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Abstract. We survey some of the highlights of inverse scattering theory as it has developed over the
last 15 years, with emphasis on uniqueness theorems and reconstruction algorithms for
time harmonic acoustic waves. Included in our presentation are numerical experiments
using real data and numerical examples of the use of inverse scattering methods to detect
buried objects.
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1. Introduction. The field of inverse problems is a relatively new area of math-
ematical research, having its origins in the fundamental papers of Tikhonov in the
mid-1960s. As with any new area of mathematics, one can ask the question, Why did
it start when it did and not sooner? In the case of inverse problems, the answer is one
of historical prejudice meeting scientific pressure. The historical prejudice dates back
to Hadamard, who claimed that the only problems of physical interest were those
that had a unique solution depending continuously on the given data. Such problems
were called well-posed, and problems that were not well-posed were labeled ill-posed
[30]. In particular, ill-posed problems connected with partial differential equations
of mathematical physics were considered to be of purely academic interest and not
worthy of serious study. In the meantime, the success of radar and sonar during
the Second World War caused scientists to ask if more could be determined about
a scattering object than simply its location. Such problems are in the category of
inverse scattering problems, and it was slowly realized that these problems, although
of obvious physical interest, are ill-posed. However, due to the lack of a mathematical
theory of inverse problems, together with limited computational capabilities, further
progress was not possible.
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This situation was dramatically changed in the mid-1960s with Tikhonov’s intro-
duction of regularization methods for linear ill-posed problems (see [74]). In particular,
Tikhonov considered ill-posed operator equations of the form

Aϕ = f,(1.1)

where A : X → Y is a compact operator mapping a Banach space X into a Banach
space Y , and he noted that since A is compact, this equation is ill-posed. A regularized
solution of (1.1) is then found by minimizing the Tikhonov functional

‖Aϕ− f‖2 + γ‖ϕ‖2,(1.2)

where γ > 0 is called the regularization parameter. It can be shown [38], [45] that
for each γ > 0 there exists a unique minimizer ϕγ to (1.2) and that ϕγ depends
continuously on f . The choice of regularization parameter is obviously crucial if ϕγ

is to approximate a solution to (1.1), and a method for choosing this parameter as
a function of the noise level in f was given by Morozov (cf. [38], [45]): Assuming
A is known exactly and f is noisy, γ is chosen such that the defect ‖Aϕ − f‖ is
the same order of magnitude as the noise level. This yields a nonlinear equation for
the determination of the parameter γ where the equation depends on the noise level.
For the case when the operator A is noisy, similar considerations apply (see section
2). The further development of the mathematical theory of linear ill-posed problems
by Tikhonov and his school in Russia and by Keith Miller and others in the United
States, together with the rapid development of computing facilities, set the stage for
the subsequent mathematical investigation of the inverse scattering problem.

1.1. The Inverse Scattering Problem. Before proceeding further we need to
explain in more detail what we mean by the inverse scattering problem. In this
paper, for purposes of exposition, we will primarily restrict our attention to the case of
acoustic waves. In particular, consider an acoustic wave propagating in a homogeneous
isotropic medium. In the absence of any inhomogeneities, the wave will continue
to propagate and nothing of physical interest will happen. However, if there are
inhomogeneities present, then the wave will be “scattered” and we can express the
total field as the sum of the original “incident” wave and the “scattered” wave. The
behavior of the scattered wave will depend on both the incident wave and the nature
of the inhomogeneities in the medium. The direct problem, given this information, is
to find the scattered wave and in particular its behavior at large distances from the
inhomogeneities, i.e., its “far field” behavior. The inverse problem takes this answer
to the direct scattering problem as its starting point and asks, What is the nature of
the inhomogeneities that gave rise to such far field behavior?

To be more precise, consider the scattering of a time harmonic acoustic wave by
a bounded object in three-dimensional Euclidean space R

3, and assume the object D
is situated in a homogeneous isotropic medium with density ρ and speed of sound c.
The wave motion can be determined from a velocity potential U = U(x, t), x ∈ R

3\D̄,
which in the linearized theory satisfies the wave equation

∂2U

∂t2
= c2∆U,

where ∆ denotes the Laplacian in R
3. Hence for time harmonic acoustic waves of the

form U(x, t) = Re
{
u(x)e−iωt

}
with frequency ω > 0, the space dependent part u

satisfies the Helmholtz equation

∆u+ k2u = 0(1.3)



INVERSE SCATTERING THEORY 371

in R
3 \ D̄, where the wave number k > 0 is given by k2 = ω2/c2. To describe the

phenomenon of scattering mathematically we must distinguish between the two cases
of impenetrable and penetrable objects. In particular, for an impenetrable sound
soft obstacle the total field u = ui + us, where ui is the incident field and us is
the scattered field, must satisfy the Helmholtz equation in R

3 \ D̄ and the Dirichlet
boundary condition u = 0 on ∂D. On the other hand, the scattering by a penetrable
inhomogeneous medium D with slowly varying density ρD = ρD(x) and sound speed
cD = cD(x) differing from the density ρ and sound speed c in the surrounding medium
R

3 \ D̄ leads to a transmission problem; i.e., in addition to the scattered field us in
R

3 \ D̄, we have a transmitted wave v satisfying
∆v + k2n(x)v = 0(1.4)

in D, where k = ω/c and n(x) = c2/c2D(x) is the index of refraction. The continuity
of the pressure and normal velocity across ∂D leads to the transmission conditions

u = v

1
ρ

∂u

∂ν
=

1
ρD

∂v

∂ν


 on ∂D,(1.5)

where ν is the unit outward normal to ∂D. We will always assume for the sake of
simplicity that ∂D is of class C2, i.e., that ∂D can be parameterized by functions that
are twice continuously differentiable.

To complete our description of the direct scattering problem we require that the
scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r
(∂us

∂r
− ikus

)
= 0,(1.6)

where r = |x|. Note that of the two possible spherically symmetric solutions eikr/r
and e−ikr/r to the Helmholtz equation, only the first satisfies the radiation condition.
Since

Re
{
eikr−iωt

r

}
=
cos(kr − ωt)

r
,

this corresponds to an outgoing spherical wave; i.e., the radiation condition charac-
terizes outgoing waves.

Given the above discussion, we can now be more explicit about what we mean by
the acoustic inverse scattering problem. In particular, using Green’s theorem and the
radiation condition it is easy to show (Theorem 2.4 of [13]) that the scattered field us

has the representation

us(x) =
∫

∂D

{
(us(y)

∂Φ(x, y)
∂ν(y)

− ∂us

∂ν
(y)Φ(x, y)

}
ds(y)(1.7)

for x ∈ R
3 \ D̄, where Φ is the radiating fundamental solution to the Helmholtz

equation defined by

Φ(x, y) :=
1
4π

eik|x−y|

|x− y| , x �= y,(1.8)

and ν again denotes the unit outward normal to D. (Here we are of course assuming
the existence of a unique solution us ∈ C2(R3\D̄)∩C1(R3\D) to the direct scattering
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problem.) Assuming that the incident field is a plane wave moving in the direction d,
i.e., that

ui(x) = eikx·d,(1.9)

where |d| = 1, we see from (1.7) and (1.8) that us has an asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O

(
1
r2

)
(1.10)

as r → ∞, where x̂ = x/|x| and u∞ is the far field pattern of the scattered field us.
The inverse scattering problem that we will mainly be concerned with in this paper is
to determine D from a knowledge of u∞(x̂, d) for x̂ and d on the unit sphere Ω := {x :
|x| = 1} and fixed wave number k. In the case of a penetrable medium we will also be
interested in the possibility of determining the index of refraction n = n(x), x ∈ D.
In both cases, we will always assume (except in discussing uniqueness) that u∞ is not
known exactly but is determined by measurements that by definition are inexact.

The inverse scattering problem, as defined above, is particularly difficult to solve
for two reasons: it is (1) nonlinear and (2) ill-posed. Of these two reasons, it is
the latter that creates the most difficulty. In particular, it is easily verified that u∞
is an analytic function of both x̂ and d on the unit sphere, and hence, for a given
measured far field pattern (i.e., “noisy data”), in general no solution exists to the
inverse scattering problem. If a solution does exist, it does not depend continuously on
the measured data in any reasonable norm. Hence, before we can begin to construct
a solution to the inverse scattering problem, we must explain what we mean by a
“solution.” Motivated by Tikhonov’s theory of linear ill-posed problems, in order to
determine what we mean by a solution we must introduce “nonstandard” information
that reflects the physical situation we are trying to model (e.g., in Tikhonov’s theory,
such information is used to determine the regularization parameter γ in (1.2)). Having
resolved the question of what is meant by a solution, we then have to actually construct
this solution, and this is complicated not only by the fact that the problem is nonlinear
but also by the fact that the above-mentioned “nonstandard” information has been
incorporated into the mathematical model.

1.2. A Model Inverse Scattering Problem. To fix our ideas, we now consider a
simple model problem, a version of which will be considered in more detail in section
2. In particular, we consider the scattering problem described above, where D may
now consist of several bounded components, some of which are sound soft and others
of which are penetrable (see Figure 1.1). The aim is to determine the support D from
a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω, i.e., D is illuminated by
plane waves from every direction d ∈ Ω and the resulting scattered field is observed
from all directions x̂ ∈ Ω. We call this a “model problem” since in practice D is
usually imbedded in a piecewise homogeneous background, i.e., the wave number k
is piecewise constant in R

3\D, and d, x̂ are restricted to a limited aperture. A more
realistic problem such as this will be considered in the next subsection, but for now we
will outline a numerical procedure for determining D from a knowledge of u∞(x̂, d)
for x̂, d ∈ Ω. We emphasize that in the above formulation of the inverse scattering
problem it is assumed that (1) the number of components of D is unknown and (2)
the physical properties of each component are unknown; i.e., it is unknown whether
or not a given component is sound soft or penetrable and, if penetrable, what the
values of ρ and ρD are in (1.5).
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Fig. 1.1 Schematic of the model inverse scattering problem. The incident field is a plane wave
(shown in blue) which interacts with the scatterer, shown as two colored regions indicating
different physical properties. The inverse problem is to determine the support of the scat-
terer from measurements of the far field pattern of the scattered field due to incident fields
from many directions.

A method for solving this inverse scattering problem is the linear sampling method
originally proposed by Colton and Kirsch [8] and improved by Colton, Piana, and
Potthast [22] and Kirsch [39], [40]. There are two distinct versions of the linear
sampling method, which will be discussed in detail in sections 4 and 5. To briefly
describe these two approaches we first define the far field operator F : L2(Ω) → L2(Ω)
by

(Fg)(x̂) :=
∫

Ω
u∞(x̂, d)g(d) ds(d).(1.11)

The first version of the linear sampling method [8], [22] (which can be viewed as a
modification of the dual space method of Colton and Monk [13], [16] where the origin
is now translated to an arbitrary point z ∈ D) then uses regularization methods to
solve the linear integral equation

(Fg)(x̂) = Φ∞(x̂, z),(1.12)

where Φ∞(x̂, z) = 1
4π e

−ikx̂·z is the far field pattern of Φ as defined by (1.8) and it is
assumed that z ∈ D. It can be shown that for every ε > 0, there exists a function
g = g(·, z) ∈ L2(Ω) such that ‖Fg−Φ∞‖ < ε, and both ‖g(·, z)‖ and ‖vg(·, z)‖ become
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Fig. 1.2 Schematic of the implementation of the linear sampling method for the scattering problem of
Figure 1.1. The Herglotz kernel g(·, z) is determined from (1.12) for z on a grid containing
the scatterer (the grid is shown in green). As z approaches the boundary of the scatterer,
‖g(·, z)‖ becomes unbounded.

unbounded as z tends to ∂D, where vg is the Herglotz wave function with kernel g,
defined by

vg(x) :=
∫

Ω
g(d)eikx·d ds(d).(1.13)

The unknown boundary ∂D can then be found by solving (1.12) for z on a grid in R
3

containing D and looking for those points z where ‖g(·, z)‖ begins to increase sharply
(see Figure 1.2).

