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INTRODUCTION 

The transition matrix approach to acoustic and elastic 
wave scattering was introduced by Waterman•-• and further 
refined and developed by a number of authors? s While this 
approach has been successfully applied to scattering in the 
low kL/2 region Ik = wavenumber, L = diameter of sphere 
circum•ribing the scatterer), calculations have been com- 
puter limited to.small aspect ratio scatterers. 9 As the aspect 
ratio of the scatterer increases, the system of equations gen- 
erated by the T-matrix method becomes ill-conditioned and 
the number of terms required in the expansion of the surface 
traction and surface displacement of the scatterer increases 
dramatically. 

The apparent source of this difficulty is the set of global 
basis functions used. For finite three-dimensional geome- 
tries, the T matrix has been based on the separable solutions 
of the vector Helmholtz equation in spherical coo•rdinates, 
and the domain of convergence of expansions in these solu- 
tions is not appropriate for .the description of elongated ob- 
jects. From this point of view, prolate spheroidal coordinates 
are a more natural candidate for the description of scattering 
from large aspect ratio bodies. Bates and Wall •ø have suc- 
cessfully considered the scattering of scalar waves using the 
separable solutions to the scalar Helmholtz equation in this 
coordinate system, realizing a considerable advantage over 
the more conventional approach. Unfo.rtunately the vector 
Helmholtz equation is not separable in spheroidal coordi- 
nates and it appears that it is impossible to analytically con- 
struct a Green's tensor for general waves in this coordinate 
system. n'12 Naturally, this has inhibited investigations of 
scattering involving elastic media in spheroidal coordinates. 

In the present paper, we resolve this difficulty. We do 
not attempt to construct a Green's tensor, but instead utilize 
Betti's third identity •3 to establish a spheroidal coordinate 
based T matrix. We do not rigorously establish the domain 
of convergence of the vector spheroidal expansions in the 
present paper. Instead we develop the formalism into a cal- 
culable form and obtain the transition matrices for the scat- 

tering from an elastic inclusion in an elastic medium and in 
an inviscid fluid. Briefly, the organization of this paper is as 
follows. In Secs. I-III, we define a set ofglobal basis states in 
prolate spheroidal coordinates and use Betti's third identity 
to derive certain integral identities involving these basis 
states which serve as the foundation of our approach. In 
Secs. IV-VII, we obtain the mathematical representation of 

Huygen's principle and use this result to derive a spheroidal 
coordinate based Treatfix for acoustic and elastic wave scat- 

tering. In Sec. VIII, we consider sound-hard and sound-soft 
scatterers, and in Sec. IX, we discuss the extension to other 
coordinate systems and to electromagnetic scattering. Ap- 
pendix A is consigned to a brief discussion of the solutions to 
the scalar Helmholtz equation and the presentation of ex- 
plicit forms for our global basis functions. Appendix B gives 
a convergence proof. 

Throughout this paper, we use tensor notation. To pre- 
vent confusion, the specific greek indices a, fi, p, v, •, y are 
reserved for tensor indices, superscripts denoting contravar- 
iant indices and subscripts, convariant indices. Other in- 
dices, such as r, •r, m, l, etc. are used to designate other 
degrees of freedom (e.g., the labeling of a particular global 
basis function). The metric tensor is denoted by 

C •a" denotes the totally antisymmetric tensor of rank three 
and for shorthand, we use 

Vau = u,a 

to denote the covariant derivative ofuv. We remind the read- 
er that the contravariant basis vectors e • are normalized ac- 

cording to 

I. VECTOR HELMHOLTZ EQUATION 

Consider the two-dimensional elliptic coordinate sys- 
tem consisting of confocal ellipses and hyperbolas depicted 
in Fig. 1. The prolate spheroidal coordinate system •, •7, • ) 
can be formed by rotating this figure about the major axis of 
the ellipse. Surfaces of constant • define ellipsoids of revolu- 
tion and those of•onstant •/, hyperboloids. The angle q$ has 
its usual role of designating axial orientation. The connec- 
tion with rectangular coordinates is given by 

x =-f•/(• • -- 1)(1 -- •/•) cos •, 

.y =f•/• -- 1)(1 -- r/z) sin •, (1) 
z = f•/, 

where 2fis the interfocal distance. 
It is well known that while the scalar Helmholtz equa- 

tion is separable in prolate spheroidal coordinates, the vector 
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FIG. 1. The prolate spheroidal coordinate system• 

Helmholm equation is not. Consequently, the elastic wave 
equation, 

(,• + •)ViV.g) -- •VXiVXg) = -- •p•, (2) 
has not been applied to elastic wave scattering in this coordi- 
nate representation and the selection of a convenient set of 
basis functions is open. Our selection, indicated below, is 
determined by general considerations. In the following, we 
separate the vector solution to Eq. (1) into longitudinal (irro- 
tational) and transverse (solenoidal) parts 

