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In a previous paper [Roger H. Hackman, J. Aeonst. Soe. Am. 75, 35-45 (1984}], a spheroidal- 
coordinate-based transition matrix formalism was established for acoustic and elastic wave 
scattering. In this paper, the acoustic scattering by a solid elastic cylinder with hemispherical 
endcaps and a length-to-diameter ratio of 10 is considered. Numerical results are presented for the 
backscattered form function as a function of frequency for various angles of incidence. These 
results are compared with experimental measurements taken at the Naval Coastal Systems Center 
and given a physical interpretation. 

PACS numbers: 43.20.Fn, 43.30.Gv 

INTRODUCTION 

In 1968, Waterman' introduced a new technique for 
systematically solving the acoustic diffraction problem for 
an arbitrarily shaped body, the transition matrix approach. 
For the sake of completenesss, we briefly outhne the devel- 
opment of this formalism below. We assume that the acous- 
tic field satisfies the standard Helmholtz equation 

•'(r') -I- f, ds h.[•+VG (k I r -- r'l) -- G(k I r -- 
= 

10, r'•v, 

where •3 is the total acoustic field, •b i is the incident field, G is 
the free space Green's function and the integral is over the 
surface of the scatterer. The subscript ( -I- ) denotes a bound- 
ary value as the surface is approached from its exterior and 
the two different values of the right-hand side of the equation 
refer to points exterior and interior to the scattering volume, 
v, respectively. We note that the latter case, i.e., when the 
field of the reradiating sources induced on the surface of the 
scatterer exactly cancels the incident field, is often referred 
to as the "extinction theorem. "• Waterman's procedure is to 
expand the incident and scattered waves, •3 • and •b' ---- • -- •, 
and the Ctreen's function G, in regular and outgoing solu- 
tions to the scalar Helmholtz equation in spherical coordi- 
nates. Since the Green's function is singular when the source 
and field points coincide, for the extinction theorem the ex- 
pansion procedure can be implemented only for field points 
which are interior to the largest sphere which can be in- 
scribed in the scatterer and centered on the origin. However, 
• is regular throughout the interior of the scatterer. Thus, by 
the process of analytic continuation, it follows that • must 
vanish not just in the interior of the inscribing sphere, but 
throughout the interior of the scatterer. An infinite, coupled 
set of equations is developed from these results by expanding 
the unknown surface fields in a suitable basis set. A formal 
solution to this set of linear algebraic equations can be 
straightforwardly obtained, giving the expansion coeffi- 
cients of the outgoing wave in terms of those of the incident 
field. 

This procedure has a distinct advantage over competing 
approaches in that it appears to have the strongest theoreti- 
cal foundation? s The approach is formally exact and com- 
putationally efficient (where applicable), and both the 
uniqueness 3 and the convergence 4'• of the procedure can be 
proven for sound-soft and sound-hard scatterers for appro- 
priate choices of basis functions. This is in marked contrast 
to the usual integral equation approach, 6 which leads to 
equations which are singular at certain discrete frequencies 
corresponding to the interior eigenvalue problem, and to 
those approaches embodying the ad hoc Rayleigh hypothe- 
sis. ? The T-matrix formalism has been extended to elastic 

wave scattering by Waterman s and Pao and Varatharajulu 9 
and to acoustic (i.e., scalar wave) scattering from an elastic 
target by Bostr•m.•ø 

It has been subsequently determined that this approach, 
although formally exact, suffers from a severe practical nu- 
merical limitation. For scatterers which deviate strongly 
from a spherical shape the number of terms required in the 
expansion of the surface fields increases dramatically and 
the matrices tend to become ill conditioned. This behavior 

had been predicted by Lewin, • who suggested that the 
source of this difficulty is a hypersensitivity of the surface 
field to minute errors of the field on the inscribed sphere. 
That is, assume that the extinction theorem is satisfied to a 
given order of approximation on the inscribed sphere with a 
given expansion. The further this spherical surface must be 
deformed to conform to the surface of the scatterer, the 
greater the error in the extrapolated value of the field and its 
derivatives on the surface and hence, the greater the induced 
error in the outgoing field. 

Bates and Wall •2 were the first to suggest that these dif- 
ficulties could be alleviated by formulating the scattering 
problem in alternative expansion functions which "better 
fit" the scatterer. These authors examined the efficacy of a 
two-dimensional elliptic-cx•ordinate-bascd transition matrix 
for the scattering of scalar waves from large aspect ratio scat- 
terers. They observed that choosing a coordinate system, 
such that the "radial coordinate = constant" surface lay as 
close to the surface of the scatterer as possible, alleviated the 
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ill-ctmdititming problems. In later work, Wall l• attempted 
to develop a transition matrix in prolate spheroidal coordi- 
nates for vector wave scatter•g, but was unable to construct 
a Green's function exposion suitable for general waves. He 
did succeed in constructing a Green's function for axisym- 
metric waves, •4 and later applied this formalism to a cylin- 
drical antenna problem. •z While other authors •c'-2• have 
suggested techniques for improving the numerical stability 
of the spherical-coord•inzte-based T matrix, none of these 
approaches holds the promise or the intuitive appeal of the 
spheroidal-coordinate-based formalism for large aspect ra- 
tio scatterers. 

The difficulty in constructing a Green's function in 
spheroidal coordinates lies in the nonseparable nature of the 
vector Helmholtz equation in this coordinate system. As a 
consequence of this nonseparability, the vector wave func- 
titms are not orthogonal and the standard techniques for 
constructing the Green's function become intractable. 
WalP 4 succeeds in constructing an orthogonal set of spheroi- 
dal vector basis functions by considerin^g grad(•l for the lon- 
gitudinal degrees of freedom, and curl(•v) for the transverse 
degrees of freedom, where • and;• are solutions to the scalar 
Helmholtz equation. However, he succeeds only at the cost 
of generality---as indicated above, these basis functions can- 
not describe off-axis scattering processes. 