A mathematical difficulty with this first version of the linear sampling method is
that a characterization of the range of the far field operator is unknown. In particular
it is not clear what happens to the behavior of g for z in the exterior of D. This
difficulty led Kirsch to introduce a modified version of the linear sampling method
[39], [40] which is valid for the case of a nonabsorbing medium. In particular, Kirsch
showed that Φ∞(x̂, z) is in the range of (F ∗F )

1
4 , where F ∗ is the adjoint of F in

L2(Ω), if and only if z ∈ D. A modified linear sampling method then consists of using
regularization methods to solve the ill-posed equation (F ∗F )

1
4 g = Φ∞(·, z), where

(F ∗F )
1
4 is defined by means of a singular system of F . As with the original sampling

method, ∂D can be found as the locus of points z where ‖g(·, z)‖ begins to increase
sharply. Numerical examples of the implementation of both the original and modified
linear sampling method can be found in section 2.
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Fig. 1.3 Schematic of the model problem for the detection of buried objects. The incident field is a
plane wave from the upper half space (shown in light blue) which interacts with the scatterer
buried in the lower half space (shown in yellow). The inverse problem is to determine the
support of the scatterer from measurements of the far field pattern of the scattered field in
the upper half space.

1.3. The Detection of Buried Objects. As mentioned in the previous section,
in most practical situations the unknown scatterer is imbedded in a piecewise homo-
geneous medium and the directions of incidence and observation are restricted to a
limited aperture. An example of such a situation is the detection of buried objects.
In particular, consider an object D, which may have both sound soft and penetrable
components, lying in the lower half space. Assume that the wave number in the lower
half space is k2 and that the far field pattern of the scattered field is measured in
the upper half space, which has wave number k1 (see Figure 1.3). In this case, if
ez is the unit outward normal to the plane bounding the lower half space, the far
field pattern u∞(x̂, d) is only known for d ∈ Ω− := {x : |x| = 1, x · ez < 0} and
x̂ ∈ Ω+ := {x : |x| = 1, x · ez > 0}; i.e., the scattering data are restricted to a limited
aperture. We again assume that (1) the number of components of D is unknown and
(2) the physical properties of each component of D are unknown.

The above inverse scattering problem can be solved by using a modified version
of the linear sampling method. In particular, it can be shown that the conclusions in
section 1.2 remain valid if we replace Fg = Φ(·, z) by the modified far field equation

∫
Ω−
[u∞(x̂, d)− ub,∞(x̂, d)]g(d) ds(d) = G∞(x̂, z), x̂ ∈ Ω+,(1.14)
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where z ∈ D,ub,∞ is the far field pattern due to scattering by the background
medium alone and G∞ is the far field pattern for the Green’s function for the back-
ground medium. In particular, the solution g = g(·, z) of (1.14) becomes unbounded
as z tends to ∂D. A related expression is valid if one uses point sources as inci-
dent fields and near field data. For mathematical details the reader is referred to
[19], [15], and [25]. Numerical examples for a closely related case can be found in
section 3.

1.4. Historical Remarks. The above examples suggest a number of mathemati-
cal problems that need to be addressed, in particular the uniqueness of the solution to
the inverse scattering problem as well as the mathematical justification of the linear
sampling method. These issues will be discussed in sections 4 and 5 together with
brief comments on a number of reconstruction algorithms other than the linear sam-
pling method (which, however, require some knowledge of the physical properties of
the scattering object D). We note that there has also been some effort at establishing
continuous dependence results based on a priori knowledge of the scattering object
[35], [63]. However, at the time of writing, either the a priori assumptions are too
stringent or the error estimates are too pessimistic for these results to be useful in
practice.

We conclude this introduction by briefly highlighting the major accomplishments
in this mathematical investigation of the inverse scattering problem in preparation for
the more detailed discussion in sections 4 and 5. For the sake of simplicity, in the case
of a penetrable medium we will consider only the situation where ρ = ρD in (1.5).

One of the earliest results in inverse scattering theory was Schiffer’s proof that
the far field pattern u∞(x̂, d) for x̂, d ∈ Ω uniquely determines the shape of a sound-
soft obstacle D [49]. It was subsequently shown by Colton and Sleeman [24] that
if it is known a priori that D is contained in a ball of radius R such that kR < π,
then u∞(x̂, d) for x̂ ∈ Ω, and a single incident direction d uniquely determines D.
Unfortunately, as pointed out in [13], Schiffer’s proof does not immediately generalize
to other boundary conditions. This problem was remedied by Kirsch and Kress [42]
who, using an idea originally proposed by Isakov [34], showed that u∞(x̂, d) for x̂, d,∈
Ω uniquely determines the shape of D as long as the solution of the direct scattering
problem depends continuously on the boundary data (see also [13, p. 112] and [39]).
In particular, it is not necessary to know the boundary condition a priori in order to
guarantee uniqueness!

The first attempt to reconstruct the shape of a sound-soft scattering obstacle
from knowledge of the far field pattern in a manner acknowledging the nonlinear and
ill-posed nature of the problem was made by Roger in 1981 [68]. Roger considered
the scattering of a plane wave propagating in a fixed direction by a two-dimensional
sound-soft scatterer parameterized in the form x = r(x̂)x̂, where r(x̂) = |x|, and then
solved the nonlinear operator equation F (r) = u∞ by Newton’s method, where the
Fréchet derivative of F was inverted using Tikhonov regularization. A characteriza-
tion and rigorous proof of the existence of the Fréchet derivative of F was subsequently
established by Kirsch [37] and Potthast [64] (see also [13], [33], and [46]). An alterna-
tive approach to solving the inverse scattering problem for a sound-soft obstacle was
proposed by Kirsch and Kress [41] (see also [13]), who broke up the inverse scattering
problem into two parts. The first part deals with the ill-posedness by constructing
the scattered field us from the far field pattern u∞ by representing us in the form of a
surface potential defined on a surface known a priori to be contained in the unknown
scatterer D. The second part then deals with the nonlinearity of the problem by
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determining the unknown boundary of the scatterer as the location of the zeros of the
total field u = ui+us, where ui is again a plane wave propagating in a fixed direction.
An advantage of this approach is that the cost functional of the nonlinear part of the
problem has a particularly simple structure from which the Fréchet derivative is easily
computed. Related methods have also been proposed by Angell, Jiang, and Kleinman
[1], Colton and Monk [16], Misici and Zirilli [52], and Potthast [65], among others.

The nonlinear optimization methods described above have the advantage that
only a single incident field is needed for their implementation, e.g., a plane wave
propagating in a fixed direction. On the other hand, to use such methods it is neces-
sary to know the number of components of the scatterer as well as have a rough idea
of the geometry of each component in order to choose an appropriate parameteriza-
tion of the surface. In addition, it is also necessary to know the boundary condition
satisfied by the field on the surface of the scatterer, i.e., whether it is sound soft or
not. The linear sampling method, discussed above, avoids these problems and will be
examined in detail in sections 4 and 5.

We now turn to the problem of reconstructing the index of refraction from a
knowledge of the far field pattern, i.e., the direct scattering problem is (1.3)–(1.5),
where u = ui + us, and we wish to determine n = n(x) from a knowledge of u∞(x̂, d)
when ui(x) = eikx·d. Although most of the research in this area has made the assump-
tion (possibly motivated by the case of quantum mechanics) that n ∈ C1(R3), with
n(x) = 1 for x ∈ R

3 \ D, we shall make the physically more reasonable assumption
that n is continuously differentiable in D̄ with n(x) = 1 for x ∈ R

3 \D but n(x) �= 1
for x ∈ ∂D; i.e., n has a jump discontinuity across the C2 boundary ∂D and ρ is not
necessarily equal to ρD. As already mentioned, for the sake of simplicity, we shall
consider only the special case ρ = ρD. Modifications for the case ρ �= ρD will be
indicated in section 5.

As with obstacle scattering, the first issue of concern is that of uniqueness; i.e.,
does the far field pattern u∞(x̂, d) for x̂, d ∈ Ω and fixed wave number k uniquely
determine the index of refraction n = n(x)? Based on the fundamental work of
Sylvester and Uhlmann [71], this question was answered in the affirmative by Nachman
[54], Novikov [57], and Ramm [66] in 1988 (see also [67]). The key idea of [71] was
to show that products v1v2 of solutions to ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0
for two different refractive indices n1 and n2 are complete in L2(D) for any bounded
domain D ⊂ R

3. Such a result was in turn obtained by constructing special solutions
of ∆v + k2nv = 0 that behave asymptotically like eiz·x, where z ∈ C

3, the space of
three complex variables. The original, technically difficult construction of these special
solutions using Fourier integral techniques has recently been considerably simplified
by Hähner through the use of Fourier series [32].

All existing methods for determining the index of refraction from noisy far field
data without linearizing the problem are based on nonlinear optimization methods.
The simplest of these is obtained by using Green’s formula (cf. Theorem 2.1 of [13]) to
rewrite the scattering problem (1.3)–(1.5) (for ρ = ρD) as the Lippmann–Schwinger
equation

u(x) = eikx·d − k2
∫

R3

∫
Φ(x, y)m(y)u(y) dy, x ∈ R

3,(1.15)

where Φ is defined by (1.8) and m := 1− n. From (1.15) it is easily deduced that

u∞(x̂, d) = − k2

4π

∫
R3

∫
e−ikx̂·ym(y)u(y) dy,(1.16)
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where u(y) = u(y, d). Assuming u∞(x̂, d) is known for x̂ ∈ Ω and for p incident waves
d = d1, d2, . . . , dp, a nonlinear optimization scheme for determining m and u(y, dj),
j = 1, 2, . . . , p, is easily formulated from (1.15) and (1.16). Due to the simple manner
in which m and u appear in (1.15) and (1.16), the Fréchet derivative is easily com-
puted. One can also, of course, work directly with the scattering problem (1.3)–(1.5)
instead of reformulating it as the Lippmann–Schwinger integral equation. Examples of
successful numerical reconstructions using such methods have been given by Gutman
and Klibanov [29], Kleinman and van den Berg [43], Natterer and Wübbeling [55],
Tabbara et al. [73], and Wang and Chew [77], among others. As with obstacle scatter-
ing, because of the ill-posed nature of the inverse scattering problem, regularization
methods must be used to compute the solution.

An alternative method to that discussed above for determining the index of re-
fraction from noisy far field data has been proposed by Colton and Monk [13], [17].
This method resembles that of Kirsch and Kress [41] in obstacle scattering in that
the problem is broken up into a linear ill-posed part and a nonlinear optimization
part, and it has the advantage over the methods described above of being able to in-
crease the number of incident fields without increasing the cost of solving the inverse
problem. This method will be discussed in more detail in section 5.

Unfortunately, the computation of n = n(x) through the use of nonlinear op-
timization methods is extremely time consuming for realistic three-dimensional sit-
uations. However, in many cases of practical interest, a complete determination of
the index of refraction is far more than is needed. It is often sufficient to determine
the number of objects present and the support of each of them. Such information
is provided by the linear sampling method as described above and, in more detail,
in section 5. Occasionally even less information can be useful, for example, a lower
bound for the volume of the scatterer. In special cases such a lower bound can be
obtained from a knowledge of the spectrum of the far field operator F defined by
(1.11). In particular, if the index of refraction of the unknown scatterer is known to
be constant with positive imaginary part, then the eigenvalues of F are all contained
inside the circle |λ|2 − 4π

k lm λ = 0 in the complex λ plane, and a knowledge of the
radius of the smallest circle with center on the axis Re λ = 0 and passing through
the origin that contains all the eigenvalues yields a lower bound to the volume of the
scatterer [12].

In concluding this introduction, we would like to emphasize that most of the above
results for acoustic waves have analogues for electromagnetic waves, and we refer the
reader to the monograph [13] and the paper [23] for details and further references.
We also make no claim to cover all the many topics in inverse scattering theory for
acoustic waves. Indeed, with the rapid growth of the field, such a task would be
impossible in a single survey paper. Instead, we have been motivated by our own
view of inverse scattering, which focuses on the issues of uniqueness and numerical
reconstructions. In particular, the emphasis of this survey is on the research done
at the universities of Delaware, Göttingen, and Karlsruhe during the last 15 years.
Nevertheless, we feel that we have succeeded in presenting some of the highlights of the
mathematical and numerical foundations of time harmonic acoustic inverse scattering
theory and hope that our effort will encourage others to enter this exciting field of
applied mathematical research.

In addition to the research programs at Delaware, Göttingen, and Karlsruhe,
there are, of course, many other groups in inverse scattering with their own research
agendas. We mention in particular the considerable effort that has been made in
nonlinear iteration techniques by Gutman and Klibanov [29], Kleinman and van den
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Berg [43], Natterer and Wübbeling [55], and Wang and Chew [77]; in layer stripping
by Chen and Rokhlin [4] and Sylvester and Winebrenner [72]; and in diffraction
tomography by Devaney [28] and Langenberg [48] (see also the references in [13]).