F----FL +Fr, 

¾XFL ----- 0, (3) 

V-F, = 0, 

and conside• each part separately. While it is possible to 
construct solutions with other methods, there is a simple, 
physically compelling reason for this procedure--the longi- 
tudinal and transverse elastic waves travel at different speeds 
and any other separation of the solution would result in 
waves of both velocities being part of both solutions. This 
separation is unique, provided that F is uniform, finite, con- 
tinuous, and vanishes at/nfinity. TM 

Consider the longitudinal solution. An arbitrary irrota- 
tional vector may be written as the s•adient (covariant deri- 
vative) of a scalar and it is trivial to verify that 

u• = V,,qt (4) 

is a solution of Eq. (2) if 

(v 2 + = 0, 

The transverse vector field has two degrees of freedom and 

hence, must depend upon two scalars. It is relatively easy to 
show that both 

and 

W a eo•get;'V/re"/V,(acx) (8) 
• transver• •!u•ons W •; (2), pro•d• t•t 

v.a = g.., (9) 
(V + = (v + = 0, (10) 

•fo• d•g o• •ob• b•is f•etio•, we b•y 
• to •ider •e •lutious ob• a•ve •d the 
me•ing of the non•bi•ty of •. (2). Mo• •d F•h- 
b•h a4 •ve de• the •fion of the v•r He•ol• 
•fion to • a •ieu• p• of ob•g •lufio• 
w•eh is much the •e • •t a•ve, •v• t•t the t•s- 
v• •lutions • •ways • ch• • that the 
field defiv• from one • • • •nti• m the "r• 
•te = •t" su•, •d •t ob•M from 
other •, no• to it. •en this •h•e • • r•li•, 
the fitting of •un• •nditions on •at su•a• 
pa•ieu!•ly simple fo•. In the p•t • th• •n•- 
tJo• wo•d •uire •t ß • no• • the •t 
f•. Sin• the m•t g•l •iufion to-•. (8) is 

a = r + e, (12) 

whe• r is the (sphe•) •di• v•tor •d e 
•ns•nt (e.g., the unit v• i,j, k • r•• •J- 
uat•), this is cl•ly not •sible. •us, while we have 
•n• •!utio• • •. (2) • pro•te sph•oi•i 
ß e fitting of •un• •nditious on a spheroi• s• 
wifl not • • s•ple •, for e•ple, the fitt•g of•• 
•nditions on a sphe• su•a• in sphe• •t•, 
but will • g•er• •volve i•i• d•ion• maths. In 
t•s •, we •h• to gene•te the t•sv• •lufio• 
•th e = 0. 

II. GLOBAL BASIS FUNCTIONS 

Here, in complete analoBY with spherical coordinates, 
the vector spheroidal partial wave solutions require four in- 
dices for their specification, r, to distin•u/sh among the one 
longitudinal and two transverse deirees of freedom, and •, 
m, and i to specify the solution to the scalar Helmholtz equa- 
tion. We define the vector basis functions corresponding to 
outgoing spheroidal waves with 

X¾•, [a•he,.(hr.g }So•,(hr.•/.• )], (13) 
(•%,.,)•, ---(l/kr•V.(•,o•,)•, (14) 

where he,,• and $o•,• are the spheroidal counterparts of the 
spherical Hankel function of the first kind and the spherical 
harmonic, respectivdy, •1,,• is an dgenvalue, and 

Since these functions are much less familiar than the spheri- 
cal solutions, in Appendix A we briefly discuss the proper- 
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ties of the scalar solutions and their deftfling equati øns and 
give explicit expressions for the {•, }. Hence, we note in 
passing that in contrast to the spherical functions, the angu- 
lar functions themselves depend upon the wavenumber. 

The vector wavefunctions defined above, in general, are 
neither orthogonal among themselves, nor are the members 
of one set orthogonal to the members of another set. Nor is 
any simple separation into a sum of products of a radial part 
and mutually orthogonal "vector spheroidal harmonics" 
possible. This means that even where the explicit satisfaction 
of boundary conditions on a surface of constant • is con- 
cemed, one must deal with a set of coupled, infinite dimen- 
sional matrix equations. Physically, this means that a nor- 
real mode solution of the type possible with a sphere is not 
possible here--the modes are coupled to one another. 

Fortunately, considerable simplification in the form of 
the { •, } does occur in the •--, oo limit and it turns out that 
this is essential to our derivation of the T-matrix formalism. 

