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The localization receiver operating characteristic (LROC) curve is a standard method to quantify performance
for the task of detecting and locating a signal. This curve is generalized to arbitrary detection/estimation tasks
to give the estimation ROC (EROC) curve. For a two-alternative forced-choice study, where the observer must
decide which of a pair of images has the signal and then estimate parameters pertaining to the signal, it is
shown that the average value of the utility on those image pairs where the observer chooses the correct image
is an estimate of the area under the EROC curve (AEROC). The ideal LROC observer is generalized to the
ideal EROC observer, whose EROC curve lies above those of all other observers for the given detection/
estimation task. When the utility function is nonnegative, the ideal EROC observer is shown to share many
mathematical properties with the ideal observer for the pure detection task. When the utility function is con-
cave, the ideal EROC observer makes use of the posterior mean estimator. Other estimators that arise as spe-
cial cases include maximum a posteriori estimators and maximum-likelihood estimators. © 2007 Optical So-
ciety of America

OCIS codes: 110.3000, 110.2960.
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. INTRODUCTION
he evaluation of imaging systems based on observer per-

ormance for a task that combines detection and estima-
ion has been studied extensively when the parameters to
e estimated specify the location of a signal in an image.
useful figure of merit in this situation is the ALROC,

he area under the localization receiver operating charac-
eristic (LROC) curve [1,2]. Recently, Khurd and Gindi
3,4] determined the ideal LROC observer, whose LROC
urve lies above those of all other observers for the given
ask. Of course, this also implies that the ideal LROC ob-
erver maximizes the ALROC for the given task. For a
iven imaging system, the ideal ALROC can be used as a
gure of merit for the optimization of system parameters

n order to improve detection and localization perfor-
ance.
We are proposing a general framework, the estimation

OC curve (EROC), for the evaluation of observers on
ore general combined detection and estimation tasks.
e define the EROC curve for the detection of a signal

nd the estimation of a set of signal parameters. This
urve is a straightforward generalization of the LROC
urve. The location of the signal is replaced with an arbi-
rary set of signal parameters to be estimated. In addi-
ion, the binary correct-localization function, which is
sed in LROC analysis to determine whether a location
stimate is within the tolerance limit, is replaced with a
tility function, which measures the usefulness of a par-
icular estimate given the true parameter vector. The ex-
ected utility for the true-positive detections may then be
1084-7529/07/120B91-8/$15.00 © 2
lotted versus the false-positive fraction as the detection
hreshold is varied to generate an EROC curve.

We will show how the area under the EROC curve
AEROC) is related to a two-alternative forced-choice
2AFC) test. For this 2AFC test, the observer is shown
wo images, one of which has the signal. The observer
ust decide which image has the signal and then esti-
ate the parameter vector for that signal. When the ob-

erver picks the wrong image, the score for that pair is
ero. When the observer picks the right image, the score
or that pair is the utility of the estimate of the parameter
ector as compared with the true parameter vector. The
verage of these scores over a large number of trials is an
stimate of the AEROC for this observer.

We next formulate the ideal EROC observer and study
ts properties. This is a mathematical observer for a
etection/estimation task whose EROC curve lies above
hose of all other observers for the given task. The ideal
bserver for a pure detection task requires full knowledge
f the probability distributions of the data under the
ignal-absent and signal-present hypotheses. Similary, for
he detection/estimation task, the ideal observer must
now the distribution of the data under the signal-absent
ypothesis and the joint distribution of the data and sig-
al parameters under the signal-present hypothesis. If
hese distributions are known and the utility function is
pecified, then the ideal EROC observer uses them to
ompute a test statistic, to compare with a threshold for
he detection step, and to obtain an estimate of the signal
arameters. This observer maximizes the AEROC for the
007 Optical Society of America
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iven task, and this maximum value may be used as a fig-
re of merit for system or reconstruction algorithm de-
ign.

