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A matrix theory is developed for investigating the scattering of elastic waves in solids by an obstacle of 
arbitrary shape. The scattering matrix which depends only on the shape and nature of the obstacle relates 
the scattered field to any type of harmonic incident field. Expressions are obtained for the elements of the 
scattering matrix in the form of surface integrals around the boundary of the obstacle, which can be 
evaluated numerically. Using the principle of reciprocity and the conservation of energy, the scattering 
matrix is shown to be symmetric and unitary. These properties are essential to assure the accuracy of 
numerical calculations. Both two- and three-dimensional problems are discussed, and the obstacle may be 
an elastic inclusion, a fluid inclusion, a cavity, or a rigid inclusion of arbitrary shape. 
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INTRODUCTION 

A matrix theory for the scattering of acoustic • and 
electromagnetic • waves by a single object of arbitrary 
size was presented by Waterman a few years ago. Com- 
parisons of this theory with other established methods 
of analysis such as the eigenfunetion expansion method, 
the boundary integral technique and the variational 
method were discussed in the original paper. • Based 
on extensive numerical calculations for the scattering 
of acoustic waves by an elliptical or a square scatterer, 
Bolomey and Wirgin a summarized that the matrix meth- 
od is efficient and is some respects superior to the 
boundary integral technique (Green's function theory), 
especially when numerical computations become neces- 
sary. 

In this paper, we extend Waterman's matrix theory 
to the scattering of elastic waves. In contrast to the 
acoustic wave which is governed by a single scalar 
wave equation and the electromagnetic wave governed 
by a vector wave equation with a single wave speed, the 
elastic wave is composed of a longitudinal (p-wave) part 
and a transverse (s-wave) part. The former satisfies 
a scalar wave equation and the latter, a vector one, 
each with a distinct velocity. The coupling of these two 
types of waves at the boundary of an elastic solid makes 
the analysis very difficult. For instance, while the 
scattering of acoustic waves by a hard or soft elliptic 
cylinder can be conveniently analyzed using Mathieu 
functions as a basis set, the same cannot be done for 
elastic waves. 

A notable exception is the case of an incident s wave 
with displacement vector parallel to the axis of an in- 
finitely long prismatic cylinder, propagating in a di- 
rection normal to the axis. In this case, the scattered 
wave can be represented by a two-dimensional scalar 
wave function and the problem is identical to the scat- 
tering of acoustic waves by the same cylinder. In the 
literature of elastodynamics this is known as the sh 
wave (horizontally polarized shear wave) and is ex- 
cluded from our discussion. 

For a normally incident s wave with any other po- 
larization, the wave scattered by a prismatic cylinder 
is still two dimensional but it is composed of both p 
and Swayes. This is known as the problem of sv waves 

(vertically polarized shear waves). The scattering of 
p- and sv waves normally incident on an infinitely long 
prismatic cylinder constitute the two dimensional 
problems discussed in this paper. 

As reviewed by Pao and Mow 4 only a circular cy- 
linder (two dimensional) or a sphere (three dimensional) 
can be analyzed effectively by the eigeafunetion ex- 
pansion method. The application of the boundary inte- 
gral equation technique has been tried only for two- 
dimensional problems with limited success. s For 
these reasons, the matrix method as presented in this 
paper offers a promising alternative to the existing 
methods of analysis. 

For scalar waves, the matrix method begins with the 
Helmholtz integral formula for the harmonic wave field 
exterior to the bounding surface S of an obstacle, 

toutside -Sø(x -'), • insideS, 

where •0 is the incident field and •s = S- S ø is the seat- 
feted wave field, g(El• •) is the Green function of the 
scalar wave equation and W ß V• is the normal gradient 
at the surface S and primes indicate that they are func- 
tions of E' which is any point on S. The procedure is 
to expand S ø in a complete, orthogonal basis set 
with known coefficients A., and the scattered field in 
terms of the unknown coefficients B, The expansion of 
the unknown surface field introduces an additional co- 

efficient or, whereas the expansion of g in a circular or 
spherical basis set is well known. The essence of the 
matrix method is to eliminate the unknown •n by using 
the two cases in the Helmholtz formula and express 
as ZT,,•A,. The infinite square matrix T,,, known as 
the transition or T matrix in quantum mechanics yields 
the scattered wave coefficient B,for a given incident 
wave. 

ß The matrix method has several advantages over other 
known methods. First the T matrix depends only on the 
size and shape of the scatterer. Thus the same matrix 
can be used to analyze the response of an obstacle to 
any incident wave. Secondly, the principle of reciproc- 
ity implies that the T matrix is symmetric and the con- 
servation of energy within any surface surrounding the 
scatterer implies that the scattering matrix (the $ 
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matrix which is formed by S = 1 - 2T should be unitary. 
Conforming to these [•vo properties ensures the accuracy 
in the numerical evaluation of the matrix elements. 

Thirdly, each element of the matrix involves a line in- 
tegral (two-dimensional problems) or a surface integral 
(three-dimensional problems) of the basis functions. 
Once a computer program is ,developed for numerical 
integration, only the equation to the surface of the 
obstacle need be changed for computing the T matrix 
for obstacles of different shape. The great efficiency 
of this method is demonstrated in Ref. 3. 

In order to adapt this method for the scattering of 
waves in elastic solids, we need first a Helmholtz-type 
integral formula, like the one given above, for elastic 
waves. In the literature several formulations exist. 

As discussed by Pao and Varatharajulu, ? the most con- 
venient formula contains a second-rank Green's dis- 

placement dyadic and a third-rank Green's stress ten- 
sor in the integral representation. The surface inte- 
gral then involves only the surface displacements and 
the surface tractions. These quantities.are precisely 
those prescribed by the boundary conditions of elasto- 
dynamics. The success of the matrix method depends 
crucially on whether the surface fidds can be elimi- 
nated in an efficient manner. A brief discussion of the 

convenient integral representation is given in Sec. I. 

