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a b s t r a c t

The area under the receiver operating characteristic curve is a widely used measure of the performance of
classification rules. This paper shows that when classifications are based solely on data describing indi-
vidual objects to be classified, the area under the receiver operating characteristic curve is an incoherent
measure of performance, in the sense that the measure itself depends on the classifier being measured. It
significantly extends earlier work by showing that this incoherence is not a consequence of a cost-based
interpretation of misclassifications, but is a fundamental property of the area under the curve itself. The
paper also shows that if additional information, such as the class assignments of other objects, is taken
into account when making a classification, then the area under the curve is a coherent measure, although
in those circumstances it makes an assumption which is seldom if ever appropriate.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Given a set of objects, for each of which we have a feature vector
of descriptive variables and for each of which we also know to
which one of a mutually exclusive set of classes it belongs, the
aim of supervised classification is to construct a rule which will al-
low new objects to be assigned to a class using only the informa-
tion in the feature vectors of the new objects. In what follows,
for simplicity, we shall assume there are only two classes, labelled
0 and 1, and then the classification rule is a mapping from the fea-
ture vector of each new object to the set of class labels f0;1g.

Classifiers are most commonly constructed in two stages. The
first stage is a mapping from the feature vectors to a univariate
‘score’ continuum. In this paper, we are concerned with the theo-
retical properties of performance measures of classification rules,
so we shall assume that the score distributions for both of the clas-
ses are known, ignoring issues such as estimation and sampling er-
rors. This means that we can transform the score to be the
probability that the object belongs to class 1, in the sense that a
proportion s of objects with transformed score s belong to class
1. Henceforth in this paper we shall assume the score has been
transformed in this way. This means that all the integrals in what
follows are over the interval [0,1]. Note that different classifiers
map different sets of objects to score s: by virtue of being different
ll rights reserved.
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classifiers, they have different contours of the probability of
belonging to class 1 over the feature space.

We will denote the distribution of the scores of class 0 objects
by f0ðsÞ and the distribution of the scores of class 1 objects by
f1ðsÞ, with corresponding cumulative distribution functions F0ðsÞ
and F1ðsÞ, and with relative class sizes (priors, in the statistical clas-
sification literature) p0 and p1 ¼ 1� p0 respectively.

Since the score, s, associated with an object is the probability
that object will belong to class 1, classification is achieved by com-
paring that probability with some threshold probability, t. Objects
with probability greater than t of belonging to class 1 are assigned
to class 1, and otherwise to class 0. Note that only the sign of ðs� tÞ
matters here, not its magnitude: objects are assigned to class 1
whether their scores are just larger than t or much larger.

In general, for most natural problems, information in the fea-
tures does not allow the classes to be perfectly separated. This
means, in particular, that the score distributions f0ðsÞ and f1ðsÞ have
overlapping support; that there is no threshold t for which all the
class 1 scores are larger than t and all class 0 scores smaller than t.
One implication is that whatever value we choose for the classifi-
cation threshold t, some objects will have scores on the wrong side
of the threshold, and will hence be misclassified. This means that it
is necessary to devise some way of measuring the degree to which
the classification rule fails to perfectly classify objects; some way
of measuring the effectiveness of classification rules.

A large number of measures have been proposed. They fall into
two broad classes: those for which the value of the classification
threshold is given, and those for which it is not. Clearly this thresh-
old must be specified by the time the classifier is used, but it is
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often the case that it has not been given at the time the classifier is
being evaluated. For example, the intention might be to use the
classifier in medical screening in different populations or clinics,
which could require different thresholds, or in credit scoring under
different economic circumstances which might again require dif-
ferent thresholds. In such cases, the classifier must be evaluated
before the threshold has been chosen. For completeness, we should
parenthetically remark here that sometimes a third class is de-
fined, based on the accuracy of the classifier’s estimates of the
probability that an object will belong to class 1. However, mea-
sures of this last kind are not strictly measures of classification
accuracy (see, for example, Friedman, 1997).