For the pure detection task, the ideal observer calcu-
ates the likelihood ratio for a test statistic. This statistic
ossesses certain mathematical properties that lead to al-
ernative expressions [5,6] for the ideal AUC, the area un-
er the ROC curve for the ideal observer, in terms of mo-
ents of the likelihood ratio. These alternative

xpressions in turn lead to upper and lower bounds on,
nd approximate expressions for, the ideal AUC [7,8].
hese bounds and approximations can also be computed

rom certain moments of the likelihood ratio. When the
tility function is nonnegative, the ideal EROC observer
xhibits similar mathematical properties, which in turn
ead to bounds and approximations for the ideal AEROC
n terms of moments of the detection test statistic. An-
ther result of the similarity in the mathematics between
hese two ideal observers is that the ideal AEROC can be
pproximated, for a weak signal, by an expression involv-
ng a generalization of the Fisher information matrix. A
imilar Fisher information approximation has been de-
ived for the ideal AUC in the pure detection context
9,10]. We will present details of these alternative expres-
ions, bounds, and approximations below.

Finally, we will examine some special cases of the ideal
ROC observer. When the utility function is very narrow,

he detection statistic becomes a scanning likelihood ra-
io, and the estimator becomes a maximum a posteriori
MAP) or a maximum-likelihood (ML) estimator. When
he utility function is symmetric and concave, the estima-
or is the posterior mean of the parameter, and the test
tatistic is a likelihood-weighted average utility of the es-
imate. For a narrow utility function and normal distribu-
ion of the data, the detection test statistic is a scanning
otelling observer, and the estimator could be called a

canning linear estimator. These results show that many
ommon detection and estimation strategies are paired
ogether as optimal EROC observers when the utility
unction satisfies certain constraints.

. EROC CURVE
n observer performing a combined detection and estima-

ion task is given a data vector g that is drawn from ei-
her a signal-absent ensemble with probability density
r�g �H0� or a signal-present ensemble with probability
ensity pr�g �� ,H1�. The symbol � represents a parameter
ector associated with the signal. This parameter vector
ay have variable dimensions to accommodate situations
here the number of scalar parameters that specify the

ignal may vary. For example, the parameter vector may
e the number of small lesions in an image and their lo-
ations. In this case, the dimension of the parameter vec-
or is twice the number of lesions (for a two-dimensional
mage) plus one for the number of lesions.

Part of the observer’s task is to decide whether the sig-
al is present or absent. If we assume that the observer is
ot subject to internal noise, then this decision can be re-
uced in the usual way [5] to the comparison of a test sta-
istic T�g� with a threshold T0. If T�g��T0, then the ob-
erver declares the signal to be present. Otherwise, the
ignal is declared to be absent. For those data vectors
here the observer decides that the signal is present, an
stimate �̂�g� of the parameter � must be produced in or-
er to complete the task.
The utility of the estimate �̂�g� is denoted by u��̂�g� ,��

hen the signal is actually present and the true param-
ter vector is �. In general, we would expect this function
o have high values when the estimate is close to the true
arameter vector and low values when it is far from the
rue parameter vector. The choice of the utility function
ill affect the EROC curve for the given observer and

hould be based on the value of a good estimate. In gen-
ral, whenever parameter estimation is involved, a utility
unction (or its opposite, a cost function) must be specified
n order to measure the performance of an estimator.
ater, we will examine some consequences of making
ore specific assumptions about the shape of the utility

unction.
To plot the EROC curve, we define the false-positive

raction at a given threshold T0 in the usual way as

PFP�T0� =� p�g�H0�step�T�g� − T0�dg, �1�

here the integration in this equation is over all of data
pace. Similar integrals in succeeding equations will also
e over all of data space unless otherwise specified. We
an also write the above expression using expectations

PFP�T0� = �step�T�g� − T0��g�H0
. �2�

his number is the probability of deciding that the signal
s present when it is absent and is the abscissa of the
oint on the EROC curve corresponding to the threshold
alue T0. For the corresponding ordinate of this point on
he curve, we use the expected utility for those data vec-
ors where the estimation occurs and the signal is
resent, i.e., the true-positive fraction. To compute this
xpectation, we need the prior distribution pr��� on the
ignal parameter vector, since this is an unknown random
ector. The expected utility for the true-positive fraction
s given by

