ for the positive. For classifier Z the distributions are un-
changed for the negative class and Nð3;1Þ for the positive. In both
cases there are 100 instances in each class.

Fig. 3 shows the cumulative density functions for the negative
class (top) and positive class (bottom) for classifier scores sY ; sZ

and sZY . For the negative class it shows that originally FnðsYÞ and
GnðsZÞ are similar, but for the positive class FpðsYÞ > GpðsZÞ resulting
in an improved TPR and FPR at all operating points (score thresh-
olds). The superiority of classifier Z is maintained after IZ ! IY
as it can be seen that FnðsYÞ < GpðsZYÞ and FpðsYÞ > GpðsZYÞ at virtu-
ally all operating points (as of course ROCZY � ROCZ). In this case,
both Dn and Dp occurred at the same operating point (score
� 0:7) and so there is one operating point where classifier Z is max-
imally different to Y in both TPR and FPR. We can therefore reject
the null hypothesis that ROCY and ROCZ are equivalent at the
p ¼ 0:05 level of significance.

Fig. 4 demonstrates empirical ROC curves from two classifiers Y
and Z that not only cross, but have the same AUC (0.78). In this
example, the scores from classifier Y are Nð0;1Þ for the negative
class and Nð1; 1

3Þ for the positive. For classifier Z the distributions
are swapped and negated so that they are Nð�1; 1

3Þ for the negative
class and Nð0;1Þ for the positive. This results in the classifiers hav-
ing the same minimum (Bayes) error rate, with TPRY = 1 � FPRZ and
FPRY = 1 � TPRZ. In both cases there are 140 instances in each class.

Fig. 4 shows that we can reject the null hypothesis that ROCY

and ROCZ are equivalent at the p ¼ 0:05 level of significance. The
maximum difference in TPR (Dp) occurs between the operating
points (0.007, 0.615) and (0.2, 0.422). The maximum difference in
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Fig. 2. Empirical ROC curves where classifier Z dominates Y, showing the operating
points related to the KS statistics Dn (�) and Dp (�).

False positive rate (FPR)

Fig. 4. Crossing ROC curves for classifiers Y and Z showing the operating points
related to the KS statistics Dn (�) and Dp (�).
FPR (Dn) between (0.386, 0.986) and (0.579, 0.805). While these
difference occur at the same score for both classifiers, there is no
constraint that they occur at the same TPR or FPR, as in the
Neyman–Pearson method. To determine if classifier Y performs
better than Z depends on whether the application domain requires
that we operate at a high TPR (where Y is likely to be preferred) or
low FPR (where Z is likely to be preferred).

Fig. 5 demonstrates empirical ROC curves from three classifiers
X;Y and Z, where Y and Z are equivalent, but both dominate X. In
this example, the scores from classifiers X;Y and Z are estimated
by merging the posterior probabilities obtained using 10-fold cross
validation (Fawcett, 2006; Bradley, 1997). The classifiers are all of
the same type (quadratic discriminant functions), but are trained
using different feature sub-sets. Specifically, a two-class (Versi-
color, Virginica) version of Fisher’s Iris dataset is used where the
species is predicted: by classifier X using two features only (sepal
length and width); by classifier Y using three features (previous
two plus petal length) and by classifier Z using all four features (pre-
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vious three plus petal width). For simplicity Fig. 5 only shows the
operating points where classifiers Y and Z differ the most. There
are no operating points where X and Y differ significantly and so
on the available data (50 instances per class) they are deemed
equivalent.
4. Discussion

The examples presented in this paper demonstrate that, once
the scores from different classifiers are mapped to the same inter-
val, the KS statistic can be used to test the null hypothesis that
their ROC curves are equivalent. The proposed test consists of mea-
suring the maximum difference between both the positive and
negative CDFs when mapped to the same interval. The advantage
of the method is that the threshold at which this maximum differ-
ence occurs relates to a specific TPR and/or FPR and therefore to
specific operating points on both ROC curves. Therefore, if the null
hypothesis can be rejected the operating points that differ the most
in terms of TPR and FPR can be displayed.