When the classification threshold is specified and known
beforehand, performance is based on the (possibly weighted)
counts in the four cells of the table of cross-classifications of the
true class by the predicted class – and many measures have been
based on this table, including recall (or sensitivity), specificity, er-
ror rate, proportion correctly classified, precision, the F-measure,
and others (see Hand, 2012).

When the classification threshold, t, has not been given at the
time that the performance has to be estimated, things are more dif-
ficult. One common strategy is to implicitly aggregate over a distri-
bution of possible values for t, producing a portmanteau measure.
The distribution indicates how likely we believe it is that each va-
lue of t will be used when the classifier is used in practice, and the
aggregate measure is an average performance over possible t val-
ues. Again there are multiple ways to do this, but this paper focuses
on one particularly popular such measure, the area under the recei-
ver operating characteristic (ROC) curve. This curve shows a plot of
F0ðsÞ on the vertical axis against F1ðsÞ on the horizontal axis (see
Krzanowski and Hand, 2009 for a detailed discussion). The area un-
der this curve, which we denote AUC, is

R
F0ðsÞdF1ðsÞ. The Gini coef-

ficient is sometimes used as an alternative to the AUC. The Gini
coefficient is a linear transformation of the AUC standardised so
that chance classification accuracy has a score of 0.

As we illustrate below, the AUC is a particularly widely used
measure of classifier performance. However, Hand (2009, 2010)
(and see also Hilden, 1991) showed that when interpreted in terms
of a balance of the relative costs of the two kinds of misclassifi-
cation, the AUC is incoherent – in the sense that it requires that
the relative costs of the two kinds of misclassification differ from
classifier to classifier. Briefly, the argument in those papers is as
follows. It begins from the premise (which this paper relaxes) that
an appropriate choice for threshold should be based on balancing
the cost due to misclassifying class 1 objects against the cost due
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Fig. 1. In three year intervals (a) number of papers using the area under the curve to summ
receiver operating characteristic curves which use area under the curve as the summary
to misclassifying class 0 objects. This balance of costs cannot be a
function of the classifiers used, but is an external property of the
problem: the relative severity of misdiagnosing someone with
stomach cancer as having indigestion, compared with the reverse
kind of misdiagnosis, is the same whether one uses logistic regres-
sion or a tree-based classifier to make the diagnosis. Then, given
the score distributions of the two classes, there is a mapping be-
tween the ratio of these costs and the classification threshold
which minimises the overall misclassification loss: given the cost
ratio, this mapping specifies the optimal threshold, in the sense
that it leads to minimum overall loss. Unfortunately, often the cost
ratio cannot be specified beforehand. One strategy for overcoming
this is to propose a distribution of likely values for this cost ratio,
and calculate a mean classification loss, integrating over this distri-
bution. This distribution of cost ratios corresponds to a distribution
of optimal classification threshold values, via the mapping just
mentioned. The AUC is equivalent to calculating this mean classifi-
cation loss, integrating over the distribution of optimal classifica-
tion threshold values. Unfortunately, since the mapping depends
on the classifier, the distribution used in calculating the mean also
depends on the classifier – and is equivalent to using a different
distribution over the cost ratio for different classifiers. As we saw
above, however, this is inappropriate: the cost ratio distribution
should be the same for all classifiers.

Furthermore, as is clear from the definition and as has been ex-
plored by various authors (e.g., McLish, 1989; Walter, 2005; Wieand
et al., 1989), removing the dependence between the relative misclassi-
fication costs and the classification threshold t means that the AUC is
equivalent to assuming a uniform distribution over the proportion
classified as belonging to class 1. This would seem to be an inappropri-
ate assumption for real applications. These conclusions are important
because they mean that the AUC can yield misleading inferences about
the relative merits of different classification rules, and this matters be-
cause of the popularity of the AUC.