UTP�T0� =�� pr���pr�g��,H1�u��̂�g�,��

�step�T�g� − T0�dgd�, �3�

here the outer integral is over all of parameter space.
imilar integrals in subsequent equations will also be
ver all parameter space unless otherwise specified. Us-
ng the angle bracket notation, the ordinate may be writ-
en as

UTP�T0� = �u��̂�g�,��step�T�g� − T0��g,��H1
. �4�

plot of UTP�T0� versus PFP�T0� as the threshold is varied
enerates the EROC curve [11]. Each point on the EROC
urve gives the expected utility of our estimate of the pa-
ameter vector for the true-positive cases at a given false-
ositive fraction.
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. AREA UNDER THE EROC CURVE
he area under the EROC curve is given by

AEROC =� UTP�T0�dPFP�T0�. �5�

he range of integration here is the range of values of the
est statistic T0. The AEROC can be used as a figure of
erit for the observer on the combined detection and es-

imation tasks. By taking the derivative of the false-
ositive fraction with respect to the threshold, we arrive
t an alternative expression for the AEROC:

AEROC =� UTP�T�g��p�g�H0�dg = �UTP�T�g���g�H0
.

�6�

One useful property of the AEROC as a figure of merit
s that it can be computed from a 2AFC test. This fact can
e derived from Eq. (7) by writing out the expected utility
nside the angle brackets:

AEROC = ��u��̂�g��,��step�T�g�� − T�g���g�,��H1
�g�H0

,

�7�

here the inner expectation is over the joint distribution
f the data vector and the parameter vector under the
ignal-present hypothesis. For the 2AFC test, the ob-
erver is shown a large number of pairs of data vectors or
mages, with each pair consisting of a signal-absent image
nd a signal-present image. The observer must decide
hich of the pair of images is from the signal-present en-

emble and estimate the parameter vector for that image.
or the pairs where the correct image was chosen, the
tility of the estimate as compared with the true value is
omputed. These utility values are then summed, and the
um is divided by the total number of image pairs. The
nd result is an estimate of the AEROC for this observer.

. IDEAL EROC OBSERVER
nother useful property of the EROC curve is that there

s an ideal EROC observer for any given detection/
stimation task and utility function. The EROC curve for
his ideal observer lies above all others for the given prob-
bility distributions and utility function. Of course, this
mplies that the AEROC for this ideal observer is the

aximum possible; therefore, this ideal AEROC can be
sed as a figure of merit for an imaging system on the
iven detection/estimation task relative to the specified
tility function.
To define the test statistic and estimator for the ideal

ROC observer, we first define a conditional likelihood ra-
io as

��g��� =
pr�g��,H1�

pr�g�H0�
. �8�

he ideal EROC observer test statistic is given by the
aximum value of a likelihood-ratio-weighted average of

he utility function:
TI�g� = max
��
	� pr�����g���u���,��d�
 . �9�

his integral could also be viewed as a utility-weighted
verage of the conditional likelihood ratio. A third inter-
retation is that the integral is the weighted inner prod-
ct of the conditional likelihood with the utility as a func-
ion of its second argument. This will be maximized when
he first argument �� is such that these two functions
lign as closely as possible as vectors in the weighted Hil-
ert space defined by the prior probability on the param-
ter vector. The ideal EROC observer estimator is actu-
lly computed along with the test statistic:

�̂I�g� = arg max
��
	� pr�����g���u���,��d�
 . �10�

his equation implies that we may also write the ideal
est statistic in the form

TI�g� =� pr�����g���u��̂I�g�,��d�, �11�

here the ideal estimator is defined by Eq. (10). This form
s useful for studying the mathematical properties of the
deal EROC test statistic.

