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for radiologic imaging system comparisons.

Receiver operating characteristic (ROC) analysis provides the most comprehensive description of diagnostic
accuracy available to date, because it estimates and reports all of the combinations of sensitivity and specificity
that a diagnostic test is able to provide. After sketching the 6 levels at which diagnostic efficacy can be assessed,
this paper explains the conceptual foundations of conventional ROC analysis, describes a variety of indices that
can be used to summarize ROC curves, and describes several forms of generalized ROC analysis that address
situations in which more than 2 decision alternatives are available. Key issues that arise in ROC curve fitting and
statistical testing are addressed in an intuitive way to provide a basis for judging the validity of ROC studies
reported in the literature. A list of sources for free ROC software is provided. Receiver operating characteristic
methodology has reached a level of maturity at which it can be recommended broadly as the approach of choice
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INTRODUCTION'

A hierarchical model for diagnostic efficacy” developed
by a scientific committee of the National Council on
Radiation Protection and Measurements [2] provides a
concise conceptual overview of the issues involved in
evaluating diagnostic systems. This model’s 6 levels are as
follows:

(1) Technical efficacy: at the model’s lowest level, a di-
agnostic test is considered effective if its result is
accurate and precise in a physical sense, for example,
if the test measures 1 or more physical properties of
the human body in a way that agrees with a “gold
standard,” and its results are reproducible. Aspects of
technical efficacy in medical imaging include spatial
or temporal resolution, noise magnitude and texture,
and contrast sensitivity.
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tions, whereas effectiveness refers to routine practice. I use the terms synony-
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(2) Diagnostic accuracy: the second level of efficacy con-
cerns the extent to which the results of a diagnostic
test agree, in some statistical sense, with patients’
actual states of health or disease. Virtually all practi-
cal measures of diagnostic accuracy quantify the abil-
ity of a test to distinguish between 2 (usually com-
posite) states of truth, such as “normal” vs
“abnormal” or “positive” vs “negative,” with respect
to a specified disease. Examples of diagnostic-accu-
racy measures include percentage correct, sensitivity
and specificity, and receiver operating characteristic
(ROC) curves. Of these, ROC curves provide the
most comprehensive description, because they indi-
cate all of the combinations of sensitivity and speci-
ficity that a diagnostic test is able to provide as the
test’s “decision criterion” is varied.

(3) Diagnostic-thinking efficacy: given the prevalence of
a particular disease and given the sensitivity and
specificity (or more generally the ROC curve) of a
diagnostic test for the presence of that disease, one
can easily compute the factor by which the prior
odds of disease change after the test’s result is ob-
tained. However, the extent to which a diagnostic
test affects physicians’ subjective estimates of disease
likelihood must be answered empirically. This level
of efficacy is sometimes difficult to quantify, but it
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provides a conceptual link between the more easily

interpreted tiers above and below.
(4) Therapeutic efficacy: this is the lowest level at which
the effects of a diagnostic test on patient manage-
ment are assessed directly. The basic question is how
and by how much a particular diagnostic test
changes the way in which patients are treated; for
example, how does therapy differ when it is chosen
without or with knowledge of a test’s result?
Patient-outcome efficacy: here, the goal of diagnostic
medicine is confronted directly: a diagnostic test is
considered effective at this level only if patient health
(as measured, eg, in “quality-adjusted life years”) is
demonstrably improved by use of the test. This is the
kind of efficacy that is of greatest interest to most
patients and physicians, and it is an indispensable
component of any meaningful “cost-benefit” or

)

“cost-effectiveness” analysis. However, a definitive
assessment of efficacy at this level requires prospec-
tive randomized and controlled clinical trials, in
which practical, statistical, and ethical problems can
be formidable [2].

Societal efficacy: any cost-benefit or cost-effective-
ness analysis of a diagnostic test at level 5 focuses on
the benefits and personal risks that accrue to the
patients who are candidates for the test. However,
the fact that medical costs are borne increasingly by
society as a whole implies that social utilities should
somehow be taken into account when benefits and
costs are evaluated. This is the domain of “societal
efficacy,” which in principle merges private and pub-
lic considerations to assess diagnostic tests within the
context of the social endeavor.

(©)

Efficacy at this hierarchical model’s upper levels usually is
of greatest direct interest, but lower-level efficacy is al-
most always easier to quantify reliably. Fortunately, effi-
cacy at the higher levels sometimes can be estimated from
measurements at lower levels by the use of collateral data
and appropriate assumptions. Most studies of diagnostic
efficacy in medical imaging focus on the measurement of
diagnostic accuracy (level 2), because this is the lowest
level at which human observers are included and often
the highest level at which scientifically rigorous methods
can be used.

