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Abstract The Receiver Operating Characteristic (ROC) curve is one of the most
widely used visual tools to evaluate performance of scoring functions regarding their
capacities to discriminate between two populations. It is the goal of this paper to
propose a statistical learning method for constructing a scoring function with nearly
optimal ROC curve. In this bipartite setup, the target is known to be the regression
function up to an increasing transform, and solving the optimization problem boils
down to recovering the collection of level sets of the latter, which we interpret here
as a continuum of imbricated classification problems. We propose a discretization
approach, consisting of building a finite sequence of N classifiers by constrained em-
pirical risk minimization and then constructing a piecewise constant scoring function
sN(x) by overlaying the resulting classifiers. Given the functional nature of the ROC
criterion, the accuracy of the ranking induced by sN(x) can be conceived in a variety
of ways, depending on the distance chosen for measuring closeness to the optimal
curve in the ROC space. By relating the ROC curve of the resulting scoring function
to piecewise linear approximates of the optimal ROC curve, we establish the con-
sistency of the method as well as rate bounds to control its generalization ability in
sup-norm. Eventually, we also highlight the fact that, as a byproduct, the algorithm
proposed provides an accurate estimate of the optimal ROC curve.
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1 Introduction

In recent years, statistical learning theory has witnessed impressive developments.
This approach was mainly developed through the study of empirical risk minimiza-
tion procedures and algorithms for standard problems such as classification and re-
gression problems. A learning method can be described by a risk measure and some
data-based optimization principle. In classification, the optimization criteria are risk
functionals, such as the classification error or its convex surrogates, which take scalar
values. However, in many important applications such as medical diagnosis, credit
risk screening or information retrieval, performance is monitored by a function-
valued criterion. Function-like performance measures, such as the Receiver Oper-
ating Characteristic (ROC), see [19, 33], or the Precision-Recall curve (see [12] and
the references therein), allow us to take into account various constraints in the deci-
sion process. In the present paper, we focus on scoring applications where the prob-
lem is to rank the data from binary label information. This problem is also known as
the bipartite ranking problem in the machine learning literature. We will also focus
on the ROC curve which permits, through a graphical display, judging rapidly how a
scoring rule discriminates the two populations (positive against negative). A scoring
rule whose ROC curve is close to the diagonal line does not discriminate at all, while
the one lying above all others is the best possible choice. From a statistical learning
perspective, risk minimization (or performance maximization) strategies for bipartite
ranking have been based mostly on a popular summary of the ROC curve known as
the Area Under the ROC Curve (AUC—see, e.g., [1, 8, 20, 32]), which corresponds
to the L1-metric on the space of ROC curves.

In the present paper, we propose a statistical methodology to estimate the optimal
ROC curve in a stronger sense than the AUC, namely in the supremum norm. At the
same time, we will explain how to build a nearly optimal scoring function. Our ap-
proach is based on a simple observation: optimal scoring functions can be represented
from the collection of level sets of the regression function. Since each of these level
sets can be seen as the solution of a binary classification problem with asymmetric
misclassification costs, the bipartite ranking problem may be viewed as a ‘continuum’
of binary classification problems. The core of the method described relies on three
steps: (i) discretization of the problem, (ii) estimation of a few well-chosen level sets
of the regression function where the levels are fixed in advance, and (iii) combination
of the estimated classification rules to build a scoring rule with nearly optimal ROC
curve. The key point of level sets estimation may be addressed in several ways. In
a nonparametric setup, regression or density level sets can be estimated with plug-in
methods (see, e.g., [2, 6, 24, 34]). Here, we follow the work in [29] on minimum-
volume set estimation and adapt it to our problem. We provide rates of convergence
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with which a point of the optimal ROC curve can be recovered according to this
principle. The method leads to a practical ranking algorithm taking advantage of the
discretization of the original problem. From the resulting classifiers and their related
empirical errors, we show how to build a linear-by-part estimate of the optimal ROC
curve and a quasi-optimal piecewise constant scoring function. Rate bounds in terms
of sup-norm in the ROC space for these procedures are also established.

The rest of the paper is organized as follows. In Sect. 2, we present the scoring
problem and recall key notions of ROC analysis. In Sect. 3, we describe the approach
of overlaying classifiers used to approximate optimal scoring rules and introduce the
RANKOVER algorithm. We study statistical performance of the output of this algo-
rithm in Sect. 4 and derive the rate of convergence of an empirical estimate to the
optimal ROC curve. In Sect. 5, we consider the subproblem of constrained empir-
ical risk minimization. The main strategy described as empirical minimum-volume
set estimation is provided, fast rates of convergence are established, and alternative
methods are also discussed. Proofs are postponed to the Appendix.

2 The Scoring Approach to Bipartite Ranking

In this section, we first set out the notations and recall the key concepts related to the
bipartite ranking problem that will be needed throughout the paper.

2.1 Notations and Setup

Let X be a measurable space which can be thought of as a high-dimensional Euclid-
ean space. Consider a random pair (X,Y ) over X × {−1,+1}, where X is called
the descriptor and Y is the binary label. We denote by P = (μ,η) the distribution
of (X,Y ), where μ is the marginal distribution of X and η is the regression function
(up to an affine transformation): η(x) = P{Y = 1 | X = x}, x ∈ X . We will denote
by p = P{Y = +1} the expected proportion of positive labels. We denote by G(dx)

and H(dx) the conditional distributions of the random variable X given Y = +1
and given Y = −1, respectively. Hereafter, we assume that these distributions are
equivalent and absolutely continuous with respect to Lebesgue measure. We point
out that, equipped with these notations, one may write μ = pG + (1 − p)H and
dG/dH(x) = (1 − p)η(x)/(p(1 − η(x))).

The scoring problem A possible and natural approach to ranking the objects x ∈ X
is to map them onto R through a certain measurable function s : X → R and use the
natural order on the real line. We call such a function s a scoring function, and the sta-
tistical challenge is to build an s from sampling data Dn = {(X1, Y1), . . . , (Xn,Yn)}
which mimics the ranking induced by the regression function η. Hence, ideally, the
higher the score s(X) is, the more likely one should observe Y = +1. We natu-
rally define the class of optimal scoring functions for bipartite ranking as the class
of strictly increasing transforms of the regression function η.

Definition 1 (Optimal scoring functions) The class of optimal scoring functions is
given by the set

S ∗ = {
s∗ = T ◦ η

∣∣ T : [0,1] → R strictly increasing
}
.
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The statistical problem consists in finding a scoring function as “close” as possible
to the class S ∗ from the i.i.d. sample Dn. Here, the notion of “closeness” should
translate into “induce similar rankings.” This notion cannot be captured by usual
distances in the functional space where the scoring functions live. Hopefully, the
concept of ROC ANALYSIS provides a means for measuring the quality of a scoring
function. Hence, two scoring functions will be considered as being “close” if their
ROC curves are close in the usual Lp distances in the functional space where the
ROC curves live.

ROC analysis We now recall the concept of the ROC curve and explain why it is
a natural choice of performance measure for the ranking problem with classification
data. We consider here true ROC curves which correspond to the situation where the
underlying distribution is known. First, we need to introduce some notations. For a
given scoring rule s, the conditional cumulative distribution functions of the random
variable s(X) are denoted by

Gs(z) = P
{
s(X) ≤ z

∣∣ Y = +1
}
,

Hs(z) = P
{
s(X) ≤ z

∣∣ Y = −1
}
,

for all z ∈ R. We also set Ḡs(z) = 1 − Gs(z) and H̄s(z) = 1 − Hs(z) to be s(X)’s
residual conditional cumulative distribution functions (cdf). The residual cdf Ḡs is
also called the true positive rate while H̄s is the false positive rate. When s = η, we
shall denote the previous functions by G∗, H ∗, Ḡ∗, and H̄ ∗, respectively. We intro-
duce the notation Q(Z,α) to denote the quantile of order 1 −α for the distribution of
a random variable Z conditioned upon the event Y = −1. In particular, the following
quantile will be of interest:

Q∗(α) = Q
(
η(X),α

) = H̄ ∗−1(α),

where we have used here the notion of generalized inverse F−1(z) = inf{t ∈ R |
F(t) ≥ z} of a càdlàg function F . We now turn to the definition of the ROC curve as
the PP-plot of the true positive rate against the false positive rate.

Definition 2 (True ROC curve) The ROC curve of a scoring function s is the para-
metric curve

z �→ (
H̄s(z), Ḡs(z)

)

for thresholds z ∈ R. If Hs has no flat parts, the ROC curve can also be defined as the
plot of the mapping

ROC(s, ·) : α ∈ [0,1] �→ Ḡs ◦ H̄−1
s (α) = Ḡs

(
Q

(
s(X),α

))
.

For s = η, we take the notation ROC∗(α) = ROC(η,α).