It is of interest here to note the difference between (5) and the
method proposed by Antoch et al., 2010 which tests the null
Hypothesis that the transformations applied to the negative and
positive distributions are equal, i.e.,

snðtÞ ¼ spðtÞ 8t 2 IY : ð9Þ

This requires the development of a bespoke test statistic and, if the
null hypothesis is rejected, does not indicate where on the ROC
curves the classifiers differ. Also, the modification to the KS test pre-
sented here differs from that described in (Campbell, 1994) in that
initially a conventional KS test is used to created confidence inter-
vals on a single ROC curve. Then the KS test is applied to the max-
imum distance between two ROC curves along a line with slope
b ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn=pp

p
, using a bootstrap technique to estimate the p-value.

This joint confidence interval was shown to be ‘‘too loose’’ by
Macskassy and Provost, 2004.

It has been argued that displaying ROC curves with confidence
intervals is more meaningful that p-values (Berrar and Flach,
2012). However, when there are multiple ROC curves to compare,
p-values are of use for automatically detecting equivalent ROC
curves; thereby reducing the number (unique) ROC curves to com-
pare in detail. Again, having a hypothesis test that can indicate on
the ROC curve which operating points are significantly different
can guide this detailed (and application dependent) comparison.

Hand (2009) showed that using AUC to compare classifiers is
equivalent to taking an average of the losses at different thresholds,
using the mixture distribution as a weighting function. He then
went onto argue that the implication of this, is that AUC is ‘‘funda-
mentally incoherent’’ as it depends on the classifier’s score distribu-
tion (effectively FðtÞ and GðtÞ) and so the weight distribution used
to combine different cost ratios varies from classifier to classifier.
However, (4) demonstrates that by applying the transformation,
sðtÞ, the scores from any two classifiers can always be given identi-
cal mixture distributions. In addition, when the ROC curves are
equivalent, this transformation also ensures that the scores have
identical class conditional distributions. Therefore, for equivalent
ROC curves, after the application of the transform the weight distri-
butions become equal and AUC is coherent. When two ROC curves
are not equivalent, the transformation produces identical mixture
distributions, but different class conditionals. In this case, an
additional constraint is required, as per the Neyman–Pearson meth-
od, so that the classifiers are compared at the same sensitivity or
specificity (Hand and Anagnostopoulos, 2012).

It is well known that ROC curves (and AUC) are invariant to any
monotonic transformation, as rank order is preserved (Campbell,
1994). This is also the implication of the equivalence between
AUC and the Wilcoxon-Mann–Whitney test of ranks. Therefore,
provided AUC is estimated independently of the costs, it is always
coherent. Specifically, as Flach et al., 2011 show, AUC is coherent
when estimated using both optimal and non-optimal thresholds.
While this is the implicit choice for calculating AUC (using as many
thresholds as there are test instances) it is often not realistic. For
example, Fig. 4 shows the ‘‘incoherent’’ example of two very differ-
ent ROC curves producing identical AUCs. While they both have the
same overall probability of correct ranking, this probability does
not distinguish a classifier with a high sensitivity (Y) from one with
a high specificity (Z).

Future work could apply extensions of the KS test, such as the
Anderson–Darling statistic, that have been shown to be more sen-
sitive in the tails of this distributions (Press et al., 2007, Section
14.3.4). This may be important to increase the sensitivity of the
proposed ROC equivalence test, as the tails of the distributions
are likely to be where practically important differences between
different classifiers can be found, e.g., when TPR P0.9. It may also
be beneficial to in indicate on the ROC curves all values of Dn and
Dp that exceed the critical value, so that an end-user can see if the
ROC curves differ at an operating point of practical significance.
5. Conclusions

This paper has presented a straight-forward extension of the KS
test that allows two competing ROC curves to be compared for
equivalence. If the curves are found to be not equivalent the method
indicates the operating points where the two ROC curves are most
dissimilar in both TPR and FPR. The proposed KS test was shown to
correctly handle cases where the ROC curves can be distinguished
based on AUC, but also the confounding case of where two different
and crossing ROC curves have the same AUC. Therefore, the test is a
useful addition to the classifier evaluation toolbox.
Acknowledgements

I would like to thank the anonymous reviewers for their con-
structive comments on an earlier draft of this paper. The author
is the recipient of an Australian Research Council Future Fellow-
ship (FT110100623).