As Waterman has pointed out, 2• Huygen's principle is 
the funclamcntal concept underlying the T-matrix formal- 
ism, and the Green's function technique outlined above is 
simply one way of obtaining the T-matrix equations. Water- 
man 23 and Pao • have developed a simple alternative to the 
above development for displaying the mathematical content 
of Huygen's principle for vector waves in spherical coordi- 
nates. This technique is based on Betti's identity 

- = o, 
where u andv are solutions to the vector Helmholtz equation 
and where • is the assaciated stress tensor. In an earlier 

paper •z (paper I), the covariant generalization of this tech- 
nique was used to establish a transition matrix formalism for 
the scattering of general scalar or vector waves in prolate 
spheroidal coordinates. For vector waves, this approach is 
far more convenient than that originally adopted by Water- 
man, especially for coordinate systems in which the vector 
Helmholtz equation is not separable, as it obviates the need 
for constructing the vector Grecn's function. Thus the orth- 
ogonality of the vector basis states is no longer an important 
consideration. In the above work, the spheroidal vector basis 
functions were generated by considering grad(•) for the lon- 
gitudinal degrees of freedom and curl{r• ) for the transverse 
degrees of freedom. Here again, •b and yg are solutions to the 
appropriate scalar Helmholtz equations. We shah refer to 
this choice of basis functions as the "standard'" choice. 26 

Like the standard spherical-coordinate-based approach, this 
formalism is suitable for scattering problems involving arbi- 
trarily shaped bodies. Now however, we have the capability 
to explicifiy tailor the formalism to the aspect ratio require- 
ments of the scatterer. In the present paper, we consider a 
specific application of this approach to acoustic scattering 
from a finite, solid elastic cylinder to determine its efficiency 
in dealing with slender, elongated scatterers. 

There have been a number of previous formulations of 
acoustic scattering problems in spheroidal coordinates. Ko- 
tani, •? who is perhaps the earliest example, considered the 
acoustic diffraction by a circular disk in oblate spheroidal 
coordinates. Bowkamp, •s and later Spence, •9 gave more 
thorough, rigorous treatments of this problem and of the 
diffraction by a circular aperture. Spence and Granger • are 
generally accredited with formulating the scattering from a 
rigid prolate spheroid as a modal harmonic sum in spheroi- 
dal coordinates. These authors presented numerical results 
in the form of beam patterns for various aspect ratios and 
angles of incidence for low frequencies. Senior •! gave nu- 
merical results for rigid and pressure release spheroids for 
axially incident acoustic waves, and Kl'•schchev and 
Sheiba • extended these results to oblique incidence. There 
hav• been a number of solutions for the diffraction of plane 
waves in the high frequency regime? -z7 The more predomi- 
nant approach z•-z• has been to use an extension of the Wat- 
son transformation to convert the modal harmonic series for 

sound-hard and sound-soft spheroidal scatterers into a resi- 
due series which converges more rapidly at high frequencies. 
Lauchle, z? however, directly evaluated the harmonic series 
by introducing high-frequency asymptotic expansions for 
the spheroidal functions. 

Silbiger •s was the first to consider the acoustic scatter- 
ing by a penetrable spheroid in spheroidal coordinates. His 
treatment was incomplete in that the result was formulated 
in terms of a surface impedance operator Z, which is in gen- 
eral unknown. While Z was evaluated for several special 
cases, no attempt was made to incorporate the full complex- 
ity of an elastic prolate spheroidal scatterer. Yeh 3ø consid- 
ered the scattering from penetrable liquid (i.e., no shear de- 
grees of freedom) prolate and oblate spheroids and gave 
numerical results for the special case that mode coupling is 
not present, i.e., when the sound speed of the scatterer is 
identical to that of water. 

All of the above calculations involve only sc•_ !or fields 
and the boundary conditions can be implemented in a natu- 
ral fashion due to the orthogonality of the solutions to the 
scalar Helmholtz equation in spheroidal coordinates. For- 
marty, the acoustic scattering from elastic targets and the 
scattering of elastic waves (in elastic media) are far more 
difficult, as the transverse polarization degrees of freedom 
require the introduction of the prolate spheroidal vector 
wavefunctions. As a consequence of the nonorthogonality of 
the vector wavefunctions, the boundary conditions involv- 
ing vector waves become relatively intractable in this coordi- 
nate system. Although a number of authors have dealt with 
elastic waves in spheroidal shells and solids, •-• it was not 
until after 1970 that the acoustic scattering from an elastic 
body was treated. In a series of papers, Grossman et al., •6 
Gutman and Kl'•shcbev, •? and Kl'•shehev •s considered the 
acoustic scattering from a spheroidal elastic shell. These 
authors make the same choice for the vector basis set as the 

present author, in paper I. 
To a considerable extent, the history of the formulation 