By convention, points of the curve corresponding to possible jumps are connected
by line segments, so that the ROC curve is always continuous. We point out that,
equipped with this usual convention, the ROC curve of any piecewise constant scor-
ing function is linear-by-parts.
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Optimality As a functional criterion, the ROC curve induces a partial order over
the space of all scoring functions. A scoring function s1(x) will be said to be more
accurate than a competitor s2(x) if and only if its ROC curve is above the one of
s2(x) everywhere, i.e., for all α ∈ [0,1]:

ROC(s2, α) ≤ ROC(s1, α).

Equivalently, this condition means that the test defined by the statistic s1(X) for
testing the null hypothesis H0: “Y = −1” against the alternative H1: “Y = +1” is
uniformly more powerful than the one defined by s2(X), the quantity ROC(s,α) rep-
resenting simply the power of the test of exact level α for testing H0 based on the
diagnostic statistic s(X). We expect optimal scoring functions to be those for which
the ROC curve dominates all the others for all α ∈ (0,1). The next proposition high-
lights the fact that the ROC curve is relevant when evaluating performance in the
bipartite ranking problem.

Proposition 3 The class S ∗ of optimal scoring functions provides the best possible
ranking with respect to the ROC curve. Indeed, for any scoring function s, we have

∀α ∈ (0,1), ROC∗(α) ≥ ROC(s,α),

and

∀s∗ ∈ S ∗, ∀α ∈ (0,1), ROC
(
s∗, α

) = ROC∗(α).

Regularity In this paper, we will assume that ROC∗ is twice differentiable with
bounded second derivative. The assumption of twice differentiability of the optimal
curve ROC∗ can be translated in terms of the regularity of the conditional distribu-
tions of the random variable η(X). Indeed, assume that the conditional cumulative
distribution functions G∗ and H ∗ of η(X) are both differentiable and that H ∗′ is
continuous and bounded by below by some strictly positive constant on its support.
Then, from Proposition 8 in [14], we have ∀α ∈ ]0,1]:

(
ROC∗)′

(α) = Q∗(α)

1 − Q∗(α)
· p

1 − p
.

In order to guarantee that ROC∗ is differentiable at 0, we need to assume that the
likelihood ratio dG/dH(X) is upper bounded almost surely (recall that G and H are
assumed absolutely continuous to each other in our setup). As we have

dG

dH
(X) = 1 − p

p
· η(X)

1 − η(X)
,

this assumption means that 1 − η(X) stays bounded away from zero almost surely
or equivalently that Q∗(0) < 1 (so that η(X) ≤ Q∗(0) < 1 a.s., since the distribu-
tions H and μ are equivalent). In addition, note that, under these assumptions, the
distributions G∗ and H ∗ are absolutely continuous with respect to each other. From
Corollary 7 in [14], we also have

dG

dH
(X) = dG∗

dH ∗
(
η(X)

)
,
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hence, the likelihood ratio dG∗/dH ∗(u) remains bounded in the neighborhood of
Q∗(0) under the hypothesis stipulated above. This condition also suffices to ensure
that ROC∗ is twice differentiable on [0,1], since ∀α ∈ [0,1],

(
ROC∗)′′

(α) = (Q∗)′(α)

(1 − Q∗(α))2
· p

1 − p
.

We point out that the boundedness assumption on the likelihood ratio is a strong
requirement and significantly restricts the range of distributions which can be consid-
ered for modeling the data. As shown above, it guarantees that ROC∗ is sufficiently
regular so that it can be well approximated by a piecewise linear curve with break-
points fixed in advance (see also Remark 10 for suggestions on how to weaken this
assumption). (Relaxing this assumption and building consistent estimators of the op-
timal ROC curve is the subject of work in progress.)

2.2 Metrics in ROC Space, Excess Risk, and Optimal Scoring Functions

We may now compare the ranking performance of a given s to that of the optimal
elements in S ∗ in terms of closeness of their ROC curves. We then need to consider
some metric in the space D([0,1]) of càdlàg curves f : [0,1] → R. Let us denote
by d(s, s∗) the distance between ROC curves describing the criterion of interest. The
statistical problem consists in constructing a scoring function sn based on the avail-
able data Dn such that d(sn, s

∗) can be upper bounded with high probability in terms
of the sample size n, the level of confidence, and possibly some structural parameters
such as the complexity of the class S of candidate scoring functions. In statistical
learning theory, standard problems, such as classification or regression, benefit from
the ‘excess-risk’ decomposition of the risk measure. In the latter problems, d(s, s∗)
can be written as a difference A(s) − A(s∗) so that minimizing d(s, s∗) is equivalent
to minimizing A(s). Then, if this decomposition holds, by M-estimation arguments
which are now standard (see [5]), it is possible to show that strategies based on the
minimization of an empirical counterpart of A(s) can be efficient. In the case of rank-
ing/scoring applications, many different metrics can be introduced. Here we focus on
the L1 and L∞ cases. We shall see that the ‘excess-risk’ decomposition applies in the
case of the L1-distance, but not for L∞-distance.

The L1-distance and the AUC criterion Consider first the L1-distance between
ROC curves as a measure of closeness for scoring functions. For any scoring function,
we set

d1(s, η) = ∥∥ROC(s, .) − ROC∗(.)
∥∥

1 =
∫ 1

0

∣∣ROC∗(α) − ROC(s,α)
∣∣dα.

By Proposition 3, we have

d1(s, η) = ∥∥ROC∗∥∥
1 − ∥∥ROC(s, .)

∥∥
1.
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In this case, minimizing d(s, η) boils down to maximizing a popular quantity known
as the Area Under the ROC curve (or AUC, see [22]):

AUC(s) = ∥∥ROC(s, .)
∥∥

1 =
∫ 1

0
ROC(s,α) dα.

In this particular case, the analysis of empirical risk minimization strategies is greatly
facilitated by the fact that the AUC performance measure may be interpreted in a
probabilistic fashion, and natural estimates of the risk are of the form of a U -statistic.

Proposition 4 ([7]) For any scoring function s such that Hs and Gs are continuous
distribution functions, we have

AUC(s) = P
{
s(X) > s

(
X′) ∣∣ Y = 1, Y ′ = −1

}

= 1

2p(1 − p)
P
{(

s(X) − s
(
X′))(Y − Y ′) > 0

}
,

where (X,Y ) and (X′, Y ′) are i.i.d. copies.

From this observation, ranking can indeed be interpreted as classification of pairs
of observations. We refer to [8] for a systematic study of related empirical and con-
vex risk minimization strategies which involve U -statistics. From a machine learning
perspective, there is a growing literature in which existing algorithms are adapted in
order to perform AUC optimization (such as, for instance, [15, 23, 35]). However, the
AUC as a summary criterion presents some drawbacks, since two scoring functions
can have the same AUC but behave very differently in the ROC space. Hence more
stringent notions of distance need to be considered.

The L∞-distance As an example of a strong notion of distance, we propose to study
the distance induced by the L∞-norm:

d∞
(
s, s∗) = ∥∥ROC(s, .) − ROC∗(.)

∥∥∞ = sup
α∈[0,1]

(
ROC∗(α) − ROC(s,α)

)
.

The main difficulty in dealing with such a criterion from the perspective of empir-
ical risk minimization is that there is no simple empirical counterpart. Indeed, in this
case the usual ‘excess-risk’ decomposition of the form d(s, s∗) = A∗ − A(s) does
not hold, and it is not straightforward how to relate the empirical risk minimization
(ERM) approach to the d∞ criterion.

The goal of this paper is to show that empirical risk minimization procedures can
be tailored for the ranking/scoring problem under the criterion induced by the L∞-
norm. The key idea is to combine such procedures with an adequate approximation
stage, under very mild smoothness assumptions for the optimal ROC curve. More
precisely, the ERM strategy will be applied here in order to recover an approximant
of the target curve ROC∗, involving a finite number of level sets of the regression
function only. As a byproduct of the analysis we will also provide a statistical esti-
mation of the optimal ROC curve which can also be of interest intrinsically.
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Optimal scoring functions as overlaid classification rules From the perspective
taken in this paper, ranking amounts to recovering the decreasing collection of level
sets of the regression function η(x),

{{
x ∈ X

∣∣ η(x) > u
}
, u ∈ [0,1]},

without necessarily disposing of the corresponding levels. Indeed, any scoring func-
tion of the form

s∗(x) =
∫ 1

0
I
{
η(x) > Q∗(α)

}
dν(α), (1)

where ν(dα) is an arbitrary finite positive measure on [0,1] with same support as
H ∗(dα), is optimal with respect to the ROC criterion. Notice that s∗(x) = H ∗(η(x))

when ν is chosen to be the Lebesgue measure. The next proposition also illustrates
this view of the problem. We set the notations

R∗
α = {

x ∈ X
∣∣ η(x) > Q∗(α)

}
,

Rs,α = {
x ∈ X

∣∣ s(x) > Q
(
s(X),α

)}
.