The present paper takes this discussion further, by demonstrat-
ing that the incoherence is not dependent on the cost-based argu-
ment, but is much more fundamental. Thus, in the next section we
relate the AUC to the proportion of objects correctly classified, and
show how the incoherence arises separately from cost consider-
ations. In Section 3 we describe a related but distinct problem.
Section 4 discusses the implications. First, however, in the remain-
der of this section, we report the results of a literature search on
the use of the AUC as a measure of classifier performance. The
numerical results reported below are only estimates (doubtless we
missed some papers) but we took care to ensure that ‘area under
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the curve’ referred to receiver operating characteristic curves (and
not, for example, to concentration curves or other meanings). In gen-
eral, when in doubt, we erred on the side of caution.

Fig. 1a shows the number of scientific papers which used the
area under the curve as a classification rule performance measure
for each three year interval from 1981 to 2012 (where the last va-
lue is an estimate, scaled by the rate of publication in the interval
to the end of 2011). The rate is currently over 6000 usages per year.
Fig. 1b shows the proportion of papers using receiver operating
characteristic curves which used the AUC to summarise the curves.
Currently about half of papers using receiver operating character-
istic curves use AUC as a summary measure.

It is apparent from these figures that the AUC is a critically
important measure of the performance of classification rules. What
is not apparent from the figures is the wide range of application
domains in which the AUC is used, including medicine, banking
and credit risk assessment, web applications such as spam detec-
tion, fraud detection, and a host of others. Furthermore, the figures
refer only to academic publications: they do not indicate the
importance of the measure in commercial applications. For exam-
ple, the Gini coefficient, mentioned above, is the most widely used
performance measure for evaluating scorecards in the retail bank-
ing sector in the UK and the EU, and the extent of this usage is not
demonstrated by the academic figures.
2. The AUC as an average of correct classifications

When the classification threshold t is unknown, one way we
might evaluate a classifier is to use the expected proportion of cases
it correctly classifies, averaging over some distribution for the possi-
ble values of t; gðtÞ. Since the score scale has been transformed to be
the probability of belonging to class 1, gðtÞ should be the same distri-
bution for all classifiers we are evaluating (for a particular problem).
For example, it would be irrational to say that, if logistic regression
were to be used, then we would be very likely to choose probability
0.9 as our classification threshold, whereas if a random forests clas-
sifier were to be used we would be very unlikely to choose probabil-
ity threshold 0.9. The choice of probability threshold we think is
likely to be adopted when the classifier is applied in practice is a
property of the problem, not the classifier.

The AUC is defined as
R

F0ðtÞf1ðtÞdt, the average proportion of
class 0 objects which are correctly classified if the threshold is ran-
domly drawn from the class 1 score distribution f1ðtÞ. Using the
properties

R
F0ðtÞf0ðtÞdt ¼

R
F1ðtÞf1ðtÞdt ¼ 1=2 and

R
F1ðtÞf0ðtÞdt ¼

1� AUC it is easy to show that
R

MðF0ðtÞ; F1ðtÞÞmðf0ðtÞ; f1ðtÞÞdt is a
linear function of the AUC whenever M is a linear function of the
probability distribution functions of the classes and m is a linear
function of the probability density functions of the classes.

In particular, for example, let us take M to be the proportion of
cases correctly classified, p0F0ðtÞ þ p1ð1� F1ðtÞÞ, and m the overall
population score mixture density, p0f0ðtÞ þ p1f1ðtÞ. These particu-
lar choices for M and m show that the AUC is a linear transforma-
tion (with coefficients which depend only on the class sizes) of the
expected proportion of cases correctly classified,

R
MðtÞmðtÞdt ¼

p2
0=2þ p2

1=2þ 2p1p0 AUC. But the distribution over which this
expectation is taken is p0f0ðtÞ þ p1f1ðtÞ, which varies from classifier
to classifier, and we have already seen that this distribution, called
gðtÞ above, should be the same for all classifiers. To let gðtÞ differ
between the different classifiers being compared is irrational. As
noted elsewhere, it is analogous to comparing different classifiers
on the basis of error rate, but using different threshold probabili-
ties for different classifiers.