For many years, diagnostic accuracy was measured and
reported in terms of a kind of “batting average”: the
percentage of diagnostic decisions that proved to be cor-
rect. This “percentage-correct” measure has the fairly
obvious limitation that it can depend strongly on disease
prevalence [3]: if only 1% of the patients in a screening
population have a particular disease, for example, then a
system can be “99% accurate” simply by blindly calling
all patients negative with respect to that disease. More-

over, the percentage-correct measure does not reveal the
relative frequencies of false-positive and false-negative
errors, which usually have substantially different clinical
consequences.

Both of these disadvantages are overcome if diagnostic
performance is reported in terms of a pair of indices:
“sensitivity” (the fraction of patients actually having the
disease in question who are correctly diagnosed as posi-
tive) and “specificity” (the fraction of patients actually
without the disease who are correctly diagnosed as nega-
tive). In effect, these indices quantify separately the “ac-
curacies” of the system for actually positive and actually
negative patients, respectively. False-negative and false-
positive diagnoses are accounted for implicitly by these
indices, and a change in disease prevalence does not affect
their numerical values if constant decision criteria are
used. The terms #rue-positive fraction (TPF) and true-
negative fraction are synonymous with sensitivity and spec-
ificity, respectively. In a complementary way, the “false-
negative fraction” and the “false-positive fraction” (FPF)
represent the conditional probabilities or frequencies
with which actually positive and actually negative pa-
tients are diagnosed incorrectly [3,4]; thus, false-negative
fraction = 1 — TPF = 1 — sensitivity, and FPF = 1 —
true-negative fraction = 1 — specificity. Because of the
interrelationships among these measures, it is necessary
only to indicate a single pair; conventionally, either sen-
sitivity and specificity or TPF and FPF are used. The use
of sensitivity or TPF alone is inadequate, because the
performance of the diagnostic system with regard to ac-
tually negative patients is then unknown.

The sensitivity-specificity pair, or one of its equivalents,
describes diagnostic accuracy more meaningfully than the
single index of percentage correct, and it has been used
widely in the medical literature. A single pair of numbers
representing sensitivity and specificity is not entirely ade-
quate, however, because it confounds 2 aspects of diagnostic
accuracy that can vary independently: (a) the inherent ca-
pacity of a diagnostic system to distinguish between actual
states of health and disease, and (2) the balance between the
frequencies of false-positive and false-negative errors that a
decision maker chooses to adopt in a clinical task when a
particular discrimination capacity is available [5].

The limitations of reporting diagnostic accuracy in
terms of a single sensitivity-specificity or TPF-FPF pair
are most evident in studies that attempt to compare di-
agnostic tests, because often, one test is found to have
higher sensitivity (higher TPF) but lower specificity
(higher FPF) than the other; in other words, one test is
more accurate for actually positive patients, whereas the
other is more accurate for actually negative patients. This
is clearly problematic in deciding which of the 2 tests to
use, because diagnostic testing would not be needed if the
presence or absence of the disease were known.
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Fig 1. The effect of decision-threshold setting on
sensitivity and specificity. With a decision threshold
setting at t; on the decision axis in the left panel, the
pair of distributions shown there produces a combi-
nation of sensitivity (light gray shading) and specificity
(dark gray shading) that plots as the point labeled “t;”
on the graph of sensitivity vs specificity in the right
panel of the figure. Similarly, the decision thresholds
labeled “t4,” “t,,” and “t,” in the left panel yield the
combinations of sensitivity and specificity that are
labeled correspondingly in the right panel.