The next result relates pointwise ROC curve maximization to a modified binary
classification problem. This provides the main intuition for casting the problem of
bipartite ranking as a ‘continuum’ of classification problems.

Proposition 5 Let s be a scoring function and α ∈ (0,1) such that Q∗(α) < 1. Sup-
pose additionally that the cdf Hs (respectively, H ∗) is continuous at Q(s(X),α)

(resp. at Q∗(α)). Then we have

ROC∗(α) − ROC(s,α) = E(|η(X) − Q∗(α)| I{X ∈ R∗
α�Rs,α})

p(1 − Q∗(α))
,

where � denotes the symmetric difference between sets.

This result shows that the pointwise difference between the dominating ROC curve
and the one related to a candidate scoring function s may be interpreted as the error
made in recovering the specific level set R∗

α through Rs,α .
In contrast, standard binary classification amounts to recovering a single, very spe-

cific, η-level set, namely {x ∈ X | η(x) > 1/2}. It is well known that the latter corre-
sponds to the classifier C∗(X) = 2 · I{η(X) > 1/2} − 1 with minimum classification
error L(C) = P{Y �= C(X)} with C : X → {−1,+1}.

Remark 1 (On the excess of risk) We point out that Proposition 5 generalizes the
well-known relationship in the classification setup, see [17]:

L(C) − L
(
C∗) = p

(
G

(
C∗) − G(C)

) + (1 − p)
(
H(C) − H

(
C∗))

= E
(∣∣2η(X) − 1

∣∣ · I
{
X ∈ R∗�R

})
,

where R = {x ∈ X | C(x) = +1} and R∗ = R∗
α∗ with Q∗(α∗) = 1/2.
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Plug-in scoring rules The purpose of this paragraph is to show what to expect from
a competitor method, namely the plug-in approach, of the one we develop in this
paper, and to state the conditions under which plug-in scoring rules are consistent
in the sense of the ROC criterion. Indeed, a possible angle to approximate optimal
scoring rules is the plug-in approach, see [17] in the context of binary classification.
The idea of plug-in consists of using an estimate η̂(x) of the regression function as a
scoring function. It is expected that, whenever η̂(x) is close to η(x) in a certain sense,
then ROC(η̂, ·) and ROC∗ are also close.

Proposition 6 Let η̂(x) be an approximant of η(x), and suppose that Gη̂(dx) and
Hη̂(dx) are continuous distribution functions.

(i) We have

AUC∗ − AUC(η̂) ≤ 1

p(1 − p)
E

(∣∣η̂(X) − η(X)
∣∣).

(ii) Assume in addition that H ∗ has a density which is bounded by below on [0,1]:
∃c > 0 such that ∀α ∈ [0,1], dH ∗

dα
(α) ≥ c−1. Then we have ∀α ∈ [0,1] such that

Q∗(α) < 1,

ROC∗(α) − ROC(η̂, α) ≤ cE(|H ∗(η(X)) − Hη̂(η̂(X))|)
p(1 − Q∗(α))

.

It clearly follows from (i) that a L1(μ)-consistent estimator, i.e., an estimator
η̂n(x) such that E(|η̂n(X) − η(X)|) → 0 as n → ∞ with probability one, yields
a consistent ranking rule in the AUC-sense. However, guaranteeing the pointwise
convergence ROC∗(α) − ROC(η̂n, α) → 0 is more difficult: in addition to L1(μ)-
consistency, it would require that η̂n(X) has a density uniformly bounded in n. We
also point out that plug-in rules face computational difficulties when dealing with
high-dimensional data (see, e.g., [21]). These observations provide the motivation for
exploring algorithms based on direct empirical risk minimization.

3 Ranking by Overlaying Classifiers

The approach considered in this paper consists of a discretization of the ranking
problem. The main idea is to build a scoring function close to the one obtained
by overlaying a finite collection of level sets R∗

α1
, . . . ,R∗

αK
, where the subdivision

σ : 0 = α0 < α1 ≤ · · · ≤ αK ≤ αK+1 = 1 is fixed in advance and K is a tuning para-
meter that controls the complexity of the method:

s∗
σ (x) =

K∑

i=1

I
{
x ∈ R∗

αi

}
, (2)

which may be seen as a discrete version of (1), where ν is taken as the point measure∑K
i=1 δαi

, and where the notation δx denotes the Dirac mass at x.
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Fig. 1 Graph of the “hat
function” Φ∗

k
(bold line)

Fig. 2 2-spline approximant of
the curve ROC∗

3.1 Piecewise Linear Approximation of the Optimal ROC Curve

Observe that the ROC curve of the stepwise scoring function s∗
σ (x) is the broken

line that connects the knots {(αi,ROC∗(αi)), 0 ≤ i ≤ K + 1}. In order to make the
latter explicit, we classically consider the “hat functions” related to the mesh grid
{αi; 0 ≤ i ≤ K + 1} (see Fig. 1): ∀i ∈ {1, . . . ,K}, ∀α ∈ [0,1],

Φ∗
i (α) = Φ(α,αi−1, αi) − Φ(α,αi, αi+1),

and Φ∗
K+1(α) = Φ(α,αK,1), where for all α′ < α′′,

Φ
(
α,α′, α′′) = α − α′

α′′ − α′ I
{
α ∈ [

α′, α′′]}.

Equipped with these notations, the ROC curve of the piecewise constant scoring
function (2) is the linear-by-parts curve given by:

ROC
(
s∗
σ , .

) =
K+1∑

i=1

ROC∗(αi)Φ
∗
i (.),

which may serve as a simple approximant of the optimal curve ROC∗, see Fig. 2.
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The next result, providing a bound for the corresponding approximation error, is
well-known folklore in linear approximation theory.

Proposition 7 Suppose that ROC∗ is twice differentiable with bounded second deriv-
ative. In addition, set � = max0≤i<K {αi+1 − αi}. Then we have

∥∥ROC
(
s∗
σ , .

) − ROC∗(.)
∥∥∞ ≤ −�2

8
inf

α∈[0,1]
d2

dα2
ROC∗(α).

Remark 2 (On adaptive approximation by 2-splines) Considering approximation by
piecewise linear functions with K pieces, the class of functions corresponding to the
approximation order O(K−1) in sup-norm is much larger than the collection of twice
differentiable functions with bounded derivatives (see Chap. 12 in [16]). However,
any practical procedure permitting the achievement of this approximation rate un-
der weaker hypotheses would require choosing the breakpoints αk depending on the
properties of the target curve ROC∗, instead of fixing them in advance. In order to
consider a more general setup, including cases where the essential supremum of η(X)

is equal to 1 (i.e., limα→0 ROC∗′(α) = +∞), extensions of the new approach devel-
oped in this article will be tackled in a future paper, where the mesh grid is refined
adaptively from the data. Incidentally, we point out that the spacings �k between
the breakpoints should be ideally chosen nondecreasing, given the geometry of the
optimal ROC curve (concave and strictly increasing, see Fig. 2).

3.2 Empirical MV-set Estimation

In this section, we shall introduce a procedure for estimating the discrete scoring
function s∗

σ for a given mesh grid σ of [0,1]. This method will be based on the sta-
tistical estimation of the sets R∗

α = {x ∈ X | η(x) > Q∗(α)} for specific choices of
α ∈ (0,1), the points of the discrete grid σ . This subproblem, which is related to the
design of statistical tests of composite hypotheses, is interesting in itself. Applications
include in particular anomaly/outlier detection, when the probability distribution cor-
responding to normal system activity is unknown or only partially known.

Interestingly, the level set R∗
α can be interpreted as the solution of the constrained

optimization problem

sup
R∈B(X )

P{X ∈ R | Y = +1} subject to P{X ∈ R | Y = −1} ≤ α, (3)

where the supremum is taken over the set B(X ) of all measurable subsets of X . This
fact follows from Neyman–Pearson’s lemma once the problem is cast as a hypothesis
testing problem: test the null hypothesis H0 : Y = −1 against the alternative H1 :
Y = +1 with a type I error equal to α and maximal power.

Note that this formulation is equivalent to the Minimum Volume (MV) set estima-
tion framework (see [29] and references therein), since the complement S∗

α = X \R∗
α

may be seen as the solution of

min
S∈B(X )

G(S) subject to H(S) > 1 − α,
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the distribution G of positive instances being the volume to be minimized, while the
distribution H of negative instances corresponds to the reference measure.

In our case, the major difference with the usual setting lies in the fact that the
measure of reference H involved in the mass constraint is unknown, like G, and must
be estimated from sampling data. A statistical search strategy based on the training
sample Dn could naturally consist of replacing the unknown probability distributions
G and H by their empirical counterparts

Ĝn = 1

n+

n∑

i=1

I{Yi = +1} · δXi
and Ĥn = 1

n−

n∑

i=1

I{Yi = −1} · δXi
,

with n+ = ∑n
i=1 I{Yi = +1} = n − n−.