of electromagnetic scattering in spheroidal coordinates par- 
allels that of the acoustic scattering problem. The earliest 
attempt was in 1927 by MSglich, •9 who considered the dif- 
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fraction of a plane polarized wave incident on a perfectly 
ß conducting circulor disk. His treatment was incorrect, how- 
ever, and the problem was not properly dealt with until 1948 
by Meixner. •ø Meixner z• and Flammer s2 later formulated 
the scattering of an electromagnetic wave by a conducting 
prolate spheroid in spheroidal coordinates for the special 
case that the source is a dipole oriented along the axis of the 
spheroid. Both of the above problems can be reduced to sca- 
lar form and the vector character of the electromagnetic 
wave need not be confronted. The more demanding problem 
of the scattering of a plane polarized electromagnetic wave 
by a conducting prolate spheroid, which required the use of 
the prolate spheroidal vector wavefunctions, was first for- 
mulated by Schultz, sz for end-on incidence, and Rauch s4 
extended this work to oblate spheroids. Siegel et al? -•6 per- 
formed calculations based on Schultz's formalism and pre- 
sented results for several {low) frequencies. These authors 
did not make the "standard" choice for the vector basis func- 

tions, i.e., that of paper I, but instead chose to represent the 
vector fields in rectangular coordinates with each of the 
components given a representation in terms of the solutions 
to the scalar Heimholtz equation. There was little further 
activity on this scattering problem until 1975, when Asano 
and Yamamoto •? formulated the general problem of the 
scattering of a plane electromagnetic wave with an arbitrary 
angle of incidence on a dielectric spheroid. These authors' 
treatment of the problem differs from that of Schultz primar- 
ily in the use of the standard vector basis functions to repre- 
sent the E and H fields. Numerical results were presented in 
the form of angular distributions for both oblate and prolate 
spheroidal scatterers for several different aspect ratios for 
low frequencies. In a subsequent series of papers, Asano, zs 
Kotlarchyk et al., •9 Asano and Sato, •ø and Asano 6• applied 
the model to an ensemble of randomly oriented scatterers. 

This brief review would not be complete without men- 
tioning the pioneering work of Van Buren et al., • King et 
al., •s and King and Van Buren •4 on the generation of spher- 
oidal functions, and the later improvements of Patz and Van 
Buren. • The avai•bility of reliable, efficient codes for the 
calculation of the spheroidal functions has had a significant 
impact on the present work. 

The first important result of the present work is the de- 
monstration that the "standard" set of prolate spheroidal, 
vector basis functions is overcomplete. The (•r,m;l } = (e,O,O), 
r ---- 1,2 transverse vector basis states can be written as linear 
combinations of the remaining (•r----e,m-----0,/•0) trans- 
verse vector basis states. It follows that all previous calcula- 
tions utilizing these functions are suspect. This point is dis- 
cnssed further in Sec. I. 

In Sec. II, we discuss the application of our approach to 
the acoustic scattering from elastic solids. To validate the 
theoretical procedures and computer codes, we have made a 
detailed experimental study of the acoustic scattering from a 
finite, 10:1 aluminum cylinder with hemi.•pherical endcaps 
(Sec. III). Section IV is devoted to a comparison of the pre- 
dictions of our approach with the experimental results and 
to an analysis of the elastic excitations underlying the more 
prominent features in the backscattered form function. 

In Appendix A we give explicit expressions for the stress 

tensor in prolate spheroidal coordinates and in Appendix B, 
we derive the particular variant of the Moore-Penrose in- 
verse used in the present work. 

I. THE vECTOR BASIS FUNCTIONS 

The prolate spheroidal, vector basis functions •., used 
here were defined in paper I. We remind the reader that 
r = 1,2 refers to transverse degrees of freedom, r ---- 3, to the 
longitudinal degree of freedom, and that n refers to the set 
(•,m,l) required to specify the particular solution to the sca- 
lar Helmholtz equation. In that paper, it was shown that 
these functions satisfy the relations 

•ds It(Re •)-Re •,•,. -- t(Re •.).Re •0, ] =0, (1) 
. ds [t(½.,)-•be., -- t(•e., ).½., ] = 0, (2) 
•ds [ t(•.)-Re ),,.. -- t(Re ½,,.).•.] 

= (3) 

where 0 •. is a real, symmetric matrix. In eases wbe• the 
meaning will not be obscured, we shall drop the reference to 
7'. 

These relations were used in conjunction with Betifs 
third identity to derive a mathematical representation of 
Huygen's principle, exterior to 

-- i • O..,,a., = • ds [t+-•. -- t(½.ku+ ], 14) 
iZo...f.. =f. ds [t+-Re ,. -- t(Re ½.).u+]. (Z) 
and interior to 

0 ---- • ds [ t_.Re •o. _ t(Re •)-u _ ], (6) 

(7) - '2, b. = - 1, 
the scattering region. Here, { a. }, { f. }, and { b. } are the 
expansion coefficients of the incident, scattered, and refract- 
ed waves, and the superscript 0 denotes quantities pertaining 
to the scattering region. The -I-(--) subscripts refer to 
boundary values taken at the exterior (interior) of the bound- 
ary of the scatterer, and s denotes that boundary. 

The matrix O •, is the cornerstone of our approach and 
its detailed properties are of some interest. For r = 3, O t• is 
diagonal in I and independent of m, i.e., 

0 •! .m = [ (• -J- 2•)/kL ] •l,'. (8) 
For the transverse degrees of freedom, O •.. takes the form 

O ],."' = O •.' ---- (p/kr)/2 •'.(hr), (9) 
where • •, is a parity conserving angular integral which is 
easily calculable and may be expressed in terms of the expan- 
sion coefficients of the angular spheroidal functions. In the 
spherical limit (f--,O, •--•oo with f•-•kr), 

lira •2 ;.(hr) ---- 6n', (10) 
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and Eq. (3) is simply an expression of the orthogenality of the 
vector spherical basis functions. In the present case, where 
•r is,/n genera/, nonzero and the f•nctions are nonortho- 
gonal, O t•' is nonetheless intimately involved with the linear 
independence of the basis functions [ •, }. That is, if 

6. =0, 

then by Eq. (5), the necessary and sufficient condition for the 
v_anlshing of the { f, } is that O t•' be invertible. 