THE BASIC CONCEPTS OF ROC
ANALYSIS

The dilemma that arises when one diagnostic test has higher
sensitivity but lower specificity than another can be resolved
by noting that the sensitivity and specificity of virtually all
diagnostic tests can be changed by modifying the “threshold
of abnormality” or “decision threshold” that is used for the
test. For example, consider 2 radiologists with equal skill
who read mammograms to detect breast cancer. If one of
these radiologists reads the images more aggressively than
the other, recommending biopsy if a mammogram indi-
cates even the slightest possibility of abnormality, that radi-
ologist will detect malignancy more often than the other but
will generate more negative biopsy results as well. This in-
verse relationship between sensitivity and specificity is dem-
onstrated in Figure 1, in which the 2 bell-shaped curves in
the left panel represent schematically the distributions of a
radiologist’s confidence that an imaging study indicates the
disease in question to be present for actually negative and
actually positive patients, respectively. If the radiologist were
to recommend patients for biopsy if and only if his or her
confidence in a positive interpretation exceeded the decision
threshold denoted by the vertical line at t; in this panel, the
radiologist’s sensitivity would be the fraction of the area
under the “actually +” distribution that lies to the right of t;
(approximately 50% here), whereas his or her specificity
would be the fraction of the area under the “actually —”
distribution that lies to the left of t; (approximately 95% in
Figure 1). This combination of sensitivity and specificity
can be plotted as a point on a graph that indicates specificity
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on its horizontal axis and sensitivity on its vertical axis, as
shown by the point labeled “t;” in the right panel of Figure
1. Similarly, the decision thresholds labeled t;, t,, and t, in
the left panel of Figure 1 would yield the combinations of
sensitivity and specificity that are labeled correspondingly in
the right panel of the figure.

By considering a much larger number of possible settings
of the decision threshold t, one would generate a much
larger number of points in the right panel of Figure 1, in the
limit producing a continuous curve such as that shown on
the left side of Figure 2, which indicates all of the combina-
tions of sensitivity and specificity that this radiologist can
obtain. For historical reasons, the relationship considered
here is usually presented by plotting sensitivity (ie, TPF) asa
function of 1 — specificity (ie, FPF) rather than asa function
of specificity itself, thereby producingan ROC curve such as
that shown on the right side of Figure 2. Perhaps confus-
ingly, “operating points” (ie, combinations of FPF and
TPF) near the lower-left end of an ROC curve are obtained
by setting the decision threshold at a position toward the
right end of the decision axis shown in Figure 1, thereby
producing few false-positive decisions but relatively few
true-positive decisions as well, whereas operating points
near the upper-right end of the ROC curve are obtained by
setting the decision threshold toward the left end of the
decision axis, thereby producing more true-positive deci-
sions but also more false-positive decisions. Thoughtful
consideration of these figures reveals that ROC curves
higher or lower than the curves shown in Figure 2 corre-
spond to pairs of underlying distributions that are less over-
lapped or more overlapped, respectively, than those shown
in Figure 1. It is important to note that the extent to which
the pair of underlying distributions overlaps, and hence the
height of the ROC curve, depends, in general, not only on

A curve is swept out as the “threshold of
abnormality” (1) is varied continuously
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Fig 2. The left panel shows the continuous relation-
ship between sensitivity and specificity that is ob-
tained from Figure 1 by varying the decision threshold
continuously. The right panel, which represents a
typical receiver operating characteristic (ROC) curve,
is a mirror image of the left because it plots sensitivity
vs 1 — specificity.
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A dillemma: Which modality is better?
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Fig 3. A dilemma in comparing the diagnostic accu-
racies of 2 imaging systems when only true-positive
fraction (or sensitivity) and false-positive fraction (or
specificity) are known.

the skill of the radiologist but also on technical aspects of the
imaging procedure, such as spatial resolution, noise and
contrast, and characteristics of the case population, such as
its balance between early and advanced disease among actu-
ally positive patients.

With these concepts in mind, one can resolve the
dilemma mentioned in “Introduction” and shown in
Figure 3, in which diagnostic imaging modality B has a
higher TPF (higher sensitivity) but also a higher FPF (ie,
lower specificity) than modality A.

Suppose that the ROC curves for modality A and modal-
ity B have been determined and are found to look like those
shown in Figure 4. In this instance, one can conclude that
modality B provides greater diagnostic accuracy, because it
can be used to achieve a higher TPF than modality A at the
same FPF if the decision threshold for modality B is moved
toward the right end of the decision axis in Figure 1 until the
FPF for modality B equals that of modality A (ie, operating
point B in Figure 4 moves down and to the left along its
ROC curve until it lies over point A) or if the decision
threshold for modality A is moved toward the left end of the
decision axis in Figure 1 until the FPF for modality A equals
that of modality B (ie, operating point A in Figure 4 moves
up and to the right along its ROC curve until it lies under
point B). Given the ROC curves shown in Figure 4, modal-
ity B also can be used to achieve a lower FPF than modality
A at the same TPF if the decision threshold for modality B is
moved toward the right end of the decision axis in Figure 1
until the TPF for modality B equals that of modality A (ie,