The proof that these expressions give the ideal EROC
bserver is an easy adaptation of the proof presented by
hurd and Gindi for the ideal LROC observer [3,4]. For a
iven value P of the false-positive fraction, we have a con-
trained maximization problem for UTP�T0�, considered as
functional of the test statistic T�g� and the estimator

ˆ �g�, and as a function of the threshold T0. By using a
agrange multiplier �, this optimization problem is
quivalent to choosing the functions �̂�g� and T�g� and
he numbers T0 and � that maximize

�� pr���pr�g��,H1�u��̂�g�,��step�T�g� − T0�d�dg

− �	� p�g�H0�step�T�g� − T0�dg − P
 . �12�

his quantity may be written as

�	� pr�����g���u��̂�g�,��d� − �

�step�T�g� − T0��

g�H0

− �P. �13�

or a fixed function T�g� and fixed numbers T0 and �, the
stimator in Eq. (10) maximizes this quantity. Now that
e have the estimator, we choose T�g� and T0 so that

step�T�g� − T0� � 0 ⇔� pr�����g���u��̂�g�,��d� − � � 0.

�14�

his is most easily achieved by using Eq. (9) for the test
tatistic and setting �=T0. Finally, the threshold T0 is
hosen so that the false-positive fraction is P. Of course,
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s with ordinary detection tasks, any monotonic transfor-
ation applied to this test statistic and threshold will
ork just as well. This derivation does not tell us whether
ny ideal EROC observer must use a test statistic that is
monotonic transformation of Eq. (9).

. ALTERNATE EXPRESSIONS FOR THE
DEAL AEROC
ne interesting result of the definition of the ideal EROC
bserver is that the AEROC for this observer can be com-
uted by sampling independent pairs from the signal-
bsent ensemble:

AEROCI = ��TI�g��step�TI�g�� − TI�g���g��H0
�g�H0

. �15�

he proof of this statement has been given elsewhere [11]
nd is summarized in the Appendix. If we have a good
odel for the distribution of the ideal EROC test statistic

nder the signal-absent hypothesis, then the equation

AEROCI = ��TIstep�TI − TI���TI��H0
�TI�H0

�16�

an be used to estimate the ideal AEROC. This equation
s similar to an expression for the AUC of the ideal ob-
erver for a pure detection task,

AUCI = ���step�� − �������H0
���H0

, �17�

here ��g� is the likelihood ratio. Equation (17) leads to
ther equalities and inequalities that relate the ideal
UC to various moments of the likelihood ratio under the
ignal-absent hypothesis [5–8]. Analogous relations can
e derived for the AEROC and signal-absent moments of
I.
For example, evaluating the step function immediately

ives

AEROCI =�
−�

� �
TI�

�

TIpr�TI�H0�pr�TI��H0�dTIdTI�. �18�

f the lower limit in the inner integral is extended to
egative infinity, then the double integral gives the mean
alue of TI. This means that Eq. (18) can also be written
s

�TI�TI�H0
− AEROCI =�

−�

� �
−�

TI�
TIpr�TI�H0�pr�TI��H0�dTIdTI�.

�19�

his equation is meaningful as long as the mean value of
he ideal test statistic is finite under the signal-absent hy-
othesis.
Symmetric versions of these two equations can be de-

ived also. First, we interchange the order of integration
n Eq. (18) and interchange the integration variables to
btain

AEROCI =�
−�

� �
−�

TI�
TI�pr�TI��H0�pr�TI�H0�dTIdTI�.

�20�

hen we add this equation to Eq. (18) and divide by 2. The
esult is
EROCI

=
1

2�−�

� �
−�

�

max�TI,TI��pr�TI�H0�pr�TI��H0�dTIdTI�.

�21�

similar procedure with Eq. (19) leads to

�TI�TI�H0
− AEROCI =

1

2�−�

� �
−�

�

min�TI,TI��

�pr�TI�H0�pr�TI��H0�dTIdTI�.

