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a b s t r a c t 

This paper shows that when a classifier is evaluated with nonrandom test data, ROC curves differ from 

the ROC curves that would be obtained with a random sample. To address this bias, this paper intro- 

duces a procedure for plotting ROC curves that are inferred from nonrandom test data. I provide simula- 

tions to illustrate the procedure as well as the magnitude of bias that is found in empirical ROC curves 

constructed with nonrandom test data. The paper also includes a demonstration of the procedure on 

(non-simulated) data used to model wine preferences in the wine industry. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

In many settings, data are collected in a nonrandom fashion.

he decision to investigate insurance claims for fraud may be

ased on a predictive model. Investigating insurance claims is

ostly and it may be difficult to allocate resources to inspect a

andom sample of claims. Similarly, the Internal Revenue Service

IRS) uses a model that predicts tax-filing errors to select tax

eturns for audits. A recommender system may only show the user

tems that are predicted to be of interest. In these three examples,

ata are only collected for instances that are judged to be more

ikely to be positive cases. 

This paper makes two contributions. This paper’s first contri-

ution is a characterization of the bias that results in receiver

perating characteristic (ROC) curves when they are constructed

ith nonrandom test data. 2 The bias described by this paper is

aused by constructing the ROC curve with test data that are not

epresentative of the population of interest. This paper does not

onsider the effects of using test data that are not representative of

he training data. There is a downward bias for ROC curves when

he classifier is strongly correlated with the classifier that was
E-mail address: jacook@uci.edu 
1 The PCAOB, as a matter of policy disclaims responsibility for any private pub- 

ication or statement by any of its Economic Research Fellows and employees. The 

iews expressed in this paper are the views of the author and do not necessarily 

eflect the views of the Board, individual Board members, or staff of the PCAOB. 
2 Throughout this paper, I refer to data that are used to evaluate a classifier’s 

erformance as “test data.” Data that are used to train the classifier are referred to 

s “training data.”
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sed to select the test data. By contrast, ROC curves are pushed

utward for a classifier with low correlation to the classifier that

as used to select the test data. The bias that arises from using

nother classifier to select the test data is related to (but different

rom) sample-selection bias for linear regression, which has been

tudied in the econometric literature. 

This paper’s second contribution is a procedure to create ROC

urves that provide a consistent estimate of the ROC curve that

ould be obtained with random test data. This procedure infers

he predictive power of the classifier based on available data and

lots the implied ROC curve. The inferred ROC curves are based on

conometric work on bivariate probit analysis (e.g. [21] and [19] ).

 key difference between this paper and prior work on selection

roblems is that the problems considered by this paper are not

egression equations. Section 5 discusses instances for which ROC

urves are biased, but the parameters of a regression equation

ould not be. 

I make distributional assumptions that lead to a maximum like-

ihood problem that is similar to those encountered in estimating

egression equations with sample selection. A classifier’s expected

OC curve is determined by two parameters. The first parameter

etermines how many positive cases there are in the population.

he second parameter is the correlation of the classifier’s output

or each instance with that instance’s latent propensity to be a

ositive case. 

The presented procedure is related to the Dorfman–Alf [6] pro-

edure for estimating parameters of fitted ROC curves, which also

ses maximum likelihood estimates under parametric assump-

ions. (Extensions of the Dorfman–Alf procedure include [17] , [24] ,

http://dx.doi.org/10.1016/j.patrec.2016.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.11.015&domain=pdf
mailto:jacook@uci.edu
http://dx.doi.org/10.1016/j.patrec.2016.11.015
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Table 1 

Confusion matrix. 

Truth 

Positive Negative 

Prediction Positive True False 

Positives ( TP ) Positives ( FP ) 

Negative False True 

Negatives ( FN ) Negatives ( TN ) 

Total Positives ( P ) Negatives ( N ) 
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and [7] .) The Dorfman–Alf procedure and its various extensions do

not correct for selection bias. 

This paper contributes to the literature on evaluating classifiers.

Recent works have shown the connections between ROC curves

and precision-recall curves [5] and cost curves [13] . Other work on

the properties of evaluation metrics for classifiers includes Wang

et al. [22] , who show that normalized discounted cumulative

gains (NDCG) can consistently distinguish classifiers, and Moffat

[18] , who provides properties of evaluation metrics. There does

not appear to be any existing work on evaluating classifiers with

nonrandom data. 