2. A Model Problem Using Real Data. We now return to the model problem
considered in section 1.2. Under appropriate assumptions, the time-harmonic electro-
magnetic direct scattering problem for an infinite cylinder can be reformulated as the
problem of determining u from the equations

�u+ k2u = 0
u = ui + us

}
in R

2 \D,

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

where D is the cross section of the cylinder and u satisfies certain boundary conditions
on ∂D. More specifically, when the cylinder is impenetrable u satisfies the Dirichlet
boundary condition u = 0 on ∂D, and whenD is a penetrable inhomogeneous medium
the transmission boundary conditions (1.5) are satisfied for ρ = ρD and x ∈ R

2. In
particular, the problem we are concerned with is the two-dimensional analogue of that
considered in section 1.2. Our aim is to use the numerical procedure suggested by
the discussion in section 1.2 for determining ∂D from noisy far field data, delaying
a mathematical justification of this procedure until sections 4 and 5 of this paper.
Recall that the idea is to sample a region (by varying z) where the unknown object
is thought to be and to plot ‖ϕ(·, z)‖, where ϕ is the numerical approximation to
g ∈ L2(Ω) and g satisfies either

‖Fg − Φ∞ (·, z) ‖ < ε

or

‖(F ∗F )
1
4 g − Φ∞ (·, z) ‖ < ε,

depending on whether the first or second version of the linear sampling method is
used.

To determine ϕ, which minimizes the Tikhonov functional (1.2) for A being either
F or (F ∗F )

1
4 , it is sufficient to solve the normal equation

γϕ+A∗Aϕ = A∗Φ∞ (·, z) .(2.1)

Hence, once γ > 0 is chosen, using the singular value decomposition F = USV ∗, we
have from (2.1) that

‖ϕ‖2 =
N∑

i=1

(
si

s2i + γ

)2

|U∗Φ∞ (·, z)|2(2.2)

and

‖ϕ‖2 =
N∑

i=1

si

(s2i + γ)2
|V ∗Φ∞ (·, z)|2(2.3)

for A = F and A = (F ∗F )
1
4 , respectively, where {si} are the singular values of F.
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The parameter γ is chosen by Morozov’s generalized discrepancy principle [75]
and, as a result of the singular value decomposition, is the zero of the monotonically
increasing functions

f (γ) =
N∑

i=1

γ2 − δ2s2i

(s2i + γ)2
|U∗Φ∞ (·, z)|2(2.4)

or

f (γ) =
N∑

i=1

γ2 − δ2si

(si + γ)2
|V ∗Φ∞ (·, z) |2(2.5)

for the first and second versions, respectively. The parameter δ is chosen such that
‖F − Fδ‖ < δ; i.e., δ is an estimate of the noise level. To summarize, for a given
estimate δ, γ is determined by solving f(γ) = 0 and then ‖ϕ‖ is computed using (2.2)
or (2.3), respectively.

To demonstrate the capabilities of the linear sampling method, we now provide
results using the method on real data. The data are from the Ipswich dataset provided
by the Electromagnetics Technology Division at Hanscom Air Force Base. The Ipswich
data is single-frequency electric far field data measured using a multistatic system
with multiple views corresponding to different incident angles. In this case, it is not
possible to measure scattering at or near backscattering directions since the receiver
and transmitter cannot be physically coincident. As a result, the Ipswich data does
not provide a “full” view of the target for each incident angle. A more detailed
discussion of the data and the measurement process can be found in [51].

We consider two targets: Ips009, an aluminum triangle, and Ips010, a plexiglas
triangle. The data are given for transverse magnetic (TM) mode electromagnetic
waves with a frequency of 10 Ghz (corresponding to a wavelength λ = 3 cm). In each
case, there are 36 different incident angles ranging from 0 to 350 degrees in increments
of 10 degrees, and, for each incident angle, there are 18 observation angles given by

θo = θi + 180 + 10n for n = 0, . . . , 17,

where θi is the incident angle and θo is the observation angle. The data only par-
tially fill in the discretized far field operator (the matrix corresponding to F ) but,
using reciprocity, almost all of the missing entries of this matrix can be determined.
The remaining unknown entries, which correspond to backscattering measurements,
are approximated by averaging the two adjacent known measurements for the same
incident angle.

The only a priori information known about the location of the obstacles is that
the minimum circumscribing circle centered at the origin has a radius of 6 cm, so a
square sampling grid (40×40, or 1600 sampling points) is taken on a square with side
14 cm centered at the origin. The results of using (2.2) and (2.3) are shown in Figures
2.1 and 2.2, respectively. In each case ‖ϕ‖−1 is plotted for the Morozov parameter
δ chosen to be 0.22. This value of δ yields the best reconstruction from those values
considered by us.

We note that the reconstruction of the (penetrable) plexiglas triangle is consid-
erably poorer than that of the (impenetrable) aluminum triangle. This is also the
case when either weak scattering techniques or nonlinear optimization methods are
used to reconstruct the same objects [61], [76] and hence is not a problem associated
specifically with the linear sampling method.
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(a) Ips009 using F (b) Ips009 using (F ∗F )
1
4

Fig. 2.1 Plot of ‖ϕ‖−1 for an aluminum triangle (target Ips009): (a) using the linear sam-
pling method associated with F and (b) using the linear sampling method associated with
(F ∗F )

1
4 .

(a) Ips010 using F (b) Ips010 using (F ∗F )
1
4

Fig. 2.2 The same plot as Figure 2.1 but for a plexiglass triangle (target Ips010).

3. Numerical Experiments for theDetection of BuriedObjects. We shall now
present some numerical results illustrating the use of the linear sampling method to
detect the location and shape of buried objects as described in section 1.3 (but now
using near field data). We start by discussing the forward problem then proceed to a
method for detecting the support of buried objects motivated by the results mentioned
in section 1.3. Finally, we describe the numerical results.

We suppose that the background medium consists of two homogeneous, isotropic
half spaces meeting at x3 = 0. One can think of this as a simplified model of water
over a flat sand layer. The buried object is represented by a bounded region D strictly
contained in the lower half space (i.e., D ⊂ {

x ∈ R
3 | x3 < 0

}
). Acoustic waves are

excited in this system by a point source located at x = y in the upper half space
(i.e., y3 > 0); see Figure 3.1. Under appropriate assumptions, the acoustic velocity
potential u = u(x) satisfies the Helmholtz equation in each half space. We denote by
ui, i = 1, 2, the field in the upper and lower half space, respectively. Then

∆u1 + k2
1u1 = δy for x ∈ R

3, x3 > 0,(3.1)
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Fig. 3.1 Schematic of the inverse scattering problem for buried objects. The incident field is due to
a source located in the water (shown in blue), which interacts with the scatterer shown as
two colored regions indicating different physical properties (in the sand layer). The inverse
problem is to determine the support of the scatterer from measurements of the scattered
field in the water due to incident fields from many sources.

∆u2 + k2
2u2 = 0 for x ∈ R

3\D̄, x3 < 0.(3.2)

Here k1 and k2 are the wave numbers for the materials in the upper and lower half-
spaces and δy is the delta function at the point y. We shall actually use wave numbers
appropriate for water and sand [3], in particular, k1 = 3.6, k2 = 4.

Across the interface between the layers the pressure field is continuous, but the
flux can jump (due to changes in density as in (1.5)). Thus, for some α > 0, we have

u1 = u2,
∂u1

∂x3
= α

∂u2

∂x3
for x ∈ R

3, x3 = 0.(3.3)

For the case of water and sand an appropriate choice of α is α = 1/2 [3].
We shall restrict ourselves to a sound-soft scatterer and assume that

u = 0 on ∂D.(3.4)

Finally, we need a criterion to obtain a unique solution to this scattering problem,
and to this end we use the integral radiation condition due to Odeh [59],∫

ΣR

∣∣∣∣∂u∂r − iku

∣∣∣∣
2

ds → 0(3.5)
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as R → 0, where

ΣR =
{
x ∈ R

3 | |x| = R
}

and where k = k1 in the upper half space and k = k2 in the lower half space.
Using Odeh’s argument, it is possible to show that there exists at most one clas-

sical solution to (3.1)–(3.5). Concerning the existence of a solution, Coyle and Monk
[27] have given a variational proof of existence for a more general layered scattering
problem in R

2, and these methods can also be used in R
3.

The forward problem is thus to compute u1 and u2 satisfying (3.1)–(3.5) given
D, k1, k2, α, and y. For our numerical experiments, these fields are computed via a
finite element method [26]. Let u(x, y) denote the solution of this problem at position
x due to the source at position y.

The inverse problem also assumes a knowledge of k1, k2, and α. But now we wish
to find D given a knowledge of u1 for a collection of source points y located in the
upper half space. More precisely, we assume that there is a rectangle R ⊂ R

3 such
that we know u(x, y) for all x ∈ R and all y ∈ R. In our numerical experiments we
choose

R = {(x1, x2, x3) | xmin ≤ x1 ≤ xmax, ymin ≤ x2 ≤ ymax,

x3 = zmin > 0} ,

where xmin, ymin, xmax, ymax, and zmin are chosen depending on the numerical
experiment we wish to simulate. Since the rectangle R is of limited extent, the data
for the inverse problem is available over a limited aperture, which implies that the
solution of the inverse problem will be degraded compared to situations in which data
can be gathered on a sphere containing the object.

We shall use the linear sampling method to approximate ∂D. In order to do this
we need the Green’s function for the background layered medium (i.e., D is absent).
We denote the Green’s function by G(x, y). This is computed using Sommerfeld’s
technique [70], and details can be found in [26]. Since we make the assumption that
D is completely buried, we do not need to evaluate G(x, y) when x or y is on the
interface between the layers. Thus the integrals representing G converge rapidly and
we do not have difficulties with slowly decaying tails of the integrals, as can happen
when x and y are on the interface.

In setting up the linear sampling method it is convenient to separate the field u
into an incident field

ui(x) = G(x, y)

and a resulting scattered field, so that

u = ui + us in R
3 \D.

Note that ui is the solution of the layered medium problem in the absence of D. The
linear sampling method is then based on finding gz such that∫

R

us(x, y)gz(y) ds(y) = G(x, z) for all x ∈ R,(3.6)

for various points z in the lower half space. (Note that this is equivalent to the
integral equation (1.14) for the case of near field data; i.e., instead of using the kernel
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us − us
b, where u

s and us
b are the scattered fields due to point sources, we use the

scattered field us corresponding to the Green’s function as incident field (see section
5).) In particular, it can be shown (see [25] for the case in R

2) that there exists
an approximate solution ϕz to (3.6) such that ‖ϕz‖ → ∞ as z approaches ∂D for
z ∈ D. To derive a numerical method we shall approximate the solution of the above
integral equation using Tikhonov regularization and Morozov’s discrepancy principle
for z lying on a grid in R

3 in the region of interest (the region where we wish to probe
to find if a scatterer is present). We then plot the isosurface of 1/‖ϕz‖, which is the
surface consisting of all points z such that 1/‖ϕz‖ = C, where C is chosen close to
zero (we shall say more about this choice shortly); this is our prediction of ∂D.

In our numerical experiments we discretize (3.6) using the trapezoidal rule so
that x and y lie at uniformly spaced lattice points on R (this corresponds to making
measurements of u for a finite number of source positions y and receiver positions x).
In this paper we show results for a 21×21 lattice of values on R. The probe point
z is also varied on a uniform lattice in a box known to contain D (a more efficient
adaptive approach is given in [6]).

In practice it is difficult to know when 1/‖ϕz‖ ≈ 0 since ϕz is computed from
noisy data using the Morozov technique mentioned above. We have found that the
“calibration” approach of [6] is a usable heuristic. In this technique we use the desired
source and receiver combination and background to solve for the scattered field from
a known object of similar size to our intended target. We can then choose a value of
C such that the surface 1/‖ϕz‖ = C is a good approximation of the known scatterer.
Using this value of C we can then use the surface 1/‖ϕz‖ = C as a prediction of ∂D
for the unknown scatterer.

In the numerical experiments, we first choose a scatterer and source-receiver
combination and then use the finite element method to predict an approximation
to u(x, y), x, y ∈ R. Then to avoid any possibility of “inverse crimes” (these are
unrealistically good reconstructions resulting from interactions between the numer-
ical schemes for the forward and inverse problem; see [13]), we corrupt the field u
computed by finite elements with noise and define ũ by

ũ(x, y) = u(x, y)(1 + εχ(x, y) + iεχ1(x, y)),(3.7)

where χ and χ1 are normally distributed random numbers in [−1, 1] and ε is an error
parameter. Discretizing (3.6) using the trapezoidal rule and putting ũ in place of
u results in a matrix equation to be solved for each z. The field ũ is then used
in the Tikhonov/Morozov algorithm, and the error parameter in this technique is
the spectral norm of the difference between the matrices corresponding to the finite
element approximation of u and ũ. This does not include the error due to the finite
element method, which could be much larger than the error due to the artificial
random noise added in (3.7).