Next we need three sets of orthogonal basis functions 
for elastic waves, one for the longitudinal part and two 
for the transverse part. They are solutions of the vec- 
tor wave equation and their properties have been well 
studied. s These basis functions have also been used in 
studying the scattering of elastic waves by a circular 
cylinder 9 and by a sphere. •o,n For convenience, they 
are briefly summarized in Sec. II. 

With all preliminary grounds covered, we show in 
Sec. III how the elements of the T matrix are evaluated 

for elastic wave scattering. To simplify the discussion, 
the scattering by an arbitrary shape cavity in two and 
three dimensions is illustrated in detail. The more 

general problem of an elastic solid inclusion with the 
rigid inclusion, the fluid inclusion, and the cavity as 
limiting cases are discussed in Sec. VI. 

Finally, there is the need of a reciprocity theorem 
that relates the amplitude of the far field scattered 
along any direction for a given direction of incidence 
to the amplitude of the far field when the directions of 
incidence and scattering are interchanged and re- 
versed. Because of mode conversion in elastic waves, 
/) waves may be scattered into s waves and vice versa, 
reciprocity relations for elastic waves are far more 
complicated than those for acoustic or electromagnetic 
waves. A general theorem establishing reciprocity for 
elastic solid obstacles of all shapes was recently es- 
tablished by Varatharajulu. lz With this theorem, the 
symmetry property of the S and T matrix and the uni- 
tartry of the $ matrix are proved in Sec. IV and V. 

Only the general formulation of the matrix theory is 
presented here. Numerical examples which illustrate 
the application of this theory will be presented in the 
second part of this paper. 

I. INTEGRAL REPRESENTATION OF THE ELASTIC 
FIELD 

Consider an infinite, homogeneous, isotropic and 
linearly elastic medium of density p and Lam• constants 
h and /& in which is embedded an elastic inclusion of 
different material constants px, Xx, and /•. The sur- 
face S of the obstacle is assumed to be smooth, with a 
continuous turning normal. 

A monochromatic wave of frequency co is incident on 
S. The displacement vector corresponding to the inci- 
dent wave is denoted by u • and that corresponding to the 
scattered wave by •s. Since the incident wave has time 
dependence exp(- icot), all field quantities will have the 
same time dependence and this time factor is suppressed 
for riorational convenience. •0 has no singularity in the 
region enclosed by S and • has no sources outside S. 
The total displacement field outside S is given by 

= = 

where • is the position vector of a field point (observa- 
tion point). 

The equation of motion in the elastic medium is given 
by 

v .•'+ pco• •= 0, (2) 

where •' is the stress tensor related to the displacement 
gradients by 

fly. (3) 
andS'is the idemfactor. The traction vector {' is de- 
fined as 

•'=9.7=•.• (4) 
where • is the unit outward normal to the surface S. 

Corresonding to Eq.•(2), a Green's dyadic • and a 
Green's stress tensor Z are defined by 

v J = 
where 5(•-•') is the three- or two-dimensional delta 
function and •' is a source point. Z is related to • as ß 
is to • according to 

(6) 
In indici• notation Eq. (6) reads 

Z m = X6 u 8 • C•+ •(o• C•+ 8• G•), (7) 
where a• = a/ax• and the subscr•pts i, j, k, l refer to vec- 
tor components which t•e on v•ues 1, 2, 3 in three 
dimensions (3-D) and 1• 2 in •o dimesions (2-D). 
Note •at Eu* i•symmetrie only in the first mo indices 
•nd •e tensor GV in Eq. (6) should be interpreted ac- 
cording to the l•st term in Eq. (7), which is d•ferent 
from the conventional dyadic notation. 

The solution to Eq. (5) is well known (see for ex- 
mple, Ref. 8, Chap. 13) and is of the form 

where K' = l/(4•p•), • =p•/•, and }•=p•2/(X+ 2•) &re 
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the squares of the shear wave number and compression- 

al wave number, respectively. In Eq. (8), g(k•) and 
g(ks) are the Green's functions to the scalar wave equa- 
tion given by 

{ i•Ho(k[•-•'t) ; 2-D , (9) gtk; •[[')= exp(ik[•-•'[)/l•-•' t 
where H 0 is the Hankel function of the first kind and of 
order zero. To obtain g(k•) and g(ks) we simply replace 
k in Eq. (9) by k• and ks, respectively. 

From Eqs. (1), (2), and (5), one can obtain the in- 
terior and exterior Helmholtz formulae for elastic 

waves in a straightforward manner. ? One simply makes 
use of the fact that •0 is regular inside S and that •s 
is regular outside S, and then applies the diver•_•nce 
theorem to Eq. (2) when it is postmultiplied by G and 
Eq. (5) alter it is premultiplied by •. The formula is 

u Js {u'[*' r,)] - 

•(F); F outside S (10) = 0; •'inside S 

In Eq. (10), the primes indicate that •', •', and •' are 
functions of F' and dS' is an element of area'on S cen- 

tered at F '. In deriving the above equation, we have 
assumed that suitable radiation conditions are imposed 
on the scattered field far from S. ? For two-dimensional 
scattering geometries the surface integral in r,q. (10) 
will be replaced by a contour integral along the circum- 
ference of the cylinder. 

Equation (10) is the starting point for deriving the 
transition matrix for the scattering of elastic waves, 
which will be discussed in the following sections. 

II. SPHERICAL AND CIRCULAR VECTOR BASIS 
FUNCTIONS, 

The matrix formulation of scattering differs from the 
eigenfunetion expansion technique in that the same basis 
set may be used for obstacles of any shape. As dis- 
cussed in the introduction, the vector spherical wave 
functions and the vector cylindrical wave functions form 
the basis sets for three- and two-dimensional problems, 
respectively. These functions are discussed in detail 
in lief. 8. Since the elastic wave field is composed of 
solenoidal (divergence free) and irrotational (curl free) 
components, it is practical to choose one vector basis 
that is irrotational and two basis sets that are solenoi- 

dal. 