Let R be a class of measurable subsets of X . We consider the following optimiza-
tion problem as the empirical version of the previous one:

sup
R∈R

Ĝn(R) subject to Ĥn(R) ≤ α + φ,

where φ is a complexity penalty, serving as a tolerance parameter. The success of
this program in recovering a set close to R∗

α will depend on both choices of the class
R and the parameter φ which will be discussed in Sect. 5.1.

3.3 The RANKOVER Algorithm

We now describe a very simple ranking procedure which builds an estimator of s∗
σ

in (2). The RANKOVER algorithm has two steps: Optimization and Monotonicity.
The crucial part is the Optimization step. At each iteration, the procedure calls a
classification algorithm which extracts, from the class R of sets, the empirical coun-
terpart of a level set of the regression function which contains a certain proportion of
best instances. The grid of proportion levels depends on the partition σK . More pre-
cisely, if we set uk = P{η(X) ≥ Q∗(αk)}, the method will successively target the best
(100u1)% among all instances, then the best (100u2)%, etc. Note that the classifica-
tion algorithm invoked here is nonstandard since an additional constraint on the clas-
sifiers is involved. In this paper (see Sect. 5), we shall explore three possible strategies
to solve this constrained classification problem: (i) empirical MV-set, (ii) threshold
rules, and (iii) weighted classification error. Here we only focus on statistical aspects.
The design of practical techniques for empirical MV-set estimation such as grid meth-
ods will be investigated in a forthcoming paper. The Monotonicity step aims at de-
riving an increasing sequence of sets. This is a desirable property for estimators of
the increasing sequence of the true level sets of the regression function. Additionally,
this construction facilitates the analysis provided in Sect. 4. The other parameters of
the algorithm are the partition σK : α0 = 0 < α1 < · · · < αK < αK+1 = 1, K ≥ 1,
and the tolerance parameter denoted by φ.

Statistical performance of this procedure will be discussed later. For now, we pro-
vide some comments on possible modifications or additional outputs.

Remark 3 (Bottom-up vs. top-down) Another strategy for constructing an increasing
sequence of subsets from the collection (R̂k)k≥1 could be to proceed in a top-down
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THE RANKOVER ALGORITHM

Input. Mesh grid σK , tolerance parameter φ, class R of sets

1. Optimization. For k = 1, . . . ,K , compute:

R̂k = arg max
R∈R

Ĝn(R) subject to Ĥn(R) ≤ αk + φ.

2. Monotonicity. Build recursively the increasing sequence (R̃k)k≥1 through

R̃1 = R̂1 and R̃k+1 = R̃k ∪ R̂k+1, for all k ∈ {1, . . . ,K − 1}.
Output. The piecewise constant scoring function obtained by overlaying the in-
dicator functions of the sets R̃k :

sK(x) =
K∑

k=1

I
{
x ∈ R̃k

}
.

manner. Start with R̃K+1 = X and R̃k = R̃k+1 ∩ R̂k for k = K, . . . ,1. Results similar
to those established in this paper could easily be derived from such a construction.

Remark 4 (Plug-in estimator) From Proposition 6, it turns out that a canonical scor-
ing function would be H ∗(η(x)). As a byproduct of the procedure, one may de-
rive the following estimate of this function by reweighting the terms in the sum:∑K

k=1(αk −αk−1) I{x ∈ R̃k}. The latter quantity can be seen as a Riemann sum which
approximates the integral (1) when ν is taken to be the Lebesgue measure.

Beyond the overlaid scoring function sK(x) resulting from the RANKOVER algo-
rithm, additional outputs of the procedure are the estimates of the ROC curve and the
AUC. Let (α̃k, β̃k) = (Ĥn(R̃k), Ĝn(R̃k)) for all k ∈ {0, . . . ,K + 1}, where by con-
vention R̃0 = ∅ and R̃K+1 = X . We point out that the empirical ROC curve of the
scoring function built by the RANKOVER algorithm is the piecewise linear function

∀α ∈ [0,1], R̃OC(sK,α) =
K+1∑

k=1

β̃kΦ̃k(α),

where Φ̃k = Φ(α, α̃k−1, α̃k) − Φ(α, α̃k, α̃k+1) for all k ∈ {1, . . . ,K} and Φ̃K+1(α) =
Φ(α, α̃K,1). Note that the quantity R̃OC(sK, ·) is the statistical version of ROC(sK, ·)
obtained by replacing G and H in Definition 2 by their respective empirical coun-
terparts. Moreover, it follows from this expression that the corresponding empirical
AUC, i.e., the area under the empirical curve R̃OC(sK, .), is given by

ÃUC(sK) = 1

2

K∑

k=1

(α̃k+1 − α̃k−1)β̃k.
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3.4 Algorithmic Approaches to Scoring

Until recently, the one and only known method for ranking/scoring binary-valued data
was logistic regression and its numerous variants. Problems with high-dimensional
data such as those generated by the development of Internet technologies naturally
oriented the research of efficient ranking algorithms towards machine learning tech-
niques. A nice illustration is the RankBoost algorithm (see [20]) exporting the boost-
ing approach of the combination of weak learners to the problem of bipartite ranking.
In a series of papers, we have developed our view of the ranking/scoring problem and
proposed various approaches leading to or inspiring practical algorithms for doing
the job:

• W-ranking functionals This approach describes M-estimation strategies based on
linear rank functionals (see [9] and [11]). Indeed, many empirical summaries of
the ROC curve such as the AUC ([22]), the local AUC ([9]), and the p-norm push
([25]) can be expressed as linear rank statistics. These statistics are to be maxi-
mized over the functional class of scoring functions, and the theoretical properties
of these empirical risk maximization strategies require the control of a new class
of stochastic processes, called rank processes (see [11] for preliminary results).

• Partitioning methods We have developed various partitioning methods for bipar-
tite ranking. In [13], we consider fixed partitions and histogram scoring rules for
bipartite ranking. We also studied adaptive partitions based on decision trees in or-
der to monitor the ranking performance in terms of the ROC curve (see [10, 14]).

Instead of partitioning the input space, the approach taken in this paper consists
of taking a partition of the x-axis of the ROC space to build a finite-dimensional
approximation of the optimal ROC curve. As illustrated above, the ranking problem
reduces then to a collection of classification problems with an additional constraint.
Solving each of these classification problems and then combining/overlaying their
solutions through the RANKOVER algorithm leads to a scoring rule with good statis-
tical performance (see Sect. 4). The main question for practitioners would be how to
implement the Optimization step. For some clues on practical strategies devoted to
this problem, see Sect. 7 of [29] and the references therein.

4 Main Results

4.1 Statistical Properties of the RANKOVER Algorithm

The next result offers a rate bound for the scoring function output by the RANKOVER

algorithm in the ROC space, equipped with a sup-norm. To our knowledge, this is the
first result on the generalization ability of decision rules in such a functional space.
Given a class R of sets in X , we introduce the Rademacher average

An = E

(

sup
R∈R

1

n

∣∣∣
∣∣

n∑

i=1

εiI{Xi ∈ R}
∣∣∣
∣∣

)

,

where (εi)i≥1 forms an i.i.d. sequence which is independent of (Xi)i≥1.
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Theorem 8 We consider a class R of sets and we assume the following:

• the class R of sets contains R∗
α for all α ∈ (0,1)

• the Rademacher average An is of the order of O(n−1/2)

• both G∗ and H ∗ are twice continuously differentiable and have strictly positive
first derivatives

• the function ROC∗ has a bounded second derivative

For all k ∈ {0, . . . ,K + 1}, set αk = k/(K + 1) and set the tolerance parameter

φ = φ(δ,n) = 2An +
√

2 log(1/δ)

n
.

Denote by sK the output of the RANKOVER algorithm with these parameters. If K =
Kn ∼ n1/6 as n → ∞, then there exists a constant c = c(δ) such that, with probability
at least 1 − δ, we have, for n large enough:

∥∥ROC∗(.) − ROC(sKn, .)
∥∥∞ ≤ cn−1/3.

We first discuss the nature of the assumptions. A few remarks are in order.

Remark 5 (On the class of candidate level sets containing the target set) The assump-
tion R∗

α ∈ R for all α ∈ (0,1) is a heavy assumption. However, it could easily be
relaxed at the cost of additional technicalities. Indeed, one could define the following
set:

Řα = arg max
R∈R

G(R) s. t. H(R) ≤ α.

Then the result is true even if R∗
α /∈ R, but we have to replace

G
(
R̂α

) ≥ G
(
R∗

α

) − 2φ by G
(
R̂α

) ≥ G
(
Řα

) − 2φ

(and, as a particular case, we get Řα = R∗
α if R∗

α ∈ R). Then it would remain to
control the measure of the symmetric difference between Řα and R∗

α with respect to
the measures G and H . Assumptions on the regularity of the boundary of the level
sets similar to those in [30] will be required to state the corresponding result.