All our examples are smaller than a wavelength in size. This makes an accurate
reconstruction difficult. In Figures 3.2–3.5, the wavelength in each layer is indicated
by horizontal red lines. The sources-receivers rectangle R is denoted by a blue waffle
pattern. The brown rectangle shows the position of the interface and the green par-
allelepiped shows the region in which z is varied. The predicted scatterer is shown in
red.

In Figure 3.2 we show the results of running our algorithm on a single spherical
scatterer. First data is generated by a forward finite element code [26], then it is
corrupted as in (3.7), using ε = 0.07. This gives a relative error for the matrix
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(a) Exact scatterer (3D view) (b) Exact scatterer (view down x3
axis)

(c) Reconstructed scatterer (3D
view)

(d) Reconstructed scatterer (view
down x3 axis)

Fig. 3.2 Reconstruction of a sphere using the isovalue 1/3 when ε = 0.07. This example is used for
calibration purposes. The value of 1/3 is chosen by eye to give a reasonable reconstruction
of the sphere in the horizontal and vertical directions. In all the figures the wavelength in
each layer is indicated by horizontal red lines. The sources-receivers rectangle R is denoted
by a blue waffle pattern. The brown rectangle shows the position of the interface, and the
green parallelepiped shows the region in which z is varied. The exact or predicted scatterer
is shown in red.

corresponding to the kernel of (3.6) of roughly 0.5% in the spectral norm. (This
corresponds to an error of roughly 9% with respect to the matrix maximum norm.)
The measurement region is located at zmin = 1 and xmin = ymin = −1.5, xmax =
ymax = 1.5, and there are 21 data points in each direction. Although this may appear
to be a large amount of data, the aperture (when viewed from the sphere) is only 50
degrees and so is close to the minimum found acceptable by Colton and Piana [21].
This minimum also seems to apply when other reconstruction techniques are used
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(a) Exact scatterer (3D view) (b) Exact scatterer (view down x3
axis)

(c) Reconstructed scatterer (3D
view)

(d) Reconstructed scatterer (view
down x3 axis)

Fig. 3.3 Reconstruction of two spheres using the same measurement array and parameters as for
Figure 3.2. In keeping with the notion of calibration we choose the isovalue for the display
of the numerical reconstruction to be 1/3.

[58], [79]. By normalizing the maximum value of 1/‖ϕz‖ to 1 and viewing a variety
of isosurfaces we find that 1/‖ϕz‖ = 1/3 gives an acceptable reconstruction, and we
shall use this value for all reconstructions using this measurement array and problem
parameters.

In Figure 3.3 we show the results of reconstructing a pair of spherical scatterers
using the same measurement array and parameters as for Figure 3.2. In keeping with
the “calibration” philosophy we show the isosurfaces for 1/‖ϕz‖ = 1/3.

Our final figure is an L-shaped scatterer gridded using the QMG mesh generator
[53]. In this case we did not try to capture the underside of the L. Results are shown
in Figure 3.4.
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(a) Exact scatterer (3D view). (b) Exact scatterer (view down x3
axis).

(c) Reconstructed scatterer (3D
view).

(d) Reconstructed scatterer (view
down x3 axis).

Fig. 3.4 Reconstruction of the L-shaped scatterer using the same measurement array and parameters
as for Figure 3.2.

As the aperture decreases or the noise level increases the quality of the recon-
struction deteriorates. For example, using double the noise (i.e., ε = 0.14 or about
1.1% spectral norm error) results in a somewhat higher calibration isovalue than for
the lower noise case shown previously. The results are shown in Figure 3.5. (We do
not show the sphere calibration target in this case.)

Although in the numerical examples here the objects are sound soft, the same
equation for gz (3.6) is also valid for anisotropic objects, and the support can be
found in either case without knowing a priori whether or not the buried object is
sound soft or anisotropic or any of the physical properties of the material (see [25] for
proofs and numerical experiments in R

2).
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(a) Reconstruction (3D view). (b) Reconstruction (view down x3
axis).

(c) Reconstruction (3D view). (d) Reconstruction (view down x3
axis).

Fig. 3.5 Reconstruction of the L-shaped scatterer (top row) and two spheres (bottom row) when
ε = 0.14 using the isovalue of 0.4. For views of the exact scatterer, see Figures 3.4 and 3.3.

4. The Inverse Obstacle Problem. In this part of our paper we will be con-
cerned with the mathematical theory of the inverse scattering problem for a sound-
soft obstacle. In particular, consider the direct scattering problem of finding u ∈
C2(R3 \ D̄) ∩ C(R3 \D) such that

∆u+ k2u = 0 in R
3 \ D̄,(4.1a)

u = ui + us in R
3 \ D̄,(4.1b)

u = 0 on ∂D,(4.1c)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0,(4.1d)
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whereD is a bounded domain with connected complement R
3\D̄ and C2 boundary ∂D

having unit outward normal ν, the Sommerfeld radiation condition (4.1d) is assumed
to hold uniformly in x̂ = x/|x|, and ui(x) = eikx·d where d is a vector on the unit
sphere Ω. The existence of a unique solution to (4.1a)–(4.1d) is well known [10], [13].
From the introduction we know that us has the asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O

( 1
r2

)
,(4.2)

as r → ∞ uniformly in x̂, where u∞ is the far field pattern of the scattered field us.
The inverse scattering problem we will study is that of determining D from a knowl-
edge of u∞(x̂, d) for x̂, d ∈ Ω. In what follows we will state the main mathematical
results connected with this problem, prove some of these results, give partial proofs
for others, and in some cases leave out the proofs altogether, referring the reader to
the literature for details. We will follow the same procedure in section 5. Our aim
is to expand upon the brief statements given in the introduction and attempt to give
the reader a flavor of the mathematical methods used in inverse scattering theory,
while avoiding some technical details.

We begin by establishing four basic results about the far field pattern and far
field operator (1.11) in the case of obstacle scattering: Rellich’s lemma and reciprocity
for the far field pattern and the normality and injectivity properties of the far field
operator. We will always assume the existence of a solution u ∈ C2(R3\D̄)∩C(R3\D)
to the direct scattering problem (4.1a)–(4.1d) as well as the fact that since ∂D is in
class C2, we have that u ∈ C1(R3 \D) [10].

Theorem 4.1 (Rellich’s lemma). Let us be a solution of the Helmholtz equation
in the exterior of D satisfying the Sommerfeld radiation condition (4.1d) such that
the far field pattern u∞ of us vanishes. Then us = 0 in R

3 \ D̄.
Proof. For sufficiently large |x| we have a Fourier expansion

us(x) =
∞∑

n=0

n∑
m=−n

am
n (r)Y

m
n (x̂)

with respect to the spherical harmonics Y m
n , where the coefficients are given by

am
n (r) =

∫
Ω
us(rx̂)Y m

n (x̂) ds(x̂).

Since us ∈ C2(R3 \ D̄) and the radiation condition (4.1d) holds uniformly in x̂, we
can differentiate under the integral sign and integrate by parts to conclude that am

n

is a solution of the spherical Bessel equation

d2am
n

dr2
+
2
r

dam
n

dr
+
(
k2 − n(n+ 1)

r2

)
am

n = 0

satisfying the radiation condition, i.e.,

am
n (r) = αm

n h
(1)
n (kr),

where h(1)
n is a spherical Hankel function of the first kind of order n and the αm

n are
constants depending only on n and m. From (4.2) we have that, since u∞ = 0,

lim
r→∞

∫
|x|=r

|us(x)|2 ds =
∫

Ω
|u∞(x̂)|2 ds = 0.
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But by Parseval’s equality

∫
|x|=r

|us(x)|2 ds = r2
∞∑

n=0

n∑
m=−n

|am
n (r)|2.

Substituting the above expression for am
n into this identity, letting r tend to infinity,

and using the asymptotic behavior of the spherical Hankel functions now yields αm
n = 0

for all n andm. Hence us = 0 outside a sufficiently large sphere. By the representation
formula (1.7) we see that us is an analytic function of x, and hence we can now
conclude that us = 0 in R

3 \D by analyticity.
Theorem 4.2 (reciprocity). The far field pattern for a sound-soft obstacle with

incident field ui(x) = ui(x, d) = eikx·d satisfies the reciprocity relation

u∞(x̂, d) = u∞(−d,−x̂)

for x̂, d ∈ Ω.
Proof. From Green’s theorem∫

D

(u∆v − v∆u)dx =
∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
ds(4.3)

and the asymptotic expression (4.2), we can deduce that∫
∂D

{
ui(·, d) ∂

∂ν
ui(·,−x̂)− ui(·,−x̂) ∂

∂ν
ui(·, d)

}
ds = 0

and ∫
∂D

{
us(·, d) ∂

∂ν
us(·,−x̂)− us(·,−x̂) ∂

∂ν
us(·, d)

}
ds = 0.

In the last identity we have used the fact that from Green’s theorem, the integral
over ∂D can be replaced by an integral over the sphere |x| = r for r sufficiently large.
From the representation (1.7) we can deduce by letting |x| → ∞ that

4πu∞(x̂, d) =
∫

∂D

{
us(·, d) ∂

∂ν
ui(·,−x̂)− ui(·,−x̂) ∂

∂ν
us(·, d)

}
ds,

since the far field pattern of Φ(x, y) is Φ∞(x̂, y) = 1
4π e

−ikx̂·y = 1
4πu

i(y,−x̂). Inter-
changing the roles of x̂ and d now gives

4πu∞(−d,−x̂) =
∫

∂D

{
us(·,−x̂) ∂

∂ν
ui(·, d)− ui(·, d) ∂

∂ν
us(·,−x̂)

}
ds.

We now subtract the last equation from the sum of the three preceding equations to
obtain

4π {u∞(x̂, d)− u∞(−d,−x̂)}

=
∫

∂D

{
u(·, d) ∂

∂ν
u(·,−x̂)− u(·,−x̂) ∂

∂ν
u(·, d)

}
ds,

and the result follows from the boundary condition u(·, d) = u(·,−x̂) = 0 on
∂D.



INVERSE SCATTERING THEORY 391

We now want to establish the fact that the far field operator F defined by (1.11),
where u∞ is the far field pattern corresponding to a sound-soft obstacle, is normal,
i.e. F ∗F = FF ∗ where F ∗ is the adjoint operator to F in L2(Ω). To this end, we
need the following basic identity [13], [12].

Theorem 4.3. Let F : L2(Ω) → L2(Ω) be the far field operator corresponding to
a sound-soft obstacle. Then for every g, h ∈ L2(Ω) we have

2π(Fg, h) = 2π(g, Fh) + ik(Fg, Fh),

where (·, ·) denotes the inner product on L2(Ω).
Proof. If vs and ws are radiating solutions of the Helmholtz equation with far

field patterns v∞ and w∞, then from the radiation condition we have that

vs(x)
∂ws(x)
∂r

= − ik

|x|2 v∞(x̂, d)w∞(x̂, d) +O
( 1

|x|3
)

as r = |x| → ∞ uniformly in all directions. Hence, by Green’s theorem we obtain
that ∫

∂D

(
vs ∂w

s

∂ν
− ws

∂vs

∂ν

)
ds = −2ik

∫
Ω
v∞w∞ ds.(4.4)

From the representation (1.7) we obtain

v∞(x̂) =
1
4π

∫
∂D

{
vs(y)

∂e−ikx̂·y

∂ν
− ∂vs

∂ν
(y)e−ikx̂·y

}
ds(y)(4.5)

for x̂ ∈ Ω, and hence if wi
h is a Herglotz wave function with kernel h (see (1.13)), then∫

∂D

(
vs(x)

∂wi
h

∂ν
(x) − wi

h(x)
∂vs

∂ν
(x)

)
ds(x)

=
∫

Ω
h(d)

∫
∂D

(
vs(x)

∂e−ikx·d

∂ν
− e−ikx̂·d ∂v

s

∂ν
(x)
)
ds(x) ds(d)

= 4π
∫

Ω
h(d)v∞(d) ds(d).(4.6)

We point out that the appearance of Herglotz wave functions in our proof is due to
the fact that Fh is the far field pattern corresponding to the incident field wi

h.
Now let vi

g and v
i
h be Herglotz wave functions with kernels g, h ∈ L2(Ω), respec-

tively, and let vg, vh be the solutions of (4.1a)–(4.1d) with ui replaced by vi
g and v

i
h,

respectively. Let vs
g, v

s
h denote the scattered fields corresponding to vg and vh, re-

spectively, and let vg,∞, vh,∞ be the corresponding far field patterns. Then, from the
boundary condition (4.1c), (4.4), and (4.6), we have

0 =
∫

∂D

(
vg
∂vh

∂ν
− vh

∂vg

∂ν

)
ds

=
∫

∂D

(
vs

g

∂v̄s
h

∂ν
− v̄s

h

∂vs
g

∂ν

)
ds+

∫
∂D

(
vs

g

∂v̄i
h

∂ν
− v̄i

h

∂vs
g

∂ν

)
ds

+
∫

∂D

(
vi

g

∂v̄s
h

∂ν
− v̄s

h

∂vi
g

∂ν

)
ds
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= −2ik
∫

Ω
vg,∞vh,∞ ds+ 4π

∫
Ω
vg,∞h̄ ds− 4π

∫
Ω
gvh,∞ ds

= −2ik(Fg, Fh) + 4π(Fg, h)− 4π(g, Fh),

and the proof is complete.
Theorem 4.4 (normality). The far field operator corresponding to a sound-soft

obstacle is normal.
Proof. From Theorem 4.3 we have that

(g, ikF ∗Fh) = 2π{(g, Fh)− (g, F ∗h)}

for all g, h ∈ L2(Ω), and hence

ikF ∗F = 2π(F − F ∗).(4.7)

By reciprocity we have that

(F ∗g)(x̂) =
∫

Ω
u∞(d, x̂)g(d) ds(d)

=
∫

Ω
u∞(−x̂,−d)g(d) ds(d),(4.8)

and hence if we define the reflection operator R : L2(Ω) → L2(Ω) by (Rg)(d) := g(−d),
we have that

F ∗g = RFRḡ.