Training a classifier with nonrandom data is beyond the scope

of this paper. This paper does not discuss the effects of having

nonrandom training data. To create classifiers with nonrandom

training data, the econometric literature has built on the sample-

selection correction regression of Heckman [11,12] (see [21] for

a binary classifier). The credit-scoring literature has introduced

reject inference , which incorporates information from unselected

items, to improve classifier performance (see, for example, [4] ). 

In the next section, I introduce notation and derive the bias in

ROC curves when the classifier being evaluated was used to select

the test data. I derive a ROC curve that consistently estimates the

ROC curve that would be obtained with random data in Section 3 .

Sections 4 and 5 present an example and Monte Carlo simulations

to illustrate this procedure as well as the bias found in empirical

ROC curves. Section 6 concludes. 

2. Classifiers and ROC curves 

A classifier maps instances to predicted classes. This paper fo-

cuses on binary classifiers , which map to two classes (e.g., positive

and negative). While some classifiers map directly to predicted

classes, this paper focuses on classifiers that produce a continuous

output. Given the classifier’s output and a threshold, we classify all

instances above the threshold as positive and all instances below

the threshold as negative. 

The confusion matrix in Table 1 defines true positives (TP), true

negatives (TN), positives (P), and negatives (N). Sensitivity and

specificity are defined as 

Sensitivity = 

T P 

P 
, and (1)

Specificity = 

T N 

N 

. (2)

ROC curves, which plot sensitivity as a function of specificity for

all possible thresholds, 3 illustrate a classifier’s trade-off between

true positives and false negatives. A higher value of sensitivity

for a given value of specificity indicates better performance. The

area under the ROC curve (AUC) is a commonly used metric for

evaluating a classifier’s performance (as described by Bradley

[1] ). If the classifier’s output has no connection to the true class,

the expected AUC would be .5. An excellent introduction to ROC

curves is provided by Fawcett [8] . 
3 The thresholds are often referred to as “operating points.”

L  

c

valuating a classifier with nonrandom test data 

This section introduces notation and provides some analytical

esults regarding the sample-selection bias for ROC curves. Let us

enote the continuous output of classifier A for each instance i

s a i . I assume that there is some unobserved propensity to be a

ositive case and denote this propensity as p i for each instance i .

he true classification of each instance is 

utcome i = 

{
positive if p i ≥ p ∗

negative otherwise 
, (3)

here p ∗ is the threshold for an instance to be a positive case.

 value of p ∗ = 0 indicates that half of the observations are

ositive cases. The class skew increases with the absolute value

f p ∗. Throughout this paper, I treat both p i and a i as (possibly

orrelated) random variables. The modeler never observes p i ,

nly outcome i . For a given threshold c , we can give probabilistic

efinitions of sensitivity and specificity: 

ensitivity = Prob (a i > c | p i > p ∗) , and (4)

pecificity = Prob (a i < c | p i < p ∗) . (5)

he values in Eqs. (1) and (2) provide sample estimates of these

robabilities. 

Another classifier, B with output denoted as b , is used to select

he test data. This paper focuses on situations in which b is not

bserved. Appendix B explores the situation of an observed b . I

ssume that each instance of b can be written as 

 i = δ X i + γ a i + ε i , 

here X i is a vector of features for case i and εi is a standard

ormal random variable. The parameter δ is a vector of coefficients

nd γ indicates the degree to which the classifier’s output was

ncorporated into the selection process. I assume that ε is mean

ndependent of X and α, i.e. E(ε| X, α) = 0 . This assumption allows

or estimation of δ and γ by a probit regression. 

Data is selected according to the rule 

Selected if δ X i + γ a i + ε i > s 
Not selected otherwise 

, (6)

here s is a constant. Sensitivity and specificity conditional on

election are denoted as 

ensitivity | Selection = Prob (a i > c | p i > p ∗, b i > s ) (7)

pecificity | Selection = Prob (a i < c | p i < p ∗, b i > s ) . (8)

hen data are chosen based on a classifier’s output, the estimates

n Eqs. (1) and (2) provide an estimate of the values in Eqs. (7) and

8) instead of the values in Eqs. (4) and (5) . 

