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Receiver Operating Characteristic
Analysis: A Tool for the Quantitative
Evaluation of Observer Performance

and Imaging Systems
Charles E. Metz, PhD

Receiver operating characteristic (ROC) analysis provides the most comprehensive description of diagnostic
accuracy available to date, because it estimates and reports all of the combinations of sensitivity and specificity
that a diagnostic test is able to provide. After sketching the 6 levels at which diagnostic efficacy can be assessed,
this paper explains the conceptual foundations of conventional ROC analysis, describes a variety of indices that
can be used to summarize ROC curves, and describes several forms of generalized ROC analysis that address
situations in which more than 2 decision alternatives are available. Key issues that arise in ROC curve fitting and
statistical testing are addressed in an intuitive way to provide a basis for judging the validity of ROC studies
reported in the literature. A list of sources for free ROC software is provided. Receiver operating characteristic
methodology has reached a level of maturity at which it can be recommended broadly as the approach of choice
for radiologic imaging system comparisons.
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NTRODUCTION1

hierarchical model for diagnostic efficacy2 developed
y a scientific committee of the National Council on
adiation Protection and Measurements [2] provides a
oncise conceptual overview of the issues involved in
valuating diagnostic systems. This model’s 6 levels are as
ollows:

1) Technical efficacy: at the model’s lowest level, a di-
agnostic test is considered effective if its result is
accurate and precise in a physical sense, for example,
if the test measures 1 or more physical properties of
the human body in a way that agrees with a “gold
standard,” and its results are reproducible. Aspects of
technical efficacy in medical imaging include spatial
or temporal resolution, noise magnitude and texture,
and contrast sensitivity.
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Corresponding author and reprints: Charles E. Metz, PhD, University of
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Parts of this section are adapted from an earlier tutorial review [1].
According to the words’ strict definitions, efficacy pertains to ideal condi-

ions, whereas effectiveness refers to routine practice. I use the terms synony-

ously here for simplicity.
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2) Diagnostic accuracy: the second level of efficacy con-
cerns the extent to which the results of a diagnostic
test agree, in some statistical sense, with patients’
actual states of health or disease. Virtually all practi-
cal measures of diagnostic accuracy quantify the abil-
ity of a test to distinguish between 2 (usually com-
posite) states of truth, such as “normal” vs
“abnormal” or “positive” vs “negative,” with respect
to a specified disease. Examples of diagnostic-accu-
racy measures include percentage correct, sensitivity
and specificity, and receiver operating characteristic
(ROC) curves. Of these, ROC curves provide the
most comprehensive description, because they indi-
cate all of the combinations of sensitivity and speci-
ficity that a diagnostic test is able to provide as the
test’s “decision criterion” is varied.

3) Diagnostic-thinking efficacy: given the prevalence of
a particular disease and given the sensitivity and
specificity (or more generally the ROC curve) of a
diagnostic test for the presence of that disease, one
can easily compute the factor by which the prior
odds of disease change after the test’s result is ob-
tained. However, the extent to which a diagnostic
test affects physicians’ subjective estimates of disease
likelihood must be answered empirically. This level

of efficacy is sometimes difficult to quantify, but it
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provides a conceptual link between the more easily
interpreted tiers above and below.

4) Therapeutic efficacy: this is the lowest level at which
the effects of a diagnostic test on patient manage-
ment are assessed directly. The basic question is how
and by how much a particular diagnostic test
changes the way in which patients are treated; for
example, how does therapy differ when it is chosen
without or with knowledge of a test’s result?

5) Patient-outcome efficacy: here, the goal of diagnostic
medicine is confronted directly: a diagnostic test is
considered effective at this level only if patient health
(as measured, eg, in “quality-adjusted life years”) is
demonstrably improved by use of the test. This is the
kind of efficacy that is of greatest interest to most
patients and physicians, and it is an indispensable
component of any meaningful “cost-benefit” or
“cost-effectiveness” analysis. However, a definitive
assessment of efficacy at this level requires prospec-
tive randomized and controlled clinical trials, in
which practical, statistical, and ethical problems can
be formidable [2].

6) Societal efficacy: any cost-benefit or cost-effective-
ness analysis of a diagnostic test at level 5 focuses on
the benefits and personal risks that accrue to the
patients who are candidates for the test. However,
the fact that medical costs are borne increasingly by
society as a whole implies that social utilities should
somehow be taken into account when benefits and
costs are evaluated. This is the domain of “societal
efficacy,” which in principle merges private and pub-
lic considerations to assess diagnostic tests within the
context of the social endeavor.

fficacy at this hierarchical model’s upper levels usually is
f greatest direct interest, but lower-level efficacy is al-
ost always easier to quantify reliably. Fortunately, effi-

acy at the higher levels sometimes can be estimated from
easurements at lower levels by the use of collateral data

nd appropriate assumptions. Most studies of diagnostic
fficacy in medical imaging focus on the measurement of
iagnostic accuracy (level 2), because this is the lowest

evel at which human observers are included and often
he highest level at which scientifically rigorous methods
an be used.