From this, observing that (Rg,Rh) = (g, h) = (h̄, ḡ) for all g, h ∈ L2(Ω), we find that

(F ∗g, F ∗h) = (RFRh̄,RFRḡ) = (FRh̄, FRḡ),

and hence, using Theorem 4.3 again,

ik(F ∗g, F ∗h) = 2π{(FRh̄,Rḡ)− (Rh̄, FRḡ)}
= 2π{(g, F ∗h)− (F ∗g, h)}.

If we now proceed as in the derivation of (4.7) we find that

ikFF ∗ = 2π(F − F ∗)(4.9)

and the proof is finished.
We note that if we define the scattering operator S by

S = I +
ik

2π
F,

then from (4.7) and (4.9) we see that SS∗ = S∗S = I; i.e., for a sound-soft obstacle
the scattering operator is unitary.

Theorem 4.5 (injectivity). The far field operator corresponding to a sound-soft
obstacle is injective with dense range if and only if there does not exist a Dirichlet
eigenfunction for D which is a Herglotz wave function.

Proof. From (4.8) we see that (F ∗g)(x̂) = (Fh)(−x̂), where h(d) = g(−d). Hence
F is injective if and only if its adjoint F ∗ is injective. Observing that in L2(Ω) we have
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N(F ∗)⊥ = F (L2(Ω)) for bounded operators F , we must only show the injectivity of
F . To this end, we note that Fg = 0 with g �= 0 is equivalent to the existence of a
nontrivial Herglotz wave function vi

g with kernel g for which the far field pattern of
the corresponding scattered field vs is v∞ = 0. By Rellich’s lemma (Theorem 4.1)
this implies vs = 0 in R

3 \ D, and the boundary condition vi
g + vs = 0 on ∂D now

shows that vi
g = 0 on ∂D. The proof is finished.

Having established the basic properties of the far field pattern and far field opera-
tor, we now turn our attention to the uniqueness of a solution to the inverse scattering
problem for a sound-soft obstacle. There are two proofs of this result, due to Schiffer
[49] and Kirsch and Kress [42]. Since the proof of Kirsch and Kress readily extends to
scattering problems with boundary conditions other than Dirichlet’s, whereas Schif-
fer’s does not (cf. [13, p. 109]), we will consider only the approach used by Kirsch and
Kress (which was in turn motivated by the ideas of Isakov [34]). We begin with a
simple completeness result.

Lemma 4.6. Assume that k2 is not a Dirichlet eigenvalue for a bounded domain
B and that R

3 \ B̄ is connected. Let ui(x, d) = eikx·d. Then the restriction of the set
of plane waves {ui(·, d) : d ∈ Ω} to ∂B is complete in L2(∂B).

Proof. Let ϕ ∈ L2(∂B) satisfy∫
∂B

ϕ(y)e−iky·d ds(y) = 0

for all d ∈ Ω. Then the single-layer potential

u(x) :=
∫

∂B

ϕ(y)Φ(x, y) ds(y),

where Φ is defined by (1.8), has vanishing far field pattern u∞ = 0. Hence by Rellich’s
lemma, u = 0 in R

3 \ B̄. The L2 jump relation for single-layer potentials now implies
that

ϕ(x)− 2
∫

∂B

ϕ(y)
∂Φ(x, y)
∂ν(x)

ds(y) = 0, x ∈ ∂B,

and from this it can be shown [13, p. 110] that ϕ ∈ C(∂B) and that u solves the
homogeneous Dirichlet problem in B. Thus, by our assumption on B, we conclude
that u = 0 in B and the jump relation for the normal derivative of the single-layer
potential now implies that ϕ = 0.

Theorem 4.7. Assume that D1 and D2 are two sound-soft scatterers such that for
a fixed wave number the far field patterns for both scatterers coincide for all incident
directions d. Then D1 = D2.

Proof. By Rellich’s lemma we can conclude that the scattered fields us(·, d) for
the incident fields ui(x, d) = eikx·d coincide in the unbounded component G of the
complement of D̄1 ∪ D̄2. Choose x0 ∈ G and consider the two exterior Dirichlet
problems for radiating solutions to

∆ws
j + k2ws

j = 0 in R
3 \ D̄j , j = 1, 2,(4.10a)

ws
j +Φ(·, x0) = 0 on ∂Dj , j = 1, 2.(4.10b)

We will show that ws
1 = ws

2 in G. To this end, choose a bounded domain B such that
R

3 \ B is connected, D̄1 ∪ D̄2 ⊂ B, x0 /∈ B̄, and k2 is not a Dirichlet eigenvalue for
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Fig. 4.1 The geometry of the scatterers considered in the proof of Theorem 4.7. We assume the
scatterers are not identical and derive a contradiction.

B. Then by Lemma 4.6 there exists a sequence (vn) in span{ui(·, d) : d ∈ Ω} such
that ‖vn − Φ(·, x0)‖L2(∂B) → 0 as n → ∞, and from potential theoretic arguments
(cf. Theorem 5.4 of [13]) one can conclude that vn → Φ(·, x0) as n → ∞, uniformly
on D̄1 ∪ D̄2. Since the vn are linear combinations of plane waves, the corresponding
scattered fields vs

n,1 and vs
n,2 for the obstacles D1 and D2 coincide in G. We can

now conclude from the well-posedness of the radiating exterior Dirichlet problem that
vs

n,j → ws
j , n → ∞, uniformly on compact subsets of R

3 \ D̄j for j = 1, 2, and hence
ws

1 = ws
2 in G. Now assume that D1 �= D2. Then, without loss of generality, there

exists x∗ ∈ ∂G such that x∗ ∈ ∂D1 and x∗ /∈ D̄2 (see Figure 4.1). We can choose
h > 0 such that the sequence

xn := x∗ +
h

n
ν(x∗), n = 1, 2, . . . ,

is contained in G, and consider the solutions ws
n,j to the exterior Dirichlet problem

(4.10a), (4.10b) with x0 replaced by xn. Then ws
n,1 = ws

n,2 in G. But considering
ws

n = ws
n,2 as the scattered field corresponding to the obstacle D2 we have that ws

n is
uniformly bounded with respect to the maximum norm on closed subsets of R

3 \ D̄2.
In particular, ws

n(x
∗) remains bounded as n → ∞. On the other hand, considering

ws
n = ws

n,1 as the scattered field corresponding to the obstacle D1, we have that
ws

n(x
∗) + Φ(x∗, xn) = 0, and hence ws

n(x
∗) becomes unbounded as n → ∞. This is a

contradiction. Therefore D1 = D2, and the proof is complete.
An open problem is to determine if one incoming plane wave for a single direction

at a fixed wave number k is sufficient to uniquely determine the scatterer D. If it
is known a priori that D is contained in a ball of radius R and kR < π, then, as
mentioned in the introduction, it was shown by Colton and Sleeman [24] (see also
Corollary 5.3 of [13]) that a sound-soft obstacle is uniquely determined by its far field
pattern for a single incident direction d and fixed wave number k.

We now turn our attention to methods for reconstructing D from an inexact
knowledge of the far field pattern u∞. We first consider the application of Newton’s
method. To this end we note that the solution to the direct scattering problem
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with a fixed incident plane wave ui defines an operator F : ∂D → u∞ which maps
the boundary ∂D of the sound-soft scatterer D onto the far field pattern u∞ of the
scattered field. In terms of this operator, the inverse problem consists in solving the
nonlinear equation F(∂D) = u∞. Having in mind that for ill-posed problems the
norm in the data space has to be suitable for describing the measurement error, we
make the assumption that u∞ is in the Hilbert space L2(Ω). For ∂D we need to
choose a class of admissible surfaces described by some suitable parameterization and
equipped with an appropriate norm. For the sake of simplicity, we restrict ourselves to
the class of domains D that are star-like with respect to the origin with C2 boundary
∂D; i.e., we assume that ∂D is represented in its parametric form

x = r(x̂)x̂, x̂ ∈ Ω,

for a positive function r ∈ C2(Ω). We now view the operator F as a mapping from
C2(Ω) into L2(Ω) and write F(∂D) = u∞ as

F(r) = u∞.

The following basic theorem was first proved by Kirsch [37] using variational methods
and subsequently by Potthast [64] using a boundary integral equation approach (see
also Theorem 5.14 of [13] and [46]).

Theorem 4.8. The operator F : r → u∞ is Fréchet differentiable from C2(Ω)
into L2(Ω). The derivative is given by

F ′q = v∞,

where v∞ denotes the far field pattern of the solution vs to the Helmholtz equation in
R

3 \D satisfying the Sommerfeld radiation condition and the boundary condition

vs = −ν · xq
∂u

∂ν
on ∂D,

where xq = q(x̂)x̂ and ∂D is parameterized by x = r(x̂)x̂.
Theorem 4.8 now allows us to apply Newton’s method to solve

F(r) = u∞.

In particular, given a far field pattern u∞ and initial guess r0 to r, the nonlinear
equation F(r) = u∞ is replaced by the linearized equation

F(r0) + F ′q = u∞,(4.11)

which is then solved for q to yield the new approximation r1 given by r1 = r0 + q.
Newton’s method then consists of iterating this procedure [44], [47]. From Theorem
4.8 it is seen that the Fréchet derivative F ′ is a compact operator, and hence regu-
larization methods must be used in solving (4.11), reflecting the fact that the inverse
scattering problem is ill-posed. In this regard, the following theorem is important.

Theorem 4.9. The linear operator F ′ is injective.
Proof. Assume that F ′q = 0. Then the solution vs to the scattering problem

stated in Theorem 4.8 has a vanishing far field pattern, and hence by Rellich’s lemma,
vs = 0 in R

3 \ D̄, and consequently vs = 0 on ∂D. Since, by Holmgren’s uniqueness
theorem [2], ∂u/∂ν cannot vanish on open subsets of ∂D (recall that u = 0 on ∂D),
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we now have that ν · xq = 0 on ∂D. A short calculation now shows that this implies
that q = 0.

An alternative to Newton’s method for solving the inverse scattering problem of
determining a sound-soft scattering obstacle from the far field pattern of the scattered
field is the linear sampling method. As pointed out in the introduction, this method
has several advantages over Newton’s method, although it has the disadvantage of
requiring a knowledge of u∞(x̂, d) for all x̂, d ∈ Ω. (This assumption can be weakened;
see [25] and the previous section of this paper.) To describe the basic idea behind the
linear sampling method, assume that for every z ∈ D there exists a unique solution
g = g(·, z) ∈ L2(Ω) to the far field equation (1.12); i.e.,

∫
Ω
u∞(x̂, d)g(d) ds(d) =

e−ikx̂·z

4π
,(4.12)

where u∞ is the far field pattern corresponding to the scattering of the plane wave
eikx·d by the sound-soft obstacle D. Then, since the right-hand side of (4.12) is the
far field pattern of the fundamental solution Φ(x, z), it follows from Rellich’s lemma
that ∫

Ω
us(x, d)g(d) ds(d) = Φ(x, z), x ∈ R

3 \D.

From the boundary condition u = 0 on ∂D it now follows that

vg(x) + Φ(x, z) = 0, x ∈ ∂D,(4.13)

where vg is the Herglotz wave function defined by (1.13). We now see from (4.13)
that vg becomes unbounded as z → x ∈ ∂D, and hence

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞.