In elasticity, the displacement vector can be con- 
structed from three scalar functions P, Q, and S (two 
in g-D) as 

G(r*)= { vP+vx(}Q); 2-D (11) VP+ks Vx(•Q)+ Vx[Vx(FS)] ; 3-D 

The potential P is associated with p waves and Q and S 
with s waves; each function satisfies a scalar wave 
equation with the appropriate wave number k• or k s . 
The unit vector } in Eq. (11) is along the axis of the 

cylinder and F is the radial vector in spherical polar 
coordinates. 

Let • , % 05, •,, and • be the vector basis functions (• 
being absent in 2-D). Following Eq. (11), they are de- 
fined as follows: 

A. Two-dimensional basis functions 

Let r, 0 be plane polar coordinates perpendicular to 
the axis of a prismatic cylinder. We define 

2H.k•r)cos n9]; c= 1 (12a) •(• = V[(?2H.k,r)sin nO]; • = 2 
and 

•(• = Vx [•}/•H,(k,r)sin n9]; a = 2 (12b) 
where %= 1, and % = 2(n> 0) is the Neumann factor. 
H,(•) are HaZel functions of the first kind of order 
n and represent outgoing cylindricE waves for large 
vEues of •. If a b•is set that is re•lar at •e orion 
is needed, we simply construct • and • wi• •e re• 
part of H,, which is J., the Bessel function of •e first 
kind. In •e following sections, this regular set will be 
denoted by Re•, or 

As shown in Ref. 8 (Chap. 13) •e angular parts of 
these basis functions satisfy the following orthogonali½ 
conditions: 

ß $;(B ao = 

o •' $=(•) . •;•dO = C,k•r, kar)6_(1 - 6•), (lS) 
where E. F,, G, are functions of the Bessel or HaZel 
functions, which are not relevant to this paper •d 
is the Kronecker delta. In the above, n, m are integers 
which take values0, 1, 2,... fore, v=l, artall, 2, 
3•... for • v=2. 

B. Three-dimensional basis functions 

In three-dimensional problems the polarization of the 
shear wave can be in any direction in a plane perpendic- 
ular to the wave vector. Since the polarization can not 
be easily resolved along two preferred directions, we 
need two separate basis functions to describe the shear 
wave. The three sets of basis functions in spherical 
coordinates r, 9, • are: 

$•(• = (A t/• •.V[h.(k•r)P•(cosO)sin rnc)]; 

= { ks */s Vx [Fh.(k s r)P.(eosO)cos rn05]; k, ?/s V.x [Fhs(k s r)P(cosO)sin m 05 ]; 

= (1/ks)Vx Z(rD. 

(16a) 

(r=l 

(16b) 

(t6c) 
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In the above, h.(k,r) are spherical Hankel functions of 
the third kind, of order n, P• are associated Legendre 
polynomials, m is an integer that takes values 0, 1, 
2,..., n, and n is an integer that takes values 0, 1, 
2,... for(•=l andl, 2, 3,... for(•=2, andi. andT. 
are normalization factors given by 

•: [% (2n+l)(nm)I] '/2 [-%(2n+l)(n-m)l] •'•(n-•m)] J ; ""L4•rnn+ l)(nm)!J 
and the parameter A is given by 

A = k• fie, . 
We note that the normalization of the compressional 

wave functions is different from the shear wave func- 

tions. This was not so in the two-dimensional ease. 

In three-dimensional case this is necessary in order to 
prove the symmetry and unitarity of the scattering ma- 
trix. 

To describe field quantities that are regular at the 
origin, we simply replace •, by j,, the spherical Bes- 
sel function of the first kind. The set will be denoted 

Since P•(eos0), sin m(• and cos m(• form complete 
orthogonal sets, we can again establish certain orthog- 
onality relations among the basis functions. 

and 

f $(ran = 0, 

f = 0, 

(17) 

(lS) 

(19) 

(20) 

(22) 

In the above, d9 = sin0 dO de., the range of integration 
being0-<0-•and0-<q5•-2•. The L,,, M,,, l., andN,, 
are functions involving the spherical Bessel or Hankel 
functions; the exact expressions for them are not rele- 
vant to the present discussion. 

III. EVALUATION OF THE TRANSITION MATRIX 

In this section, we present the transition matrix (the 
T matrix) for the scattering of elastic waves. All field 
quantities in the Helmholtz formula [Eq. (10) of Sec. 
I], the incident, scattered, and surface fields, the 
Green's displacement and stress tensors, are all ex- 
panded in the vector basis functions defined in Sec. II. 
The unknown expansion coefficients of the scattered 
displacement field are related to the known coefficients 
of the incident wave through the transition matrix. The 
elements of the T matrix involve surface integrals; 
for obstacles of arbitrary shape, they can only be 
evaluated numerically. 

(a) .... •2 (b) 
FIG. 1. (a) Geometry for points • interior to $. (b) Geometry 
for points • exterior •o $. 

Since the incident field has no sources in the region 
occupied by $, we expand •0(•) in Eqo (1) in terms of 
basis functions that are regular at the origin of the co-. 
ordinate system that is situated within S (Fig. 1). Thus, 

•ø(r• = •. [A•Re$•(•)+ B•Re•(•)+ •lqe•(r*)] , (23) 

where A, B, C are assumed known [for plane wave in- 
cidence A, B, C are given by Eqs. (68), (70), (71)]; 
Re denotes the real part of the basis functions. The 
double summation is over q=l, 2 and over m=0, 1, 
2,..•, fore=l andre=l, 2, 3,..., for •=2. Actual]y, 
there is a third summation over the integral multiples 
of the azimuth angie & [the integer m in Eq. (16)]. This 
third s•mmation is omitted in the writing. 

The outgoing scattered field is represented by 

+ (24) 

where •,•,7 are un•own coefficients to be determ•ed. 

The renmining functions to be expanded in the integr• 
formulae, Eq. (10), are the Green's dyadic • and the 
Green's stress tensor •. The expansion of g(ko) and 
g(ks) in the scalar basis sets are well known (Ref. 8, 
p. 827 for 2-D and p. 1874 for 3-D). Substituting these 
expansions in Eq. (8), we obtain •ter some amount of 
reduction 

+ (k,)[$•(},)Re•(•<) + •(•,)Re• (}<)] }, (2:5) 

where e=(p•)'•. In Eq. (25), •> and T< refer to the 
•eater and lesser of • and •', respectively. Note that 
G(rlr)=G• [•. 