We have examined the condition of O t•. by performing 
eigenvalue decomposition of/2 •t, under varying levels of 
truncation of the expression 66 

N 

l' --0 

with r --= 1,2 and 0<m < 15. For sufficiently small values of N 
(the exact value depends upon hr) the eigenvalues of/2 are 
positive and/2 is a well-conditioned matrix. As 3/increases, 
however, the smallest eigenvalue of/2 •. decreases to zero (to 
machine accuracy); that is, the m ---- 0 basis functions become 
linearly dependent. The remaining/2 •,•ø are well condition- 
ed. As N is increased further (we have examined up to 
N-- 40), the system remains stable in the sense that there is 
only a single eigenvalue consistent with zero. The remaining 
eigenvalues are positive and asymptotically approach unity 
with increasing order at a given level of truncation. 

At small values ofhr, the null state ofO • is predomin- 
antly (•r,m,/) ---- (e,0,0). This perhaps could have been antici- 
pated since this state vanishes identically in the spherical 
limit. While the I value of the largest component of the null 
state generally increases with At, there remains a significant 
! ---- 0 component throughout the range of h r to be consid- 
ered in this paper. 

The ideal solution to this problem is to work with the 
eigenvectors of O i•" and remove the null state from consider- 
ation. The technique we adopt in Sec. II accomplishes this. 
We note, however, that as an alternative, we may simply 
remove the l ---- 0 transverse degrees of freedom. The result- 
ing, truncated version of O i•" is well conditioned. 

II. THEORETICAL CONSIDERATIONS 

We begin by out!ini•g the derivation of the spheroidal- 
coordinate-based transition matrix for the acoustic scatter- 

ing from an elastic solid immersed in an inviscid fluid of 
infinite extent. We assume the usual boundary conditions 

•-u+ = •-u_, (13) 

•.t+ = •-t_, (14) 

•xt_ =o, 
apply at the surface of the scatterer. To account for the 
acoustic penetration of the scatterer, we introduce the ex- 
pansion of the elastic displacement 

(the superscript 0 denotes quantities pertaining to the scat- 
terer) and Eqs. (4) and (5) become 

a,, =i• R,,,. bn., 117) 

f,, = -i Z R,,, ,. b,,., (18) 

with 

- xv*. .Re ], (lO) 
•, = R,, (•, •Re •,). 120) 

To ob• a fo•! •lufion • •s. {17) and {18), we must 
now im•se the • X t = 0 •unda• condition to r•ucc the 
numar of deg• of f•dom of the eldtic field. It w• 
•o• by B•m •ø that t•s may • a•mpHsh• by usag- 
e. (6) m •!a• the eldtic displa•men•, •. (16}, to •e 
a•ustic n•eld dispigments 

u+ = Zc. Re,,. 121) 
•c r•t is 

where 

P,,, = • ds [ •.t{Re •o•, ) •-Re ,o• 

(22} 

+ t(Re •/2)-h X(• XRe ½,o.)], (23) 

M,,. = f, ds •.t(Re •n ) ,•-Re •... (24) 
Combining the above results, we obtain the transition matrix 

r = - 
{• = g P -•M, (26} 
• = • P -•M. (27) 
Explicit expre•ions for the displacements and stress 

tensors required for the evaluation of P, M, and R in Eqs. 
(19), (20}, (23), and (24) are given in paper I {displacements) 
and in Appendix A (stress tensors). We fix the interfocal 
distance (2f) of our prolate spheroidal coordinate system for 
a particular scatterer by 

f= [(aspect ratio) • -- l]m/{aspect ratio). 

With this choice, the spheroid • = l/fexacfiy inscribes the 
scatterer. 

The integrations in Eqs. (19), (20), (23),.and (24) were 
performed using Gaussian quadrature. The matrix inversion 
implied in Eq. (25) was implemented by writing 

(a superscript T denotes the matrix transpose) and then using 
•Gauss elimination to solve for T r, after scaling both Q and 
Q. This procedure tends to be numerically more stable than a 
direct invcraion of Q followed by matrix multipUcation. 

The remaining inversion 

P -•M, 

in Eqs. (26} and (27) requires somewhat greater care. A de- 
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tailed examination of P for solid spheroids and finite cylin- 
ders with hemispherical endcaps reveals that this matrix 
tends to be ill conditioned. A typical eigenanalysis of P yields 
eigenvalues ranging in size from 10 -26 to 10 +2. Holding the 
physical details of the scattering problem fixed, we find that 
the exact spectrum of eigenvalues depends upon the number 
of expansion terms. Invariably, however, after some level of 
truncation, increasing the number of terms in the expansion 
further merely tends to increase the number of eigenvalues 
roughly consistent with zero. The nonzero elgenvalues (and 
eigenvectors) are stable, to machine accuracy. 

Interestingly enough, the stability of the calculation of 
the backscattered form function is to some extent, indepen- 
dent of the condition of P. For spheroidal bodies, the form 
function converges quite quickly and is stable under an al- 
most arbitrarily large increase in the number of expansion 
terms. The finite cylinder displays a greater sensitivity to the 
condition of P and at high aspect ratios, when the condition 
of P has deteriorated sufficiently, the calculation becomes 
unstable. This latter behavior is probably due to the greater 
reliance of the cylindrical calculation on off-diagonal ele- 
ments in P, M, and R. 