The asymptotic forms of the basis states given in Appendix 
A are 

•1o'ml '--•hCml (h T ,• )Co,m/(h T •,T]•,•I• ), (17) 

I • he•t(hr,•)B•t(hr,•,•), (18) 

1 8 he•dhr,l)A•dhL,•,•), (19) 
where we have defin• 

1 

and where we have introduced the unit-vectors 

(22) 

• = (gt•)•/•e •, 
• = (g22)•/•e 2, (23) 

= (g33)'/e 3. 
Naturally the limit 

he,,,t(h,•(I/h•}cxp{i[h •- (i + 1)•/2] } (24) 
is to • und•t• • thee •tions. We • no• for 
t•e refer• that the suffa• tracQons on a •ns•t • sur- 
f•.(i.e., • = •) 

•(0.) = xv•. a + •a.(v•. + ,. v) 

have •e simple mymptotic • 

t(½,•,)=• O he,,(hr,•)C•t(hr,•,•), (26) 
t(½•t) = ,pkrhe=t(hr,• )B•t(hr,•,• ), (27) 

t(½•.)= -(z + •)&he.,(n•.• )n•,(&,•,• ). (28) 

•e explicit •culation of the surf • tr•fions t(½, ) is qui• 
len•hy •d we sh• not •ve it here. Inst•d, we ob• 
(26•28) ind•tly t•ough a s•ple o•ation. In the 
•m l•t, the •tficity (e = I/• ) of the •nsmt• s•- 
f• •m• •ro. •ns, there mint • the exit fo• 
•nden• 

h•kr, 

he,,(h,• •h,(kr)• (29) 
s•, (n,•,• •y•,(o,o ), 

(A•t,B•t ,C•t •v•tor sphed• h•o•, 

•w•n •s. (26•28) •d the •ymptotic r• limit of 
the• sphedc• •te•. •s •nd• is pr•- 
• on • exit •nden• •tW•n the m•ptoQc 
l•m of tbe { •, } •d the• sphedc• ••. In f•t 
t• is the raQon•e for the choi• e = 0 • •. (12) •d 
no•tion en•ter• • •s. (20•22). •e uti!i•og 
t•s fo• s•I•W, we •t out one •t'd•er• 
•tw• n the a•ve r•ul• •d those ob• • sphed• 
•rd•at•the A, B, C v•to• do not shoe the o•hogon- 
•ity pm•i• of the v•tor sphed• h•oni•. For ex•- 
pie, •nsider two mem• of the { B, }. Using • 
by p• •d the de•g d•erent•l •Qon for 
Ap•nd• A) we ob• 

(30) 
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Only in the limit hr--•0 does/2 •0 (hr) become diagonal. For 
the sake of completeness, we give a compendium of these 
integrals below. 

,•., _, • A•.,(&,•,• ).A•,•o,o (&,•,•) 
= 8•6mm. Bn., (31) 

---- 8,•Smm. a •t.(hr), (32) 

= 8oe8,,•.•2 •.(hr), (33) 

1 

•o2•r fl 1 .d•j_ d,• A•,,(n,_,• )-a•.,. (n•,•,•) = o, (35) 

1 

III. BEI'rI'S IDENTITY 

As discussed in the previous section, the members of 
our basis set I•, I are in general not orthogonal even on a 
surface of constant •, and in fact from the explicit forms 
given in Appendix A, it is clear that the inner products 

will be quite complicated. Nonetheless, it is possible to estab- 
lish a set of simple integral identities which are of great prac- 
tical importance in developing the T-matrix formalism. First 
we establish a theorem whose utility in deriving the spherical 
cordinate based T-matrix formalism was first noticed by 
Waterman, 3 and later utilized in an elegant fashion by Pao. ? 

Theorem: Let u• and • be solutions to be time-inde- 
pendent vector Helmholtz equation in some volume V 
bounded by a surface or collection of surfaces, denoted by S, 
and let 1 e•a denote the corresponding stress tensor. Then 

• ds n,• [ •ø•(u)•t• -- T,•o(o)ut• ] = O, 137) 
where n = n• e • is a unit vector pointing out of the volume, 
normal to S. 

The proof is straightforward. Using the definition of the 
stress tensor 

X'•(u) = ,tu•a "• +/•(u,,,• + u•.•)g"•g•' (38) 
and noting that the equation ofmotion, Eq. (2), can be rewrit- 
ten as 

•.•(u) = - •o•u •, 
we find 

% [ T"•(u)oo - :r•lo)u • ] 
= .r.•lu)oo + •r•'(u)oo.• - T.•(o)uo - 
= •(ur,• + 

-/•o•.•s•s•(uo.• + u•,) = o. (40) 

Applying the divergence theorem 

fF •' dv=•n•,F•' ds (41) 
to the expression above leads to the desired result. Using the 
definition of the surface traction 

t (u)= = nOr• (u), (42) 
we can rewrite our result as 

ds[t(u).v -- t(v)-u] = 0, (43) 
which is a particular form of Betti's third identity. With the 
above theorem, we establish a crucial lemma. 