We discuss in the sequel oMy the three-dimensional 
problems. For [wo-dimensionalproblems, one replaces 
•s) in Eq. (25)by •, •domits all terms involvi• •. 

Now field quantities in Eq. (10) have all been ex.- 
panded in the same basis set. The next step is to consider 
the •o eases on the right hand side of the Helmholtz 
formula, namely, • inside S and • outside S. 

First consider points • that lie inside the inscribed 
sphere, S1 (circle in 2-D) and let the orion of the co- 
ordinate system be situated at the center of the sphere 
[Fig. l(a)]. Since now, [•[ < [•'[, we set •=•' and 
•<=•. Substituting Eqs. (23) and (25) into Eq. (10) and 
using •e definition of • from Eq. (6), we obtain 
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• , -o C•Rex•(•]:-• [ [•' 9' •:(F[F') •.•:(FIF')•s'; FinsideS• (26) 
where 

= + 

In the a•ve equations g = 1/(p•2), and primes on dS', V', •', ,, indicate •at they are functions of F' which is 
the source coordinate and the variable of integration. Again, for •o-dimensioml problems, (k,) should be re- 
placed by •, and •e • term should be dropped. In writing the expressions for • and • we have used the symmetry 
properties of • and •. 

Ne•, co•ider points F that lie outside the sphere S• circumscribed on S and choose the origin of the coordinate 
system at the center of S 2 [Fig. 1•)]. Clearly IFI > Ir I, we now ob•in from Eqs. 24 and 25, 

routsideS2 (2?) 

The •(F'I• in Eq. (2?) is obtained from •(EI F') in Eq. (26) by interchan[ing F and F. 
Note that in both Eqs. (26) and (27), the •' and •'. • which are displacement and traction at •e surface S re- 

spectively• remain unspecified at this stage. To find how A• B, C from Eq. (26) and a• •, y from Eq. (2?) are 
related to these unspecified surface source quantities, we take the scalar product of Eq. (26) successively 
Re•, Re•(•),and Re•(• and the scalar product of Eq. (2?) successively with •(E), •[(•, and •(F). We 
then integrate on •I possible orientations of F keeping I•1 f•ed and apply the orthogonality conditions, Eqs. 
(17)-(22). We then obtain a set of simuttaneous equations for A•, •, C[(c= 1, 2) which can be solved to Yield 

and from Eq. 

•=i•c(k s) 

and 

• = i• (n.) 

(27) 

s {if" •" [•'XV'. Re$•(F•) +/•V'Re$•(F') +/•Re$•(F')V'] - •'. •'. Re•(F')} dS', 

f, {•'. ,'. [v'n e•(r')+ •e•(r')v'] • - ,'. ?. Re[•(r')}•s', 

•s {•" fi" [V'Re•[(F')+ Re•[(F')v']/•- •'. •". lqe•,(•')} dS'. 

(31) 

(32) 

(33) 

At this stage, we must be specific about the boundary 
conditions at the surface S. Consider, for example, 
the obstacle in the form of a cavity. The surface of a 
cavity is stress free, ,so on the right-hand side of Eqs. 
(28)-(33) we set 

•'-'•'=•(•').•'(•')=0, F' on S. (34) 

The still unknown surface displacement is expanded in 
the vector basis set, 

[a. Reqb.F)+b. Re½.(r )+c. Rex.(r )], F' on S 
(3•) 

where a, b, c are new unknown coefficients. 

Substituting Eqs. (34) and (35) in Eqs, (28)-(30), we 

I 

obtain, in matrix notation, 

(36) 

Similarly, from Eqs, (31)-(33), we obtain 

(37) 
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In the above, the surface integrals that were present 
on the right-hand side of Eqs. (28)-(33) have been de- 
fined compactly in terms of nine Q matrices, infinite in 
size. 

The expressions for the Q inatrices in the case of a 
cavity are given below: 

+ (38) 

12 • 13 
The expressions for (Q)• and (Q)m, can be obtained 
by •replacing lqe•(• •) in the integrand of Eq. (38) by 
Re•(• •) and Re•(•'), respectively. 

(@),..= ( ,)• •s Re•.•(F ').a'[?'•(•v)+ 
(39) 

an• • •nd •3 •re obtained from E•. 39 when 
Re• sre replaced b• Re• and Re•, respectivdy. 
Similarly, 

,'. + 
(40) 

•nd Q32 and Q•3 are obtained • replacing Re• in the 
integrand by Re• and Re•, respectively. 

Note that although the values of the Q-matrix ele- 
ments depends on the shape of S, the integrand does not 
depend explicitly on the shape. 

The matrix equations (36) may be formally inverted to 
solve for a, b, c in terms of A, B, C and substituted 
into Eq. (37) to yield 

where we have introduced the notation 

Tal •2 T 3 

c:j 

, (41) 

-: Re (•! Re QZ• Re Q21 Q•2 (•3 

e Qs, Re QS• Re Qz?J [_QS, Q•Z Qs 

-! 

(42) 
The double infinite matrix T is the desired transition 
matrix. 

In Eq. (42), we have suppressed the indices ran, err 
on the Q and T matrices for brevity. In two-dimensional 
problems both the Q and T matrices have a 2)< 2 struc- 

ture rather than a 3)< 3 structure as in three-dimensiona[ 

cases. 

Equation (41) conveys the interesting result that the 
waves scattered due to any type of harmonic incident 
wave represented by the coefficients A, B, C is com- 
pletely characterized by the T matrix. The T matrix 
depends 'only on the nature and shape of the obstacle and 
is independent of the exciting field. The symmetry 
properties due to the geometry of an obstacle are re- 
flected in simplified expressions for the Q matrix ele- 
ments. For instance, the sphere and a right ciruclar 
cylinder are trivial cases in the matrix formulation, 
as the Q and T matrices are diagonal if the 3)< 3 struc- 
ture is taken as a unit dement. Even for elliptic cyl- 
inders and ellipsoids, we can use symmetry argu- 
ments to set many of the elements of the Q matrix 
to zero. 