To build our intuition about the effect of nonrandom data, I

riefly digress to consider a simpler form of choosing test data

ased on a classifier: selecting the test data using the classifier

hat we want to evaluate. Sensitivity and specificity conditional on

election on the classifier to be evaluated are denoted as 

ensitivity | Selection = Prob (a i > c | p i > p ∗, a i > s ) (9)

pecificity | Selection = Prob (a i < c | p i < p ∗, a i > s ) . (10)

The following lemma will aid in proving our results regarding

he bias in empirical ROC curves for test data that are selected by

he classifier that we want to evaluate. 

emma 1. For a fixed value of c, conditioning on selection by the

lassifier that we want to evaluate 
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Fig. 1. The solid line is the pdf for the classifier’s output. The dashed and dot-dash 

lines are the pdfs that result from truncating the classifier’s output at −1 and 1, 

respectively. 
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(i) Increases sensitivity, i.e. 

Sensit i v it y < Sensit i v it y | Selection f or all − ∞ < s < c, 

and 

(ii) Decreases specificity, i.e. 

Speci f icity > Speci f icity | Selection f or all − ∞ < s < c. 

All proofs are provided in Appendix A . For a given cutoff level,

election moves sensitivity and specificity in opposite directions.

he intuition for this result is that, as we focus on instances that

ur classifier considers more likely to be positive cases, we will

ave more positive cases in our test data. Sensitivity, which is

onditional on the number of positive cases, is biased downward

s the relative prevalence of positive cases increases. Similarly,

pecificity is biased upward as the relative number of negative

ases decreases. 

The ROC curve plots sensitivity as a function of specificity: 

ensitivity(Specificity) = Prob (a i > c | p i > p ∗) , 

here c satisfies 

pecificity = Prob (a i < c | p i < p ∗) . 

p to this point, this paper has not made any distributional as-

umptions. To derive analytical results about the effect of selection

n ROC curves, it is useful to assume that p i and a i come from a

ivariate normal distribution: 

p i 
a i 

)
∼ N 2 

([
0 

0 

]
, 

[
1 ρap 

ρap 1 

])
. 

he multivariate normal distribution is chosen because of the

elative ease of working with conditional distributions. Given that

he scale of the unobserved risk is arbitrary, I define the mean and

ariance of p i to be zero and one. This is only done for notational

implicity and p i can be redefined such that is has mean zero and

ariance one. 

We are now ready to state the main result of this section. 

roposition 2. When test data are selected based on the classifier

hat we want to evaluate, sensitivity is lower for all points on the

nterior of the ROC curve. 

The assumed bivariate distribution is a sufficient but not nec-

ssary condition for Proposition 2 . The downward bias in the ROC

urve is created by truncating the distribution of the classifier’s

utput. Truncation causes an attenuation bias in perceived corre-

ation between the classifier’s output and the latent propensity

o be a positive case. This attenuation bias causes the AUC to be

maller. Fig. 1 illustrates the effect of truncation on the probability

ensity function (pdf) for the classifier’s output. 

There is an important feature of this setup to note before mov-

ng to the next section. Given this probabilistic formulation, both

ensitivity and specificity are affected by p ∗ as long as a and p are

ot independent. This means that the skew of the test data will

ffect the ROC curve. (This type of effect has been discussed by

ebb and Ting [23] and Fawcett and Flach [9] .) Specifically, keep-

ng ρap constant, the AUC is increasing the absolute value of p ∗.

his is related to the reported tendency of ROC curves to be “overly

ptimistic” when the data are skewed ( [5] , p. 233 and [10] , p. 79). 4 
4 This is surprising because an advantage of ROC curves is that they can be in- 

ariant to class skew (see, for example, [20] , p. 26 and Fawcett (2006), p. 864). 

ebb and Ting [23] explain that ROC curves are only invariant to class skew when 

e can think of features as coming from difference distributions for positive and 

egative cases. 

S

 

a  

l  

c

. ROC curves for nonrandom test data 

This paper’s procedure for creating ROC curves that are robust

o sample selection is to infer the predictive power of the classifier

taking selection into consideration), then draw the ROC curve

hat is implied by our distributional assumptions. The proposed

rocedure has the following three steps. 

Step 1. Subtract the mean and divide by the standard deviation

o standardize the classifier’s output. The mean and standard

eviation should be based on all of the data, not only on the

elected instances. 

Step 2. Estimate p ∗ and the correlation between the classifier’s

utput and the latent propensity to be a positive case, i.e. ρap , by

aximizing the following likelihood function with respect to the

arameters p ∗, ρap , ρεp , δ, γ : 

 = 

∏ 

i 

�2 (W, −Q ;ρεp ) 
1 ( outcome i = positive ) 

×�2 (W, Q ;−ρεp ) 
1 ( outcome i = negative ) 

×�(−W ) 1 ( outcome i = NA ) , (11) 

here 

 = δ X i + γ a i − s, 

Q = (p ∗ − a i ρap ) / 

√ 

1 − ρ2 
ap , 

nd 1 ( ·) is the indicator function. 