�22�

ither of these last two equations gives us the lower
ound

1
2 �TI�TI�H0

� AEROCI. �23�

e will assume that the ideal AEROC is a finite number.
his lower bound then implies that the mean value of the

deal test statistic is also finite.

. SPECIAL CASES
e will summarize briefly some special cases of the ideal
ROC observer. When the utility function is ����−��, the

deal EROC observer uses MAP estimation. In this case,
e have

TI�g� = max
�
	pr�g,��H1�

pr�g�H0� 
 , �24�

�̂I�g� = arg max
�


pr���pr�g��,H1��. �25�

hese results show that MAP estimation is close to opti-
al in the EROC sense when close tolerances are re-

uired for the parameter estimation.
If, in addition to the � utility function, we also have a

at prior on the parameters, then the ideal EROC ob-
erver uses ML estimation

TI�g� = max
�


��g����, �26�

�̂I�g� = arg max
�


pr�g��,H1��. �27�

n this case, the decision statistic is the conditional like-
ihood ratio at the estimated parameter value. These
quations show that ML estimation and what we will call
likelihood windowing” are close to optimal in the EROC
ense when we have close tolerances for our estimates
nd complete ignorance about the true parameter values.
If we define a Bayesian cost function to be the negative

f our utility function, then our ideal EROC estimator
lso minimizes the Bayesian risk. This means that, under
ery general conditions on the utility function and the
osterior density on the parameter vector [12], the poste-
ior mean estimator
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�̂I�g� =� �pr���pr�g���d� �28�

s the ideal EROC estimator with the corresponding test
tatistic

TI�g� =� pr�����g���u��̂I�g�,��d�. �29�

n example of a set of such conditions is the following:
he utility function is a concave symmetric function of the
ifference of the parameter vectors, and the posterior dis-
ribution of the parameters is symmetric about its mean.
he concavity of the utility function implies that it cannot
e positive unless the range of each parameter is
ounded. An advantage of this type of utility function is
hat we do not need to perform the maximization calcula-
ion to compute the test statistic or the estimator.

Finally, consider the case of a normal probablity distri-
ution for the data

pr�g�H0� =
1

��2��M det�K�
exp�−

1

2
�g − b�†K−1�g − b�� ,

�30�

ith the signal in the mean

pr�g��,H1� = pr�g − s��H0�. �31�

gain, we will assume a � utility function and a flat prior.
he decision statistic in this case can be replaced with its

ogarithm, which is given by

tI�g� = max
�


s�
†K−1�g − b� − 1

2s�
†K−1s�� . �32�

he corresponding estimator is given by

�̂I�g� = arg max
�


s�
†K−1�g − b� − 1

2s�
†K−1s�� . �33�

ote that, in contrast to the ideal AUC observer in this
ituation, the ideal EROC observer does not employ a lin-
ar estimator or test statistic due to the maximization
tep. Instead, an affine function of the data is scanned in
he parameter space. The decision test statistic could be
alled a scanning Hotelling observer and is optimal in the
ROC sense with the assumptions given above.

. POSITIVE UTILITY FUNCTIONS
f the utility function is positive, then the ideal decision
est statistic will be positive and the ideal EROC observer
hares many properties with the likelihood ratio, which is
lso necessarily a positive quantity. For example, the
deal AEROC may be expressed in terms of complex mo-

ents of the ideal EROC test statistic as

AEROCI = �TI�TI�H0
−

1

4�
�

−�

�

��TI
1/2−i	�TI�H0

�2
d	

	2 + 1
4

.