Before presenting the T matrix for an elastic obstacle, 
we discuss first two global properties of the T matrix, 
which are a consequence of the conservation of en- 
ergy in elastic solids and the principle of recipro- 
city. 

IV. SYMMETRY OF THE TRANSITION MATRIX 

Just as in acoustic, electromagnetic, and quantum 
mechanical scattering processes, certain reciprocity 
relations are satisfied in elastic wave scattering. These 
have been proved for elastic waves by Varatharajulu. ]a 
Reciprocity refers to the equality of the farfield ampli- 
tude for two processes which are obtained by inter- 
changing the position of source and observer and re- 
versing the sign of all momenta. In this sense it is not 
the same as time reversal in which the source for one 

scattering process becomes the receiver for the second 
process and vice versa, in addition to reversing all 
momenta. 

For elastic waves, we get an additional interesting 
reciprocity relation which states that the amplitudes of 
two waves which have undergone mode conversion in the 
opposite sense are proportional to each other. • For 
acoustic and electromagnetic waves, the reciprocity 
relation can be used to prove the symmetry of the T 
matrix. In this section, the symmetry of the T matrix 
is proved for elastic wave scattering. Although re- 
ciprocity relations have been derived only for plane 
wave incidence, the results will be true for the Fourier 
components of other types of incident waves. 

Since the proof is somewhat involved, the two- 
and three-dimensional cases will be treated separate-. 
ly. 

A. Two-dimensional geometry 

A plane p or s wave of frequency w propagating along 
• is incident on an obstacle. The expansion of a plane 
wave in circular cylinder functions is given by (Ref. 8, 
p. 828) 
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e•(i•-r-') = • •.i%(•) cos,,(o- 0•). (43) 

where k, O• are the polar coordinates of • and r, 0 
those of F. 

An incident compressional wave is given by 

•o(•) __ V exp(i• ß • = • A•(•)Re•(•, (44) 
where 

•('./•i•eos nO•,, a=l , •(•)= •e?e'sin n•,, •=2 . (45) 
Similarly an incident shear wave is given by 

•0(• • w[• e•o(,{,. • • •] m.(•me•:(•, (46) 
where 

•(•t•ineoa nO•, •1 , 

Thus for plane wave incidence Ag = •. 

•en •sr is large, the sea•ered displacement in Eq. 
(24) may be written • 

•(• r• •f•(•, •)(2/i•k• r)•z 

+ Ofs(•, •)(2/irksr)at • •p(iksr) . (48) 
• consists of •o outgoing eylin•ieM waves propa•ting 
Mong •, the direction of obse•ation are polarized paral- 
lel and perpendicular to •, respectively. The wave po- 
larized alo• • is the • Wave •d its •plitude f• de- 
•nds only on 0 •d the direction of incidence, •mely 
•. Similarly f• is the amplitude of the scattereft s wave. 
•pressions iorf• •df s may be obtained from •q. (24) 
• substituti• the asymptotic form of the radhl part of 
the bas• f•etions, 

[A.(r)] a.(•) (49) 

and 

/,(•, •): - •k, • (•(•)]*•f(•), (•0) 
where •he •terisk indicates complex eonj•ate, and 
A(•) is given in Eq. (45) wi• •} replaced • 0. 

Given below •e the reciprocity relatio• derived in 
Ref. 12: 

•($, e) =•(- •, - $), (•l) 

f. (•, •) =/,,(- •, - •), (•) 
•d 

•f,•(•, •)=- •, f•(-•, - •). 
An addition• subscript (the second) is assigned to de- 
note •e •larizztion of the incident wave. •us, 
fsa(•, •) is the amplitude of an s w•e sc•tered •1o• 
• when a • wave is incident a•o• •. 

From Eq. (45), it may • o•e•ed •t A•(- •) 
= [A•(•)]*. For • p wave, B=0. Using •e solution of 

the scattered wave coefficients given in Eq. (41), we 
obtain from Eq. (49), 

= - ik•7(i)•ffa * (•) . (54) 
In the above we have suppressed all indices and sum- 
mation signs, A(P) denotes the column matrix fo. rmed 
by A, • and the overhead bar indicates transposition. 
For example •T ax indicates the matrix product of the 
row vector formed by A and the matrix T n. The sec- 
ond equality in Eq. (54) is derived by taking the trans- 
pose of the equation. Since/• is just a scalar, 7•,=f•. 

Similarly 

f •(- •, - •)= - ik,•(•)TttA * (•) . (55) 
Substituting Eqs. (54)-(55) in Eq. (51), we find 

Next note that 

f•,(•, •)=iks•(P)T• A(•)=iksA(•)•2• A*(•) (57) 
and 

Ld- •, - •)= ik, 3(•)•*(•.) . (58) 
The second reciprocity relation, Eq. (32) then implies 

•'-= {•. (59) 

Finally, note that 

/•,6, ;) = i•(?)r :'A(•) (60) 
and 

•,,(- •-, - •) =- •,3(•)•"=A*(•) =- •-•(•)YT•A(•), (60 
and the third reciprocity relation implies 

T •' = •-r'l. (62) 

From Eqs. (56), (59), and (62) 

Lr" •"tI-LT r• •-r•] 

B. Three-dimensional scattering geometry 

Again assume that a plane wave of frequency o• propa- 
gating along • is incident on the obstacle. If the inci- 
dent wave is a shear wave, the polarization vector of 
the incident wave can lie in any direction in a plane 
perpendicular to •, unlike the two-dimensional case 
where it is uniquely fixed. 

In order to write the expansion of a plane wave in 
spherical polar coordinates, we first define the vector 
spherical harmonics which form a complete orthogonal 
set (p. 1898 of Ref. 8), 

(•.): •,r[P•( )cos •] o:1 , (64) 
(•:•r[e•(O)sm•½], o:2, 

•(•):tn•xvx[7•'•(o)cost½l, o=•, (65) 
[n%•xvx[Te•(o)sin•e•] . •:2, 

and 
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•Z(7)__(•vx[7p'J0)cos•½{, o=1, (66) 
where • and U• have been defied in Eq. (16). 