Step 3. Draw the ROC curve that is implied by our estimates in

tep 2 and 

ensitivity( Specificity) = Prob (a i > c | p i > p ∗) , 

here c satisfies 

pecificity = Prob (a i < c | p i < p ∗) . 

To draw the ROC implied by these estimates (denoted here

s ̂ p ∗ and 

̂ ρap ), begin with a set of cutoffs with sufficiently

arge range (e.g., −4–4). For each cutoff c ∈ [ −4 , 4] , we find the

orresponding value of sensitivity as 
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Fig. 2. ROC curves for wine quality prediction, as described in Section 5 . The area 

under the ROC curve that uses all of the test data is .83. The areas under the em- 

pirical and inferred ROC curves, which only use half of the test data, are .60 and 

.81, respectively. 
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Prob (a i > c | p i > p ∗) 

= 

[
1 − �( ̂  p ∗) 

]−1 
∫ ∞ 

c 

φ(a ) 

[
1 − �

([̂ p ∗ − ̂ ρap a 
]
/ 

√ 

1 − ̂ ρap 
2 

)]
da 

(12)

and specificity as 

Prob (a i < c | p i < p ∗) 

= �( ̂  p ∗) −1 

∫ c 

−∞ 

φ(a ) �

([̂ p ∗ − ̂ ρap a 
]
/ 

√ 

1 − ̂ ρap 
2 

)
da. (13)

The likelihood function in Step 2 is a reparameterization of

the likelihood derived by Van de Ven and Van Pragg [21] . The

ROC curve that we draw in Step 3 is a deterministic function of

the maximum likelihood estimates from Step 2. By the functional

invariance property of maximum likelihood estimates, we know

that the ROC curve drawn in Step 3 is a consistent estimate of the

expected ROC curve. 

4. An example with wine-quality data 

To provide a demonstration of this procedure with non-

simulated data, I use data on white wine quality from Cortez

et al. [3] . 5 This dataset contains eleven attributes for 4898 white

wines, including alcohol content, citric acid, and residual sugar. A

detailed description of this data are provided by Cortez et al. For

the measure of wine quality, each wine was evaluated by experts

and given a score from zero to ten (with ten being the highest

quality). Because we are interested in binary prediction, I define a

wine with a score of six or higher as “good wine” and other wines

as “not good wine.”

All eleven attributes are used as predictors in a random forest

classifier (based on Breiman [2] and implemented in R using Liaw

and Wiener’s [16] randomForest package) to predict (binary) wine

quality. The random forest contains 10 0 0 trees and tries three

attributes at each split. I use the first 2/3 of the observations

(3233 observations) as training data and the remaining 1/3 (1665

observations) as test data. 

I first find the ROC curve for the random forest classifier using

the full set of test data. The area under the ROC curve is .83. Next,

let us suppose that the wine experts do not have enough time to

score all of the wine in the test data. Preferring to taste wine that

is more likely to be good wine, the experts taste the half the test

data that the random forest classifier predicted was most likely to

be good wine. With only half of the test data available, the area

under the ROC curve falls to .60. 

I now perform the procedure described in the previous section

with the half of the test data predicted by be most likely to be

good wine. I standardize the random forest scores and follow Step

2 to find the estimates ̂ ρap = . 64 and 

̂ p ∗ = −. 55 . 

Fig. 2 plots the ROC curves that are obtained with the full set

of test data, the half of the test data that received a high score

from the random forest, and the ROC curve based on our estimates

of p ∗ and ρap . The ROC curve based on our estimates of p ∗ and

ρap closely matches the ROC curve obtained with the full set of

test data. 

5. Simulation 

This section reports the results of simulation exercises for the

procedure presented in Section 3 . The purpose of these simula-
5 These data are available at the University of California at Irvine’s Machine 

Learning Repository, https://archive.ics.uci.edu/ml/datasets.html . 

r

w

ions is to illustrate the performance of inferred ROC curves as

ell as the bias that arises in empirical ROC curves. 6 

I first simulate the ROC curve that is obtained with random

est data. For each Monte Carlo run, I draw 500 observations from

he distribution 

 

p i 
a i 
ε i 

) 

∼ N 3 

( [ 

0 

0 

0 

] 

, 

[ 

1 ρap ρεp 

ρap 1 0 

ρεp 0 1 

] ) 

(14)

nd define the outcome as in Eq. (3) . I then calculate the AUC for

 . This serves as an estimate of the unbiased AUC. 