Unfortunately, in general the far field equation Fg = Φ∞(·, z) does not have a
unique solution. However, following the idea of the proof of Lemma 4.6 and using
the Jacobi–Anger expansion [13, p. 32], we can show that if k2 is not a Dirichlet
eigenvalue, then for z ∈ D the unique solution v of

∆v + k2v = 0 in D,

v +Φ(·, z) = 0 on ∂D

can be approximated in L2(∂D) by a Herglotz wave function vg. If ∂D is analytic,
then v can be uniquely continued as a solution of the Helmholtz equation to a domain
D∗ ⊃ D, where k2 is not a Dirichlet eigenvalue for D∗, and this fact can be used to
show that v can be approximated in C(D̄) by a Herglotz wave function [22]. We then
have the following result.

Theorem 4.10. Assume that ∂D is analytic and let z ∈ D. Then for every ε > 0
there exists a solution g = g(·, z) ∈ L2(Ω) of the inequality ‖Fg − Φ∞(·, z)‖L2(Ω) < ε
such that

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞,

and the Herglotz wave function vg with kernel g becomes unbounded as z → x ∈ ∂D.
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The above theorem now suggests a numerical procedure for determining ∂D from
noisy far field data (see section 2 of this paper). In particular, let uδ

∞ be the measured
far field data, i.e., ‖uδ

∞ − u∞‖ < δ, and assume g is such that ‖Fg − Φ∞(·, z)‖ < ε.
If Fδ is the operator F with the kernel u∞ replaced by uδ

∞, then we want to find an
approximation to g by solving Fδϕ = Φ∞(·, z); i.e., we view both the operator and
the right-hand side as being inexact. For each fixed z we now determine ϕ = ϕ(·, z)
by minimizing the Tikhonov functional

‖Fδϕ− Φ∞(·, z)‖2 + γ‖ϕ(·, z)‖2,

where the regularization parameter is chosen by Morozov’s generalized discrepancy
principle [75], i.e., assuming that ε << δ, γ = γ(z) is chosen such that ‖Fδϕ −
Φ∞(·, z)‖ ≈ δ‖ϕ(·, z)‖. The unknown boundary ∂D is now determined by looking
for those points z where ‖ϕ(·, z)‖ begins to sharply increase.

In the above theorem, the assumption that ∂D is analytic is not of major concern
since the far field pattern depends continuously on C2 deformations of the boundary
(cf. Theorem 4.8) and is assumed to be inexact in any case. However, a more serious
problem is that nothing is said about what happens when z ∈ R

3 \D. This problem
was resolved by Kirsch [39], who proposed replacing the equation Fg = Φ∞(·, z) by
(F ∗F )

1
4 g = Φ∞(·, z), where F ∗ is the adjoint of F in L2(Ω). We will now outline the

main ideas of Kirsch’s method. In what follows, S : L2(∂D) → L2(∂D) is the single
layer potential defined by

(Sϕ)(x) :=
∫

∂D

ϕ(y)Φ(x, y) ds(y), x ∈ ∂D,(4.14)

and G : L2(∂D) → L2(Ω) is defined by Gh = v∞, where v∞ is the far field pattern
of the solution to the radiating exterior Dirichlet problem with boundary data h ∈
L2(∂D). The relation among the operators F , G, and S is given by the following
lemma [39] (see also [46]).

Lemma 4.11. The relation

F = −4πGS∗G∗

is valid, where G∗ : L2(Ω) → L2(∂D) and S∗ : L2(∂D) → L2(∂D) are the L2 adjoints
of G and S, respectively.

Proof. Define the operator H : L2(Ω) → L2(∂D) by

(Hg)(x) :=
∫

Ω
g(d)eikx·d ds(d).

Note that Hg is the Herglotz wave function with density g. The adjoint operator
H∗ : L2(∂D) → L2(Ω) is given by

(H∗ϕ)(x̂) =
∫

∂D

ϕ(y)e−ikx̂·y ds(y)

and we note that 1
4πH

∗ϕ is the far field pattern of the single-layer potential (4.14).
The single-layer potential with continuous density ϕ is continuous in R

3 and thus
1
4πH

∗ϕ = GSϕ, i.e., by a denseness argument

H = 4πS∗G∗(4.15)
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on L2(∂D). We now observe that Fg is the far field pattern of the solution to the
radiating exterior Dirichlet problem with boundary data −(Hg)(x), x ∈ ∂D, and
hence

Fg = −GHg.(4.16)

Substituting (4.15) into (4.16) now yields the lemma.
We now assume that k2 is not a Dirichlet eigenvalue for D. Then, by Theorems

4.4 and 4.5, the far field operator F is normal and one to one. In particular, there
exist eigenvalues λj ∈ C of F, j = 1, 2, . . ., with λj �= 0, and the corresponding
eigenfunctions ψj ∈ L2(Ω) form a complete orthonormal system in L2(Ω). From
Theorem 4.3 we can deduce the fact that the λj all lie on the circle of radius 2π/k
and center 2πi/k. We also note that {|λj |, ψj , sign (λj)ψj} is a singular system of F
(cf. [13, p. 91]), where sign(λj) = λj/|λj |. By the above lemma we have that

−4πGS∗G∗ψj = λjψj .

If we define the functions ϕj ∈ L2(∂D) by

G∗ψj = −
√
λjϕj ,

where we choose the branch of
√
λj such that Im (

√
λj) > 0, we see that

GS∗ϕj =

√
λj

4π
ψj .(4.17)

A central result of Kirsch is that the functions ϕj form a Riesz basis in the Sobolev
space H− 1

2 (∂D); i.e., H− 1
2 (∂D) consists exactly of functions ϕ of the form

ϕ =
∞∑

j=1

αjϕj with
∞∑

j=1

|αj |2 < ∞.

We can now prove the main result of [39].
Theorem 4.12. Assume k2 is not a Dirichlet eigenvalue for D. Then the ranges

of G : H
1
2 (∂D) → L2(Ω) and (F ∗F )

1
4 coincide.

Proof. We use the fact that S∗ : H− 1
2 (∂D) → H

1
2 (∂D) is an isomorphism.

Suppose Gϕ = ψ for some ϕ ∈ H
1
2 (∂D). Then (S∗)−1ϕ ∈ H− 1

2 (∂D) and thus
(S∗)−1ϕ =

∑∞
j=1 αjϕj with

∑∞
j=1 |αj |2 < ∞. Therefore, by (4.17) we have that

ψ = Gϕ = GS∗((S∗)−1ϕ) =
1
4π

∞∑
j=1

αj

√
λjψj =

∞∑
j=1

ρjψj

with ρj = 1
4παj

√
λj , and thus

∞∑
j=1

|ρj |2
|λj |

=
1

(4π)2

∞∑
j=1

|αj |2 < ∞.(4.18)

On the other hand, let ψ =
∑∞

j=1 ρjψj with the ρj satisfying (4.18), and define
ϕ :=

∑∞
j=1 αjϕj with αj = 4πρj/

√
λj . Then

∑∞
j=1 |αj |2 < ∞ and hence ϕ ∈
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H− 1
2 (∂D), S∗ϕ ∈ H

1
2 (∂D), and

G(S∗ϕ) =
1
4π

∞∑
j=1

αj

√
λjψj

=
∞∑

j=1

ρjψj

= ψ.

Since
√

|λj | and ψj are the eigenvalues and eigenfunctions, respectively, of the self-
adjoint operator (F ∗F )

1
4 , we have that

R((F ∗F )
1
4 ) =




∞∑
j=1

ρjψj :
∞∑

j=1

|ρj |2
|λj |

< ∞


 ,

and as we have shown above, this is precisely R(G).
Since Φ∞(x̂, z) = 1

4π e
−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z), it is easy to verify that Φ∞ is in the range of G if and only if z ∈ D, i.e.,
(F ∗F )

1
4 g = Φ∞(·, z) is solvable if and only if z ∈ D. In particular, if regularization

methods are used to solve (F ∗F )
1
4 g = Φ∞(·, z), then as the noise level on u∞ tends

to zero the norm of the regularized solution remains bounded if and only if z ∈ D
[39], [75].

For further applications of spectral methods in inverse scattering theory, see Mast,
Nachman, and Wang [50] and Norris [56].

5. The Inverse Medium Problem. We now turn our attention to the scatter-
ing of plane waves by a penetrable inhomogeneous medium of compact support and
consider the mathematical problems associated with determining either the index of
refraction or the support of the inhomogeneous medium from the far field pattern of
the scattered field. In particular, consider the direct scattering problem of finding
u ∈ C2(D) ∩ C1(D̄), u0 ∈ C2(R3 \ D̄) ∩ C1(R3 \D) such that

∆u+ k2n(x)u = 0 in D,(5.1a)

∆u0 + k2u0 = 0 in R
3 \ D̄,(5.1b)

u0(x) = eikx·d + us(x) in R
3 \ D̄,(5.1c)

u0 = u on ∂D,(5.1d)

∂u0

∂ν
= α

∂u

∂ν
on ∂D,(5.1e)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0,(5.1f)

whereD is a bounded domain with connected complement R
3\D̄ and C2 boundary ∂D

having unit outward normal ν;n ∈ C1(D̄) is the index of refraction, where Im n(x) ≥
0 for x ∈ D and α is a positive constant. As in the previous section, d is a vector on the
unit sphere Ω and the radiation condition (5.1f) is assumed to hold uniformly for x̂ =
x/|x| on Ω. The existence of a unique solution to (5.1a)–(5.1f) has been established
by Werner [78] (see also [21] and [34]). Although from a physical point of view
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(5.1a)–(5.1f) is somewhat restricted as far as a model for acoustic wave propagation
is concerned, it suffices to demonstrate the salient features of the inverse scattering
problem we want to consider.

For the direct scattering problem (5.1a)–(5.1f), there are only minor differences
in the analysis for the case α = 1 and α �= 1. However, for the inverse scattering
problem different techniques are often needed for these two cases, and at the time of
this writing significant questions remain for the case where α �= 1. Hence, for most of
this section of our paper we will restrict our attention to the case where α = 1 and
only mention in passing the corresponding results (or lack thereof) for the case α �= 1.
For both cases, the basic results on the far field pattern, i.e., Rellich’s lemma and the
reciprocity relation, remain valid and the proofs of Theorems 4.3 and 4.4 can be easily
modified to show that if α is real and n is real valued, then the far field operator is
normal. However, if Im n(x) > 0 for some x ∈ D, then the far field operator F is no
longer normal, and for both real- and complex-valued refractive indices the issue of
injectivity of F is not as simple as in the case of scattering by a sound-soft obstacle.
In order to discuss these issues, we now restrict our attention to the case α = 1; i.e.,
we will consider the scattering problem

∆u+ k2n(x)u = 0 in R
3 \ ∂D,(5.2a)

u(x) = eikx·d + us(x),(5.2b)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0,(5.2c)

where u is twice continuously differentiable in R
3 \∂D and continuously differentiable

in R
3.
We first turn our attention to the analogue of the basic identity in Theorem 4.3

for the case of the scattering problem (5.2a)–(5.2c), where again

us(x) =
eikr

r
u∞(x̂, d) +O

( 1
r2

)
(5.3)

and the far field operator is defined by (1.11). Using the same notation as in Theorem
4.3 and the fact that

∫
∂D

(
vi

g

∂vi
h

∂ν
− vi

h

∂vi
g

∂ν

)
ds = 0

by Green’s theorem, we have from Green’s theorem again that

2ik2
∫

D

∫
Im nvgvhdx =

∫
∂D

(
vg
∂vh

∂ν
− vh

∂vg

∂ν

)
ds

=
∫

∂D

(
vs

g

∂vs
h

∂ν
− vs

h

∂vs
g

∂ν

)
ds+

∫
∂D

(
vs

g

∂vi
h

∂ν
− vi

h

∂vs
g

∂ν

)
ds

+
∫

∂D

(
vi

g

∂vs
h

∂ν
− vs

h

∂vi
g

∂ν

)
ds.