For many years, diagnostic accuracy was measured and
eported in terms of a kind of “batting average”: the
ercentage of diagnostic decisions that proved to be cor-
ect. This “percentage-correct” measure has the fairly
bvious limitation that it can depend strongly on disease
revalence [3]: if only 1% of the patients in a screening
opulation have a particular disease, for example, then a
ystem can be “99% accurate” simply by blindly calling

ll patients negative with respect to that disease. More- p
ver, the percentage-correct measure does not reveal the
elative frequencies of false-positive and false-negative
rrors, which usually have substantially different clinical
onsequences.

Both of these disadvantages are overcome if diagnostic
erformance is reported in terms of a pair of indices:
sensitivity” (the fraction of patients actually having the
isease in question who are correctly diagnosed as posi-
ive) and “specificity” (the fraction of patients actually
ithout the disease who are correctly diagnosed as nega-

ive). In effect, these indices quantify separately the “ac-
uracies” of the system for actually positive and actually
egative patients, respectively. False-negative and false-
ositive diagnoses are accounted for implicitly by these
ndices, and a change in disease prevalence does not affect
heir numerical values if constant decision criteria are
sed. The terms true-positive fraction (TPF) and true-
egative fraction are synonymous with sensitivity and spec-
ficity, respectively. In a complementary way, the “false-
egative fraction” and the “false-positive fraction” (FPF)
epresent the conditional probabilities or frequencies
ith which actually positive and actually negative pa-

ients are diagnosed incorrectly [3,4]; thus, false-negative
raction � 1 � TPF � 1 � sensitivity, and FPF � 1 �
rue-negative fraction � 1 � specificity. Because of the
nterrelationships among these measures, it is necessary
nly to indicate a single pair; conventionally, either sen-
itivity and specificity or TPF and FPF are used. The use
f sensitivity or TPF alone is inadequate, because the
erformance of the diagnostic system with regard to ac-
ually negative patients is then unknown.

The sensitivity-specificity pair, or one of its equivalents,
escribes diagnostic accuracy more meaningfully than the
ingle index of percentage correct, and it has been used
idely in the medical literature. A single pair of numbers

epresenting sensitivity and specificity is not entirely ade-
uate, however, because it confounds 2 aspects of diagnostic
ccuracy that can vary independently: (a) the inherent ca-
acity of a diagnostic system to distinguish between actual
tates of health and disease, and (2) the balance between the
requencies of false-positive and false-negative errors that a
ecision maker chooses to adopt in a clinical task when a
articular discrimination capacity is available [5].

The limitations of reporting diagnostic accuracy in
erms of a single sensitivity-specificity or TPF-FPF pair
re most evident in studies that attempt to compare di-
gnostic tests, because often, one test is found to have
igher sensitivity (higher TPF) but lower specificity
higher FPF) than the other; in other words, one test is
ore accurate for actually positive patients, whereas the

ther is more accurate for actually negative patients. This
s clearly problematic in deciding which of the 2 tests to
se, because diagnostic testing would not be needed if the

resence or absence of the disease were known.
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HE BASIC CONCEPTS OF ROC
NALYSIS

he dilemma that arises when one diagnostic test has higher
ensitivity but lower specificity than another can be resolved
y noting that the sensitivity and specificity of virtually all
iagnostic tests can be changed by modifying the “threshold
f abnormality” or “decision threshold” that is used for the
est. For example, consider 2 radiologists with equal skill
ho read mammograms to detect breast cancer. If one of

hese radiologists reads the images more aggressively than
he other, recommending biopsy if a mammogram indi-
ates even the slightest possibility of abnormality, that radi-
logist will detect malignancy more often than the other but
ill generate more negative biopsy results as well. This in-
erse relationship between sensitivity and specificity is dem-
nstrated in Figure 1, in which the 2 bell-shaped curves in
he left panel represent schematically the distributions of a
adiologist’s confidence that an imaging study indicates the
isease in question to be present for actually negative and
ctually positive patients, respectively. If the radiologist were
o recommend patients for biopsy if and only if his or her
onfidence in a positive interpretation exceeded the decision
hreshold denoted by the vertical line at t3 in this panel, the
adiologist’s sensitivity would be the fraction of the area
nder the “actually �” distribution that lies to the right of t3
approximately 50% here), whereas his or her specificity
ould be the fraction of the area under the “actually �”
istribution that lies to the left of t3 (approximately 95% in
igure 1). This combination of sensitivity and specificity