Remark 6 (Choice of the penalty) The issue of penalty calibration has been a topic
of intensive research in recent years (see [5] and references therein). We do not in-
clude the subtleties related to this important question, and we have chosen to use
Rademacher averages as a complexity measure which covers most of the important
examples of classes R of sets (see [5]).

Remark 7 (On the complexity assumption) The assumption on the Rademacher av-
erage An being of the order of n−1/2 is fulfilled for instance if R is a VC class. In
that case, the constant c also depends on the VC dimension.
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Remark 8 (Calibration of the size K of the mesh grid) The proof of the theorem re-
veals the intuitive trade-off involving the optimal calibration of K = Kn. On the one
hand, it is necessary to have Kn tending to infinity in order to reduce the approxi-
mation error between the optimal curve which is smooth (twice differentiable) and
its piecewise linear approximation of dimension Kn + 1. On the other hand, overlay-
ing classifiers induces stacking of the errors committed at various levels, so that Kn

should not grow too fast with n to infinity.

The previous theorem could be extended in two directions as illustrated in the
following comments.

Remark 9 (Optimality issue) The rate of convergence in the theorem is not proved to
be optimal. The investigation of lower bounds for this problem is the object of work
in progress.

Remark 10 (Adaptivity of the partition) A natural extension of the approach would be
to consider a flexible mesh grid {αk} depending on the local smoothness of the opti-
mal ROC curve. However, under the present assumptions, using an adaptive partition
of [0,1] may yield sharper constants but will not improve the rate of convergence.
We have investigated adaptive partitions of the interval [0,1] corresponding to tree-
structured recursive approximation schemes of the optimal ROC curve elsewhere
([14]), but the rates of convergence obtained in the present paper are faster.

Finally, we also mention a connection to previous work in the context of classifi-
cation.

Remark 11 (Performance of classifiers and ROC curves) In the present paper, we
have adopted a scoring approach to ROC analysis which is somehow related to the
evaluation of the performance of classifiers in ROC space. Using combinations of
such classifiers to improve performance in terms of ROC curves has also been pointed
out in [3] and [4].

4.2 Statistical Estimation of the Optimal ROC Curve

We now show how to exploit the output of the Optimization step of the RANKOVER

procedure in order to produce an empirical estimate of the optimal ROC curve that
achieves a faster rate of convergence than the empirical ROC curve R̃OC(sK, .),
which suffers from the loss of pointwise accuracy due to the Monotonicity step (see
the proof of Theorem 8). We introduce some notations. Set ∀k ∈ {0, . . . ,K +1}, α̂k =
Ĥn(R̂k), and β̂k = Ĝ(R̂k). The broken line that connects the knots {(α̂k, β̂k); 0 ≤ k ≤
K + 1} provides an empirical counterpart of the piecewise linear approximant of the
optimal ROC∗. We also introduce the “hat functions” defined by

∀k ∈ {1, . . . ,K}, Φ̂k(·) = Φ
(·; (α̂k−1, α̂k)

) − Φ
(·; (α̂k, α̂k+1)

)
.
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We also set Φ̂K+1(·) = Φ(·; (α̂K,1)) for notational convenience. The statistical esti-
mate may be then written as

R̂OC∗(α) =
K+1∑

k=1

β̂kΦ̂k(α).

The next result takes the form of a deviation bound for the estimation of the opti-
mal ROC curve. It quantifies the order of magnitude of a confidence band in supre-
mum norm around an empirical estimate based on a statistical version of a simple
finite elements method (FEM) approximation scheme.

Theorem 9 Under the same assumptions as in Theorem 8, we set K = Kn ∼ n1/4.
Then there exists a constant c = c(δ) such that, with probability at least 1 − δ,

∥∥R̂OC∗ − ROC∗∥∥∞ ≤ c

(
logn

n

)1/2

.

Remark 12 (A nondecreasing estimate of ROC∗) Notice that the curve R̂OC∗(.) is not
necessarily increasing, in contrast to the empirical ROC curve R̃OC(sK, .). However,
the accuracy of the latter estimate is worst, of the order OP((log(n)/n)1/3) at best,
with a number of knots of the order n1/6 only, while Kn is of the order n1/4 in the
theorem above. As may be shown by a careful examination of the proof of Theorem 8,
this is a consequence of the monotonicity condition set in the second step of the
RANKOVER algorithm and the resulting pile-up error phenomenon. We also point
out that the graph of the mapping ROC∗ : α ∈ (0,1) �→ ∑K+1

k=1 β̂kΦ
∗
k (α) provides a

consistent estimate of ROC∗, achieving the same rate of convergence as R̂OC∗.

5 On Learning a Statistical Test of Composite Hypotheses

In this section, we focus on the statistical study of the subprocedure called the Opti-
mization step in the RANKOVER algorithm. Recall that the purpose of this step is to
estimate the sets R∗

αk
through solving the following problem:

sup
R∈R

Ĝn(R) subject to Ĥn(R) ≤ α + φ.

In other words, the goal is to select a critical region R ∈ R in order to construct a
decision rule based on the observation X, i.e., a classifier C(X) = 2 · I{X ∈ R} − 1,
for testing the null hypothesis H0 : Y = −1 with type I error α and maximum power.
As the distribution of the observation X is unknown under both hypotheses, this may
be interpreted as the problem of learning an optimal statistical test of composite hy-
potheses. Even though this only corresponds to a step towards reaching the overall
goal considered in this paper, this problem is interesting in itself. Our main approach
in this section will follow the work of Scott and Nowak [29] on learning minimum
volume sets, but we also refer to [28] and [26]. We extend their result to the case



636 Constr Approx (2010) 32: 619–648

where the reference measure is unknown and provide fast rates of convergence of
MV-set estimators. At the end of the section, we also describe alternative methods to
the MV-set approach and describe their statistical properties.

5.1 Rate Bounds for Empirical MV-set Estimation

We denote by R̂α the solution to this problem. The next result can be interpreted as
a rate bound, in terms of type II error, for the excess risk of the classifier defined by
R̂α with a simultaneous control of the type I error. A similar result was also obtained
in [27].

The main assumptions for consistency results to hold concern the complexity of
the collection R of candidate sets, as well as its capacity to represent the target set R∗

α .
For simplicity, we have chosen to describe the complexity in terms of the Rademacher
average, and we have also assumed that the class R contains the optimal element.

Theorem 10 Let α ∈ (0,1). Assume that R∗
α belongs to the set R of region candi-

dates. Suppose in addition that R forms a class of subsets of X with Rademacher
average denoted by An. For all (δ, n) ∈ (0,1) × N

∗, set

φ(δ,n) = 2An +
√

2 log(1/δ)

n
.

Then, for all δ > 0, we simultaneously have with probability at least 1 − δ: ∀n ≥ 1,

H
(
R̂α

) ≤ α + 2φ(δ/2, n) and G
(
R̂α

) ≥ G
(
R∗

α

) − 2φ(δ/2, n).

Remark 13 (On recovering a point on the optimal ROC curve) When the cdf H ∗
(respectively G∗) is continuous at Q∗(α), the point (H(R∗

α),G(R∗
α)) naturally co-

incides with the point on (α,ROC∗(α)) of the optimal curve. As may be shown
by examining Theorem 10’s proof, the euclidean distance in the ROC space of the
point (Ĥn(R̂α), Ĝn(R̂α)) determined by solving the constrained ERM problem (3)
to (α,ROC∗(α)) is then of order OP(1/

√
n). This will be exploited later when con-

structing an estimate of the curve ROC∗ with a controlled approximation error.

5.2 Fast (but not so Fast) Rates of Convergence

We now show assumptions under which faster rates of convergence can be attained.
In [31], conditions leading to rate bounds faster than n−1/2 have been examined in
the binary classification setting. It is the purpose of this subsection to adapt the latter
to the hypothesis testing setup.

Noise assumption (NA) There exist constants a ∈ (0,1) and D > 0 such that ∀t ≥ 0,

P
{∣∣η(X) − Q∗(α)

∣∣ ≤ t
} ≤ D · t a

1−a .

We point out that this assumption corresponds to the one introduced in [31], except
that here the quantile Q∗(α) replaces 1/2.
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Remark 14 (On the noise assumption) It is noteworthy that as soon as η(X)’s distri-
bution, namely F ∗ = pG∗ + (1 − p)H ∗, has a bounded density f ∗, this hypothesis
is automatically fulfilled with a = 1/2 and D = supt f

∗(t). Indeed, the finite incre-
ments theorem yields

P
{∣∣η(X) − Q∗(α)

∣∣ ≤ t
} = F ∗(Q∗(α) + t

) − F ∗(Q∗(α) − t
)

≤ 2Dt.