Following the proof of Theorem 4.3 now yields the following basic identity for the far
field operator corresponding to the scattering problem (5.2a)–(5.2c) [13], [11].
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Theorem 5.1. Let vi
g and v

i
h be Herglotz wave functions with kernels g, h ∈

L2(Ω), respectively, and let vg, vh be the solutions of (5.2a)–(5.2c) with ui(x) = eikx·d

replaced by vi
g and v

i
h, respectively. Then

ik2
∫

D

∫
Im nvgvhdx = 2π(Fg, h)− 2π(g, Fh)− ik(Fg, Fh),

where (·, ·) denotes the inner product on L2(Ω).
From Theorem 5.1, setting g = h and using the fact that vg = 0 if and only if

g = 0, we see that if Im n(x) > 0 for some x ∈ D, then F is injective. In particular,
Fg = 0 and Im n(x) > 0 for some x ∈ D implies by Theorem 5.1 that vg(x) = 0 for x
in some ball contained in D and hence by unique continuation vg(x) = 0 for x ∈ D.
The Lippmann–Schwinger equation (1.15) now implies that vi

g(x) = 0 for x ∈ D and
hence g = 0. On the other hand, when n is real valued we can use the following result
to investigate injectivity.

Theorem 5.2. The far field operator corresponding to (5.2a)–(5.2c) is injective
with dense range if and only if there does not exist w ∈ C2(D)∩C1(D̄) and a Herglotz
wave function v such that v, w is a solution to the homogeneous interior transmission
problem

∆v + k2v = 0
∆w + k2n(x)w = 0

}
in D,(5.4a)

v = w

∂v

∂ν
=
∂w

∂ν


 on ∂D.(5.4b)

Proof. As in the case of Theorem 4.5, it suffices to establish conditions for which
the far field operator F is injective. To this end, we note that Fg = 0 with g �= 0 is
equivalent to the vanishing of the far field pattern of ws, where w is the solution of
(5.2a)–(5.2c) with eikx·d replaced by the Herglotz wave function v with kernel g. By
Rellich’s lemma, ws = 0 in R

3 \D, and hence if w = v + ws we have

w = v

∂w

∂ν
=

∂v

∂ν


 on ∂D.

The proof is now finished.
Knowing that the values of k for which the far field operator is not injective form a

discrete set is of considerable importance in the inverse scattering problem associated
with (5.2a)–(5.2c), just as it is in the case of obstacle scattering, where it is known that
the set of Dirichlet eigenvalues forms a discrete set. In the case of the linear sampling
method, for example, this enables us to conclude that the method can fail only for a
discrete set of values of k. From Theorem 5.2 we see that F is injective if there does
not exist a nontrivial solution v, w to the interior transmission problem. Values of k
for which there exists a nontrivial solution to (5.4a), (5.4b) are called transmission
eigenvalues. It was shown by Colton, Kirsch, and Päivärinta ([9] and section 8.6 of
[13]) and by Rynne and Sleeman [69] that under appropriate assumptions the set of
transmission eigenvalues is discrete. The analogous problem for the case when α �= 1
remains open.
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We now turn to the problem of the unique determination of n = n(x) in (5.2a)–
(5.2c) from a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω. The proof is
based on the following two lemmas, where H2(B) denotes the usual Sobolev space on
B (for proofs, see [13], [32], or [38]).

Lemma 5.3. Let B be an open ball centered at the origin and containing the
support of m = 1 − n. Then there exists a positive constant C such that for each
z ∈ C

3 with z · z = 0 and | Re z| ≥ 2k2‖n‖∞ there exists a solution v ∈ H2(B) to
∆v + k2nv = 0 in B of the form

v(x) = eiz·x[1 + r(x)],

where

‖r‖L2(B) ≤ C

| Re z| .

Lemma 5.4. Let B1 and B2 be two open balls centered at the origin and containing
the support of m = 1−n such that B1 ⊂ B2. Then the set of total fields {u(·, d), d ∈ Ω}
satisfying (5.2a)–(5.2c) is complete in the closure of

H := {v ∈ C2(B2) : ∆v + k2nv = 0 in B2}

with respect to the L2(B1) norm.
Now we are ready to prove the following uniqueness result for the inverse medium

problem.
Theorem 5.5. The refractive index n in the scattering problem (5.2a)–(5.2c) is

uniquely determined by a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω.
Proof. Assume that n1 and n2 are two refractive indices such that u1,∞(·, d) =

u2,∞(·, d), d ∈ Ω, and let B1 and B2 be two open balls centered at the origin and
containing the supports of 1 − n1 and 1 − n2 such that B̄1 ⊂ B2. Then by Rellich’s
lemma we have that u1(·, d) = u2(·, d) in R

3 \ B̄1 for all d ∈ Ω. Hence u = u1 − u2
satisfies u = ∂u/∂ν = 0 on ∂B1 and the differential equation

∆u+ k2n1u = k2(n2 − n1)u2

in B1. From this and the differential equation for ũ1 = u1(·, d̃), d̃ ∈ Ω, we obtain

k2ũ1u2(n2 − n1) = ũ1(∆u+ k2n1u) = ũ1∆u− u∆ũ1.

From Green’s theorem and the fact that the Cauchy data for u vanishes on ∂B1 we
now have that ∫

B1

∫
u1(·, d̃)u2(·, d)(n1 − n2)dx = 0

for all d, d̃ ∈ Ω. It follows from Lemma 5.4 that∫
B1

∫
v1v2(n1 − n2)dx = 0(5.5)

for all solutions v1, v2 ∈ C2(B̄2) of ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0 in B2.
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Given y ∈ R
3 \ {0} and ρ > 0, we now choose vectors a, b ∈ R

3 such that {y, a, b}
is an orthogonal basis in R

3 with the properties that |a| = 1 and |b|2 = |y|2 + ρ2.
Then for z1 := y + ρa+ ib, z2 := y − ρa− ib we have that

zj · zj = | Re zj |2 − |Im zj |2 + 2i Re zj · Im zj

= |y|2 + ρ2 − |b|2

= 0

and

| Re zj |2 = |y|2 + ρ2 ≥ ρ2.

In (5.5) we now substitute the solutions v1 and v2 from Lemma 5.3 for the refractive
indices n1 and n2 and the vectors z1 and z2, respectively. Since z1+z2 = 2y this gives∫

B1

∫
e2iy·x[1 + r1(x)][1 + r2(x)][n1(x)− n2(x)]dx = 0

and passing to the limit as ρ → ∞ gives∫
B1

∫
e2iy·x[n1(x)− n2(x)]dx = 0.

Since this equation is true for arbitrary y ∈ R
3, by the Fourier integral theorem we

have that n1(x) = n2(x) in B1 and the proof is finished.
Uniqueness theorems for the inverse scattering problem associated with (5.1a)–

(5.1d) with α �= 1 have been given by Isakov [36], [34]. The basic idea of the proofs
in this case is a combination of the above ideas together with those of Theorem 4.7
for the case of obstacle scattering.

Having established uniqueness for the inverse scattering problem, we now turn
our attention to the reconstruction of the index of refraction n, focusing our attention
on the scattering problem (5.2a)–(5.2c). As mentioned in the introduction, there is
a variety of optimization methods for reconstructing the index of refraction in this
case. We shall briefly describe one of these, the dual space method, which has the
advantage over other methods of being able to increase the number of incident fields
without increasing the cost of solving the inverse problem. The dual space method
can also be extended to the inverse scattering problem associated with (5.1a)–(5.1d)
for α �= 1 [5].

We begin our description of the dual space method for solving the inverse scat-
tering problem associated with (3.2a)–(3.2c) by assuming that there exist functions
vp ∈ C2(D)∩C1(D̄) and wp ∈ C2(D)∩C1(D̄), which satisfy the interior transmission
problem

∆vp + k2vp = 0
∆wp + k2n(x)wp = 0

}
in D,(5.6)

wp − vp = up

∂wp

∂ν
− ∂vp

∂ν
=
∂up

∂ν


 on ∂D,(5.7)

where

up(x) := h(1)
p (k|x|)Yp(x̂)
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and h(1)
p is a spherical Hankel function of the first kind of order p and Yp is a spherical

harmonic of order p. If we further assume that vp is a Herglotz wave function written
in the form

vp(x) =
∫

Ω
e−ikx·dgp(d) ds(d),(5.8)

where gp ∈ L2(Ω), then from the representation (4.5) for u∞, Green’s formula and
theorem, and the radiation condition we have for every d ∈ Ω that∫

Ω
u∞(x̂, d)gp(x̂) ds(x̂)

=
1
4π

∫
∂D

(
us ∂vp

∂ν
− vp

∂us

∂ν

)
ds

=
1
4π

∫
∂D

(
u
∂vp

∂ν
− vp

∂u

∂ν

)
ds

=
1
4π

∫
∂D

(
u
∂wp

∂ν
− wp

∂u

∂ν

)
ds− 1

4π

∫
∂D

(
u
∂up

∂ν
− up

∂u

∂ν

)
ds

= − 1
4π

∫
∂D

(
eikx·d ∂up

∂ν
(x)− up(x)

∂eikx·d

∂ν

)
ds(x) =

ip−1

k
Yp(d).

We can now conclude that the identity∫
Ω
u∞(x̂, d)gp(x̂) ds(x̂) =

ip−1

k
Yp(d)(5.9)

is satisfied if and only if there exists a solution of the interior transmission problem
(5.6), (5.7) such that vp is a Herglotz wave function of the form (5.8). As will be
shown later, a weak solution of the interior transmission problem exists if k is not a
transmission eigenvalue and, if vp, wp is such a weak solution, vp can be approximated
by a Herglotz wave function. Letting B be a ball centered at the origin and containing
D in its interior and using Green’s formula to rewrite the interior transmission problem
(5.6), (5.7) as the operator equation (note that if m := 1 − n, then m(x) = 0 for
x ∈ R

3 \D)

wp + k2Twp = vp in B,

up + k2Twp = 0 on ∂B,(5.10)

where

(Twp)(x) :=
∫

B

∫
Φ(x, y)m(y)wp(y) dy

and Φ is defined by (1.8), now leads to the dual space method for determining m
in the case when k is not a transmission eigenvalue: for 0 ≤ p ≤ P, determine gp

from (5.9), define vp by (5.8), and then use your favorite optimization method to
determine m (and wp) from (5.10). The first step in this procedure motivates the
name dual space method since the determination of gp defines a linear functional on
L2(Ω) having prescribed values on the set of far field patterns for a fixed incident
direction d. For further details we refer the reader to sections 10.3 and 10.6 of [13]. If



INVERSE SCATTERING THEORY 405

k is a transmission eigenvalue, the far field equation (5.9) must be modified, leading to
the concept of modified far field operators [7], [18] and the shifting of eigenvalues [11].

As we have previously mentioned, a reconstruction of the complete index of re-
fraction is often more than is necessary. Instead, it is frequently sufficient to determine
the support of m = 1−n. This can be done by extending the linear sampling method
for obstacle scattering to the case of scattering by an inhomogeneous medium. We
now proceed to describe this extension for the case of problem (5.2a)–(5.2c), when
α = 1. The situation when α �= 1 has been studied by Colton and Piana [21], and we
refer the reader to this paper for details of the linear sampling method in this case.
(When α �= 1 the associated interior transmission problem is changed in an obvious
way, and this requires a different analysis than that which follows.) As with obstacle
scattering, there are two versions of the linear sampling method corresponding to the
far field operator F and the operator (F ∗F )

1
4 , respectively [8], [22], [40]. Since for

arbitrary but fixed values of the wave number k the method associated with (F ∗F )
1
4

is restricted to nonabsorbing media, i.e., Im n = 0, we consider only the far field
equation Fg = Φ∞(·, z), which does not have this restriction. However, to avoid the
problem of transmission eigenvalues we will limit our attention to the case when there
exists a positive constant c such that

Im n(x) ≥ c(5.11)

for x ∈ D, where D̄ is the support of m = 1 − n. If instead of (5.11) we have that
Im n(x) = 0 for x ∈ D, then the analysis that follows remains valid if we assume that
k is not a transmission eigenvalue.

The derivation of the linear sampling method for the inverse scattering problem
associated with (5.2a)–(5.2c) is based on a projection theorem for Hilbert spaces where
the inner product is replaced by a bounded sesquilinear form together with an analysis
of a special interior transmission problem (see [22] and section 10.7 of [13]). We begin
with the projection theorem. Let X be a Hilbert space with the scalar product (·, ·)
and norm ‖ · ‖ induced by (·, ·) and let 〈·, ·〉 be a bounded sesquilinear form on X such
that

|〈ϕ,ϕ〉| ≥ C‖ϕ‖2(5.12)

for all ϕ ∈ X, where C is a positive constant. Then, using the Lax–Milgram theorem,
we have the following theorem where ⊕s is the orthogonal decomposition with respect
to the sesquilinear form 〈·, ·〉 and H⊥s is the orthogonal complement of H̄ with respect
to 〈·, ·〉.

Theorem 5.6. For every closed subspace H̄ ⊂ X we have the orthogonal decom-
position

X = H⊥s ⊕s H.