operating point B in Figure 4 moves down and to the left

along its ROC curve until it lies to the left of point A) or if
the decision threshold for modality A is moved toward the
left end of the decision axis in Figure 1 until the TPF for
modality A equals that of modality B in Figure 4 (ie, oper-
ating point A in Figure 4 moves up and to the right along its
ROC curve until it lies to the right of point B). This con-
clusion is not inevitable given only the 2 operating points
shown in Figure 3, however, because determination of the
ROC curves for modalities A and B could yield the result
shown in Figure 5, which indicates that the 2 modalities
provide equal diagnostic accuracy because their operating
points can be made to coincide by appropriate adjustment
of either modality’s decision-threshold setting. Moreover, in
a third scenario not depicted here, one would find modality
A to be superior if its ROC curve is higher everywhere than
the ROC curve for modality B, which can occur if the curve
for modality A rises more steeply from the lower-left corner
of the unit square than the curve for modality B rises there.
In short, higher ROC curves indicate greater diagnostic
accuracy, and one diagnostic test or imaging modality can
be judged unambiguously superior to another if its ROC
curve lies above the other test's ROC everywhere in the unit
square. A comparison of 2 diagnostic tests is more compli-
cated when their ROC curves cross, however. The latter
situation is addressed next.

ROC-RELATED INDICES OF DIAGNOSTIC
ACCURACY

Experience indicates that real-world ROC curves must be
described by at least 2 parameters that represent separately
each curve’s height and the strength or weakness of its sym-
metry around the negative (—45°) diagonal of the unit

The dilemma is resolved after ROC curves
are determined (one possible scenario)
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Fig 4. The dilemma is resolved if the receiver oper-
ating characteristic (ROC) curve of each imaging sys-
tem is determined (one scenario). FPF = false-posi-
tive fraction; TPF = true-positive fraction.



The dilemma is resolved after ROC curves
are determined (another possible scenario)
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Fig 5. The dilemma is resolved if the receiver oper-
ating characteristic (ROC) curve of each imaging sys-
tem is determined (a second scenario). FPF = false-
positive fraction; TPF = true-positive fraction.

square in which ROC curves are plotted. Therefore, ROC
curves usually cannot be summarized fully by a single num-
ber, and system comparisons that are based entirely on a
single-number summary index may lead to erroneous con-
clusions. The concepts of “better” and “worse” are inher-
ently 1-dimensional, however, so any requirement that sys-
tems be ranked in a comparison study dictates the use of
some single-number summary index. The key need in such
situations is to choose an index that is as meaningful and
reliable as possible in a practical sense. Several candidate
indices of this kind are described below.

If 2 ROC curves in a comparison do not cross, as in
Figure 4, the diagnostic accuracies indicated by those curves
can be ranked unambiguously in terms of the total area
under each curve within the unit square. This widely used
area index, denoted by “AUC” in general or by “A,” when
an ROC curve is described by the standard binormal model
discussed later, can be interpreted in 3 ways: as sensitivity
averaged over all possible specificities (ie, average ROC
curve height); as specificity averaged over all possible sensi-
tivities (ie, average ROC curve “leftness”); or, less obviously,
as the probability of identifying correctly the actually posi-
tive case in a “2-alternative forced-choice” experiment, in
which each trial requires an observer to distinguish between
a randomly selected actually positive case and a randomly
selected actually negative case. Values of the area index range
from .50 for the lowest possible ROC curve—the positive
(ie, +45°) diagonal of the unit square, on which the prob-
ability of a positive reading is the same for each case, regard-
less of truth—to 1.00 for the highest possible ROC, which
climbs along the left side of the unit square and then be-
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comes horizontal when it reaches the square’s upper-left
corner.

The conventional area index described above is “global”
in the sense that it summarizes an entire ROC curve. How-
ever, this index can be misleading when 2 ROC curves cross,
because then it can have the same value for both curves even
though one ROC is higher for some range of FPF, or, even
more dangerously, its value can be lower for the curve that s
higher in the FPF range of primary clinical interest. Two
kinds of “partial-area” indices have been proposed to ad-
dress this limitation: one represents the area under an ROC
curve within a selected range of FPF [6], whereas the other
represents the area to the right of the ROC within a selected
range of TPF [7]. For a given ROC curve, the value of each
of these “regional” indices depends on the range of FPF or
TPF that is used, which must be indicated explicitly when
the index value is reported and should be chosen on the basis
of clinical considerations. Both normalized and nonnormal-
ized variants of these partial-area indices have been sug-
gested in the literature, so any study that uses such an index
to summarize its ROC curves must indicate precisely how
the index was calculated.