Next, I simulate the ROC curve that results with selection and

ith the inferred ROC curve. I draw 10 0 0 observations from the

istribution in Eq. (14) with the outcome defined as before. I then

ort the values by (γ a i + ε i ) and keep the 500 largest. (This is

quivalent to setting δ = 0 in Eq. (6) .) This is done so that there

s a fair degree of selectivity, but the number of observations used

o generate the ROC curve is the same for both the random and

onrandom samples. I then use the 500 nonrandom observations

o calculate the AUC for A using a empirical ROC curve and using

he previous section’s procedure. 

Across simulations, I vary the correlation between the clas-

ifiers and with the latent propensity to be a positive case. The

orrelation between the classifiers is 

or (a i , b i ) = 

γ

1 + γ 2 

nd the correlation between the classifier that was used to select

he test data and the latent propensity to be a positive case is 

or (p i , b i ) = 

γ ρap + ρεp 

1 + γ 2 
. 

Table 2 provides empirical and inferred AUCs for two clas-

ifiers: the first with ρap = . 2 , which I call the weak classifier,

nd the second with ρap = . 7 , which I call the strong classifier.

he values in the first row of Table 2 , .590 and .830, provide
6 By “empirical ROC curves,” I mean the ROC curve constructed using the algo- 

ithm described in [8] . All R code that was used to produce these simulations (as 

ell as the example in Section 4 ) are available upon request. 

https://archive.ics.uci.edu/ml/datasets.html
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Table 2 

Results based on 10,0 0 0 simulations. Each simulation is based 

on a sample of 500 draws. Mean values are presented with 

standard deviations in parenthesis. The parameter p ∗ is set to 

zero for all simulations. 

Evaluating a classifier with test data 

selected by an unobserved classifier 

ρap = . 2 ρap = . 7 

(Weak) (Strong) 

AUC for ROC curves .590 .830 

with a random sample ( .026) ( .018) 

For no correlation between classifiers and data selected by 

a strong classifier, i.e. γ = 0 , ρεp = . 7 

AUC for empirical ROC curves .619 .936 

with data selected by a classifier ( .028) ( .011) 

AUC for inferred ROC curves .591 .854 

with data selected by a classifier ( .031) ( .042) 

For .5 correlation between classifiers and data selected by 

a strong classifier, i.e. γ = 1 , ρεp = . 7 

AUC for empirical ROC curves .578 .683 

with data selected by a classifier ( .028) ( .059) 

AUC for inferred ROC curves .579 .779 

with data selected by a classifier ( .084) ( .095) 

For .5 correlation between classifiers and data selected by 

a weak classifier, i.e. γ = 1 , ρεp = 0 

AUC for empirical ROC curves .575 .796 

with data selected by a classifier ( .026) ( .021) 

AUC for inferred ROC curves .591 .832 

with data selected by a classifier ( .093) ( .057) 
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s 
he (unbiased) AUCs that are obtained with a random sample

or the weak and strong classifiers. When there is no correlation

etween the classifiers ( γ = 0 ), there is an upward bias in the AUC

or empirical ROC curves. As discussed at the end of Section 2 ,

iven our specification, AUC is increasing in the class skew. When

ap = ρεp = . 7 , the AUC for the empirical ROC curve with selection

s .936. This is a 13% increase over the unbiased AUC of .830. 

When there is a .5 correlation between the classifiers (i.e.

= 1 ), the ROC curve is biased downward. For small positive

alues of γ (results not reported), there is an upward bias in

OC curves. As the correlation between the classifiers increases,

he bias becomes more similar to the truncation bias described

n Proposition 2 . The simulations for which ρεp = 0 illustrate a

ifference between the problem considered by this paper and the

conometric literature on sample-selection bias. For a regression,

hen there is no correlation between the stochastic element in

he selection equation and the stochastic element in the outcome

quation, there is no bias. By contrast, Table 2 shows that there

s a downward bias for ROC curves when ρεp = 0 . The AUCs for

he weak and strong classifier, .575 and .796, are smaller than the

nbiased values of .590 and .830, respectively. 

For a .5 correlation between classifiers and data selected by

 strong classifier ( γ = 1 and ρεp = . 7 ), there is a noticeable

ifference between the areas under the inferred ROC curves and

he unbiased AUCs. The AUCs for the weak and strong classifiers’

nferred ROC curves are .578 and .683, respectively. In results not

hown, the differences between areas under the inferred ROC

urves and the unbiased AUCs are decreasing in the sample size.

ppendix B shows that, when the output of classifier that selected

he test data ( b i ) is observed, the average AUCs from inferred ROC

urves are much closer to the unbiased AUCs. 