•e exposion coefficients of a p wave prop•ati• 
alo• •(•, •) can be obtained from Ref. 8, p. 1866 as 

•0• = • A-m,•-,[•. •($)1Re•). (67) 

Thus the first coefficient in Eq. (23) is 

A•6) = A"/2i""• ß •(Z) . (68) 
A plane shear wave with •larization vector • •d 

prop•ation vector k is written as 

•(•)= •"•. •:(•) 

c:(•) = ;•-'• ß •(•). (7•) 
•e scattered field far from S can be obtained by us- 

• the asymptotic forms for the s•tial part of the 
basis functions in Eq. (24), with 

{' G) ' • • (•, •) exp(%•)/• 

+ [•f• (•, •) + •fs•, P)] exp(ik•)/r. (72) 
•e scattered field •ain consists of two outgo• spher- 
ical waves, •larized •rallel and perpendicular to the 
direction of prop•ation •. The •larization of the 
shear wave is further resolved in two o•hogonal direc- 
tions • and • with amplitudes f• andf• e. Expressions 
for the scattered •plitudes c• be written •s 

f,(•, •)= - •A • [AZ(+)]* •(•) (7•) 

•d 

ß •. [a/•,O. •) + •/•. •)] 

=- • {[•(•){,,ZO)+[•(•)]•:(•)}, (74) 

where A is the •rization Vector of the outgonE, 
spherical, shear wave. 

The reciprocity relations obta•ed for three-dimen- 
stool scatter•g are quoted below from Ref. 12, 

f•(•, •)=f,,(- +, - •), (75) 

=-V. [•.•L•(- •,- •)+ •L•(- •, - •)], (76) 
•d 

f•,•, P)= A(- {,). [0_•f•(- P, - •) + •_•f•(- P, - •)] . (77) 

In Eqs. (76) and (77), • is the •larization vector of the 
wave prop•ati• alo• • and A, t•t of the wave propa- 
gati• along P. • •d • are the unit vectors corre- 
s•nd• to -• in spherical •lar coordin•es. 

Under the transformation P-- 

A,-r),•;(-7),C•(-•) • * ø• * •' *. - [A.(r)] , [a;(r)] , [c.(r)l 
Substituting the expressions for the scattered amplitudes 
from gqs. {73) and (74) and making use of the expres- 
sion for a,/3,7 in terms of the T matrix and the incident 
wave coefficients A, B, C from gq. {41), we obtain 

f}, (•, 9) = iAA*(P)T nA (J•) = iAA-• •-X-IA* (½) (78) 
and 

f•(- 7, - •) = iA A-•T •'A* (7) . (79) 
From the first reciprocity relation we obtain 

T n= T n . (80) 
In the above we have made use of the fact that B, C = 0 
for an incident P wave. 

For an incident s wave, A = 0, 

Lc,(•U Lr • 

Lc(i)J Lr 

r'U Lc(• 

•J Lc*(• 

(811 
and 

= Lc(•)J L Ta• Ta• Lc*(?U ' 
where a superscript t also indicates transpose of the 
matrix. The second reciprocity relation implies that 

= . (83) 

For the mode conversion result, 

f.s(•, 7-)=iAA*(?)(TtaT'a)[B(•q iA kc(;)l: 
(84) 

(86) 

(83), and (86) yields the required 

and 

- •'. [•-,At,(- ;', - •,)+ &•La,(- •', - •)• 

Lc(;)J 
and the third reciprocity relation implies that 

T t•-- T 2• and T•a= T at . 

combining Eqs. 
result that 

T:• (87) 

V. UNITARITY AND ENERGY CONSERVATION 

We now proceed to explore some further properties 
of the T matrix which are due to the fact that no energy 
is dissipated in an elastic solid containing an elastic or 
an ideal fluid inclusion. Another way of stating this is 
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that avereded over a period of time, the rate of ener• 
flux across a closed surface surroundir• the obstacle 
is zero. In Ref. 12, the total ener•j/flux carried b• the 
scattered field has been related to the •plitude of the 
scattered wave in the fo•ard direction, in what are 
referred to as fo•ard amplitude theorems. 

The averse energy fl• flow• through a closed sur- 
face S' surroundi• the obstacle is given by 

(w/2)Im •,•-•*•. PalS=0, (88) 
where S' fs the surface of a sphere (circle In 2-D) with 
radius •, la•e compared to the dimensions of S. 
•. (88) •d the s•uel, Im denotes the im• •rt. 
S•ce •=•o+•s •d •=•+•, •. (88) c• be rewritten 

*. I. 
(89) 

•e r•ht-h•d side of the •bove •uation h•s been ev•l- 
uated • 2-D •nd 3-D for •th • •nd s wave incidence. 

Consider first the c•se of • w•ve Incidence. •e •(•) 
•d C(•) in Eq. (23) v•ish. •he ri•ht-h•d side of 
(89) is found to be - (2•/•)Im•, •) for 2-D• •d 
- Re•(•, •) for 3-D. •z • the left-h•nd side, s•ce S' 
is • sphere of ve• l•r•e r•dius, the asymptotic form 
of • in Eq. (•2) may be used, and the • is derived 
from • by usin• •q. (3). After substitutions, the final 
results •re 

_•-(•/•)[•(•, •), • wave incidence , (gO) 

= •- Ref•(•, •), p wave incidence , (91) 
•- Ref•, •), s wave incidence . 

• the a•ve, Eq. (90) is for the case of 2-D, •d Eq. 
(91) for •D where d• is the solid angle subtended 
the element of area dS'. 

To prove the unitariW of the scatteri• matra, we 
need to consider the general c•e when p •d s waves 
are incident simultaneously. S•ce the right-hand side 
of Eq. (89) is l•ear in the incident field, we c• super- 
•se the results obta•ed in Eqs. {90) •d (91) for p 
•d s waves Incident se•rately. 