The next result describes an important consequence of this condition.

Lemma 11 (Variance control) Suppose that condition (NA) is fulfilled. Set for all
R ∈ R,

s2
α(R)

def= var
(
I{Y = +1}(I{X ∈ R∗

α

} − I{X ∈ R})).
Then we have

∀r ∈ R, s2
α(R) ≤ c

(
p
(
1−Q∗(α)

)(
G

(
R∗

α

)−G(R)
)+Q∗(α)(1−p)

(
H(R)−α

))a
.

Theorem 12 (Fast rates) Assume that the assumptions of Theorem 10 are fulfilled.
Suppose that, additionally, η(X) has a bounded density and that An = O(n−1/2).
Then for all δ > 0, we simultaneously have with probability at least 1 − δ: ∃C =
C(R, δ,α,p),n0, ∀n ≥ n0,

H
(
R̂α

) ≤ α + 2φ(δ/2, n) and ROC∗(α) − G
(
R̂α

) ≤ Cn−5/8.

Remark 15 (MV-set estimation with known reference measure) We point out that it
follows from the proof of Theorem 12 that, in the case where the reference measure
is known, condition (NA) ensures that, when performing empirical risk minimization
over the set {R ∈ R : H(R) ≤ α}, the rate of the excess of risk (in terms of type II
error) is of the order of O(n−1/(2−a)). Here, there is no guarantee that the H -term in
the variance control bound can be either negative or neglected. Thus, we obtain a not
so fast rate of the order of n−5/8 instead of the expected n−2/3 with a = 1/2.

Remark 16 (Fast estimation of the curve ROC∗) One may easily see that, under the
additional assumption that F ∗’s density is bounded, the estimate ROC∗ of the opti-
mal curve introduced in Remark 12 inherits the n−5/8 convergence rate obtained for
the pointwise deviation considered above. However, as may be shown by a careful
examination of Theorem 9’s proof in the Appendix section, this is not true for the

estimator R̂OC∗ due to the impact of the deviations |α̂k − αk| involved in the control
of the error.

5.3 Alternative Methods for Solving the ERM Under Constraints

Here we consider alternatives to the empirical MV-set estimation method for solv-
ing the constrained classification problem. The first example consists of threshold
rules which were introduced in [9]. We also consider an empirical risk minimization
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method based on a weighted classification error. The latter method is not a true com-
petitor of the others in the sense that it does not lead to an estimator of the target
level set R∗

α . However, we present it for completeness as it could inspire a similar
overlaying scheme from a finite collection of level sets of the regression function.

Threshold rules In order to guarantee that the constraint is satisfied, we could con-
sider sets of the form Rα(s) = {x ∈ X : s(x) ≥ Q(s(X),α)}, where s belongs to a
collection S of scoring functions. However, since the distribution H is unknown,
the quantile Q(s,α) has to be replaced by its empirical counterpart Q̂n(s,α) =
Ĥ−1

n (1 − α), which leads to the consideration actually of the set

R̂α(s)
def={

x ∈ X : s(x) ≥ Q̂n(s,α)
}
.

The next result shows that, under basic complexity assumptions, the type I errors are
uniformly controlled over s ∈ S . We introduce a different penalty based on Vapnik–
Chervonenkis (VC) type characterization, for δ > 0 and n ≥ 1:

φ̃(δ, n) = 2

√
2V log(n + 1)

n
+

√
2 log(1/δ)

n
,

where V is the VC dimension of the underlying functional class.

Lemma 13 (Type I error—uniform bound) Suppose that S is a major VC class of
functions with finite VC dimension V . These, for all δ ∈ (0,1), we have with proba-
bility at least 1 − δ,

sup
s∈S

H
(
R̂α(s)

) ≤ α + φ̃(δ, n).

Remark 17 (On the complexity assumption) For further details on the terminology
of major sets and major classes one may refer to [18]. These notions determine
the combinatorial complexity of sets of the form {x ∈ X : s(x) ≤ t} or {x ∈ X :
s(x) ≥ t}. The complexity assumption involved in Lemma 13 ensures that the collec-
tion of sets indexed by (s, t) ∈ S × R form a VC class of sets.

Let us investigate the performance of the test with maximum power, which corre-
sponds to the test function

ŝn = arg max
s∈S

Ĝn

(
Rα(s)

)
.

Theorem 14 Suppose that S ∩ S ∗ �= ∅. Under the assumptions of Lemma 13, for all
δ ∈ (0,1), we have with probability at least 1 − δ:

H
(
R̂α(ŝn)

) ≤ α + 2φ̃(δ/2, n) and G
(
R̂α(ŝn)

) ≥ ROC∗(α) − 2φ̃(δ/2, n).

As it immediately follows from Lemma 13 combined with the proof argument of
Theorem 10, the proof is omitted.
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Remark 18 (On fast rates) We also point out that this result may be viewed as a
variant of Theorem 5 in [9], related to the so-called classification problem with mass-
constraint. The difference with the present setting lies in the fact that the ‘volume’ to
be minimized is a signed measure up to an additive constant, namely the classifica-
tion error P{Y �= 2I{X ∈ R} − 1} = pH(R) + (1 − p)(1 − G(R)), and the reference
measure involved in the constraint is the marginal distribution μ. In addition, it is
noteworthy that, under Theorem 12’s conditions combined with the assumption that
the cdfs Hs and Gs are both twice differentiable at Q(s(X),α) for all s ∈ S , the rate
n−2/3 for the excess of type II error can be achieved, see Theorem 10 in [9].

Classification with asymmetric costs For any measurable set C ⊂ X , we define the
weighted classification error

Lω(C) = 2p(1 − ω)
(
1 − G(C)

) + 2(1 − p)ωH(C),

with ω ∈ (0,1) being the asymmetry factor. For ω = 1/2 one recovers the standard
classification error L(C) = P{C(X) �= Y }. As shown by the next result, the minimiz-
ers of this collection of risk measures coincide with the η-level sets. The proof is left
to the reader.

Proposition 15 The optimal set for this error measure is C∗
ω = {x : η(x) > ω}. We

have indeed, for all C ⊂ X ,

Lω

(
C∗

ω

) ≤ Lω(C).

Also the optimal error is given by

Lω

(
C∗

ω

) = 2E min
{
ω

(
1 − η(X)

)
, (1 − ω)η(X)

}
.

The excess risk for an arbitrary set C can be written

Lω(C) − Lω

(
C∗

ω

) = 2E
(∣∣η(X) − ω

∣∣I
{
X ∈ C�C∗

ω

})
,

where � stands for the symmetric difference between sets.

The empirical counterpart of the weighted classification error can be defined as

L̂ω(C) = 2ω

n

n∑

i=1

I{Yi = −1, Xi ∈ C} + 2(1 − ω)

n

n∑

i=1

I{Yi = +1, Xi /∈ C}.

This leads to the consideration of the weighted empirical risk minimizer over a class
R of candidate sets:

Ĉω = arg min
C∈R

L̂ω(C).

The next result provides rates of convergence of the weighted empirical risk min-
imizer Ĉω to the best set in the class in terms of the two types of error.
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Theorem 16 Let ω ∈ (0,1). Assume that R is of finite VC dimension V and con-
tains C∗

ω. Suppose also that both G∗ and H ∗ are twice continuously differentiable
with strictly positive first derivatives and that ROC∗ has a bounded second deriva-
tive. Then, for all δ > 0, there exist constants c(V ) independent of ω such that, with
probability at least 1 − δ,

∣∣H
(
Ĉω

) − H
(
C∗

ω

)∣∣ ≤ c(V )√
p(1 − ω)

·
(

log(1/δ)

n

) 1
3

.

The same result also holds for the excess risk of Ĉω in terms of the true positive rate
with a factor term of

√
(1 − p)ω in the denominator instead.

It is noteworthy that, while convergence in terms of classification error is expected
to be of the order of n−1/2, its two components corresponding to the rate of false
positive and true positive present slower rates. Hence, even though usual classification
methods can readily be used for recovering a collection of η-level sets, the empirical
MV-set approach should be preferred regarding the rate of convergence.

6 Conclusion

In this paper, we propose a ranking/scoring algorithm based on the resolution of a
collection of constrained classification problems. Statistical performance in terms of
the convergence towards the optimal ROC curve in supremum norm is studied. We
also consider various strategies for solving the constrained classification problem:
empirical MV-set approach, threshold rules, and weighted empirical risk minimiza-
tion. Several issues remain open, including optimality of convergence rate bounds,
adaptive grid for approximation, and practical implementations of empirical MV-set
estimation. Their investigation is undertaken through ongoing projects.

Acknowledgements We are grateful to the anonymous referees for their comments, which helped us to
improve the clarity of presentation.