The projection operator P : X → H⊥s defined by this decomposition is bounded in X.
We next turn our attention to the problem of showing the existence of a unique

weak solution v, w of the interior transmission problem

∆v + k2v = 0
∆w + k2n(x)w = 0

}
in D,(5.13a)

w − v = Φ(·, z)
∂w

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ(·, z)


 on ∂D,(5.13b)
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where z ∈ D,n is assumed to satisfy (5.11), D̄ is the support of m = 1−n where it is
assumed that ∂D is twice continuously differentiable with unit outward normal ν, and
Φ as usual is defined by (1.8). To motivate the following definition of a weak solution
of (5.13a), (5.13b), we note that if a solution v, w ∈ C2(D)∩C1(D̄) to (5.13a), (5.13b)
exists, then from Green’s formula and Rellich’s lemma we have that

w(x) + k2
∫

D

∫
Φ(x, y)m(y)w(y)dy = v(x), x ∈ D,(5.14a)

−k2
∫

D

∫
Φ(x, y)m(y)w(y)dy = Φ(x, z), x ∈ ∂B,(5.14b)

where B is a ball centered at the origin with D̄ ⊂ B.
Definition 5.7. Let H be the linear space of all Herglotz wave functions and H̄

the closure of H in L2(D). For ϕ ∈ L2(D) define the volume potential by

(Tϕ)(x) :=
∫

D

∫
Φ(x, y)m(y)ϕ(y)dy, x ∈ R

3.

Then a pair v, w with v ∈ H̄ and w ∈ L2(D) is said to be a weak solution of the
interior transmission problem (5.13a), (5.13b) with source point z ∈ D if v and w
satisfy the integral equation

w + k2Tw = v

and the boundary condition

−k2Tw = Φ(·, z) on ∂B.

The uniqueness of a weak solution to the interior transmission problem follows
from a limiting argument using (5.11) and a simple application of Green’s theorem
[13], [22]. To prove existence we will use Theorem 5.6 applied to the sesquilinear form
in L2(D) defined by

〈ϕ,ψ〉 :=
∫

D

∫
m(y)ϕ(y)ψ(y)dy

and H as defined in the above definition.
Theorem 5.8. For every source point z ∈ D there exists a weak solution to the

interior transmission problem.
Proof. By a translation we can assume without loss of generality that z = 0. We

consider the space

H0
1 := span {jp(k|x|)Y q

p (x̂), p = 1, 2, . . . ,−p < q ≤ p}

and the closure H1 of H0
1 in L

2(D), where jp is a spherical Bessel function and Y q
p a

spherical harmonic. It can be shown that there exists a nontrivial ψ ∈ H⊥s
1 ∩ H̄ such

that 〈j0, ψ〉 �= 0.
Now let P be the projection operator from L2(D) ontoH⊥s as defined by Theorem

5.6. We first consider the integral equation

u+ k2PTu = k2PTψ(5.15)
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in L2(D). Since T is compact and P is bounded, the operator PT is compact in
L2(D). In order to apply the Riesz theory for compact operators [45], we will prove
uniqueness for the homogeneous equation. To this end, assume that w ∈ L2(D)
satisfies

w + k2PTw = 0.

Then w ∈ H⊥s and v := k2(I − P )Tw ∈ H̄ satisfy

w + k2Tw = v.

Since 〈w,ϕ〉 = 0 for all ϕ ∈ H, from the addition formula for Bessel functions we
conclude that

Tw = 0 on ∂B.

Hence, by uniqueness of the weak interior transmission problem we have that v =
w = 0. By the Riesz theory we now obtain the continuous invertibility of I + k2PT
in L2(D).

Now let u be the solution of (5.15) and note that u ∈ H⊥s . We define the constant
c and function w ∈ L2(D) by

c := − 1
k2〈j0, ψ〉 , w := c(u− ψ).

Then we compute

w + k2PTw = −cψ

and hence

w + k2Tw = v,

where v := k2(I − P )Tw − cψ ∈ H̄. Since

〈h,w〉 = c〈h, u− ψ〉 = 0

for all h ∈ H1 and

〈j0, w〉 = c〈j0, u− ψ〉 = − 1
k2 ,

we have from the addition formula for Bessel functions that

−k2(Tw)(x) = ikh
(1)
0 (k|x|) = Φ(x, 0), x ∈ ∂B,

where h(1)
0 is a spherical Hankel function of the first kind of order zero, and the proof

is complete.
We are now in a position to indicate how the support D of m can be determined

from the far field pattern u∞ corresponding to the scattering problem (5.2a)–(5.2c).
It suffices to determine ∂D. Following [8] and [22], we do this by looking for special
approximate solutions of the far field equation Fg = Φ∞(·, z), i.e.,∫

Ω
u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z),(5.16)
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where, as in the previous section, Φ∞(·, z) is the far field pattern of the fundamental
solution Φ(·, z). Following the proof of Theorem 5.2 we see that (5.16) has a solution
if and only if the interior transmission problem (5.13a), (5.13b) with source point
z ∈ D has a solution v, w ∈ C2(D) ∩ C1(D̄) such that v is a Herglotz wave function
with kernel g. This is true only in very special cases. However, by Theorem 5.8 we
know that there exists a (unique) weak solution of the interior transmission problem
v, w and that v can be approximated in L2(D) by a Herglotz wave function. This fact
then enables us to establish the following result analogous to Theorem 4.10 for the
case of obstacle scattering [8], [22].

Theorem 5.9. For every ε > 0 and z ∈ D there exists a solution g = g(·, z) ∈
L2(Ω) of the inequality ‖Fg − Φ∞(·, z)‖L2(Ω) < ε such that

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞,

and if vg(·, z) is the Herglotz wave function with kernel g, then
lim

z→∂D
‖vg(·, z)‖L2(D) = ∞.

As in the discussion following Theorem 4.10, the above theorem suggests a nu-
merical procedure for determining ∂D from noisy far field data (see section 2). We
note in passing that the linear sampling method has a connection with the idea of
“focusing.” In particular, in the time harmonic case, focusing of energy into the scat-
terer is accomplished by choosing the incident field to be a Herglotz wave function
with kernel g equal to the eigenfunction of the largest eigenvalue of the far field op-
erator, whereas in the linear sampling method the kernel g = g(·, z) is chosen to be
(an approximate) solution of the far field equation leading to a focusing of energy on
the boundary ∂D of the scatterer as z → ∂D [50].

In many, if not most, areas of application the unknown anomaly having support
D is situated in a piecewise homogeneous background medium rather than a homoge-
neous background. Furthermore, the directions of the incident fields and observation
directions of the scattered field are restricted to a limited aperture as in section 3
of this paper. For now we will only address the issue of a piecewise homogeneous
background medium. Following [19] and [15], we consider the scattering problem
(5.2a)–(5.2c), where k is piecewise constant in R

3; i.e.,

∆u+ k2n(x)u = 0 in D0,(5.17a)

∆u+ k2
0u = 0 in R

3 \ D̄0,(5.17b)

u(x) = eik0x·d + us(x),(5.17c)

lim
r→∞

r
(∂us

∂r
− ik0u

s
)
= 0,(5.17d)

where D̄ ⊂ D0, n(x) = 1 for x ∈ D0 \ D,D0 is bounded with a C2 boundary ∂D0,
and u is continuously differentiable across ∂D0 (see Figure 5.1). We can now rewrite
(5.17c) as

u(x) =
(
eik0x·d + us

b(x)
)
+
(
us(x)− us

b(x)
)
,

where us
b is the scattering due to the background medium alone, i.e., the scattered

field for (5.17a)–(5.17d) in the case when n(x) = 1 for x ∈ D0.
We now let G∞(·, z) be the far field pattern of the Green’s function G(·, z) for

the background medium with source point z ∈ D and consider the modified far field
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Fig. 5.1 In (5.17) we assume that the unknown anomaly D is located inside a known background
medium D0. The problem is to determine the support of D.

equation ∫
Ω
[u∞(x̂, d)− us

b,∞(x̂, d)]g(d) ds(d) = G∞(x̂, z).(5.18)

Noting that the kernel of the integral operator is the far field pattern corresponding
to the incident field ub(x, d) = eik0x·d + us

b(x), we see from Rellich’s lemma and
Holmgren’s uniqueness theorem [2] that if g is a solution of (5.18) then

U(x) :=
∫

Ω
u(x, d)g(d) ds(d)

and

V (x) :=
∫

Ω
ub(x, d)g(d) ds(d)

satisfy the interior transmission problem

∆V + k2V = 0
∆U + k2n(x)V = 0

}
in D,(5.19a)
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U − V = G(x, z)

∂U

∂ν
− ∂V

∂ν
=

∂

∂ν
G(x, z)


 on ∂D.(5.19b)

Provided we can construct a (unique) weak solution to the interior transmission prob-
lem (5.19a), (5.19b), we can now prove a result analogous to Theorem 5.9 for the
modified far field equation and thus have a method for numerically determining the
support D of m = 1−n by solving (5.18). But, for x ∈ D,G(x, z) = Φ(x, z)+h(x, z),
where h is a regular solution of the Helmholtz equation in D, and hence we can rewrite
(5.19a), (5.19b) in the form (5.13a), (5.13b), where w = U and v = V + h. We can
now use our previous results to construct a weak solution to (5.19a), (5.19b).

We conclude our survey by briefly considering the inverse scattering problem
for an orthotropic medium. This problem arises if one considers the scattering of
a transverse electric (TE) polarized electromagnetic wave by an anisotropic infinite
cylinder, where the index of refraction has the form

 n11(x) n12(x) 0
n21(x) n22(x) 0
0 0 n33(x)




and the nij are independent of the coordinate lying along the axis of the cylinder.
The magnetic field is then of the form (0, 0, u), where u satisfies

∇ ·N(x)∇u+ k2u = 0 in R
2,(5.20a)

u = ui + us,(5.20b)

lim
r→∞

√
r
(∂us

∂r
− ikus

)
= 0,(5.20c)

with ui(x) = eikx·d and

N(x) =
1

n11n22 − n12n21

(
n11(x) n12(x)
n21(x) n22(x)

)
.

We make the assumption that N is continuously differentiable in R
2 such that I −N

has support D̄ ⊂ R
2, where D is a bounded domain with connected complement and

C2 boundary ∂D. We further assume that M(x) := I −N(x) can be pointwise diag-
onalized with a unitary complex matrix U(x) and that if M(x) = U∗(x)MD(x)U(x)
where MD is a diagonal matrix, then I − MD has a positive definite real part and
a negative definite imaginary part. This implies that for x ∈ D the matrix N is
coercive; i.e.,

Im (aNa) ≥ γ(x)|a|2

for every a ∈ C
2, where γ(x) > 0 for x ∈ D.

Under the above assumptions, Potthast [62] was able to use the method of integral
equations to show that there exists a unique solution to the direct scattering problem
(5.20a)–(5.20c). From the point of view of the inverse scattering problem, the use of
integral equations in solving (5.20a)–(5.20c) is crucial, since this approach now enables
us to follow the ideas discussed above for the isotropic case to establish the validity
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of the linear sampling method for determining the support of M . In particular, from
the two-dimensional version of (1.7) it follows that

us(x) =
eikr

√
r
u∞(x̂, d) +O

( 1
r

3
2

)

as r → ∞ and the inverse scattering problem of interest is to determine the support D
of M from a knowledge of u∞(x̂, d) for x̂, d ∈ Ω, where Ω is now the unit circle in R

2.
(We note that u∞ does not uniquely determineN = N(x) but does uniquely determine
the support D [14], [31], [60].) It was shown in [23] that D can be determined in a
manner now familiar by solving the far field equation∫

Ω
u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z), x̂ ∈ Ω,

where Φ∞ is the far field pattern of the two-dimensional fundamental solution

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x �= y,

and H(1)
0 is a Hankel function of the first kind of order zero.

The analysis in [23] establishing the validity of the linear sampling method for
orthotropic media is considerably more technical than the case of isotropic media
since the integral operators of concern are now strongly singular. In particular, the
analysis requires that M = I on ∂D, and this means that the proof of the existence
of a unique weak solution to the interior transmission problem

∆v + k2v = 0
∇ ·N∇u+ k2u = 0

}
in D,

u− v = Φ(·, z)
∂u

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ(·, z)


 on ∂D

must be carried out in the weighted space L2
Γ(D) with inner product

(a, b)Γ :=
∫

D

∫
a(x) · Γ(x)b(x)dx,

where Γ(x) = U∗(x)ImMD(x)U(x). The proof of the existence of a weak solution to
the interior transmission problem now requires that ‖Γ(x)‖ ≤ c for all x ∈ D with a
sufficiently small constant c. For the case when N = N(x) is real, we refer the reader
to [20].
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