•e scattered wave mplitudes can be written in 
terms of the p•e wave exposion coefficients and the 
T matra, calculations are pe•ormed for the three-di- 
mensional case as the two-dimensional case is simpler. 

From Eqs. (•3), (74), •d (41), we note that 

[ 

•d 

Xc)/ 

From Dq. (92) 

•e •tegral • Eq. (95) can be e•luated us• the 
relation between the column vector A •d the vector 

spherical harmonic A. •us 

= A-tSars, (96) 

where we have used the orthogonalfry of •he •ector 
spherical harmonics (•ef. 8, p. 1900). Similarly, 

Writi • all terms on the left-h•d side of Eq. (9Z) in a 
form like •. (95) •d usi• Eqs. (96) •d (97) to ewlu- 
ate •he angular integrals, addi• the •hree matr• prod- 
ucts on the left-hand side, •d substitut•g for the •- 
plRudes on the r•ht-h•d side of Eq. (91), we obtain 

f 
L Xc*)/J 

The right-Mnd side of Eq. (98) may be writ•n in t• form 

•(•Tx*) = Re•ImT Imx- Im•ImT Rex 

+Im•TImx+ He•ReT• , 

where we have defied •= [•)•(•)•)] for brevity. 
•e first •o terms on the right-h•d side oi the a•ve 
quation cancel on t•ig the transpose of the first term 
•d recall•g that T is symmetric. The l•t two terms 
can be comb•ed to yield 

Re[•Tx*] = • Re Tx* . (99) 

Dbstituti• •q. (99) on •e right-h•d side oi Eq. (98)• 
we obtain 

TT* = - ReT . (100) 
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Exactly the same property results for the two-dimen- 
sional case also. 

Equation (100) does not imply that the T matrix is 
unitary, but in the quantum mechanical literature, one 
defines a scattering matrix S as 

S= 1- 2T and thus S= •. (101) 

Using Eqs. (100) •nd (101), 

$•*= 1, (102) 
thus proving that the S matrix is unitary. 

VI. SCATTERING BY AN ELASTIC OBSTACLE 

In deriving an expression for the T matrix, the val- 
ues of the displacement and traction on the surface of 
the obstacle must be specified in Eqs. (26) and (27). To 
preserve the continuity of the discussion in Sec. HI we 
completed the derivation for the simplest case, that of a 
cavity. We should note however, that up to Eq. (34), no 
boundary conditions have been applied and the results 
are general. In this section, we treat the general case 
of an elastic scatterer along with a discussion on the 
boundary conditions for four types of obstacles. 

A. Cavity 

As discussed before, the boundary conditions are 

7(7')=0, ;' on s. (103) 
The surface displacement can be expanded in terms of 
the vector basis set 

;(•')= • [4Re•l•+b.•Re;•+c.•P,,e;•], ;' on S. (104) 

Determination of the unknown coefficients a, b, c, and 
the T matrix have been discussed in Sec. III. 

B. Rigid obstacle 

A rigid obstacle is regarded as the limiting case of a 
very hard obstacle (•, • large) embedded in a soft 
matrix material (•, • small). The commonly assumed 
boundary conditions at the surface S of the obstacle are 

{'=•(•')=0, •' on 3. (105) 
If tl•ese conditions were substituted in Eqs. (26) and 
(27), together with an assumed basis function expansion 
for the unknown traction at the surface 3, 

"ø (106) 
one would be able to determine • b, c, and the T matrix 
for a rigid obstacle just as in the case of a cavity. How- 
ever, it is known that the boundary condition (105) leads 
to an unusual result of scattering, which contradicts the 
inverse fourth-power-wavelength law in the Rayleigh 
limit. m 

As pointed out by Pao and Mow, is this unusual result 
is caused by the unreasonable boundary conditions as- 
sumed. Eq. (105), implies that the obstacle is not only 
rigid, but also fixed in space. In the absence of exter- 

nal agents to restrain it, the obstacle moves as a rigid 
body under the excitation of an incident wave. Thus a 
correct formulation of the boundary conditions for a 
rigid obstacle should allow it to translate and rotate, • 
and the solution based on Eq. (105) is only of acaxiemic 
interest. 

C. Elastic inclusion 

Consider an obstacle composed of an elastic material 
with material constants p•, •-t, and /h- If the obstacle 
is completely welded to the matrix material, the s/x 
boundary conditions at the interface (four in two-dimen- 
sional problems) S are 

on s, (lO5) 
•'. 7(•')=•'. •,(•') , •' on 3. (106) 

In the above equations and the sequel, the subscript 1 
indicates a quantity pertaining to the inclusion and the 
unsubscripted variables pertain to the surrounding ma- 
terial. 

Inside the inclusion, there is a standing wave re- 
fracted from the interface. It can be represented as 

•h(•') = • [•Re•. (•) + b. Re•,. (•) + c. Rex,.(•)] , 

• inside S, (107) 

where a, b, c are unknown coefficients. The subscript 1 
indicates that the wave numbers k•l = p•oz/(• + 2gi) and 

should be used with the basis functions 
•, and X. 

Since •(•) are regular functions and continuous inside 
the surface $, we can complete the spatial differentia- 
tions and determine •(•) from Hooke's law [Eq. (3), with 
constants X• and /•l] inside S. Both •(• and 7•(•) thus 
assumed are also valid for • at the boundary 3. These 
surface quantities are continuous across $ according to 
Eqs. (105) and (106). Hence both •(•') and •'. 7(•') for 
•' at $ are obtained. Substituting them into Eqs. (26) 
and (27) for the exterior region, we have expressed the 
unknown surface sources •' and •' ß • in these integral 
formulae in terms of the basis functions Re•., Re•, 
Re•. and three unknown coefficients a, b, c. The pro- 
cedure for determining a, b, c, and the transition ma- 
trix is same as in the case of a cavity. 

D. Fluid inclusion 

If instead of a solid material, the inclusion is fitted 
with an inviscid fluid, it can not sustain shear waves. 
Thus instead of three continuity conditions for displace- 
ments [Eq. (105)], only the normal component is con- 
tinuous across S, 

•'. •(•'):•'. •,(•'), ;' on $. (108) 
Because of the inviscid assumption, the tangential dis- 
placements are discontinuous across S. Furthermore, 
of the three stresses, only the normal component is con- 
tinuous. 