There is a simple rationale for the relative insensitivity 
of T to the condition of P. Note that those' elastic states 

which are weakly coupled to the nearfield can be n,.o more 
than weakly coupled to the farfield. Thus, R and R must 
annihilate the same combinations of the expansion coeffi- 
cients {b, } as P, and it follows that Tis independent of the 
existence of these states. The difficulty with the finite cylin- 
der is its greater reliance on off-diagonal matrix elements. In 
general, the far off-diagonal matrix elements are intrinsically 
less accurate than the diagonal elements and this annihila- 
tion process is not accurately performed. 

Since it is presumably the presence of the uncoupled (or 
at most, weakly coupled} [b, } which is the source of the 
limited numerical stability for the finite cylinder, it should 
prove numerically advantageous to remove these states from 
our space. Defining A as the operator which projects into the 
space in which the matrix P is well defined, and using A to 
consistently obtain the admissible interior elastic states in 
Eqs. (17) through (24), we write Q in the form 

Q = RA (A rPA )-•A rM. (29) 
In Appendix B we give our procedure for constructing A and 
implementing the projection process in our calculations. The 
method is a variant of the Moore-Penrose pseudoinverse 
technique? One immediate result of this projection proce- 
dure is that the T matrix (for the cylinder) becomes much 
more nearly symmetric. We find that [Tn. -- T•.•] is consis- 
tently smaller than 10 -3 or 10 -n times the magnitude of the 
largest diagonal transition matrix element. There is essen- 
tially no effect on calculations for spheroidal bodies. 

To compare our theoretical predictions with experimen- 
tal measurements, we introduce the farfield form function 

I I ,-• {L/2} I Po ' 
where L is the length of the target, Po is the amplitude of the 
incident acoustic plane wave 

Po e•"•' = 4•rPo • itSo•l(h, cos 0•o) 

X S •t( h, •',•') je•, ( h,• '), (31) 

•d p, is the (•gle•d•t) •plitude of •e •t• 
wave 

xs,. 

Here, (Bo,•o) and (B• } •e the sphe•c• anD• wMch de•e 
the dir•tion of the incident •d scattered wav•, r•ctive- 
ly, and the ex•nsion •fficients of •e •t• wave •ve 
• expr• in te•s of the T mat• (T is diagonal 
and m for a•ymmetfic obj•m). ExpUcifiy intr•g 
•dpo into •. (30) •d ut•zing the •p•tic r• for- 
mula for he•t •v• 

In g•e•, we ch•e • = •o = 0. •s dc•ifion is •ns•- 
•nt wi• •e g•eral pr•fi• • the field and r• in a 
fo• •cti• of unity for a •d sphefic• •tte•r of •di• 
L/2 in the •-fr•uency •it. 

We have chos• • t•t our th•retic• t•h•ques 
a•st a •i• cyHnd• g•met• for two r•ns. F•t, 
the f• wav• w•ch • pm•gate on a solid, i•te cylin- 
der have •n ext•sively studi• •d •e well •o•. • 
Sin• a 10:1 cy•der is sufficiently long •at •e 
•ndifions on •e md•ps should not •ve • appr•ble 
eff•t on th• wav•, t•s fa• hel• •nsiderably in the an•- 
ys•. In the pr•mt •, •c •y two •ntfibu•ng wav• 
(1 } the lower l•tu&n• m•e, w•ch • • char• 
• • •i•y sy•etfic wave with disp•ent •m•- 
nen• only in the radi• •d •ial •r•ions, •d (2) the low- 
•t flexural m•e, which • g•l de• u•n 
dir•tions. •e dis•ion c• for th• wav• 
Fig. 1. •e •gher !on•tudi• •d fiexur• m• have cut- 
off fr•um&• w•ch •e beyond the •ge •side• h•e 
and •e •ion• m• •not • excit• a•mti•y. 

•nd, this g•met• pm•d• a more s•g•t •t of 
the fo•sm t• would a spheroid or a su•r spheroid. A 
spheroid is a s• g•met• for which • the sphefi• 
and spheroi• b•is functions are ve• well suit•. B•- 
t '• h• no• t•t even s•l deviations from a spheroi- 
d• g•met• 1• to a sight det•oration • the nu- 
mefi• •o• of •e s•d•d sphefi•- 
•a•-b• T mat•. In •e next s•tion we 

our •m•l p•ur•. 

III. EXPERIMENTAL 

Backscattered acoustic waveforms were acquired from 
a 10:1 solid aluminum cylinder with hemispherical endcaps 
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FIG. 1. The dispersion curves for the lowest longitudinal and flexural 
modes on an infinite aluminum cylinder of circular cross section. 

as a function of aspect angle O (the angle the acoustic axis 
makes with the long symmetry axis of the target). The ex- 
perimental farfield form function was determined using the 
expression 69 

(• ) 2r g,(kL/2,t•) f. ,e =œ72 
where r •s the distance from the center of the scattering target 
to the measurement point, g, (kœ/2,8 ) is the transform of the 
backscattered waveform, ps(t ), and g•(kL/2) is the trans- 
form of the incident pulse at the scattering target, p,(t ). 

Acoustic measurements were performed in a 10-X 10- 
X 7-ft reinforced concrete test pool filled with a suitable vol- 
ume of freshwater as the acoustic medium. The source trans- 
ducer, receive hydrophone, and scattering target were 
placed along a horizontal line, held by a system of precision 
positioning devices. Lateral, longitudinal, and vertical align- 
ment of the components was accomplished optically using a 
sighting telescope. The respective positions were such as to 
maximize the shortest reverberant path, thus optimizing the 
time domain measurement window. A 6-in.-long target was 
selected based on the requirements that a sufficient back- 
scattered return would be observed end on, and that a suffi- 
cient number of returns from surface waves traveling around 
the target would be acquired to yield a representative mea- 
sure of the form function. This latter criteria was not fulfilled 
in certain cases, as will be discussed at the end of this section. 
The initial angular orientation (90' off axis) of the scattering 
target was determined acoustically by maximizing the back- 
scattered signal. Throughout the measurements, the posi- 
tions of the transducer and hydrophone remained fixed, 
while the aspect angle of the target was varied. 