Partial-area indices are based on a range of FPF or TPF to
focus a comparison on clinically relevant sensitivities and
specificities without presuming to judge the precise balance
between sensitivity and specificity that is most appropriate
in a particular clinical situation. However, other ROC-
based indices of diagnostic accuracy can be used to focus the
comparison more narrowly if that is desired. The simplest of
these “local” indices are TPF at a preselected value of FPF
and FPF at a preselected value of TPF, which summarize
differences between ROC curves in terms of a single differ-
ence in TPF or FPF, respectively. Despite the intuitive and
computational advantages that their simplicity provide,
these indices are not used widely because they suffer from
important practical and theoretical limitations: physicians
usually cannot agree on the single value of FPF or TPF at
which diagnostic tests should be compared, even in a nar-
rowly defined clinical task, and decision theory indicates
that ROC curves should not be compared at a single value of
FPF or TPF but instead at a single critical likelihood ratio,
which corresponds to a particular value of ROC curve slope.
The latter limitation can be overcome by considering the
relative benefits and costs of true-positive, true-negative,
false-positive, and false-negative decisions; by noting that
the balance among the frequencies of these 4 kinds of deci-
sions changes as a diagnostic test’s operating point is moved
along its ROC curve; and by then comparing ROC curves
in terms of the maximum “expected net benefit” or “ex-
pected utility” that can be achieved on each curve [3,8].
However, this theoretically attractive local index is rarely
used because of the difficulty of achieving consensus regard-
ing the relative benefits and costs of the different kinds of
correct and incorrect decisions.
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GENERALIZED ROC ANALYSIS
Conventional ROC analysis fully describes all of the trade-

offs that a particular human or automated decision maker
can achieve among the frequencies of true-positive, true-
negative, false-positive, and false-negative decisions in any
particular 2-group classification task, that is, in any situation
in which only 2 states of truth are relevant, in which the
decision maker must decide to which of the 2 states each test
case belongs, and in which a population of test cases has
been defined and sampled. The terms positive and negative
are used abstractly here to denote any state (eg, disease X is
present) and its complement (disease X is absent); in prac-
tice, these 2 complementary groups can be defined in any
desired way as long as the true group membership of each
test case can be determined by some gold standard (eg,
biopsy) to provide a basis for scoring decision performance.
In medical imaging applications of conventional ROC anal-
ysis, the 2 groups usually are composite in the sense that
each group includes a variety of states; in a task that involves
the detection of disease X, for example, the patients who
actually have disease X can include both early and late ex-
amples of the disease, whereas the patients who in fact are
without disease X can include a variety of other diseases that
show symptoms similar to those of the disease in question.
One should note that the ROC curves obtained in such
situations usually depend on the spectrum of states within
each defined group of the population, both of which must
be represented adequately in a study’s test-case sample to
obtain a reliable estimate of diagnostic accuracy. Perhaps the
most extreme example of composite groups in clinical
2-group classification tasks is that of distinguishing between
normal and abnormal patients, which is conceptually valid
but usually impractical because of the difficult sampling
issues involved. The extent to which a 2-group evaluation of
diagnostic accuracy is clinically relevant depends in part on
the particular chore at hand (eg;, is a radiologist’s task con-
sidered one of determining dichotomously the presence or
absence of a candidate disease state or instead one of differ-
ential diagnosis?) and in part on the particular role an imag-
ing procedure is thought of as playing in patient workup (eg,
is a radiologist’s task in mammography to detect any breast
mass for the purpose of deciding which patients to send to
needle biopsy or instead to distinguish between the presence
and absence of malignant breast masses?).

Although diagnostic decision making, especially in dis-
ease detection, often can be modeled as a sequence of
2-group classification tasks and evaluated by conventional
ROC analysis on that basis, one aspect of a radiologist’s role
that cannot be modeled as a 2-group classification task, even
in disease detection, is the joint task of reporting the location
or locations of a particular disease as well as its presence. For
example, conventional ROC analysis cannot be used di-
rectly to quantify a diagnostic system’s ability to direct sur-