Appendix: Proof Section

Proof of Proposition 5 First, we observe that, for any measurable function h, we
have, by a change of probability, that

E
(
h(X)

∣∣ Y = +1
) = 1 − p

p
E

(
η(X)

1 − η(X)
h(X)

∣
∣∣∣ Y = −1

)
.

We apply this to h(X) = I{X ∈ R∗
α} − I{X ∈ Rs,α} in order to get

ROC∗(α) − ROC(s,α) = 1 − p

p
E

(
η(X)

1 − η(X)
h(X)

∣∣∣∣ Y = −1

)
.
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Then we add and substract Q∗(α)/(1 − Q∗(α)), and using the fact that

α = P{X ∈ Rs,α | Y = −1} = P
{
X ∈ R∗

α

∣∣ Y = −1
}
,

we get

ROC∗(α) − ROC(s,α) =
(

1 − p

p

)
E

((
η(X)

1 − η(X)
− Q∗(α)

1 − Q∗(α)

)
h(X)

∣∣∣∣ Y = −1

)
.

We remove the conditioning with respect to Y = −1, and then using conditioning on
X, we obtain

ROC∗(α) − ROC(s,α) = 1

p
E

((
η(X) − Q∗(α)

1 − Q∗(α)

)
h(X)

)
. �

Proof of Proposition 6 We recall (see [8]) that

AUC∗ − AUC(η̂) = E(|η(X) − η(X′)|I{(X,X′) ∈ Γ })
2p(1 − p)

,

where

Γ = {(
x, x′) : sgn

(
η̂(X) − η̂

(
X′)) �= sgn

(
η(X) − η

(
X′))}.

But one may easily check that

if sgn
(
η̂(X) − η̂

(
X′)) �= sgn

(
η(X) − η

(
X′)), then

∣∣η(X) − η
(
X′)∣∣ ≤ ∣∣η(X) − η̂(X)

∣∣ + ∣∣η
(
X′) − η̂

(
X′)∣∣,

which gives the first part of the result.
Turning to the second assertion, consider the event

E = {
X ∈ R∗

α�Rη̂,α

}
.

Notice first that, after Proposition 5, we have

ROC∗(α) − ROC(η̂, α) = E(|η(X) − Q∗(α)| IE )

p(1 − Q∗(α))

≤ cE(|H ∗(η(X)) − 1 + α| IE )

p(1 − Q∗(α))

by virtue of the finite increments theorem. Now, observing that

E = {
sgn

(
H ∗(η(X)

) − 1 + α
) �= sgn

(
Hη̂

(
η̂(X)

) − 1 + α
)}

,

we have in a similar fashion as above: if X ∈ R∗
α�Rη̂,α , then

∣∣H ∗(η(X)
) − 1 + α

∣∣ ≤ ∣∣H ∗(η(X)
) − Hη̂

(
η̂(X)

)∣∣,

which, combined with the previous bound, proves the second part. �



642 Constr Approx (2010) 32: 619–648

Proof of Theorem 8 We note α̃i = H(R̃i), β̃i = G(R̃i) and also Φ̃i(·) = Φ(·(̃αi−1,

α̃i)) − Φ(·; (̃αi , α̃i+1)). We then have

ROC(s̃σK
,α) =

K∑

i=1

β̃iΦ̃i(α),

and we can use the following decomposition, for any α ∈ [0,1]:

ROC∗(α) − ROC(s̃σK
,α) =

(

ROC∗(α) −
K∑

i=1

ROC∗(̃αi)Φ̃i(α)

)

+
K∑

i=1

(
ROC∗(̃αi) − β̃i

)
Φ̃i(α).

From Proposition 7 we can bound the first term (which is positive), ∀α ∈ [0,1], by

−1

8
inf

α∈[0,1]
d2

dα2
ROC∗(α) · max

0≤i≤K
(̃αi+1 − α̃i)

2.

Now, to control the second term, we upper bound the following quantity:

∣∣ROC∗(̃αi) − β̃i

∣∣ ≤ sup
α∈[0,1]

d

dα
ROC∗(α) · |̃αi − αi | +

∣∣ROC∗(αi) − β̃i

∣∣.

We further bound |̃αi − αi | ≤ |̃αi − ᾱi | + |ᾱi − αi |, where ᾱi = H(R̂αi
). In order to

deal with the first term, the next lemma will be needed:

Lemma 17 We have, for all k ∈ {1, . . . ,K}:
H

(
R̃k

) = H
(
R̂αk

) + (k − 1)OP

(
φ(δ,n)

)
,

where the notation OP(1) is used for a r.v. which is bounded in probability.

From the lemma, it follows that max1≤i≤K |̃αi − ᾱi | = OP(Kφ(δ,n)). We can
then use Theorem 10 with δ replaced by δ/K to get that max1≤i≤K |ᾱi − αi | =
OP(φ(δ/K,n)). The same inequalities hold with the β’s. It remains to control the
quantity α̃i+1 − α̃i . We have

|̃αi+1 − α̃i | ≤ max
1≤k≤K

∣∣H
(
R̂αk

) − H
(
R̂αk−1

)∣∣ + KOP

(
φ(δ,n)

)
.

We have that

max
1≤k≤K

∣∣H
(
R̂αk

) − H
(
R̂αk−1

)∣∣ ≤ 2 max
1≤k≤K

∣∣H
(
R̂αk

) − αk

∣∣ + max
1≤k≤K

|αk − αk−1|.

As before, we have that the first term is of the order φ(δ/K,n), and since the second
derivative of the optimal ROC curve is bounded, the second term is of the order K−1.
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Eventually, we choose K in order to optimize the quantity K2A2
n + K2n−1 + K−2 +

A2
n + logK/n + KAn + Kn−1/2 + An + (logK/n)1/2. Using the assumption on the

rate of An, the optimization in K leads to the choice of K = Kn ∼ n1/6. �

Proof of Lemma 17 We have that H(R̃2) = H(R̂α2)+H(R̂α1 \R̂α2). Therefore, since
R∗

α1
⊂ R∗

α2
and observing that

H
(
R̂α1 \ R̂α2

) = H
(((

R̂α1 \ R∗
α1

) ∪ (
R̂α1 ∩ R∗

α1

)) \ ((
R̂α2 \ R∗

α2

) ∪ (
R̂α2 ∩ R∗

α2

))
,

it suffices to use the additivity of the probability measure H(.) to get: H(R̃2) =
H(R̂α2) + OP(φ(δ, n)). Eventually, errors are stacked and we obtain the result. �

Proof of Theorem 9 We use the following decomposition, for any fixed α ∈ (0,1):

R̂OC∗(α) − ROC∗(α) =
(

R̂OC∗(α) −
K∑

i=1

ROC∗(α̂i)Φ̂i(α)

)

+
(

K∑

i=1

ROC∗(α̂i)φ̂i(α) − ROC∗(α)

)

.

Therefore, we have by a triangular inequality, ∀α ∈ [0,1],
∣∣∣∣∣
R̂OC∗(α) −

K∑

i=1

ROC∗(α̂i)φ̂i(α)

∣∣∣∣∣
≤ max

1≤i≤K

∣∣β̂i − β̄i

∣∣ + ∣∣β̄i − ROC∗(αi)
∣∣

+ ∣∣ROC∗(αi) − ROC∗(α̂i)
∣∣,

where β̄i = G(R̂αi
) for i ∈ {1, . . . ,K}. And, by the finite increments theorem, we

have

∣∣ROC∗(αi) − ROC∗(α̂i)
∣∣ ≤

(
sup

α∈[0,1]
d

dα
ROC∗(α)

)(|αi − ᾱi | + |ᾱi − α̂i |
)
.

For the other term, we use the same result on approximation as in the proof of Theo-
rem 8:
∣∣∣∣∣

K∑

i=1

ROC∗(α̂i)φ̂i (α) − ROC∗(α)

∣∣∣∣∣
≤ −1

8
inf

α∈[0,1]
d2

dα2
ROC∗(α) · max

0≤i≤K
(α̂i+1 − α̂i )

2,

max
0≤i≤K

(α̂i+1 − α̂i ) ≤ max
0≤i≤K

(αi+1 − αi) + 2 max
1≤i≤K

|αi − ᾱi | + 2 max
1≤i≤K

|α̂i − ᾱi |.

We recall that max1≤i≤K |α̂i − ᾱi | = OP(Kn−1/2). Moreover, max0≤i≤K {αi+1 −
αi} is of the order of K−1. And with probability at least 1 − δ, we have that
max1≤i≤K |αi − ᾱi | is bounded as in Theorem 10, except that δ is replaced by δ/K in
the bound. Eventually, we get the generalization bound K−2 + (logK/n)1/2, which
is optimal for a number of knots K ∼ n1/4. �
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Proof of Theorem 10 In order to prove the desired result, we introduce further nota-
tion, namely

R̂α = {
R ∈ R : Ĥn(R) ≤ α + φ(δ/2, n)

}
,

so that one may write

R̂α = arg max
R∈R̂α

Ĝn(R).