ig 1. The effect of decision-threshold setting on
ensitivity and specificity. With a decision threshold
etting at t3 on the decision axis in the left panel, the
air of distributions shown there produces a combi-
ation of sensitivity (light gray shading) and specificity

dark gray shading) that plots as the point labeled “t3”
n the graph of sensitivity vs specificity in the right
anel of the figure. Similarly, the decision thresholds

abeled “t1,” “t2,” and “t4” in the left panel yield the
ombinations of sensitivity and specificity that are

abeled correspondingly in the right panel.
an be plotted as a point on a graph that indicates specificity v
n its horizontal axis and sensitivity on its vertical axis, as
hown by the point labeled “t3” in the right panel of Figure
. Similarly, the decision thresholds labeled t1, t2, and t4 in
he left panel of Figure 1 would yield the combinations of
ensitivity and specificity that are labeled correspondingly in
he right panel of the figure.

By considering a much larger number of possible settings
f the decision threshold t, one would generate a much
arger number of points in the right panel of Figure 1, in the
imit producing a continuous curve such as that shown on
he left side of Figure 2, which indicates all of the combina-
ions of sensitivity and specificity that this radiologist can
btain. For historical reasons, the relationship considered
ere is usually presented by plotting sensitivity (ie, TPF) as a
unction of 1 � specificity (ie, FPF) rather than as a function
f specificity itself, thereby producing an ROC curve such as
hat shown on the right side of Figure 2. Perhaps confus-
ngly, “operating points” (ie, combinations of FPF and
PF) near the lower-left end of an ROC curve are obtained
y setting the decision threshold at a position toward the
ight end of the decision axis shown in Figure 1, thereby
roducing few false-positive decisions but relatively few
rue-positive decisions as well, whereas operating points
ear the upper-right end of the ROC curve are obtained by
etting the decision threshold toward the left end of the
ecision axis, thereby producing more true-positive deci-
ions but also more false-positive decisions. Thoughtful
onsideration of these figures reveals that ROC curves
igher or lower than the curves shown in Figure 2 corre-
pond to pairs of underlying distributions that are less over-
apped or more overlapped, respectively, than those shown
n Figure 1. It is important to note that the extent to which
he pair of underlying distributions overlaps, and hence the
eight of the ROC curve, depends, in general, not only on

ig 2. The left panel shows the continuous relation-
hip between sensitivity and specificity that is ob-
ained from Figure 1 by varying the decision threshold
ontinuously. The right panel, which represents a
ypical receiver operating characteristic (ROC) curve,
s a mirror image of the left because it plots sensitivity

s 1 � specificity.
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he skill of the radiologist but also on technical aspects of the
maging procedure, such as spatial resolution, noise and
ontrast, and characteristics of the case population, such as
ts balance between early and advanced disease among actu-
lly positive patients.

With these concepts in mind, one can resolve the
ilemma mentioned in “Introduction” and shown in
igure 3, in which diagnostic imaging modality B has a
igher TPF (higher sensitivity) but also a higher FPF (ie,

ower specificity) than modality A.
Suppose that the ROC curves for modality A and modal-

ty B have been determined and are found to look like those
hown in Figure 4. In this instance, one can conclude that
odality B provides greater diagnostic accuracy, because it

an be used to achieve a higher TPF than modality A at the
ame FPF if the decision threshold for modality B is moved
oward the right end of the decision axis in Figure 1 until the
PF for modality B equals that of modality A (ie, operating
oint B in Figure 4 moves down and to the left along its
OC curve until it lies over point A) or if the decision

hreshold for modality A is moved toward the left end of the
ecision axis in Figure 1 until the FPF for modality A equals
hat of modality B (ie, operating point A in Figure 4 moves
p and to the right along its ROC curve until it lies under
oint B). Given the ROC curves shown in Figure 4, modal-

ty B also can be used to achieve a lower FPF than modality
at the same TPF if the decision threshold for modality B is
oved toward the right end of the decision axis in Figure 1

ntil the TPF for modality B equals that of modality A (ie,

ig 3. A dilemma in comparing the diagnostic accu-
acies of 2 imaging systems when only true-positive
raction (or sensitivity) and false-positive fraction (or
pecificity) are known.
perating point B in Figure 4 moves down and to the left t
long its ROC curve until it lies to the left of point A) or if
he decision threshold for modality A is moved toward the
eft end of the decision axis in Figure 1 until the TPF for