gery to the particular site at which a single tumor is present
or to distinguish among the absence of any tumor, the
presence of a single tumor, and the presence of multiple
tumors in each case. Moreover, conventional ROC analysis
cannot be used to quantify classification performance in
tasks where patients must be sorted into 3 or more groups
simultaneously (eg, no breast mass, benign breast mass, or
malignant breast mass) rather than sequentially (eg, a deci-
sion of no breast mass or some breast mass followed by a
decision of benign breast mass or malignant breast mass, if
some breast mass were detected at the first stage). Several
generalized forms of ROC analysis that have been proposed
to meet these needs are described briefly here to acquaint the
reader with the distinctions among them. Although these
generalized techniques involve a variety of subtle method-
ologic issues, some of which have not been fully resolved,
their increasing use in evaluation studies demands an under-
standing of the advantages and limitations of each.
Localization ROC (LROC) analysis, the first generalized
form of ROC methodology to appear in the radiologic
literature [9], applies to detection tasks in which each image
contains either no lesion or 1 lesion, and the radiologist is
required to specify the single location, if any, at which a
lesion is judged to be present. Data are collected in terms of
a single confidence rating for each case that expresses the
likelihood of a lesion being present, as in conventional ROC
analysis, plus a location report that can be expressed either in
terms of a grid (eg, image quadrant) or geometrical position
(eg, image coordinates). A curve is then plotted from the
confidence-rating data in a way essentially similar to the
method used for plotting a conventional ROC curve, except
that the decision maker is given credit for a “true-positive”
report only when the reported location is sufficiently close to
the lesion’s true position in an actually positive image. Ac-
tually negative images are scored in the same way as in
conventional ROC analysis, so the horizontal axis of the
generalized curve is the same as that of a conventional ROC
curve (Figure 6), indicating the probability of reporting a
lesion at any location in an actually negative image.
However, the vertical axis of the generalized “LROC
curve” (Figure 7) that results from the stricter scoring rule
for actually positive images represents the probability of not
only correctly detecting but also correctly locating a lesion
when it is actually present. Therefore, the operating point
on the LROC curve at each value of FPF > 0 is at least
slightly lower than the point at the same FPF on the corre-
sponding conventional ROC curve, which can be com-
puted from the same data simply by ignoring the decision
maker’s location reports. One should note from Figures 6
and 7 that LROC curves are plotted in a unit square, like
conventional ROC curves, but in general do not enter the
upper-right corner of that square, because decision makers
who are scored by LROC analysis cannot achieve the gen-
eralized equivalent of TPF = 1.0 merely by calling all im-
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Fig 6. A conventional receiver operating characteris-
tic (ROC) curve. The decision maker’s task is to
distinguish actually positive images or cases from
actually positive images or cases; no localization of
lesions is required. FPF = false-positive fraction; TPF
= true-positive fraction.

ages positive (ie, by operating at FPF = 1.0). One should
note also that the result of any LROC study depends on the
amount of location error that is allowed by the data analyst,
because this tolerance determines whether a rating above the
decision threshold on an actually positive image is scored as
a true-positive or a false-negative. A straightforward theoret-
ical relationship between an LROC curve and its corre-
sponding conventional ROC curve [9] for any given loca-
tion-error tolerance indicates that comparisons based on
LROC and conventional ROC analysis can be expected to
rank imaging systems in the same way, thereby providing
some assurance that conventional ROC methodology will
not produce misleading results in comparison studies even
though it does not assess location accuracy. However, other
considerations indicate that the location data acquired in an
LROC study provide greater statistical power than conven-
tional ROC analysis [10].

Free-response operating characteristic (FROC) analysis
[11,12] can be thought of as a generalization of LROC
methodology that accommodates the possibility of more
than 1 lesion per image by allowing multiple reports on each
image. Data are collected in terms of a confidence rating
regarding the possible presence of a lesion at each location
that the decision maker considers worthy of mention. By
considering various possible settings of the decision thresh-

Metz/Receiver Operating Characteristic Analysis 419

old that distinguishes positive from negative reports, a curve
that shows the relationship between fraction of lesions de-
tected and number of false-positive reports per image (Fig-
ure 8) is then plotted from the confidence-rating and loca-
tion data. One should note that the horizontal axis of an
FROC curve is not normalized to a fraction with a maxi-
mum value of 1.0; instead, it must extend to an arbitrarily
large number of false-positive reports per image because the
number of candidate locations for false-positive reports is
unknown. As in LROC analysis, the location data acquired
in an FROC study provide potentially greater statistical
power than conventional ROC analysis, but the study’s
result depends on the amount of location error that is al-
lowed by the data analyst. Moreover, in some situations,
FROC curves have been found empirically to depend
strongly on the “satisfaction-of-search effect” [13], which
causes observers to limit their numbers of false-positive re-
ports in a subjective and unpredictable way that is not re-
lated to lesion detectability.