�34�

his equation is not obvious, and the steps leading to it
nvolve the Fourier transform and contour integration. A
etailed derivation of this equation has been presented
lsewhere [11] and is summarized in the Appendix. Equa-
ion (34) can be used to relate the ideal AEROC to Fisher
nformation when the signal is weak. This relation will be
iscussed below.
Another way to derive Eq. (34), and other relations that

e will soon see, is to define probability distributions

pr0�g� = pr�g�H0�,

pr1�g� =
TI�g�pr�g�H0�

�TI�g��g�H0

. �35�

he second PDF here is a purely artificial mathematical
onstruction that is nevertheless useful for studying the
athematical properties of the ideal AEROC. If we form a

ikelihood ratio with these two densities, we have

��g� =
pr1�g�

pr0�g�
=

TI�g�

�TI�TI�H0

. �36�

herefore, the normalized ideal EROC test statistic is a
ikelihood ratio, albeit for an artificially constructed de-
ection task. The AUC for this likelihood ratio is related to
he ideal AEROC via

AEROCI =�
−�

� �
TI�

�

TIpr�TI�H0�pr�TI��H0�dTIdTI�

= �TI�TI�H0�
−�

� �
��

�

�pr���H0�pr����H0�d�d��

= �TI�TI�H0
AUC�. �37�

his equation implies that there are many properties of
he ideal AUC that transfer over to the ideal AEROC.

As a first example of the use of Eq. (37), consider the
ollowing equation for the AUC [7]:

AUC� = 1 −
1

2�0

�

FPF2���d�, �38�

here

FPF��� =�
�

�

pr����H0�d�� = PFP��TI�TI�H0
��. �39�

etting T= �TI�TI�H0
�, we obtain

AEROCI = �TI�TI�H0
−

1

2�0

�

PFP
2 �T�dT. �40�

his equation is in fact related to Eq. (34) by Parseval’s
heorem for the Mellin transform.

There are several inequalities that can be derived from
he various expressions for the ideal AEROC presented
bove. One example that follows easily from Eq. (34) is

�TI�TI�H0
− 1

2 �TI
1/2�TI�H0

2
� AEROCI � �TI�TI�H0

. �41�

y the Schwarz inequality, we can show that this lower
ound is an improvement over the one given above in Eq.
23) for a general utility function.

We can obtain another inequality by defining a function
��� by



A

N
m
b
i
i
s
a
�

f
t
t

T
t

m
f
n
t
c
i
a
i

8
I
T
F
n
w
e
p
t
p

U
c

w

W
t

c

w
r

W
T

T
o
e
t

a

W

i

F
i

W

B96 J. Opt. Soc. Am. A/Vol. 24, No. 12 /December 2007 Eric Clarkson
exp�
���� = �TI
��TI�H0

= �TI�TI�H0

� ������H0
. �42�

dapting an inequality in [8] for the ideal AUC, we have

− 2
� 1
2� � − ln�2��TI�TI�H0

− AEROCI�� � − 2
� 1
2�

+ � 1
2
�� 1

2��1/2. �43�

ote that the function in the center of this inequality is a
onotonically increasing function of AEROCI. The lower

ound in Eq. (43) is actually the same as the lower bound
n Eq. (41). The upper bound in Eq. (43) is a considerable
mprovement over the upper bound in Eq. (41). If 
��� is
lowly varying near �= 1

2, then Eq. (43) will give a good
pproximation to the ideal AROC in terms of the �=1 and
= 1

2 moments of the ideal EROC test statistic.
A different approximation to the ideal AEROC follows

rom the G�0� approximation to the ideal AUC [5]. When
ranslated into the notation used here, this approxima-
ion yields

exp�− 
�1��AEROCI � 1
2 + 1

2 erf
 1
4�
�1� − 2
� 1

2��1/2� .

�44�

he same Schwarz inequality mentioned above shows
hat the quantity in the square root is positive.

In summary then, all of the inequalities and approxi-
ations for ideal AUC observers have their counterparts

or ideal AEROC observers when the utility function is
onnegative. This fact, together with the 2AFC interpre-
ation of the AEROC, means that much of the mathemati-
al machinery that has been developed to estimate the
deal AUC [13] and test these estimates for bias and vari-
nce [14] carries over with minor modifications to the
deal AEROC when the utility function is positive.