•'. [7(•'). •'] =•'- [•',(•')- •'], •' on 3. (109) 
The other two tangential stress components of the sur- 
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rounding medium vanish at S, 

h'x[V(•').R']:0, •'onS. (110) 
The number of boundary conditions are reduced from 
six to four (three in two-dimensional problems). 

It was shown that in the eigenfunction expansion meth- 
od, the solutinn for a fluid inclusion can be derived from 
that of an elastic solid by letting •,- 0 (Chap. 6 of Ref. 
4). •3 In the matrix method, it is easier to assume, in- 
stead of Eq. (107), 

•,(•'): • o ro '. • inside $. (111) •,• Re(•(r), 

The stress tensor in the fluid is related to {• by 

•l(r')=X,¾V. •(•); • inside $. (112) 
These two expressions are also valid when • is at the 
surface $. By applying Eqs. (108) and (109), one thus 
specifies the normal components of the surface displace- 
ment •' and the traction h'. •' in Eqs. (26) and (27), 
which are expressed in terms of Re•,• and the unknown 

ø From Eq. (110), we set the remaining coefficients 
two tangential components of the traction in Eqs. (26) 
and (27) to zero. 

The remaining unspecified surface sources in these 
integrals are the two tangential components of the dis- 
placement at the surface $, approached from the ex- 
terior. We assume 

r on S. (113) 

The two basic functions should be those pertaining to the 
surrounding solid matrix material. Note that the dyadic 
'•-h• is perpendicular to h as •. (•-•)= 0. 

With the surface field completely specified, the in- 
tegral formulas, Eqs. (26) and (27) again contain three 
sets of unknown coefficients a, b, c, and the T matrix 
can be determined as in the previous cases. 

In all four cases, the unknown surface sources are 
expressed in terms of three sets of expansion coeffi- 
cients a, b, c, and the procedure for determining the 
T matrix is the same. However, the elements of the 
Q matrices will be different in each case. 

VII. CONCLUDING REMARKS 

The matrix formulation of elastic wave scattering as 
presented in this paper should complement existing 
methods of analysis. As discussed in the introduction, 
the chief advantage of the matrix method is that it is 
applicable to obstacles of arbitrary shape, using the 
same set of basis functions. This eliminates the need 

for calculating and tabulating a special set of wavefunc- 
tions for each type of geometry. The only special func- 
tions needed are the Bessel functions, the spherical 
Bessel functions and the spherical harmonics. 

This paper was confined to the formulation of the 
method and the general structure and properties of the 

transition matrix without reference to any particular 
geometry. The properties of symmetry and unitary of 
the T and S matrix, respectively are particularly im- 
portant since they are indispensable for checking the 
accuracy of the numerical calculations. 

The major steps involved in the numerical calculation 
of the T matrix are (1) evaluation of the Q-matrix 
elements which consist of surface integrals involving 
the vector basis functions, (2) inversion of the Q matrix, 
and (3) computation of the T matrix as the productRe Q 

The integration in step 1 can be performed efficiently 
by any of the existing algorithms. The second step is 
somewhat involved since Q is an infinite matrix. Fur- 
thermore, to evaluate the T matrix, Q" and Q have to 
be computed to the same order of accuracy. The de- 
sired accuracy is better attained if all Q matrices are 
orthogonalized by applying the Schmidt process of or- 
thogonalization. Once Q-• are calculated, the last step 
is straightforward. 

Finally we note that only a single obstacle is dis- 
cussed in this paper. In multiple scattering of elastic 
waves, a matrix theory can be formulated analogous to 
that for acoustic waves. •a The task of computing the 
transition matrix for problems involving more than two 
obstacles would, however, be formidable. 

ACKNOWLEDGMENT 

The authors wish to thank Dr. P. C. Waterman for 

reading the entire manuscript and suggesting improve- 
ments and corrections. 

*This research was supported by a grant from the National 
Science Foundation and by the Material Science Center at 
Cornell University. 

lP. C. Waterman, J. Acoust. Soc. Am. 45, 1417-1429 (1969). 
2p. C. Waterman, Phys. Rev. D. 3, 825-839 (1971). 
•J. C. Bolomey and A. Wirgin, Proc. lEE 121, 794--804 (1974). 
½Y. H. PSO and C. C. Mow, The diffraction of elastic waves and 

dymamic stress concentrations (Crane, Russak., New York, 
1973). 

5R. P. Banaugh and W. Goldsmith, J. Appl. Mech. 36, 589- 
597 (1963). 

6B. B. Baker and E. T. Copson, The Mathematical Theory of 
Huygens' Principle (Clarendon, Oxford, 1950). 

?Y. H. PaD and V. Varatharajulu, J. Acoust. Soc. Am. 59, 
1361--1371 (1976). 

8p. M. Morse and H. Feshbach, Methods of Mathematical 
P•sics, Parts I and II (Mcgraw--Hill, New York, 1953), 

SR. M. White, J. Acoust. Soc. Am. 30, 771-785 (1958). 
l•C. F. Yii•g and R. Truell, J. Appl. Phys. 2?, 1086--1097 

(1956). 
nN. G. Einspruch, E. J. Witterholt, and R. Truell, J. Appl. 

Phys. 31, 806-818 (1960). 
12V. Varatharajulu, "Reciprocity relations and forward ampli- 

tude theorems for the scattering of elastic waves from ob- 
stacles of arbitrary shape," Report No. 2568, Material Sci- 
ence Center, Cornell University, Ithaca, NY (Nov. 1975) 
J. Math. Phys. (to be published). 

13y. H. PaD and C. C. Mow, J. Appl. Phys. 34, 493--499 
(1963). 

laB. Peterson and S. Str•m, J. Acoust. Soc. Am. 56, 771--•80 
(1974). 

J. Acoust. Soc. Am., VoL 60, No. 3, September i976 