odality A equals that of modality B in Figure 4 (ie, oper-
ting point A in Figure 4 moves up and to the right along its
OC curve until it lies to the right of point B). This con-
lusion is not inevitable given only the 2 operating points
hown in Figure 3, however, because determination of the
OC curves for modalities A and B could yield the result

hown in Figure 5, which indicates that the 2 modalities
rovide equal diagnostic accuracy because their operating
oints can be made to coincide by appropriate adjustment
f either modality’s decision-threshold setting. Moreover, in
third scenario not depicted here, one would find modality
to be superior if its ROC curve is higher everywhere than

he ROC curve for modality B, which can occur if the curve
or modality A rises more steeply from the lower-left corner
f the unit square than the curve for modality B rises there.
n short, higher ROC curves indicate greater diagnostic
ccuracy, and one diagnostic test or imaging modality can
e judged unambiguously superior to another if its ROC
urve lies above the other test’s ROC everywhere in the unit
quare. A comparison of 2 diagnostic tests is more compli-
ated when their ROC curves cross, however. The latter
ituation is addressed next.

OC-RELATED INDICES OF DIAGNOSTIC
CCURACY

xperience indicates that real-world ROC curves must be
escribed by at least 2 parameters that represent separately
ach curve’s height and the strength or weakness of its sym-
etry around the negative (�45°) diagonal of the unit

ig 4. The dilemma is resolved if the receiver oper-
ting characteristic (ROC) curve of each imaging sys-
em is determined (one scenario). FPF � false-posi-

ive fraction; TPF � true-positive fraction.
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Metz/Receiver Operating Characteristic Analysis 417
quare in which ROC curves are plotted. Therefore, ROC
urves usually cannot be summarized fully by a single num-
er, and system comparisons that are based entirely on a
ingle-number summary index may lead to erroneous con-
lusions. The concepts of “better” and “worse” are inher-
ntly 1-dimensional, however, so any requirement that sys-
ems be ranked in a comparison study dictates the use of
ome single-number summary index. The key need in such
ituations is to choose an index that is as meaningful and
eliable as possible in a practical sense. Several candidate
ndices of this kind are described below.

If 2 ROC curves in a comparison do not cross, as in
igure 4, the diagnostic accuracies indicated by those curves
an be ranked unambiguously in terms of the total area
nder each curve within the unit square. This widely used
rea index, denoted by “AUC” in general or by “Az” when
n ROC curve is described by the standard binormal model
iscussed later, can be interpreted in 3 ways: as sensitivity
veraged over all possible specificities (ie, average ROC
urve height); as specificity averaged over all possible sensi-
ivities (ie, average ROC curve “leftness”); or, less obviously,
s the probability of identifying correctly the actually posi-
ive case in a “2-alternative forced-choice” experiment, in
hich each trial requires an observer to distinguish between
randomly selected actually positive case and a randomly

elected actually negative case. Values of the area index range
rom .50 for the lowest possible ROC curve—the positive
ie, �45°) diagonal of the unit square, on which the prob-
bility of a positive reading is the same for each case, regard-
ess of truth—to 1.00 for the highest possible ROC, which

ig 5. The dilemma is resolved if the receiver oper-
ting characteristic (ROC) curve of each imaging sys-
em is determined (a second scenario). FPF � false-
ositive fraction; TPF � true-positive fraction.
limbs along the left side of the unit square and then be- c
omes horizontal when it reaches the square’s upper-left
orner.

The conventional area index described above is “global”
n the sense that it summarizes an entire ROC curve. How-
ver, this index can be misleading when 2 ROC curves cross,
ecause then it can have the same value for both curves even
hough one ROC is higher for some range of FPF, or, even
ore dangerously, its value can be lower for the curve that is

igher in the FPF range of primary clinical interest. Two
inds of “partial-area” indices have been proposed to ad-
ress this limitation: one represents the area under an ROC
urve within a selected range of FPF [6], whereas the other
epresents the area to the right of the ROC within a selected
ange of TPF [7]. For a given ROC curve, the value of each
f these “regional” indices depends on the range of FPF or
PF that is used, which must be indicated explicitly when

he index value is reported and should be chosen on the basis
f clinical considerations. Both normalized and nonnormal-
zed variants of these partial-area indices have been sug-
ested in the literature, so any study that uses such an index
o summarize its ROC curves must indicate precisely how
he index was calculated.