Lemma: Let • and Re g?•, n = (a,m,1) be the outgo- 
ing and regular solutions to the time-independent vector 
Helmholtz equation, respectively, and let 5 be an arbitrary 
closed surface. Then 

•ds [ t(Re •p•. ).Re •e.' -- t(Re •e.' ).Re •,• ] = 0, (44} 

where 

0 n' -- O •,• = ( -- 1) ;'- t'v2(p/kr)12 •t,(hr), 
(47) 

o,;. • = [(• + 2•)/& ]&.. 

The proof of this lemma follows. Let $ be an arbitrary imagi- 
uary surface drawn between two constant • surfaces, 5_ and 
S+ tsec Fig. 2). For the first equation, we use the theorem 
with u ---- Re •, v = Re •e•.- Since these functions are re- 
gular within S_, we have 

• d sit(Re •,,-Re •,,,. -- t(Re •be,)'Re•,, ] ---- 0. (48) 
As 5_ may be deformed to S without encountering any sin- 
gularities, Eq. (44) follows. 

For the third equation, we apply our theorem to the 
volume bounded by S+ and 5• with u=•., and 
v = Re •e..- Consistently choosing • to be in the + g direc- 
tion, we have 

and since we cross no singularities by extending $• towards 
g--. oo and S+ towards 5, we find 

f• ds[t(•.)-Re •,.•. -- t(Re •,•.0)q[• ] 
= lim• ds[t(½•)-Re •,., -- t(Re ½,.,.}•,• ]. (50) 

which can easily be evaluated by examining the asymptotic 
limits of • and •'(•,,) already established. Using 
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FIG. 2. The surfaces used in the proof of the lemma. 

---- L/f) lim f2• • W [je,,,.r (h r ,•' ),he.,, (h r,• ) ] 

X f d• 
= i( -- l) ('- r•(p/kr)l• ;.(hr)8• 8..,, (52) 

where 

tg(je,.,he.J he,, - he, 
We •mpl•e the p•f of •e 1• by not•g that integr• 
invol•g two outgong wave•nctions [e.g., •. (45)] •y • 
tr• • • the foregong ex•ple, o•y now we have 

1• • • W (he•v ,he• ) 

ap•g, w•ch •y v•sh•. 
•fions (•46) • the new r•ul• n• to derive 

a spheroid• •rd• • Tmat•. 

IV. HUYGEN'S PRINCIPLE 

Consider the scattering from a region bounded by the 
closed surface Sshown in Fig. 2. We assume that the scatter- 
ing medium in general has different elastic properties than 
the surrounding host medium and differentiate between the 
parameters and basis functions of the two regions by atrLxing 
a superscript o to those of the scatterer. In this paper, we shall 
not attempt to rigorously establish the domain of conver- 
gence of the vector spheroidal expansions of the incident, 
scattered, and refracted waves. Instead, we assume that the 
results establishing the convergence of the vector spherical 

expansions in some region bounded by a circumscribing (or 
inscribing) spherical surface can be taken over directly in the 
present case by replacing the spherical surface by a prolate 
spheroidal surface. This is likely assured by the uniform con- 
vergenee of the scalar spheroidal eigenfunction expansions 
to the scalar functions •, •, andx deftned in F. qs. (4}, (7}, and 
(8) in the aforementioned domains, and we shall return to 
this point in a future paper. 

The incident wave u i is assumed known and the series 

u' = Za. ge,. (54) 

to be uniformly convergent for • < •., given that there are 
no sources within this boundary. The scattering region 
serves as a source for the scattered wave u • and we assume 

that the representation 

converges for • greater than or equal to the radial coodinate 
of the smallest circumscribed prolate spheroidal surface. 
Likewise, the series for the refracted wave 

u' = 

is presumed to be uniformly convergent at least on and with= 
in the largest spheroid which can be inscribed in the scatter= 
ing region. • The exact regions of convergence of these series 
can, of course, be established once the coefficients have been 
determined. 

To obtain expressions for the coefficients a. andf., we 
apply Eq. (43) to the volume I/bounded by Sand S+, i.e., 

(57) 
On the outer boundary S+, we may use the uniformly con= 
vergent series for the total displacements and tractions 

t(u) = t(ge ).) + t().). (59) 

Choosing first v = •,. and then v = Re •. in conjunction 
with Eqs. (58) and (59), and evaluating the left-hand side of 
F.q. (57) with our lernma, we find 

(61) i•O..•f., = • ds[t+-Re ). -- t(ge •).)-u+ ]. 
Here t+ and u+ denote the exterior (to the volume bounded 
by S) boundary values of the surface traction and displace= 
ment on S. 