We shall consider the following events:

ΘH = {
H

(
R̂α

)
> α + 2φ(δ/2, n)

}
and ΘG = {

G
(
R̂α

)
< G

(
R∗

α

) − 2φ(δ/2, n)
}
,

as well as

ΩH =
{

sup
R∈R

∣∣Ĥn(R) − H(R)
∣∣ > φ(δ/2, n)

}
and

ΩG =
{

sup
R∈R

∣∣Ĝn(R) − G(R)
∣∣ > φ(δ/2, n)

}
.

The complementary event of any event E will be denoted by Ec. The matter is to
establish a lower bound for the probability of occurrence of the complementary event
of ΘH ∪ ΘG. We shall prove that

ΘH ∪ ΘG ⊂ ΩH ∪ ΩG, (4)

and the result will then follow from the union bound combined with McDiarmid’s
concentration inequality and the control of empirical process by a Rademacher aver-
age through a double symmetrization argument (see [5] for details). We have, indeed,
that, for all δ ∈ (0,1), the event ΩH (respectively, the event ΩG) occurs with proba-
bility less than δ/2.

Observe first that Ωc
H ∩ Ωc

G ⊂ Θc
G. As a matter of fact, on the event Ωc

H we have

Ĥn

(
R∗

α

) − α ≤ sup
R∈R

∣∣Ĥn(R) − H(R)
∣∣ ≤ φ(δ/2, n),

so that we have R∗
α ∈ R̂α and thus, Ĝn(R̂α) ≥ Ĝn(R

∗
α). In addition, since

G
(
R̂α

) = (
G

(
R̂α

) − Ĝn

(
R̂α

)) + (
Ĝn

(
R̂α

) − Ĝn

(
R∗

α

))

+ (
Ĝn

(
R∗

α

) − G
(
R∗

α

)) + G
(
R∗

α

)
,

on the event of Ωc
H ∩Ωc

G we have G(R̂α) ≥ G(R∗
α)−2φ(δ/2, n), and the latter event

corresponds to Θc
G. Eventually, on the event Ωc

H , we have

H
(
R∗

α

) ≤ Ĥn

(
R∗

α

) + sup
R∈R

∣∣H(R) − Ĥn(R)
∣∣

≤ α + 2φ(δ/2, n),

so that Ωc
H ⊂ Θc

H . �
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Proof of Lemma 11 It is straightforward to extend the equivalent statements of the
noise assumption (NA) in the standard classification setup (see [5]) to an arbitrary
level. We use the following equivalent condition: there exists a positive constant c

such that, for any set R, we have

E
(
I
{
X ∈ R∗

α�R
}) ≤ c

(
F

(
R∗

α

) − F(R)
)a

,

where F = pG + (1 − p)H . From there, we can deduce the next bound,

s2
α(R) ≤ c

(
E

(∣∣η(X) − Q∗(α)
∣
∣ · I

{
X ∈ R∗

α�R
}))a

,

by Hölder’s inequality.
Observe also that

p
(
G

(
R∗

α

) − G(R)
) = E

[(
η(X) − Q∗(α)

) · (I{X ∈ R∗
α

} − I{X ∈ R})]

+ Q∗(α)
(
P
{
X ∈ R∗

α

} − P{X ∈ R}),
and

(1 − p)
(
H

(
R∗

α

) − H(R)
) = E

[(
Q∗(α) − η(X)

) · (I{X ∈ R∗
α

} − I{X ∈ R})]

+ (
1 − Q∗(α)

)(
P
{
X ∈ R∗

α

} − P{X ∈ R}).
This yields

E
[∣∣η(X) − Q∗(α)

∣
∣ · I

{
X ∈ R∗

α�R
}] = p

(
1 − Q∗(α)

)(
G

(
R∗

α

) − G(R)
)

+ (1 − p)Q∗(α)
(
H(R) − H

(
R∗

α

))
.

Combined with the previous bound, this entails that

s2
α(R) ≤ c

1 − 2Q∗(α)

(
p
(
1 − Q∗(α)

)(
G

(
R∗

α

) − G(R)
)

+ (1 − p)Q∗(α)
(
H(R) − H

(
R∗

α

)))a
,

which concludes the proof. �

Proof of Theorem 12 For simplicity, we provide the proof for a finite class R with
cardinality N . First observe that from Theorem 10 and its proof, we have, with prob-
ability larger than 1 − δ,

H
(
R̂α

) ≤ α + 2φ(δ/2, n), G
(
R̂α

) ≥ G
(
R∗

α

) − 2φ(δ/2, n) and R∗
α ∈ R̂α.

For all R ∈ R, we set

Pn(R) = n+
n

{
Ĝn

(
R∗

α

) − Ĝn(R)
}
,

so that we have Pn(R̂α) ≤ 0 since R∗
α ∈ R̂α . We also introduce

P(R) = E

(
1

p
Pn(R)

)
= G

(
R∗

α

) − G(R).
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Now from Bernstein’s inequality and the union bound, we have, with probability
larger than 1 − δ,

∀R ∈ R, pP (R) ≤ Pn(R) +
√

2s2
α(R) log(N/δ)

n
+ 4 log(N/δ)

3n
.

Using this inequality for R = R̂α , we get

p
(
G

(
R∗

α

) − G
(
R̂α

)) ≤
√

2s2
α(R̂α)) log(N/δ)

n
+ 4 log(N/δ)

3n
.

We set the notations �G = G(R∗
α) − G(R̂α), �H = H(R̂α) − H(R∗

α) and q =
Q∗(α). Then, from the variance control lemma with a = 1/2, we get

p�G ≤
√

2c log(N/δ)

n(1 − 2q)

((
p(1 − q)�G

)1/4 + (
(1 − p)q�H

)1/4) + 4 log(N/δ)

3n
.

Eventually, using the control on �G and �H from Theorem 10, we obtain that
there exists a constant C = C(N, δ,α,p):

�G ≤ Cn−5/8. �

Proof of Lemma 13 For all (s, t) ∈ S × R, set Rs,t = {x ∈ X : s(x) ≥ t}. For all
s0 ∈ S , we have

H
(
R̂α(s0)

) ≤ sup
(s,t)∈S×R

∣∣H(Rs,t ) − Ĥn(Rs,t )
∣∣ + Ĥn

(
R̂α(s0)

)

≤ sup
(s,t)∈S×R

∣∣H(Rs,t ) − Ĥn(Rs,t )
∣∣ + α + 1

n
.

As noticed in Remark 17, the collection of sets {Rs,t }(s,t)∈S×R has finite VC-
dimension. This observation permits us to conclude the proof. �

Proof of Theorem 16 The idea of the proof is to relate the excess risk in terms of
type I error to the excess risk in terms of weighted classification error. First we re-
parameterize the weighted classification error. Set

�ω(α) = Lω

(
R∗

α

) = 2(1 − p)ωα + 2p(1 − ω)
(
1 − ROC∗(α)

)
.

Since ROC∗ is assumed to be differentiable, it is easy to check that the value α∗ =
H(C∗

ω) minimizes �ω(α). Set �∗
ω = �ω(α∗). It follows from a Taylor expansion of

�ω(α) around α∗ at the second order that there exists α0 ∈ [0,1] such that

�ω(α) = �∗
ω − p(1 − ω)

d2

dα2
ROC∗(α0)

(
α − α∗)2

.

Using also the fact that ROC∗ dominates any other curve of the ROC space, we have
∀C ⊂ X measurable, G(C) ≤ ROC∗(H(C)). Also, by assumption, there exists m
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such that ∀α ∈ [0,1], d2

dα2 ROC∗(α) ≥ −m. Hence, since �ω(H(Ĉω)) = Lω(Ĉω), we
have

(
H

(
Ĉω

) − H
(
C∗

ω

))2 ≤ 1

mp(1 − ω)

(
Lω

(
Ĉω

) − Lω

(
C∗

ω

))
.

We have obtained the desired inequality. It remains to get the rate of convergence for
the weighted empirical risk.

Now set F ∗ = pG∗ + (1 − p)H ∗. We observe that ∀t > 0, P(|η(X) − ω| ≤ t) =
F ∗(ω + t) − F ∗(ω − t) ≤ 2t supu(F

∗)′(u). We have thus shown that the distribution
satisfies a modified margin condition [31], for all ω ∈ [0,1], of the form

P
(∣∣η(X) − ω

∣∣ ≤ t
) ≤ D t

γ
1−γ ,

with γ = 1/2 and D = 2 supu(F
∗)′(u). Adapting slightly the argument used in

[5, 31], we have that, under the modified margin condition, there exists a constant
c such that, with probability 1 − δ,

Lω

(
Ĉω

) − L∗
ω

(
C∗

ω

) ≤ c

(
log(1/δ)

n

) 1
2−γ

. �
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