Partial-area indices are based on a range of FPF or TPF to
ocus a comparison on clinically relevant sensitivities and
pecificities without presuming to judge the precise balance
etween sensitivity and specificity that is most appropriate
n a particular clinical situation. However, other ROC-
ased indices of diagnostic accuracy can be used to focus the
omparison more narrowly if that is desired. The simplest of
hese “local” indices are TPF at a preselected value of FPF
nd FPF at a preselected value of TPF, which summarize
ifferences between ROC curves in terms of a single differ-
nce in TPF or FPF, respectively. Despite the intuitive and
omputational advantages that their simplicity provide,
hese indices are not used widely because they suffer from
mportant practical and theoretical limitations: physicians
sually cannot agree on the single value of FPF or TPF at
hich diagnostic tests should be compared, even in a nar-

owly defined clinical task, and decision theory indicates
hat ROC curves should not be compared at a single value of
PF or TPF but instead at a single critical likelihood ratio,
hich corresponds to a particular value of ROC curve slope.
he latter limitation can be overcome by considering the

elative benefits and costs of true-positive, true-negative,
alse-positive, and false-negative decisions; by noting that
he balance among the frequencies of these 4 kinds of deci-
ions changes as a diagnostic test’s operating point is moved
long its ROC curve; and by then comparing ROC curves
n terms of the maximum “expected net benefit” or “ex-
ected utility” that can be achieved on each curve [3,8].
owever, this theoretically attractive local index is rarely

sed because of the difficulty of achieving consensus regard-
ng the relative benefits and costs of the different kinds of

orrect and incorrect decisions.
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ENERALIZED ROC ANALYSIS

onventional ROC analysis fully describes all of the trade-
ffs that a particular human or automated decision maker
an achieve among the frequencies of true-positive, true-
egative, false-positive, and false-negative decisions in any
articular 2-group classification task, that is, in any situation

n which only 2 states of truth are relevant, in which the
ecision maker must decide to which of the 2 states each test
ase belongs, and in which a population of test cases has
een defined and sampled. The terms positive and negative
re used abstractly here to denote any state (eg, disease X is
resent) and its complement (disease X is absent); in prac-
ice, these 2 complementary groups can be defined in any
esired way as long as the true group membership of each
est case can be determined by some gold standard (eg,
iopsy) to provide a basis for scoring decision performance.
n medical imaging applications of conventional ROC anal-
sis, the 2 groups usually are composite in the sense that
ach group includes a variety of states; in a task that involves
he detection of disease X, for example, the patients who
ctually have disease X can include both early and late ex-
mples of the disease, whereas the patients who in fact are
ithout disease X can include a variety of other diseases that

how symptoms similar to those of the disease in question.
ne should note that the ROC curves obtained in such

ituations usually depend on the spectrum of states within
ach defined group of the population, both of which must
e represented adequately in a study’s test-case sample to
btain a reliable estimate of diagnostic accuracy. Perhaps the
ost extreme example of composite groups in clinical

-group classification tasks is that of distinguishing between
ormal and abnormal patients, which is conceptually valid
ut usually impractical because of the difficult sampling
ssues involved. The extent to which a 2-group evaluation of
iagnostic accuracy is clinically relevant depends in part on
he particular chore at hand (eg, is a radiologist’s task con-
idered one of determining dichotomously the presence or
bsence of a candidate disease state or instead one of differ-
ntial diagnosis?) and in part on the particular role an imag-
ng procedure is thought of as playing in patient workup (eg,
s a radiologist’s task in mammography to detect any breast

ass for the purpose of deciding which patients to send to
eedle biopsy or instead to distinguish between the presence
nd absence of malignant breast masses?).

Although diagnostic decision making, especially in dis-
ase detection, often can be modeled as a sequence of
-group classification tasks and evaluated by conventional
OC analysis on that basis, one aspect of a radiologist’s role

hat cannot be modeled as a 2-group classification task, even
n disease detection, is the joint task of reporting the location
r locations of a particular disease as well as its presence. For
xample, conventional ROC analysis cannot be used di-

ectly to quantify a diagnostic system’s ability to direct sur- e
ery to the particular site at which a single tumor is present
r to distinguish among the absence of any tumor, the
resence of a single tumor, and the presence of multiple
umors in each case. Moreover, conventional ROC analysis
annot be used to quantify classification performance in
asks where patients must be sorted into 3 or more groups
imultaneously (eg, no breast mass, benign breast mass, or
alignant breast mass) rather than sequentially (eg, a deci-

ion of no breast mass or some breast mass followed by a
ecision of benign breast mass or malignant breast mass, if
ome breast mass were detected at the first stage). Several
eneralized forms of ROC analysis that have been proposed
o meet these needs are described briefly here to acquaint the
eader with the distinctions among them. Although these
eneralized techniques involve a variety of subtle method-
logic issues, some of which have not been fully resolved,
heir increasing use in evaluation studies demands an under-
tanding of the advantages and limitations of each.