In like fashion, to obtain expressions for the b,-, we ap- 
ply Eq. (43) to the region bounded by S and $_, 

,_ ds[t(")', -- t(v)'u] = 
At the inner surface $_, we are assured that Eq. (5(5) and 
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t(u'} ---- •b, t{Re ,o•) (63) 
are uniformly convergent. Evaluating Eq. {62} by utilizing 
the expressions in conjunction with first v = Re •o• and then 
v = ,o•, we obtain 

0 = • ds[t_-Re ,•o =_ t{Re •ø• )-u_ ], {64) 
ß --in•,Onø.nbn.= ds[t_.•ø - t(,ø• }.u_ 1, 

where t_ and u_ denote the interior boundary values of the 
traction and the displacement. 

Equations (60} and {61) and Eqs. (64) and {65) constitute 
the mathematical representation of Huygen's principle exte- 
rior to, and interior to the scattering region, respectively. 
They differ from their spherical counterparts by the nondia- 
gonal nature of the O•., which in turn, is simply a reflection 
of the mode coupling encountered in all finite geometries 
other than the sphere. 

¾. TMATRIX FOR AN ELASTIC INCLUSION IN AN 
ELASTIC SOLID 

Consider the scattering from an elastic inclusion in an 
elastic solid. We assume the surfaces of the scatterer and host 

medium to be perfectly welded, i.e., 

t+ = t_ on s, (66) 

u+ = u_ on s. {67) 

Making these replacements, the equations for the incident 
and scattered wave coefficients become 

--i•.O,,.,,a,, = •ds[t_-•, -- t(•.}-u_], {68} 
i,•. o•,d•. = •, d•[t_-Re ,.- t{P,e ½,).u_ I. 

The unknown boundary values of the surface traction and 
displacement on $ we expand according to 

u_ = •.b. Re •bø•, (70} 

t_ = •b.t{Re •o•}. {71} 

In Appendix B, we show that Huygen's principle is a neces- 
sary and su•t •ndition for •e unifo• •nvergen• of 
thee •fi• on and within S, •ven that the exposion for u 
[•. {56}] • unffo•ly •nverg•t • •me r•on Mtefior to 
S. 

In•ng •s. {70) •d {71} in• •s. {68) •d {69) •d 
defining 

R. = • ds It(Re •. )• -- t(•.)-Re *•. ], (72) 
•.. = • ds[t(Re •.)-Re • -- •Re •.-Rc •, ], (73) 

we ob• 

(74) 

Note that both •. and •., carr• four indices. i.e., n = {•', •y. 
m./), so that 0..,. R.•,. and R.., are square matrices and 
hence we can write 

fn = •T.,,.a,,,, 176} 

where T,,,. is, by definition, the Tmatrix. In matrix notation, 
T is given by 

^ ! 
r = - L• -, (771 

Q = O -'R, , (78) 
•___• I ̂  O- R, (79) 

where we have used the fact that O is symmetric. 
From Eqs. {77}-{79), we see that, as compared to the 

spherical result, we must generate and invert one additional 
matrix, O. However, this presents no special difficulty, as 
this real, symmetric matrix is trivial to calculate and it is not 
ill-conditioned. 

VI. TMATRIX FOR A FLUID-LOADED ELASTIC SOLID 

Consider next the scattering from an elastic body im- 
mersed in an inviseid fluid. The boundary conditions on the 
surface between the scatterer and fluid are 

•-u+ = •.u_, (a0) 

•-t+ = h-t_, (81) 

•xt_ = 0, (821 

where • is a unit vector pointing out of the volume enclosed 
by $. In an inviscid fluid •-•0), there are no shear degrees of 
freedom and O becomes diagonal [see Eq. {47}], 

o... = (x/•, 1•.... 

Likewise, the stress tensor simplifies considerably, i.e., 

t(u)-•xv•q. (84} 
and we can write 

t+•. -- t(½.l-u+ ---- •-t+•.•b n --•.V-•Jnfi-U+, 

etc. Thus, in the present case, Eqs. (60)'and (61) reduce to 

•fn = •'-•dst•'t_•øRe*n --/•VøRe•bn•'U_]. {87} 
where we have incorporated the boundary conditions, F. qs. 
(80) and {81). We now use the expansion equations {70) and 
(71) for the unknowns u_ and {in this case) h-t_ obtaining 

-- ia,, = •R,,,,.b,,., (88) 

•fn = E•nn ' b.,, (89) 

{90) 
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Here, however, R is not a square matrix and we cannot 
straighfforwardly invert F.q. (88). Bostrom s has shoWn the 
correct way to proceed for the spherical-coordinate based T 
matrix, and we follow his treatment here. Utilizing Eqs. (80) 
and (82), Eq. (64} may be rewritten as 

o = • ds [ •.t _ •.He •o• _ •-tlRe • }•.u + 
+ tlHe •.l'a XlS Xu-I]. 1021 

Expanding the normal component of the surface field h-u+ 

h-u+ = •½•-Re • (93) 

and u_ and t_ with Eqs. (70) and (?l), we obtain 

0 = -- •M...c,,. + •P,,,,.b,,. 