It is clear from the above, that the problem can be resolved by
choosing the distribution gðtÞ to be independent of the empirical
score distributions of the classifiers. This idea is developed in
(Hand and Anagnostopoulos, 2012; Hand, 2009, 2010). But it does
not lead to the AUC.
3. Screening: a different problem

The criticism of the AUC as a measure of classifier performance
presented above assumed that the only information to be used in
assigning an object to a class was the score of the object (the prob-
ability that the object belongs to class 1) and the threshold proba-
bility. In that case, the AUC is an incoherent measure of classifier
performance in the sense that the relative probabilities given to
different choices of the threshold probability varied from classifier
to classifier.

Sometimes, however, situations arise in which there are external
constraints on the classification problem, and then using different
threshold probabilities can be a sensible thing to do. By definition,
an external constraint means that extra information is being used,
in addition to the probability of class membership of the object to
be classified. An example is a situation in which we will choose a
classifier which optimises some performance measure subject to
the constraint that a certain proportion, P, of all objects are classified
into class 1. Examples of situations where such a procedure would be
appropriate are medical screening or fraud detection in which re-
sources are limited, so that one can afford to investigate closely only
a certain number of people or transactions (here assuming ‘number’
to be equivalent to a ‘proportion’ of the presenting objects, for sim-
plicity assuming a known population size). This rule is achieved by
adopting that classification threshold t such that a proportion P of
the objects have scores larger than t.

Since different classifiers have different score distributions, it is
likely that the threshold value t for which a proportion P of the ob-
jects have higher scores will vary from classifier to classifier. That
is, it would be perfectly reasonable in such a situation for an object
which had a probability p of belonging to class 1 to be assigned to
class 0 by one classifier and class 1 by another, even if they agreed
on the value p. This new situation contrasts with the situation de-
scribed in Section 2 because in that section objects are assigned to
classes solely on the basis of their estimated probability of belong-
ing to class 1. In particular, in Section 2, if the threshold is 0.9, say,
then an object with estimated class 1 probability of 0.91 will be as-
signed to class 1 regardless of how other objects are classified. In
the screening case of this section, however, an object with esti-
mated class 1 probability of 0.91 may or may not be assigned to
class 1, depending on how other objects are classified. If a propor-
tion of objects greater than P have estimated class 1 probabilities
greater than 0.91 then this new object will not be assigned to class
1. Thus in the screening case, the class to which a given object is
assigned depends on the scores given to other objects. In the
screening case, using the AUC is equivalent to calculating a mean
performance, over a distribution of threshold values, just as in Sec-
tion 2, but now the distribution does not depend on the score dis-
tributions of the classes. This independence means that the AUC is
coherent when used in this way – the same measuring instrument
is used for evaluating all classifiers. The threshold distribution will
now be chosen on the basis of one’s belief about the values of P
which are relevant to the problem. In terms of Section 2, the m
function is independent of f0 and f1.

Of course, if P were to be known beforehand, then it would be
equivalent to knowing the classification threshold for each classi-
fier, and then, as described in Section 1, count-based measures of
performance should be used. Portmanteau measures such as the
AUC are only relevant if the threshold cannot be specified. That
is, they are relevant in this situation only if we know that some
proportion P of the objects will be assigned to class 1, but we do
not (yet) know what P will be.
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4. Discussion

The evaluation of classification performance is central to the
construction and selection of classification rules. Because of its
importance, a huge literature has accumulated, spanning data ana-
lytic domains including statistics, pattern recognition, machine
learning, and data mining, and also application areas such as med-
icine, credit risk, speech recognition, signal detection, fault identi-
fication, and target identification. Apart from the many papers,
several books have also been written on this topic (e.g., Gönen,
2007; Hand, 1997; Krzanowski and Hand, 2009; Pepe, 2003; Zhou
et al., 2002, amongst others) so that a full review of this literature
would be impossible. However, a few measures are particularly
popular. These include the misclassification or error rate (Jamain,
2004 claims that the vast majority of comparative studies of clas-
sification rules report error rate), the Kolmogorov Smirnov statistic,
and the area under the receiver operating characteristic curve (or,
equivalently, the Gini coefficient). This paper focuses on the last of
these measures.