. IDEAL AEROC AND FISHER
NFORMATION
he relation between the ideal AUC for weak signals and
isher information has been worked out for general sig-
al parameters in detail elsewhere [9,10]. For simplicity,
e will confine ourselves to the signal amplitude param-
ter. Let 	 be the signal amplitude, which is fixed, small,
ositive, and not one of the parameters that we are trying
o estimate. Then pr�g �� ,H1� is replaced with
r�g �	 ,� ,H1� throughout, and Eq. (35) is modified to

pr0�g� = pr�g�H0� � pr�g�0�,

pr1�g� =
TI�g�	�pr�g�H0�

�TI�g�	��g�H0

� pr�g�	�. �45�

nder these circumstances, the ideal AUC for the artifi-
ial detection task is given to lowest order in 	 by

AUC��	� � 1
2 + 1

2 erf� 1
2F0

1/2	� , �46�

here F is the Fisher information
0
F0 =�	 d

d	
ln�pr�g�	��


	=0

2 �
g�H0

. �47�

e want to use this to obtain the lowest-order approxima-
ion for the ideal AEROC when the signal is weak.

To compute this Fisher information, we start with the
onditional likelihood

��g�	,�� =
pr�g�	,�,H1�

pr�g�H0�
,

hich now depends on the signal amplitude, and the cor-
esponding ideal AEROC test statistic

TI�g�	� =� pr�����g�	,��u��̂I�g�	�,��d�. �48�

e will assume that � is an ordinary vector parameter.
he derivative of the test statistic is

d

d	
TI�g�	� =� pr���� d

d	
��g�	,���u��̂I�g�	�,��d�

+ �d�̂I�g�	�

d	
� · ����� pr�����g�	,��

�u���,��d��
��=�̂I�g�	�

. �49�

he last term in the square brackets is zero by definition
f the ideal EROC estimator. When 	=0, the ideal EROC
stimate is independent of the data. We will call this es-
imate �0. Therefore,

� d

d	
TI�g�	��

	=0

=
� pr�����d/d	�pr�g�	,�,H1��	=0u��0,��d�

pr�g�H0�
, �50�

nd

� d

d	
�TI�g�	��g�H0�

	=0

= �� d

d	
TI�g�	��

g�H0

�
	=0

= 0.

�51�

e also have

�TI�g�	��	=0 =� pr���u��0,��d� = ū0, �52�

n which the constant on the right is defined.
Now we are ready to put the pieces together to compute

0. After some rearranging of integrals, we find that an
mportant function is the conditional score, defined as

s�g��� = 	 d

d	
ln�pr�g�	,�,H1��


	=0

. �53�

e may now write the derivative in Eq. (50) as
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� d

d	
TI�g�	��

	=0

=� pr���s�g���u��0,��d�. �54�

he function s�g ��� may be regarded as a random func-
ion of �; in other words, a random process on the param-
ter space. The random nature of this process is due to
he random vector g. For the mean of this random pro-
ess, we have

�s�g����g�H0
= 0.

his implies that the following expectation is the covari-
nce for this random process:

F0��,��� = �s�g���s�g�����g�H0
. �55�

his function might be called a Fisher information kernel
nd generalizes the standard notion of the Fisher infor-
ation. Finally, the Fisher information that we seek is

iven by the expectation

F0 = �u��0,��F0��,���u��0,�����,��. �56�

his number is necessarily nonnegative since the covari-
nce operator of a random process is a nonnegative defi-
ite operator. With this value for F0, and using Eqs. (51)
nd (54), we have, to lowest order in the signal amplitude,

AEROCI � ū0� 1
2 + 1

2 erf� 1
2F0

1/2	�� , �57�

or weak signals. If we plot the ideal AEROC versus sig-
al amplitude, this equation tells us that the slope is de-
ermined by ū0 and F0. This can be used to relate the
deal AEROC to the ideal AUC for the pure detection task
hen the signal is weak.

. CONCLUSIONS
he EROC curve is a straightforward generalization of
he LROC curve to the task of detecting a signal and es-
imating an arbitrary parameter vector associated with it.
he use of a general utility function also takes us beyond
he standard LROC paradigm. The relation between
EROC and 2AFC studies provides an easy way to mea-
ure observer performance, as measured by the AEROC,
n combined detection/estimation tasks.