M,,. + f ds •-t(Re • )h-Re •,.. 1951 
p... = { dsD.tl • •.)•.• 

+ t(Re •//•, )-h Xla žRe tø,. ) ]. 196} 
The point behind this selective use of the boundary condi- 
tions is that it may not be possible to differentiate Eq. (93) in 
the normal direction. Combining Eqs. (88), {89}, and {94), in 
matrix flotation we have 

-- ia = RP - •Mc, (97) 

if= •P -'Stc. 198) 
where a and c are colam matrices, and R, P - ",' and M are 
n X 3n, 3n X 3n, and 3n X n, respectively. Thus, in complete 
analogy with the spherical case, we have 

r = - • -', 
•2 = RP - "M. (•00) 
0 = • (•--,•). (10•) 

VII. ENERGY CONSERVATION AND TIME REVERSAL 
INVARIANCE 

In spherical coordinates, the dual requirements of ener- 
gy conservation and time reversal invariance lead to a transi- 
tion matrix which is both unitary and symmetric. As a prac- 
tical matter, these two properties greatly case the numerical 
effort involved in a typical calculation, leading both to im- 
proved numerical convergence for the T-matrix procedure 
and to a reduction of the number of terms which must be 

calculated for any given truncation of the T matrix. In the 
following, we determine the consequences of these invar- 
lance principles for the spheroidal coordinate based T ma- 
trix. 

Consider the requirement of energy conservation first. 
For plane waves, the energy-flux vector averaged over one 
period of oscillation is a 

(P=) = •o Im [ ro.s(u)u• ], (1021 
where 

a = •(a, Re •. +f•,) 1103) 

is the total field. From Eq. {40} we see that 

% (P•) = 0, 
and 

ds •-(P) = const, (105) 
where S is any closed surface, then follows from the diver- 
gence theorem. Equation {105) is a statement of the conser- 
vation of energy; for plane waves, the average total energy 
flux through any closed surfnee is constant. In the present 
circumstance, that constant will be zero, as long as the sur- 
face does not enclose any sources or sinks of energy. In 
which case, we have 

Z/a,•a:• ds[ t(Re tA, ).Re *: -- t(Re •,,)-Re *, ] 

Not•g •at 

•: = 2 Re ½.-- ½., 1107) 

•d us•g •c •bi• nature of the a., wc ob• 

T+O + OT= -- 2T+OT. {108) 

•is is •e "unimdty" •ndition for the spberoid• •rdi- 
mt• tr•ti• mtdx. In •ms of the •tte•g 
trix 

which re•t• 
{108) •m• 

S +OS = O. {110) 

•m, st•ctly s•g, the S mtdx in spheroi• •rdi- 
mt• is •i• only wh• O 
• {i.e., wh• •e h•t m•im is • •dmid fi•d}. 

•n•der next •e •n•uen• of t•e-revc• •v•- 
•. To ob• 
the W• field • 
fi•ds, i.e., 

u = •(a;,.* +/;,.), 

where, by definition, 

(111) 

f•, ---- •$,,,a•,. (112) 
Time reversal invariancc requires that the time-reversed 
field 

u* ---- •(f•,*u.* + a;.*½.) {113) 

also be a solution to the Helmholtz equation, and that 
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Thus 

(114) 

SS*= 1. (116) 

Equations {110) and (116) are oddly incongruent.rela- 
tions. While it is possible to define an $ matrix, S', which 
satisfies the unitarity condition 

S'S '+ = 1, (117} 

it is unlikely that S' will also satisfy Eq. (116}. 16 However, we 
note that for an inviscid fluid, 0 becomes a multiple of the 
unit matrix and the $ matrix is both unitary and symmetric. 

VIII. SPHEROIDAL INCLUSIONS 

To further illustrate the differences between the spheri- 
cal- and spheroidal-coordinate based transition matrices, we 
calculate the T matrices for the scattering from sound-soft 
and sound-hard constant-• (spheroidal) inclusions. 