. Discussion and conclusion 

When test data are selected by a classifier, the bias in the ROC

urve can be difficult to sign. A ROC curve that is constructed with
ata that was selected by the classifier will be biased downward.

or a sample-selection procedure that is only weakly correlated

ith classifier being evaluated, the ROC curve may be biased

pward. This paper presents a procedure for creating ROC curves

hat provide a consistent estimate of the ROC curve that would be

btained with random test data. 

The procedure introduced here assumes that the classifier’s

utput and latent propensity to be a positive case follow a bi-

ariate normal distribution. The bivariate normal distribution has

 relatively simple functional form. If non-Gaussian distributions

re preferred for classifiers’ output, the multivariate distributions

sed in this paper could be written in terms of copulas, as has

een done for sample-selection bias in a regression setting (as in

15] ). Copulas provide a way for handling bivariate distributions

hat result from arbitrary combinations of distributions. Copulas

ould be used to, for example, specify a Pareto distribution for the

lassifier’s output while maintaining the normal distribution for

he latent propensity to be a positive case. Alternatively, one could

iscretize the classifier’s output and treat a as a latent variable (in

he same manner as p ). 

An advantage of these distributional assumptions is that the

stimation of the parameter p ∗ leads to an estimate of the per-

ent of positive cases in the population. This parameter may be

f interest to an organization like the IRS that could use ̂ p ∗ to

stimate the percent of tax returns that contain errors. Given 

̂ p ∗,
 consistent estimate of the portion of tax returns that contain

rrors is provided by �( ̂  p ∗) , where �( · ) is the standard normal

umulative distribution function (CDF). 

This paper’s results have implications for the practice of sample

nrichment, which typically involves removing cases from the

ata [14] . In addition to possible effects from changes to the

istribution of positive and negative cases (as discussed at the

nd of Section 2 ), if the way in which cases are removed is

orrelated with the cases’ propensity to be positive or with the

lassifier’s output, the empirical ROC curves constructed with that

ample will be biased. A simple test for this bias is to perform the

rocedure Section 3 and test whether ρεp and γ both equal zero. 
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ppendix A. Proofs 

roof of Lemma 1. For ( i ): 

We want to show that 

rob (a i > c | p i > p ∗) < Prob (a i > c | p i > p ∗, a i > s ) . 

e assume that Prob( p i > p ∗) and Prob( a i > s ) are both nonzero.

f our selection rule s were negative enough, selection would have

o impact on sensitivity: 

lim 

 →−∞ 

Prob (a i > c | p i > p ∗, a i > s ) = Prob (a i > c | p i > p ∗) . 

e will now show that sensitivity is monotonically increasing in

he selection rule s . We first rewrite specificity in terms of the pdf

f a i conditional on ( p i > p ∗) as 

rob (a i > c | p i > p ∗, a i > s ) = 

Prob (a i > c | p i > p ∗) 
Prob (a i > s | p i > p ∗) 

= 

∫ ∞ 

c f a | p>p ∗ (a i ) da i ∫ ∞ 

f a | p>p ∗ (a i ) da i 
, 
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where f a | p>p ∗ is pdf of a i conditional on ( p i > p ∗). We take the

derivative of specificity conditional on selection with respect to s

through a straight-forward application of the Leibniz rule: 

d 

ds 

(∫ ∞ 

c f a | p>p ∗ (a i ) da i ∫ ∞ 

s f a | p>p ∗ (a i ) da i 

)
= f a | p>p ∗ (s ) 

∫ ∞ 

c f a | p>p ∗ (a i ) da i [∫ ∞ 

s f a | p>p ∗ (a i ) da i 
]2 

> 0 . 

For ( ii ): 

We want to show that 

Prob (a i < c | p i < p ∗) > Prob (a i < c | p i < p ∗, a i > s ) . 

We assume that Prob( p i < p ∗) and Prob( a i > s ) are both nonzero.

As in part ( i ), we begin by noting that if our selection rule s were

negative enough, selection would have no impact on specificity: 

lim 

s →−∞ 

Prob (a i < c | p i < p ∗, a i > s ) = Prob (a i < c | p i < p ∗) . 