The relative pressure amplitudes po(t) (of the incident 
waveform), and p,(t) were measured using a common hy- 
drophone (B & K model 8203}, placed in the farfield region 
of the transducer, a distance r from the scattering target. 
Appropriate corrections for spreading and absorption were 
made to yield an effective pressure wave front, p•(t ), inci- 
dent on the target. No attempt was made to correct for the 
slight distortion (estimated to be less than 1%) by the pres- 

ence of a receiver hydrophone situated on a straight line 
between the source transducer and the scattering target. 

The drive and receive electronics are depicted in Fig. 2. 
A single cycle sine wave, amplified by a power amplifier 
(Kronhite model DCA-50), provided the drive signal for the 
piezoelectric transducer (USRD type F-33). The acoustic 
signals received by the hydrophone were preamplified and 
bandpass filtered prior to digitizing by the HP-5180A wave- 
form recorder. 

Data acquisition was under the control of a HP-9826 
microcomputer. Digitized representation of the analog 
waveforms was transferred to the microcomputer for off-line 
analysis. The data analysis routine allowed for signal averag- 
ing, convolution, and Fourier transformation of the digi- 
tized waveforms, along with graphic displays of the resultant 
operations. All recorded waveforms were repetitively aver- 
aged for 30 scans. 

Waveforms were sampled and digitized such that the 
Nyquist rate was always exceeded. An 8192-point discrete 
fast Fourier transform was implemented with a rectangular 
window (no weighting) to obtain intermediate frequency do- 
main data. In order to span the kL/2 region of interest (5- 
20), several different center frequencies were required. The 
3-dB down points were chosen as the cutoff points for the 
contribution of each frequency band to the computed form 
function. In this context, we note that many of the form 
function plots represent averages of numerous independent 
measurements. 

In viewing the individual backscattered waveforms for 
analysis, it became apparent that some of the returns persist- 
ed well beyond the available time window. The effect was 
particularly significant in regions where the theory predict- 
ed high Q resonant features. These observations were not 
surprising in that any experimental measurement has an in- 
herent limitation on the resolution of such features. Assum- 
ing a decay modulus (time required for the amplitude to de- 
crease to 1/e of its initial value) equal to the available 
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FIG. 2. A schematic representation of the experimental geometry and appa- 
ratus. Here, 8 defines the experimental aspect angle. 
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window size (minus the specular return}, we estimate that 
these measurements allow for the correct representation of 
features with a maximum Q value of five. The particular 
theoretical resonant features of interest clearly exceed this 
value. 

In order to determine the effect such artificial termina- 

tion had on the resultant form function, a simple subtraction 
was employed for the 30 ø off-axis measurement. Surface 
multipaths were removed by subtracting the multipath 
waveform (without target) from the backscattered target re- 
turn. Although a residual signal was clearly present (giving 
rise to an interference pattern) and some of the signal still 
resided outside of the "expanded" measurement window, 
the agreement with theory was excellent, as will be discussed 
in the following section. 

IV. DISCUSSION 

A series of calculations of the monostatic backscattered 

form function was performed in the region kL/2 < 20 for 
comparison with experiment. There are two parameters to 
fix in the calculation of the m = 0 T matrix at a given fre- 
quency, the number of terms included in the truncation of 
the infinite dimensional matrix equations, Lm• in Eqs. (25)- 
(27), and the number of significant figures retained in the 
orthogonalization of P, i.e., No• (see Appendix B). In the 
frequency range kL/2<16, the number of expansion terms 
was fixed by increasing L•,• until the form function varied 
by 0.5% or less for a change AL,• = 2. The number of 
terms required for convergence with this criterion varied 
between ten at the low-frequency end and 30 at the upper 
frequencies. For kL/2> 16, L• was fixed at 30. We note 

that for kL/2• 20, a changeAL•,,, = 2 resulted in a change 
in the form function of less than 2%. 

The calculation was relatively insensitive to the number 
of significant figures retained in the orthogonalization pro- 
cess, provided No, was sufficiently large, and we chose 
N•h ---- 18--20. Increasing/V• by two generally resulted in 
a change in the form function of much less than 0.5%. 

No attempt was made to measure the density and sound 
speeds of the aluminum cylinder. Instead, the generic values 
p -- 2700 kg/m 3, C• = 6420 m/s, and C, = 3040 m/s were 
used. Thus some chscrepancy between the measured and 
calculated form function is expected due to the mismatch in 
the elastic parameters. To obtain some idea of the sensitivity 
of the calculation to reasonable variations in these param- 
eters, we have examined the position of the lowest resonance 
for end-on incidence under a 10% variation in the Lame' 

parameter/t (the bar speed depends strongly on this param- 
eter). TM We find that the peak shifts by no more than 5%. 

In Fig. 3 we exhibit a collection of calculated monostatic 
beam patterns which have been selected to display the more 
prominent features/n the backscattered form function. In 
particular, the single, strong, high/2 lobe at d = 56 ø and kL / 
2 = 5.4 and the "ridge" of lobes with d•30 ø beginning at 
kL/2 = 6.6 represent significant departures from rigid be- 
havior. It is worth noting that with two exceptions, at • / 
2 = 5.4 and 10.8, there is no ancillary structure (in the beam 
pattern} associated with these off-axis lobes. The two excep- 
tions display on-axis resonances. We also note for future ref- 
erence that the peak amplitude of the ridge, which has large, 
high {2 peaks at kœ/2 = 6.7, 9.3, and 12, shows a general 
tendency to move in the direction of increasing 8 with in- 
creasing frequency. These features are particularly revealing 
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FIG. 3. The calculated monostatic beam 

patterns for a 10:1 finite aluminum cylinder 
with hemispherical endcaps. 
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of the elastic response of the scatterer and we shall explore 
this in detail below. 