Consider first the scattering from a sound-soft spheroi- 
dal inclusion embedded in an elastic medium. Using the van- 
ishing of the surface traction 

t+ =t_ =0, (118) 

and expanding the surface displacement in regular basis 
functions 

u+ = •c, Rc•., (119) 

Eq. (60) t•comes 

- i•O.,.a., = -- •c.,• dst(½.).Re •.., (120) 

or 

obtaining 

T• -- (O -l• }l O -•R I -l, 11281 

R,,. = • ds t(Re ½,.)q•,, (129) 
•... = •. ds t(Re ½..).Re •., (130) 

w•ch on• ag• •upl• • 1 •n•st•t • p•ty •nsid- 
erations. 

•is •upling, •Qcipat• in •. II, • a •n•uen• of 
the nom•ble (in the •n• ofMo• •d F•h•h TM) na- 
ture of the vector Hel•oltz •uation • spheroid• •rdi- 
•t•. 

In the Hmit that •e sh• m•ul• of the h•t m• 
v•sh•, thee r•ults s•pl• •n•d•bly. U•g 

o... 

•d 

= -xf 032) 
(r•!l that the spheroid! h•oni• of •e wav•um•r a• 
o•ono•) etc., we find t•t the tr•ifion ma• 

(•und-•ft) T.., •..,, (133) 
he•t(h,• ) 

(•und-•rd)T.., = -- •..,, (134) 
. •he•t(h,•)/O• 

• •mc diagon• in this •t. 

a. = --i•O•n.lPn.n. Cn ., 

P,.,. •- • ds t(•b n. ).Re 
In a similar fashion, Eq. (61) yields 

f,, =i•O•.'lP.,..C. ' , 

•n'n' = • ds t(Re ½,.).Re 
Titus, the T matrix 

T = -- 10 -'.•)10 -'P)-' 

(121) 

(122) 

(123) 

024) 

(125) 

couples incident and outgoing partial wave coefficients over 
all ! consistent with parity considerations (i.e., there is no 
coupling between even and odd ! }. 

Likewise, for a rigid spheroid in an elastic medium, 

h-u+ = h-u_ = 0, (126) 

and we expand the surface traction according to 

t+ = •½•t(Re •. ), 1127) 

IX. DISCUSSION 

In the foregoing, we have derived a transition matrix 
formalism for acoustic and elastic wave scattering in prelate 
spheroidal coordinates. The two problems which remain are 
(1) the completeness and domain of convergence of the ex- 
pansions in {•. } and { Re •. } must be rigorously estab- 
lished, and (2} the practicality and soundness of the approach 
must be demonstrated. 

With regard to { 1), the formal demonstration of conver- 
gence and completeness is likely just a straightforward ex- 
tension of existing work on spherical expansions and this line 
is presently being pursued. With regard to (2} however, we 
note that the generation of the spheroidal functions is a non- 
trivial matter," due in part to the lack of recursion relations 
among these functions. As a first practical calculation, in a 
subsequent paper we will apply this formalism to the acous- 
tic scattering from an elastic prelate spheroid immersed in 
water. This should provide a good proving ground for deter- 
mining the efficacy of the approach for large aspect ratio 
scatterers. 

The present work can be trivially extended to electro- 
magnetic scattering by deleting all reference to the irrota- 
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tional degree of freedom (i.e., l•3om I)• Further, as much of our 
formalism has been written covariantly, the extension to oth- 
er coordinate systems in which the scalar Helmholtz equa- 
tion is separable is straightforward. 
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APPENDIX A 

In this appendix, we briefly review the solutions of the 
scalar Helmholtz equation in spheroidal coordinates and 
give explicit expressions for the vector basis functions de- 
fined in this paper. is Let 

(X 1 •X2rX3 ) = 
(A1) 

O,,,y:,y 3) = {g,;7,• ). 
Then the convariant metric tensor is given by 

gn =/2[(• 2 _ ;72)/(• 2 _ 1)], (A2) 
g22 =f2[(• 2 _ ;72)/(1 _ ;72)], (A3) 
g33 = f2(•, _ 1)(1 -- ;72), (A4) 

ga = O, i •j, (AS) 
and the contravariant tensor (no sum over i), by 

ga= l/g,,; g0 = 0, i•j.. (A6) 
We note for future reference that the covariant expressions 
for the gradient, divergence, and curl in this coordinate sys- 
tem are 

grad•b=(-•)e'+(•-•)e2+(8•P•e 3, (A7) 
1 

div A = 
f:•: __ ;72) 

•:_ ;72) 0 •0' (AS) + (•2 - 1)11 - ;72) a• 
1 

curl A = 
f3• 2 __ •2) 

/ 

Separating •he time-independent Helmholtz equation 

(V • + k 2)• = 0 (A10) 
with 

l•ds to the thr• ordMa• differenti• equations 

(• d m 2 d •'-- 1)• ge•+h n.,(h,•) 

(d (l_,:) d m 2 ) 
= - •,{h ff•,(•,n), {Ai3) 

d 2 

where h =• and where d•t{h ) denot• the eigenv•ue. N• 
ti• that'•s. (A12) •d {A13) •e idenfic•, ex•pt for the 
r•ge of the argument, the •st involving {1, m) •d the 
s•ond ( - 1, + 1). Th• two eq•tions • re•l• sM- 
gular •Mts at • 1 and • i•egular sM•l• •int at infin- 
ity. 