We will now show that specificity is monotonically decreasing in

the selection rule s . Again, we first rewrite specificity in terms of

the pdf of a i conditional on ( p i < p ∗) as 

Prob (a i < c | p i < p ∗, a i > s ) = 

Prob (s < a i < c | p i < p ∗) 
Prob (a i > s | p i < p ∗) 

= 

∫ c 
s f a | p<p ∗ (a i ) da i ∫ ∞ 

s f a | p<p ∗ (a i ) da i 
, 

where f a | p<p ∗ is pdf of a i conditional on ( p i < p ∗). We take the

derivative of specificity conditional on selection with respect to s

by applying the Leibniz rule: 

d 

ds 

( ∫ c 
s f a | p<p ∗ (a i ) da i ∫ ∞ 

s f a | p<p ∗ (a i ) da i 

)
= 

−
f a | p<p ∗ (s ) 

[∫ ∞ 

s f a | p<p ∗ (a i ) da i −
∫ c 

s f a | p<p ∗ (a i ) da i 
][∫ ∞ 

s f a | p<p ∗ (a i ) da i 
]2 

< 0 . 

�

Proof of Proposition 2. Here, I show that sensitivity for a given

level of specificity is a decreasing function of s . Since this term

approaches a point on the ROC curve as s approaches negative

infinity, a monotonic decrease in s implies that any point on the

ROC curve will be lower. 

I define sensitivity for a given level of specificity and selection

rule s as 

Sensitivity( Specificity, s ) = Prob (a i > c | p i > p ∗, a i > s ) , 

where c satisfies 

Specificity = Prob (a i < c | p i < p ∗, a i > s ) , 

assuming that Prob( p i < p ∗), Prob( p i > p ∗), and Prob( a i > s ) are all

nonzero. For a fixed level of specificity, the effect of an increase in

s on sensitivity is 

d Sensitivity 

d s 
= 

∂ Sensitivity 

∂ s ︸ ︷︷ ︸ 
Direct effect of s on sensitivity 

+ 

∂ Sensitivity 

∂ c 

d c 

d s ︸ ︷︷ ︸ 
Indirect effect of changing c 

. 

These terms are 

∂ Sensitivity 

∂ s 
= f a | p>p ∗ (s ) 

∫ ∞ 

c f a | p>p ∗ (a i ) da i [∫ ∞ 

s f a | p>p ∗ (a i ) da i 
]2 

> 0 , 

∂ Sensitivity 

∂ c 
= − f a | p>p ∗ (c) ∫ ∞ 

s f a | p>p ∗ (a i ) da i 
< 0 , and 

d c 

d s 
= −∂ Prob (a i < c | p i < p ∗, a i > s ) /∂ c 

∂ Prob (a i < c | p i < p ∗, a i > s ) /∂ s 

= 

f a | p<p ∗ (c) 
[∫ ∞ 

s f a | p<p ∗ (a i ) da i 
]

f a | p<p ∗ (s ) 
[∫ ∞ 

c f a | p<p ∗ (a i ) da i 
] > 0 , 
here the last term follows from the use of the implicit function

heorem. After applying some high-school algebra, d Sensitivity/ d s

an be written as 

d Sensitivity 

d s 

= 

f a | p>p ∗ (s ) f a | p<p ∗ (s ) 
[∫ ∞ 

c f a | p>p ∗ (a i ) da i 
][∫ ∞ 

c f a | p<p ∗ (a i ) da i 
]

f a | p<p ∗ (s ) 
[∫ ∞ 

c f a | p<p ∗ (a i ) da i 
][∫ ∞ 

s f a | p>p ∗ (a i ) da i 
]2 

−
f a | p>p ∗ (c) f a | p<p ∗ (c) 

[∫ ∞ 

s f a | p>p ∗ (a i ) da i 
][∫ ∞ 

s f a | p<p ∗ (a i ) da i 
]

f a | p<p ∗ (s ) 
[∫ ∞ 

c f a | p<p ∗ (a i ) da i 
][∫ ∞ 

s f a | p>p ∗ (a i ) da i 
]2 

. 