Localization ROC (LROC) analysis, the first generalized
orm of ROC methodology to appear in the radiologic
iterature [9], applies to detection tasks in which each image
ontains either no lesion or 1 lesion, and the radiologist is
equired to specify the single location, if any, at which a
esion is judged to be present. Data are collected in terms of
single confidence rating for each case that expresses the

ikelihood of a lesion being present, as in conventional ROC
nalysis, plus a location report that can be expressed either in
erms of a grid (eg, image quadrant) or geometrical position
eg, image coordinates). A curve is then plotted from the
onfidence-rating data in a way essentially similar to the
ethod used for plotting a conventional ROC curve, except

hat the decision maker is given credit for a “true-positive”
eport only when the reported location is sufficiently close to
he lesion’s true position in an actually positive image. Ac-
ually negative images are scored in the same way as in
onventional ROC analysis, so the horizontal axis of the
eneralized curve is the same as that of a conventional ROC
urve (Figure 6), indicating the probability of reporting a
esion at any location in an actually negative image.

However, the vertical axis of the generalized “LROC
urve” (Figure 7) that results from the stricter scoring rule
or actually positive images represents the probability of not
nly correctly detecting but also correctly locating a lesion
hen it is actually present. Therefore, the operating point
n the LROC curve at each value of FPF � 0 is at least
lightly lower than the point at the same FPF on the corre-
ponding conventional ROC curve, which can be com-
uted from the same data simply by ignoring the decision
aker’s location reports. One should note from Figures 6

nd 7 that LROC curves are plotted in a unit square, like
onventional ROC curves, but in general do not enter the
pper-right corner of that square, because decision makers
ho are scored by LROC analysis cannot achieve the gen-
ralized equivalent of TPF � 1.0 merely by calling all im-
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ges positive (ie, by operating at FPF � 1.0). One should
ote also that the result of any LROC study depends on the
mount of location error that is allowed by the data analyst,
ecause this tolerance determines whether a rating above the
ecision threshold on an actually positive image is scored as
true-positive or a false-negative. A straightforward theoret-

cal relationship between an LROC curve and its corre-
ponding conventional ROC curve [9] for any given loca-
ion-error tolerance indicates that comparisons based on
ROC and conventional ROC analysis can be expected to
ank imaging systems in the same way, thereby providing
ome assurance that conventional ROC methodology will
ot produce misleading results in comparison studies even
hough it does not assess location accuracy. However, other
onsiderations indicate that the location data acquired in an
ROC study provide greater statistical power than conven-
ional ROC analysis [10].

Free-response operating characteristic (FROC) analysis
11,12] can be thought of as a generalization of LROC
ethodology that accommodates the possibility of more

han 1 lesion per image by allowing multiple reports on each
mage. Data are collected in terms of a confidence rating
egarding the possible presence of a lesion at each location
hat the decision maker considers worthy of mention. By

ig 6. A conventional receiver operating characteris-
ic (ROC) curve. The decision maker’s task is to
istinguish actually positive images or cases from
ctually positive images or cases; no localization of

esions is required. FPF � false-positive fraction; TPF
true-positive fraction.
onsidering various possible settings of the decision thresh- c
ld that distinguishes positive from negative reports, a curve
hat shows the relationship between fraction of lesions de-
ected and number of false-positive reports per image (Fig-
re 8) is then plotted from the confidence-rating and loca-
ion data. One should note that the horizontal axis of an
ROC curve is not normalized to a fraction with a maxi-
um value of 1.0; instead, it must extend to an arbitrarily

arge number of false-positive reports per image because the
umber of candidate locations for false-positive reports is
nknown. As in LROC analysis, the location data acquired

n an FROC study provide potentially greater statistical
ower than conventional ROC analysis, but the study’s
esult depends on the amount of location error that is al-
owed by the data analyst. Moreover, in some situations,
ROC curves have been found empirically to depend
trongly on the “satisfaction-of-search effect” [13], which
auses observers to limit their numbers of false-positive re-
orts in a subjective and unpredictable way that is not re-

ated to lesion detectability.
Alternative FROC (AFROC) analysis [14] is a variant of