The formulas for the ideal EROC observer are also easy
eneralizations of those for the ideal LROC observer. The
deal AEROC can, therefore, be computed as a figure of

erit that is task dependent but independent of any par-
icular detection/estimation algorithm. Of course, this fig-
re of merit also depends on the choice of utility function.
There is a relation between the ideal AEROC, when the

tility function is positive, and the ideal AUC for an arti-
cially constructed detection task. The bounds and ap-
roximations derived from this relation allow us to import
any of the methods that have been developed to com-

ute the ideal AUC to the computation of the ideal
EROC. In particular, for weak signals, the ideal AEROC
an be approximated from a Fisher information kernel to
owest order in the signal amplitude.

Finally, with particular choices for the prior and the
tility function, many commonly used detection test sta-
istics and estimators turn up as special cases of the ideal
ROC observer. This gives conditions under which many
opular detection algorithms and parameter estimators
re optimal in the EROC sense.

PPENDIX A
. Proof of Equation (15)
irst, we want to prove that

AEROCI = ��TI�g��step�TI�g�� − TI�g���g��H0
�g�H0

. �A1�

o see why this equation is true, we start with

TI�g�� =� pr�����g����u��̂I�g��,��d�. �A2�

his expression then gives us

�TI�g��step�TI�g�� − TI�g���g��H0

= �u��̂�g��,��step�T�g�� − T�g���g�,��H1
. �A3�

n the right in this equation is the inner expectation in
he 2AFC expression for the ideal AEROC in Eq. (7).
ince the outer expectations in the two expressions for
he ideal AEROC are the same, this shows their equiva-
ence.

. Proof of Equation (34)
or a nonnegative utility function, we may define an
quivalent test statistic by

t = ln�TI�. �A4�

hen the ideal AEROC is given by

AEROCI = ��exp�t��step�t� − t��t�H0
�t��H0

. �A5�

he following chain of equalities leads to an expression
or the ideal AEROC in terms of complex moments of TI.

e start with the characteristic function

�t�
� = �exp�− 2�i
t���t�H0
�A6�

nd write the ideal AEROC as an integral in frequency
pace

AEROCI =�
−�

�

�t�
���t�
 −
1

2�i��*�1 � 2��
�

+ P
1

2�i
�d
. �A7�

valuating the delta function gives

AEROCI = 1 � 2��t�−
1

2�i��*

+
1

2�i
P�

−�

�

�t�
�

���t�
 −
1

2�i��*d




. �A8�

n terms of the ideal test statistic TI, this expression be-
omes
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AEROCI = 1 � 2�TI�TI�H0

+
1

2�i
P�

−�

�

�TI
−2�i
�TI�H0

�TI
−2�i
+1�TI�H0

*
d




.

�A9�

f we let �=−2�
, the integral can be written as

AEROCI = 1 � 2�TI�TI�H0
−

1

2�i
P�

−�

�

�TI
i��TI�H0

�TI
1−i��TI�H0

d�

�
.

�A10�

This last integral can be viewed as a contour integral
long the imaginary axis. We shift the contour one-half
nit to the right in order to dispense with the principal
alue. The integrand is analytic on the strip between
hese two contours due to two inequalities. The first in-
quality is

��TI
x+iy�TI�H0

� � �TI
x�TI�H0, �A11�

hich is true for any x and y, and the second inequality is

�TI
x�TI�H0

� 1 + �TI�TI�H0, �A12�

hich is true for 0�x�1. When we shift the contour, i� is
eplaced by 1

2 + i	. After taking into account the pole at
he origin and then keeping only the real part, we arrive
t

AEROCI = �TI�T�H0
−

1

4�
�

−�

�

�TI
1/2+i	�TI�H0

�TI
1/2−i	�TI�H0

d	

	2 + 1
4

.

�A13�
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