Alternative FROC (AFROC) analysis [14] is a variant of
FROC analysis that uses a different measure of false-positive
rate to reduce the impact of satisfaction-of-search effects on
study results. An AFROC curve (Figure 9) uses the same
vertical axis as an FROC curve, but its horizontal axis indi-
cates the fraction of images containing 1 or more false-
positive reports at each level of lesion detectability, thereby
eliminating any dependence of the curve on variations in an
observer’s subjective tendency to refrain from mentioning
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Fig 7. A localization receiver operating characteristic
(LROC) curve, which is similar to a conventional re-
ceiver operating characteristic (ROC) curve except
that each actually positive image or case must con-
tain exactly 1 lesion, and that lesion must be located
correctly to be scored as a true-positive detection.
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locations that are less salient than several others on a given
image. As in LROC and FROC analysis, the location data
acquired in an AFROC study provide potentially greater
statistical power than conventional ROC analysis [15], but
the study’s result depends on the amount of location error
that is allowed by the data analyst.

Less progress has been made in developing generalized
ROC methods that quantify decision performance in clas-
sification tasks that involve more than 2 groups. Recent
work has shown that generalizing conventional ROC anal-
ysis to accommodate multiple-group classification poten-
tially involves an enormous increase in complexity, requir-
ing a 5-dimensional ROC surface in 6 dimensions to
provide a universally applicable description of classification
performance even for as few as 3 groups [16], and that
previously proposed approaches to this problem are severely

limited [17].

CURVE FITTING

Curve fitting in any branch of science involves 3 steps: (1)
choosing a family of fitting functions with adjustable pa-
rameters that is able to summarize the data of interest with
adequate fidelity; (2) adopting a measure that quantifies the
goodness of any particular fit; and (3) computing the values
of the fitting function’s parameters that provide the best fit,
according to the adopted measure.

Conventional ROC curves are usually fit by using the
so-called binormal model, which assumes that the true
curve shape is one of those produced by a pair of normal
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(FROC) curve. Each image or case can contain any
number of lesions. Each correctly located true-posi-
tive detection and each false-positive location report
is scored independently. The horizontal axis cannot
be normalized to range from 0.0 to 1.0, because the
maximum possible number of false-positives on each
image or case is unknown.
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Fig 9. An alternative free-response operating charac-
teristic (AFROC) curve, which is similar to a free-
response operating characteristic curve except for its
horizontal axis. FP = false-positive; LROC = location
receiver operating characteristic; ROC = receiver op-
erating characteristic.

(Gaussian) decision-variable distributions [18].> Exten-
sive experience indicates that the standard binormal
model provides excellent fits to statistically reliable ROC
data in a very broad range of applications [19,20]. How-
ever, this model can yield fitted curves with inappropriate
shapes when data sets are weak (eg, are based on a small
number of cases or contain ratings in only a small num-
ber of discrete categories) [21]. Therefore, several
“proper” models for fitting conventional ROC curves
have been proposed to deal with such situations [10,
22-24].% Of these, the proper binormal model [23,24]
seems to be the most robust and has the advantage that its
fits are essentially identical to those of the widely ac-
cepted standard binormal model when the latter pro-
duces a fit with appropriate shape. Localization ROC
curves can be fit by use of a model proposed by Swennson

? Real-world decision variables often are not normally distributed, so it is impor-
tant to understand that this assumption is much less restrictive than it might seem.
Any monotonic transformation of the decision variable that underlies an ROC
curve changes the shapes of the decision-variable distributions but does not affect
the ROC, which is determined entirely by the ranks (ie, the relative numerical
order) of decision-variable outcomes. Therefore, the assumption concerning ROC
curve shape made in adopting the binormal model is equivalent to a rather loose
assumption that some unknown monotonic transformation of the real-world
decision variable would yield a pair of approximately normal decision-variable
distributions.

“ A proper ROC curve is one on which slope decreases steadily as the operating
point moves from FPF = 0.0 to FPF = 1.0.



[10], whereas experience to date indicates that the stan-
dard binormal model can be used to fit AFROC curves
[14]. As yet, no reliable model for fitting FROC curves
has been found, probably because of the variable impact
of satisfaction-of-search effects on FROC curves.

Fitting conventional or generalized ROC curves by
standard least squares techniques is inappropriate for a
variety of reasons; instead, maximum likelihood should
be used to account correctly for the statistical properties
of confidence-rating data. Free software is available for
this purpose, as noted below.

TESTING THE STATISTICAL SIGNIFICANCE
OF DIFFERENCES

Differences between estimated ROC curves must be sub-
jected to statistical significance testing to determine
whether those differences can be ascribed to random
variation or, instead, are likely to be real. A sometimes
bewildering variety of statistical tests has been developed
to assess the significance of differences between ROC
curve estimates. Although the details of those techniques
are beyond the scope of this paper, 2 fundamental issues
are mentioned briefly here to provide a basis for choosing
an appropriate statistical test when the need arises or for
judging the validity of ROC studies reported in the lit-
erature.