ROC analysis that uses a different measure of false-positive
ate to reduce the impact of satisfaction-of-search effects on
tudy results. An AFROC curve (Figure 9) uses the same
ertical axis as an FROC curve, but its horizontal axis indi-
ates the fraction of images containing 1 or more false-
ositive reports at each level of lesion detectability, thereby
liminating any dependence of the curve on variations in an
bserver’s subjective tendency to refrain from mentioning

ig 7. A localization receiver operating characteristic
LROC) curve, which is similar to a conventional re-
eiver operating characteristic (ROC) curve except
hat each actually positive image or case must con-
ain exactly 1 lesion, and that lesion must be located

orrectly to be scored as a true-positive detection.
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ocations that are less salient than several others on a given
mage. As in LROC and FROC analysis, the location data
cquired in an AFROC study provide potentially greater
tatistical power than conventional ROC analysis [15], but
he study’s result depends on the amount of location error
hat is allowed by the data analyst.

Less progress has been made in developing generalized
OC methods that quantify decision performance in clas-

ification tasks that involve more than 2 groups. Recent
ork has shown that generalizing conventional ROC anal-
sis to accommodate multiple-group classification poten-
ially involves an enormous increase in complexity, requir-
ng a 5-dimensional ROC surface in 6 dimensions to
rovide a universally applicable description of classification
erformance even for as few as 3 groups [16], and that
reviously proposed approaches to this problem are severely

imited [17].

URVE FITTING

urve fitting in any branch of science involves 3 steps: (1)
hoosing a family of fitting functions with adjustable pa-
ameters that is able to summarize the data of interest with
dequate fidelity; (2) adopting a measure that quantifies the
oodness of any particular fit; and (3) computing the values
f the fitting function’s parameters that provide the best fit,
ccording to the adopted measure.

Conventional ROC curves are usually fit by using the
o-called binormal model, which assumes that the true
urve shape is one of those produced by a pair of normal

ig 8. A free-response operating characteristic
FROC) curve. Each image or case can contain any
umber of lesions. Each correctly located true-posi-
ive detection and each false-positive location report
s scored independently. The horizontal axis cannot
e normalized to range from 0.0 to 1.0, because the
aximum possible number of false-positives on each
pmage or case is unknown.
Gaussian) decision-variable distributions [18].3 Exten-
ive experience indicates that the standard binormal
odel provides excellent fits to statistically reliable ROC

ata in a very broad range of applications [19,20]. How-
ver, this model can yield fitted curves with inappropriate
hapes when data sets are weak (eg, are based on a small
umber of cases or contain ratings in only a small num-
er of discrete categories) [21]. Therefore, several
proper” models for fitting conventional ROC curves
ave been proposed to deal with such situations [10,
2-24].4 Of these, the proper binormal model [23,24]
eems to be the most robust and has the advantage that its
ts are essentially identical to those of the widely ac-
epted standard binormal model when the latter pro-
uces a fit with appropriate shape. Localization ROC
urves can be fit by use of a model proposed by Swennson

Real-world decision variables often are not normally distributed, so it is impor-
ant to understand that this assumption is much less restrictive than it might seem.
ny monotonic transformation of the decision variable that underlies an ROC
urve changes the shapes of the decision-variable distributions but does not affect
he ROC, which is determined entirely by the ranks (ie, the relative numerical
rder) of decision-variable outcomes. Therefore, the assumption concerning ROC
urve shape made in adopting the binormal model is equivalent to a rather loose
ssumption that some unknown monotonic transformation of the real-world
ecision variable would yield a pair of approximately normal decision-variable
istributions.
A proper ROC curve is one on which slope decreases steadily as the operating

ig 9. An alternative free-response operating charac-
eristic (AFROC) curve, which is similar to a free-
esponse operating characteristic curve except for its
orizontal axis. FP � false-positive; LROC � location
eceiver operating characteristic; ROC � receiver op-
rating characteristic.
oint moves from FPF � 0.0 to FPF � 1.0.
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10], whereas experience to date indicates that the stan-
ard binormal model can be used to fit AFROC curves
14]. As yet, no reliable model for fitting FROC curves
as been found, probably because of the variable impact
f satisfaction-of-search effects on FROC curves.

Fitting conventional or generalized ROC curves by
tandard least squares techniques is inappropriate for a
ariety of reasons; instead, maximum likelihood should
e used to account correctly for the statistical properties
f confidence-rating data. Free software is available for
his purpose, as noted below.

ESTING THE STATISTICAL SIGNIFICANCE
F DIFFERENCES

ifferences between estimated ROC curves must be sub-
ected to statistical significance testing to determine
hether those differences can be ascribed to random
ariation or, instead, are likely to be real. A sometimes
ewildering variety of statistical tests has been developed
o assess the significance of differences between ROC
urve estimates. Although the details of those techniques
re beyond the scope of this paper, 2 fundamental issues
re mentioned briefly here to provide a basis for choosing
n appropriate statistical test when the need arises or for
udging the validity of ROC studies reported in the lit-
rature.