In Figs. 4 and 5, the calculated backscattered form func- 
tion (solid points) is compared with the experimental data 
(solid lines) for aspect angles 0 ranging from 0' to 90', in 10' 
increments. In regions where the experimental frequency 
bands overlap, both sets of data are presented. The dashed 
lines in Fig. 5 for 0 = 30', represent measurements taken 
with the expanded window discussed in the previous section. 
We note that the small scale oscillations in the data taken 

with the expanded window are an artifact of the subtraction 
procedure and do not have any underlying physical sign/i- 
cance. In this figure, it is clear that the longer window gives a 
considerable improvement in the agreement between the 
data and the calculations. It is also clear that the very high Q 
features in the calculation (e.g., at kL/2 = 6.7 and 0 = 30') 
are still beyond the capabilities of the expanded window. 

Consider first Fig. 4, i.e., end-on incidence. Since T-ma- 
trix calculations for end-on incidence require only the m = 0 
term in Eq. {33) and thus tend to be less time cons-ming than 
off-axis orientations, a somewhat more ambitious calcula- 
tional program was undertaken here than for more general 
angles of orientation; hence, the expanded frequency scale 
and greater density of points, as compared to Fig. 5. The 
signal strength from the target at this angle was too small to 
reliably subtract the multipaths so no attempt was made to 
obtain the high Q features present in the data. Given this 
qualification, the calculation is in reasonably good agree- 
ment with the data. The three peaks at kL/2 -- 5.4, 10.8, and 
16.2 are clearly the,• = L/2, L, and 3L/2 resonances asso- 
ciated with the largely nondispersive, lowest longitudinal 
mode of an infinite elastic cylinder. We have examined the 
elastic displacements at the surface of the scatterer, and both 
the calculated phase speed and the displacements are in ac- 
cord with this picture. 

Consider next the prominent ridge of lobes in the back- 
scattered form function depicted in Fig. 3 and in the 0 = 30' 
portion of Fig. 5. This ridge is associated with the excitation 
of the lowest flexural wave of an infinite cylinder due to the 
matching of the trace velocity of the incident acoustic wave 
with the velocity of propagation of the flexural wave (see Fig. 
2). An examination of the elastic displacements reveals that 
the three clearly identifiable resonance peaks at 0 = 30. in 
Fig. 5 are associatedwiththeA ---- 2L/5, L/$,and 2L/7 reso- 
nant wavelengths. The agreement of the calculation with the 
data, particularly that data obtained with the expan.ded win- 
dow, is quite good. However, the very high Q portion of the 

resonance peaks is still missing. An examination of the time 
domain waveform shows that even with the expanded win- 
dow, only a portion of the energy of these peaks has been 
captured, i.e., the waveform has been artificially and prema- 
turely truncated. In the nonresonant region, the flexural 
wave is still excited, due to the strong coupling mechanism, 
and the elastic cylinder acts as a phase steered array, firing a 
highly directional and hence, strong signal back at the 
source. This mechanism also explains the surprising 
strength of the resonant response. 

The single strong lobe at 56 ø (see the 0 ---- 50. and 0 ---- 60 ø 
aspect orientations in Fig. 5) is associated with the longitudi- 
nal (i.e., m ---- 0) response ofthe cylinder. An examination of 
the elastic displacements reveals a stationary longitudinal 
wave with,• --- L/2 almost identical to that excited at end-on 

incidence at this frequency, but approximately 50% stron- 
ger. At this angle of incidence l0 --- 56 ø) and frequency, there 
is exactly one water wavelength along the projected length of 
the cylinder and it is the coherent shaking of the two ends 
which is responsible for the relatively strong excitation. Un- 
fortunately, due to the very high Q nature of this lobe and the 
small signal strength, even with the expanded window only a 
small enhancement ofthe form function was observed at this 

angle. Therefore the data and calculations were not included 
in the figure. 

Consider finally, the broadside form function. The fre- 
quency region considered here is too low for any significant 
elastic activity in the broadside or near broadside direction 
(70ø,•90ø). It is interesting to note that the off-axis behav- 
ior in this angular region differs markedly from that ob- 
tained in studies of the scattering of obliquely incident 
acoustic waves by an infinite cylinder by Flax et al. ?• How- 
ever, the lobe structure in Fig. 3 in this angular region can be 
simply explained'by treating a finite rigid cylinder of length 
L as a linear phase steered array excited by the incident 
acoustic wave. The primary, secondary, and tertiary lobes 
are all present and their position, angular width and relative 
magnitude are consistent with this simple picture, although 
the third lobe is somewhat larger than expected. We note 
that there is sufficient experimental sensitivity to the angular 
alignment in this region, due to the relatively narrow (in 0 ) 
lobes, to account for the small discrepancies between the 
data and calculations. 

We note in closing'that, in related work, Suet al.?2 and 
Numrich et al.?3 have compared with experiment the predic- 
tions of the standard, spherical-coordinate-based T matrix 
for a finite aluminum cylinder of small aspect ratio (2:1). 
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FIG. 4. The backscattered farfield form 

functions for a 10: ! finite aluminum cyl- 
inder with hemispherical endcaps for 
end-on incidence, plotted as a function 
of the dimensionless frequency/eL/2. 
The heavy dot• repr•ent calculat•l vnl= 
ues and the solid lines, experimental val- 
ue• Note that in some regions, several 
frequency bands overlap. 
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APPENDIX A 

In applications of the spheroidal-coordinate-based tran- 
sition matrix, it is necessary to have explicit expressions for 
the vector basis functions and their associated stress tensors. 