The area under the receiver operating characteristic curve,
AUC ¼

R
F0ðsÞdF1ðsÞ, is a popular measure for evaluating and com-

paring classification rules when one cannot decide a priori what
classification threshold will be used. It is a measure of the separa-
bility of the score distributions of the two classes. However, for
many, perhaps most, classification problems it is incoherent in
the way it treats different classifiers. In particular, given that a clas-
sifier is to assign all objects with class 1 probability greater than
some threshold probability t to class 1, and all others to class 0,
using the area under the curve is equivalent to supposing that
one’s belief about the likely values of the probability t varies from
classifier to classifier. In many classification situations this is irra-
tional: the classification of objects should depend on their proba-
bility of belonging to class 1, and not on how that probability
was estimated.

This core incoherence of the area under the ROC curve as a mea-
sure of classifier performance has been explored in (Hand, 2009,
2010) (and our attention has recently been drawn to Hilden, 1991,
for an exploration closely related to that in (Hand, 2009)), in terms
of the relative costs of misclassifying class 0 points into class 1,
and vice versa. Those papers show that the area under the curve is
equivalent to assuming different cost distributions for different clas-
sifiers. This is generally inappropriate: the distribution of relative
misclassification costs should be a function of the problem, and
not of the instrument used to make the classification. As (Hand,
2009) puts it, using the area under the ROC curve is equivalent to
evaluating different classifiers using different metrics, and a funda-
mental tenet of comparative evaluation is that one uses the same
measuring instrument on the things being compared: I do not mea-
sure your ‘size’ using a weighing scale calibrated in grams, and mine
using a metre rule calibrated in centimetres, and assert that you are
‘larger’ because your number is greater. The contribution of this
present paper is to sidestep the need to refer to relative misclassifi-
cation costs, showing that the problem is a fundamental one.

The distinction between the two strategies for choosing the
threshold distribution described in Sections 2 and 3 has been made
elsewhere, though as far as we know comparative discussions fol-
low the cost-based argument. Examples of such papers are Hand
(2010) and Flach et al. (2011). Flach et al. (2011) choose the thresh-
olds independently of the costs, from the population score mixture
distribution, as described in Section 3. For example, Flach et al.
(2011) say (their Section 3) ‘we uniformly select an instance x,
and set the threshold to the score of that instance’ – and this is
the choice implicit in the AUC. To us this choice seems unlikely
to be useful in most practical situations. In a screening application,
for example, it would be equivalent to saying that one thought it
equally likely that one would want to screen out hardly any of the
population or almost all of the population for subsequent close
examination. So, when used in this way, the AUC is coherent, but
would appear to be inappropriate. Recognition of this inappropriate-
ness has motivated the development of alternatives to the AUC, such
as the partial area under the curve (e.g., McLish, 1989; Walter, 2005),
measures based on other distributions on the proportions classified
into class 1 (e.g., Wieand et al., 1989), and measures based on spec-
ifying the distribution of relative severities of the misclassification
costs (e.g., Hand, 2009, 2010). We are grateful to a referee for point-
ing out that, for the first of these three cases, the partial AUC may be
coherent or incoherent, depending on how the interval over which
the partial AUC is evaluated is chosen, and on the way the classifica-
tion threshold is chosen within the interval.

In summary, the AUC would appear to be either incoherent,
requiring different probability threshold distributions for different
classifiers, or inappropriate, assuming a uniform distribution over
the proportion of (for example) class 1 which are classified as class
1, and we recommend that an alternative measure which over-
comes these shortcomings is adopted in place of the AUC. One such
alternative measure, the H measure, is described in (Hand, 2009,
2010), and an improved version thereof in (Hand and Anagnosto-
poulos, 2012). Papers (Hand, 2009, 2010) also give numerical com-
parisons between the AUC and this alternative measure, as does
the package vignette for the respective R package, available from
the CRAN repository (see http://www.hmeasure.net for more
details).
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