•e regul• (je•) •d i•egular (ne•t) radial f•ctions 
are nomalized according to 

je•,(h,C) • (1/•)cos[h•- {•+ •)r/2], 

ne•t(h,•) • (1/h•)sin[h•-{I + 1)•/2], (A16) 

and their Wrons•an is •ven by 

W(je•,,ne•t) = 1/h •2_ 1), (A17) 
for h •0. With he•t we denote the sph•oi•l •uiv•ent of 
the Hankel function 

he•dh,g ) =je•t(h,• ) + ine•t{h,g ), (A18) 
which co•es•nds to outgoing spheroidal wav•. 

•e regular angular functions, nom• to 

S•t (h,•) • P 7(•) (A 19) 

(P • is the •sociat• •ngendre function) •tisfy the o•ho- 
gonality relations 

--I 

We do not •n•m ourselv• with the i•e•l• •gul• func- 
tions here. 

The solution to the • •uafion is 

{A20 • (•) = [sin m•. 
For future referent, we de•e the "spheroi• h•- 

•o•i•" 

( e• 1 (h) 

. f•s m•, a = e (A22) = o, 
no•aliz• such that 

43 J. Acoust. Sec. Am., Vol. 75, No. 1, January 1984 Roger H. Hackman: Scattering in spheroidal coordinates 43 



(A23) 

We note that the spheroidal functions defined above do 
not possess recursion relations of the kind which exist, for 
example, among three contiguous Legendre polynomials or 
spherical Bessel functions. This is an added complication 
where both formal manipulations and numerical calcula- 
tions are concerned. 

Consider next the vector solutions. Transforming r to 
I 

prolate spheroidal coordinates with 

0x J,, , 

bjlx•l 
gives 

a•=f2g, a2=ff•i, a3=O. 

Letting X,, = R,•$•,,a denote a solution to Eq. (A11) with 
k = k r, i.e.,n = {or, m,!), we find 

r•, = • I •'ei + -- 
and 

I/2 •T '4 ml 

2•9(1 -- •7 2) • m• •2 _ 1)(•2 _ 72) 
•x,+•2_v, (3•-l)•x.+•C• 2-l) 

(A26) 

IX, 4 ß /(1 -- •/2) 02 x,)e • 
(A27) 

[notice ,4•,• = •4r•t(hr)] and for the irrotational field, using 
•, to denote a solution to Eq. (A 11} with k = k L. we obtain 

k•. = • •,e' + •,,e2 + •-,,e • . (A28) 
APPENDIX B 

The implications of Huygen's principle for the conver- 
gence and differentiability of the interior expansion, Eq. 
have been consider by Waterman •'3 and Pao ? for the spheri- 
cal-coordinate based T matrix. The additional complica- 
tions in the present case are minor. First we state the 
theorem. 

Theorem: Huygen's principle is a necessary and suffi- 
cient condition for the convergence and differentiability of 
the expansion of the interior fields 

u = •b. Re • (B I) 
throughout the interior of the scatterer and on the interior of 
the surface of the scatterer. 

This theorem is proved as follows. First we assume that 
u_ and its covariant derivatives possess different expan- 
sions, i.e., 

u_ = Zc. •e •o., 

t_ = Za. t(Re •). (S3) 

Substituting these expansions in Eqs. (64) and (65), we obtain 

o =.Z(i,,.a,. - i,.,½,.), 

-- i•O,.,b,. = Z(R,,.d,. -- R,.,c,.), (BS) 

where 

•d wh• • • ob•n• from R by rep•g • •th•e •. 
It follo• from o• le• s•y •. (•), t•t R m•t 
• symmet•c. •ns 

•,,. (d,. -- c,.) = 0 iS7) 
and either 

d, = c. ins) 
or 

det(• ) = 0. (B9) 
As noted by Waterman. s Eq. (B9) constitutes the secular 
equation for the interior resonant cavity modes of a •gid 
scatterer (see Sec. VIII}• In general the determinant of R is 
nonvanishing and it follows that the expansion for u_ must 
be differentiable. That this expansion [Eq. (B2)] is identical 
to Eq. IBI) then follows from Eqs. (46) and (BS}. 

This establishes the necessary condition for the 
theorem. That the principle is sufficient follows from assum- 
ing Eq. (B1) to be uniformly convergent and then directly 
substituting into Eq. (65). 
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