Expressions for the basis functions were given in paper I; we 
give the stress tensors in this Appendix. 

Following Morse and Feshbach, TM we intr6duce the in- 
dependent variables 

= ',V,cos ). 

The associated unit vectors 
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define a right-handed coordinate system. This differs from 
the definitions adopted in paper I which utilized a left-hand- 
ed coordinate system. Thus, there are several minus sign 
differences between the vector basis functions given in paper 
I and those adopted here, and these differences are noted in 
Eq. (A4). For calculational purposes, it is convenient to work 
with a representation of the vector basis functions in which 
the "physical" components are utilized, i.e., 

3 

• __- • (•.),•,. (A3) 
The relation between these physical components and the co- 
vnziant expressions given in paper ! [the (•.)• ], is 

(•), = + (h,)-'(•),, 

where the upper sign is for ½ -- 1, 3 and the lower, for •- -- 2. 
The h• denote the scale factors 

h, =f[(• 2 _ •/2)/(• 2 _ 

- (AS) 

ha = (f/sin •b )[(1 - •/2)(• 2 _ 1)1,/2. 
The stress tensor is defined by 

•(½,•) =ZV4•i + •(V,• + •,•V), 
where 

is the unit dyadic and where 

= 2 • I•x• •,-•/] + •b•.•(ln 

x(a,a• + 6a,). {A7) 

•t Z• = R•z(fir,• •t(hr,•,• ) denote a pro•rly no•- 
• •lution to the scal• He•holtz equation with k = kT, 
•d let •t = •z(hT) denote the eigenvMue. For the trans- 
vene degr• of freedom, the physical •m•nents of the 
str•s tensor (•u) •e $ven by 
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In the above expressions, we have eliminated all reference to o•x/v•õ :, c9:X/o•q:, and c9 :•y/•2 through the use of the defining 
differential equations for R.,• and 

Using •. = R,,,t(h•.,g}S•t(ht.,•I,q•) to denote a properly normali7ed solution to the scalar Helmholtz equation with 
k = k,., and A•,t =.4,,,t(hL) tO denote the eigenvalue, for the irmtational degree of freedom, we find 

(AIS) 

(AI9) 
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= 

= 

f• [(1-- •7:)• -- •7:)] m • •'e-- 1 &b • ' 

(A20) 

(A21) 

(A22) 

APPENDIX B 

Consider the ill-conditioned problem 

PC=M, 

where C and M are n X m rectangular matrices and where P 
is an n X n real, symmetric matrix with one or more zero 
eigenvalues. Here, C is to be determined. Let Z k be the k th 
eigenvalue of P and let Pi(k ) be the corresponding normal- 
ized eigenvector, i.e., 

• Pi• p•lk ) = Ak p,(k ). (B2) 

Then the transformation matrix which diagonalizes P is 

We assume that P has Nnonzero eigenvalues, and that these 
cigenvalues are ordered by decreasing magnitude. The in- 
consistencies may be removed from Eq. (B1) by eliminating 
the null space of P. This is most straightforwardly accom- 
plished by performing an eigenvalue decomposition of P and 
projecting into the space spanned by eigenvectors having 
nonzero eigenvalues; that is, we wish to cast Eq. (B 1) into the 
form 

aN c = M, 

where 

/2N = ,li 0 
0 2N 

(BS) 

[A,I>O, n= 1,...• r, 

and where UN is the truncated diagonalization transforma- 
tion matrix. However, the explicit construction of the eigen- 
values and eigenvectors tends to be time consuming, and we 
adopt a somewhat different procedure here. 

From the spectral decomposition 

P,2 = i A•p,(k)p2(k), (B6) 
k=l 

it is clear that ifP is of rank N, then P has exactly N linearly 
independent columns. To form a basis for this N-dimension- 
al space, we apply the modified Graham-Schmidt orthogon- 
alization procedure to the columns of P, with pivoting. That 
is, at each step in the orthogonalization procedure, from 
among the non-normali7ed columns of P, we choose the col- 
umn with the largest norm, normalize it and orthogonalize 

all of the remaining columns relative to this choice. Clearly, 
this procedure can be applied only N times before we have 
exhausted the possibilities. In practice, we orthogonalize all 
columns, then order the columns by their loss of significant 
digits (through the subtraction process) and truncate at the 
point where more than 18 significant figures have been lost. 

ThecolumnsofthenXNmatrixA thus formed, must be 
a linear combination of the eigenvectors having I/tk [ > 0, i.e., 

N 

Aq = •__ • p•(k ) A• (B7) 
which in matrix notation is 

A = UN .4. 

From the orthonormality of the columns of A it follows that 
the N XN matrix A is orthogonal. From F_x 1. (BS), we thus 
have 

Returning to Eq. (B4) and ut'dizing 

A rPA =.4 r.(2 N ̀4 (B10)• 
we find 

{A •PA )A T½=A •M, (Bll) 
i.e., that A performs the necessary projection process. Note 
that it is not necessary to construct ̀4. 

The exact relation between the loss of significant digits 
in the columns of P during the orthogonalization process 
and the s•.• of the magnitudes of the eigenvalucs in •2 N is 
unclear. This is unimportant, however, since our real con- 
cern is the linear independence of the columns (and rows) of 
the truncated matrix. 
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