One distinction among currently available statistical
tests is the sense in which “difference” is quantified: in
terms of the entire ROC curves or in terms of a particular
global, regional, or local index. Good statistical practice
requires that a clinically relevant definition of difference
be chosen before any significance calculation is per-
formed, because calculating the results of several statisti-
cal tests and then selecting the most (or least) significant
result wrongly inflates (or deflates) the reported signifi-
cance of any ROC difference that was found.

The other important distinction among statistical tests
for differences between ROC estimates concerns the
source(s) of statistical variation that the tests take into
account. Recall that a “p value” is supposed to represent
the probability of finding a difference larger than the
difference seen in the experiment if, in fact, no difference
exists in the population from which the experiment’s
data were sampled. This probability can be interpreted as
a proportion of results obtained by repeating the experi-
ment many times under identical conditions, so we must
ask, under what conditions is the experiment (conceptu-
ally) to be repeated? For example, do we imagine repeat-
ing an ROC experiment with independently sampled
radiologists and independently sampled cases, with inde-
pendently sampled radiologists but the same cases, with
the same radiologists but independently sampled cases,
or with the same cases and the same radiologists? The
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results of an ROC experiment repeated many times un-
der each of these different scenarios can be expected to
vary by different amounts: to vary most when both radi-
ologists and cases are resampled independently for each
repetition, for example, and to vary least when both
radiologists and cases are held constant across repetitions
[25]. Hence, a statistical test for differences in ROC
estimates must be selected to take into account the
source(s) of variation that allow a practically meaningful
conclusion to be drawn. For example, some statistical
tests for ROC differences take only reader variation into
account; therefore, any conclusion drawn from such a
test can be applied to the population of radiologists from
which the experiment’s radiologists were sampled, but
only to the particular cases that were used in the experi-
ment at hand. Similarly, some statistical tests for ROC
differences take only case-sample variation into account,
so their conclusions can be applied to the population of
cases from which an experiment’s cases were sampled,
but only to the particular radiologists who participated in
that experiment. Clearly, then, both reader variation and
case-sample variation should be taken into account when
statistical significance is calculated for most ROC stud-
ies, because scientific progress depends on the replication
of experimental results in independent laboratories,
where different readers and different cases are likely to be
used. This is the domain of so-called multireader, multi-
case (MRMC) ROC analysis, which has been refined
greatly during the past 15 years and is now the method-
ology of choice for most ROC comparison studies [26].

As a final general note on statistical issues in ROC
analysis, one should keep in mind that ROC comparison
studies can fail to demonstrate a statistically significant
difference for either of 2 fundamentally different reasons:
because there was in fact little or no difference between
imaging systems in the populations of readers and cases
studied or because the number of readers or cases used in
the experiment was too small to provide adequate statis-
tical power. Therefore, a failure to demonstrate a statis-
tically significant difference must not be considered
equivalent to “proving” that no difference exists but in-
stead must be accompanied by some measure of the range
in which the real difference is likely to lie, given the
experiment’s data (eg, a confidence interval or retrospec-
tive power analysis). Confidence intervals are especially
helpful in overcoming the difficulty of interpreting “p”
values in situations in which no significant difference was

found [27].

FREE SOFTWARE

Although the calculations associated with most meaning-
ful ROC curve-fitting and significance-testing tech-
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niques are extremely complicated, free software for these
purposes is available from several investigators:

A number of programs for fitting conventional ROC
curves as well as software for MRMC ROC analysis
can be obtained from Kevin Berbaum, PhD, De-
partment of Radiology, University of Iowa (kevin-
berbaum@uiowa.edu).

A version of the lowa MRMC software that has been
modified to test the significance of differences between
AFROC curve estimates can be obtained from Dev
Chakraborty, PhD, Department of Radiology, Uni-
versity of Pittsburgh, (http://www.devchakraborty.
com/index_files/Page396.htm).

Software for curve fitting and various statistical analy-
ses of conventional ROC data can be downloaded
from the University of Chicago’s Web site (http://
dpcl0@imap.pitt.edu).

Software for a wide variety of statistical analyses of con-
ventional ROC data, including power predictions and an
alternative approach to MRMC analysis, can be obtained
from Nancy Obuchowski, PhD, Department of Quan-
titative Health Sciences, Cleveland Clinic Foundation
(http://www.bio.ri.ccf.org/html/rocanalysis.heml).
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