One distinction among currently available statistical
ests is the sense in which “difference” is quantified: in
erms of the entire ROC curves or in terms of a particular
lobal, regional, or local index. Good statistical practice
equires that a clinically relevant definition of difference
e chosen before any significance calculation is per-
ormed, because calculating the results of several statisti-
al tests and then selecting the most (or least) significant
esult wrongly inflates (or deflates) the reported signifi-
ance of any ROC difference that was found.

The other important distinction among statistical tests
or differences between ROC estimates concerns the
ource(s) of statistical variation that the tests take into
ccount. Recall that a “p value” is supposed to represent
he probability of finding a difference larger than the
ifference seen in the experiment if, in fact, no difference
xists in the population from which the experiment’s
ata were sampled. This probability can be interpreted as
proportion of results obtained by repeating the experi-
ent many times under identical conditions, so we must

sk, under what conditions is the experiment (conceptu-
lly) to be repeated? For example, do we imagine repeat-
ng an ROC experiment with independently sampled
adiologists and independently sampled cases, with inde-
endently sampled radiologists but the same cases, with
he same radiologists but independently sampled cases,

r with the same cases and the same radiologists? The f
esults of an ROC experiment repeated many times un-
er each of these different scenarios can be expected to
ary by different amounts: to vary most when both radi-
logists and cases are resampled independently for each
epetition, for example, and to vary least when both
adiologists and cases are held constant across repetitions
25]. Hence, a statistical test for differences in ROC
stimates must be selected to take into account the
ource(s) of variation that allow a practically meaningful
onclusion to be drawn. For example, some statistical
ests for ROC differences take only reader variation into
ccount; therefore, any conclusion drawn from such a
est can be applied to the population of radiologists from
hich the experiment’s radiologists were sampled, but
nly to the particular cases that were used in the experi-
ent at hand. Similarly, some statistical tests for ROC

ifferences take only case-sample variation into account,
o their conclusions can be applied to the population of
ases from which an experiment’s cases were sampled,
ut only to the particular radiologists who participated in
hat experiment. Clearly, then, both reader variation and
ase-sample variation should be taken into account when
tatistical significance is calculated for most ROC stud-
es, because scientific progress depends on the replication
f experimental results in independent laboratories,
here different readers and different cases are likely to be
sed. This is the domain of so-called multireader, multi-
ase (MRMC) ROC analysis, which has been refined
reatly during the past 15 years and is now the method-
logy of choice for most ROC comparison studies [26].

As a final general note on statistical issues in ROC
nalysis, one should keep in mind that ROC comparison
tudies can fail to demonstrate a statistically significant
ifference for either of 2 fundamentally different reasons:
ecause there was in fact little or no difference between
maging systems in the populations of readers and cases
tudied or because the number of readers or cases used in
he experiment was too small to provide adequate statis-
ical power. Therefore, a failure to demonstrate a statis-
ically significant difference must not be considered
quivalent to “proving” that no difference exists but in-
tead must be accompanied by some measure of the range
n which the real difference is likely to lie, given the
xperiment’s data (eg, a confidence interval or retrospec-
ive power analysis). Confidence intervals are especially
elpful in overcoming the difficulty of interpreting “p”
alues in situations in which no significant difference was
ound [27].

REE SOFTWARE

lthough the calculations associated with most meaning-

ul ROC curve-fitting and significance-testing tech-
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iques are extremely complicated, free software for these
urposes is available from several investigators:

A number of programs for fitting conventional ROC
curves as well as software for MRMC ROC analysis
can be obtained from Kevin Berbaum, PhD, De-
partment of Radiology, University of Iowa (kevin-
berbaum@uiowa.edu).
A version of the Iowa MRMC software that has been
modified to test the significance of differences between
AFROC curve estimates can be obtained from Dev
Chakraborty, PhD, Department of Radiology, Uni-
versity of Pittsburgh, (http://www.devchakraborty.
com/index_files/Page396.htm).
Software for curve fitting and various statistical analy-
ses of conventional ROC data can be downloaded
from the University of Chicago’s Web site (http://
dpc10@imap.pitt.edu).
Software for a wide variety of statistical analyses of con-
ventional ROC data, including power predictions and an
alternative approach to MRMC analysis, can be obtained
from Nancy Obuchowski, PhD, Department of Quan-
titative Health Sciences, Cleveland Clinic Foundation
(http://www.bio.ri.ccf.org/html/rocanalysis.html).
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