The denominator is clearly positive so we focus on the nu-

erator. Given the bivariate distribution that we assumed, the

ondition for the numerator to be negative is 

 

φ(s ) ] 
2 
�(−ρap s/ (1 − ρap ) 

2 )�(ρap s/ (1 − ρap ) 
2 ) 

×
∫ ∞ 

c 

φ(a i )�(−a i ρap / (1 − ρ2 
ap )) da i 

×
∫ ∞ 

c 

φ(a i )�(a i ρap / (1 − ρ2 
ap )) da i 

< [ φ(c) ] 
2 
�(−ρap c/ (1 − ρap ) 

2 )�(ρap c/ (1 − ρap ) 
2 ) 

×
∫ ∞ 

s 

φ(a i )�(−a i ρap / (1 − ρ2 
ap )) da i 

×
∫ ∞ 

s 

φ(a i )�(a i ρap / (1 − ρ2 
ap )) da i . 

his condition holds for c > s . It follows that 

d Sensitivity 

d s 
< 0 , 

hich implies that, for a fixed level of specificity, sensitivity is

onotonically decreasing in selectivity s . �

ppendix B. Evaluating a classifier with test data selected by 

n observed classifier 

As in the main text, I consider the case of selection of test

ata based another classifier, b . Instance i is selected if b i > s and

ot selected otherwise. Unlike the main text, this section explores

ituations in which b is observed. As before, I allow for correlation

etween the output of classifiers A and B, which could arise from

sing similar attributes to make predictions: 
 

p i 
a i 
b i 

) 

∼ N 3 

( [ 

0 

0 

0 

] 

, 

[ 

1 ρap ρbp 

ρap 1 ρab 

ρbp ρab 1 

] ) 

. 

The likelihood function for the data can be expressed as 

 = 

∏ 

i 

�(−[ p ∗ − E(p i | a i , b i )] /σp| ab ) 
1 ( outcome i = positive ) 

×�([ p ∗ − E(p i | a i , b i )] /σp| ab ) 
1 ( outcome i = negative ) × φ(a i , b i ) , 

(B.1)

here σ p | ab is the standard deviation of p conditional on a and b , 

p| ab ≡
√ 

1 − 1 

1 − ρ2 
ab 

[
(ρap − ρbp ρab ) ρap + (ρbp − ρap ρab ) ρbp 

]
, 

nd the expectation of p i conditional on a i and b i is 

(p i | a i , b i ) = 

1 

1 − ρ2 
ab 

[
(ρap − ρbp ρab ) a i + (ρbp − ρap ρab ) b i 

]
. 

e can estimate the parameters ρap , ρab , ρbp , and p ∗ by maximiz-

ng the likelihood function in Eq. (B.1) . 
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Table A3 

Results based on 10,0 0 0 simulations. Each simulation is based 

on a sample of 500 draws. Mean values are presented with 

standard deviations in parenthesis. The parameter p ∗ is set to 

zero for all simulations. 

Evaluating a classifier with test data 

selected by an observed classifier 

ρap = . 2 ρap = . 7 

(Weak) (Strong) 

AUC for ROC curves .590 .830 

with a random sample ( .026) ( .018) 

For no correlation between classifiers and data selected by 

a strong classifier, i.e. ρab = 0 , ρbp = . 7 

AUC for empirical ROC curves .619 .936 

with data selected by a classifier ( .029) ( .011) 

AUC for inferred ROC curves .590 .829 

with data selected by a classifier ( .023) ( .015) 

For .5 correlation between classifiers and data selected by 

a strong classifier, i.e. ρab = . 5 , ρbp = . 7 

AUC for empirical ROC curves .533 .800 

with data selected by a classifier ( .027) ( .021) 

AUC for inferred ROC curves .590 .829 

with data selected by a classifier ( .025) ( .015) 

For .5 correlation between classifiers and data selected by 

a weak classifier, i.e. ρab = . 5 , ρbp = . 2 

AUC for empirical ROC curves .568 .832 

with data selected by a classifier ( .026) ( .018) 

AUC for inferred ROC curves .591 .830 

with data selected by a classifier ( .028) ( .020) 

For .5 correlation between classifiers and data selected by 

a nonpredictive classifier, i.e. ρab = . 5 , ρbp = 0 

AUC for empirical ROC curves .599 .863 

with data selected by a classifier ( .025) ( .016) 

AUC for inferred ROC curves .591 .830 

with data selected by a classifier ( .029) ( .021) 
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As in the main text, I use a simulation study to examine the

erformance of the procedure. Table A.3 presents these results. Not

urprisingly, when the classifier that selected the test data is ob-

erved, the average areas under the inferred ROC curves are much

loser to the average areas under the ROC curves that are based

n random samples. We also see that the standard deviations of

he areas under the inferred ROC curves are closer to the standard

eviations of the areas under the ROC curves based on random

amples. The average AUCs for the inferred ROC curves are nearly

ndistinguishable from their unbiased values of .590 and .830. 
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