A.P. Bradley / Pattern Recognition Letters 34 (2013) 470–475 475
References

Antoch, J., Prchal, L., Sarda, P., 2010. Nonparametric comparison of ROC curves:
Testing equivalence. Nonparametrics Robustness Modern Statist. Inference
Time Ser. Anal. 7, 12–24.

Berrar, D., Flach, P., 2012. Caveats and pitfalls of ROC analysis in clinical microarray
research (and how to avoid them). Briefings Bioinform. 13 (1), 83–97.

Bradley, A.P., 1996. ROC curves and the X2 test. Pattern Recognition Lett. 17 (3),
287–294.

Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30 (7), 1145–1159.

Bradley, A.P., Longstaff, I., 2004. Sample size estimation using the receiver operating
characteristic curve. In: Proceedings 17th International Conference on Pattern
Recognition, vol. 4, pp. 428–431.

Campbell, G., 1994. Advances in statistical methodology for the evaluation of
diagnostic and laboratory tests. Statist. Med. 13 (5–7), 499–508.

Drummond, C., Holte, R.C., 2006. Cost curves: An improved method of visualising
classifier performance. Machine Learn. 65, 95–130.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Lett. 27 (8),
861–874.

Flach, P., Hernandez-Orallo, J., Ferri, C., 2011. A coherent interpretation of AUC as a
measure of aggregated classification performance. In: Getoor, L., Scheffer, T.
(Eds.), Proc. 28th Internat. Conf. on Machine Learning (ICML-11), ICML ’11. ACM,
New York, NY, USA, pp. 657–664.
Hand, D.J., 2005. Good practice in retail credit scorecard assessment. J. Oper. Res.
Soc. 56, 1109–1117.

Hand, D.J., 2009. Measuring classifier performance: a coherent alternative to the
area under the ROC curve. Machine Learn. 77, 103–123.

Hand, D.J., Anagnostopoulos, C., 2012. When is the area under the receiver operating
characteristic curve an appropriate measure of classifier performance? Pattern
Recognition Lett..

Hilden, J., 1991. The area under the ROC curve and its competitors. Med. Decision
Making 11 (2), 95–101.

Krzanowski, W.J., Hand, D.J., 2011. Testing the difference between two
kolmogorovsmirnov values in the context of receiver operating characteristic
curves. J. Appl. Statist. 38 (3), 437–450.

Landgrebe, T.C., Paclik, P., Duin, R.P., Bradley, A.P., 2006. Precision-recall operating
characteristic (P-ROC) curves in imprecise environments In: Proc. 18th Internat.
Conf. on Pattern Recognition, vol. 4, pp. 123–127.

Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an
empirical study. In: Proc. First Workshop on ROC Analysis in AI.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical
Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press.

Swets, J.A., Dawes, R.M., Monahan, J., 2000. Better Decisions Through Science.
Scientific American, pp. 82–87.

Venkatraman, E.S., Begg, C.B., 1996. A distribution-free procedure for comparing
receiver operating characteristic curves from a paired experiment. Biometrika
83 (4), 835–848.


	ROC curve equivalence using the Kolmogorov–Smirnov test
	1 Introduction
	2 Preliminaries
	2.1 ROC curves
	2.2 The KS test
	2.2.1 Example


	3 ROC equivalence using the KS test
	3.1 Examples

	4 Discussion
	5 Conclusions
	Acknowledgements
	References


