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A transition matrix relating the coefficients of scattered waves to those of incident waves in elastic solids 
is derived by applying Betti's third identity and orthogonality conditions for a set of basis functions. The 
transition matrix for a fluid inclusion, a cavity. a rigid inset, or a solid inclusion in a fluid can all be 
derived from the general result for an elastic inclusion of arbitrary shape by taking proper limiting values 
of the general result. This limiting process is illustrated for the case of a spherical inclusion. 

PACS numbers: 43.20. Fn, 43.20.Bi 

INTRODUCTION 

A series of papers has appeared recently to develop 
the transition matrix for the scattering of elastic 
waves. t-s In 1969, P. Waterman 1 first developed the 
method for the scattering of acoustic (scalar) waves, 
starting from the Helmholtz integral formula. The rest 
of the papers cited dealt with elastic (vector) waves. 
Because there are two different Helmholtz-type integral 
formulas for elastic waves, two formulations of the 
transition matrix for elastic waves have been proposed. 
Varatharajulu and Pao 2 based their derivation on the in- 
tegral formula given by Kupradze, • which contains trac- 
tion and displacement as unknown surface sources. 
Waterman s started from the integral formula given by 
Morse and Feshbach/which involves the normal and 
tangential components, and the divergence and curl of 
the displacement vector. Very recently, Waterman has 
shown that the transition matrix can be derived directly 
from a new conservation iaw. 5 

In this paper, we show how the transition matrix given 
in Ref. 2 can be derived from Betti's third identity for 
elastic displacements. This identity is analogous to 
Green's second identity for scalar potentials. Although 
no new result is added by this approach, the derivation 
is more elegant and simple than the approach from the 
Helmholtz-type formulas. 2'3 Furthermore, the results 
are so compactly stated and clearly identifiable physi- 
cally that the chance of error is greatly reduced. 

The derivations are carried out for the general case 
of an elastic inclusion of arbitrary shape in a matrix of 
different material. The case of a cavity is then shown 
as a special case of the elastic inclusion. The case of 
a rigid inclusion and a fluid inclusion in an elastic ma- 
trix is shown to be derivable from the generaI case by 
proper limiting processes. These processes are illus- 
trated by examples of a spherical inclusion and are 
analogous to those used previously in the eigenfunction 
expansion solution for a sphere. s The case of an elastic 
inclusion in an inviscid fluid can also be handled by ap- 
plying the existing process. 

Because the tangential components of the displacement 
are discontinuous at the interface of an elastic solid and 

an inviscid fluid, some difficulties exist in assigning 
proper values for the surface sources in the integral 
formula. We believe the approach of setting up the ma- 
trix elements for a general inclusion and then taking the 
limit as the shear modulus of the solid approaches zero 

alleviates the difficulty. ß 

Toward the end of this paper, we discuss the pitfall 
of assuming the zero-displacement vector in the surface 
integral formula for a "rigid" inclusion. In the Appen- 
dix, we supply a proof of the convergence of the series 
of basis functions representing the waves inside the in- 
clusion and at the boundary. This proof is essential in 
establishing the transition matrix and was missing in 
Ref. 2. 

I. APPLICATIONS OF BETTI'S IDENTITY 

A. Betti's third identity 

Let u and v be two displacement vectors in an elastic 
medium, and r(u) and r(v) be the corresponding stress 
tensors. At a surface with a unit normal vector n, the 
traction (stress vector) is related to the stress tensor 
by 

t=n- ?. (1) 

For an isotropic material with the Lam6 constants X and 
• and density p, the generalized Hooke's law is 

r(u)=IxV. u+ •(Vu +uV) (2) 

= [Xldiv + 2/• grad +/•Ixcurl}u . (3) 

In the preceding equations, I is the identity tensor 
(idemfaetor), r(u) is expressed as a linear vector func- 
tion of u, and the three terms inside the brackets of Eq. 
(3) constRute a linear dyadic operator. Substitution of 
Eq. (3) in Eq. (1) yields 

t(u)= [xn div + 2/m. grad +/•n x curl]u. (4) 

The divergence of a stress tensor is expressed as an- 
other vector function of u, 

A'u-- V. ?(u)= [(X+ lz) grad div +/•V2]u . (5) 

Then Betti's third identity may be stated as (Eq. 
(1.10) of Ref. 6), 

•s[t(u)"v-t(v)'u]dS=Iv[A*u' v-a*v. u]dV, (6) 
where V is a volume bounded by a closed surface S. 
This identity can easily be established by noting 

[v. r(u)]. v= v- [r(u)- v]- r(u): w, (7) 
and 

r(u): vv= r(v) :'vu. (8) 
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The Cartesian components of the double scalar product 
r: Tv are r•lS•vl; and Eq. (8) is true because of the lin- 
ear Hooke's law. Subtracting Eq. (7) from a second 
equation which is obtained by interchanging u and v in 
Eq. (7), integrating the difference of these two equations 
over the volume V, and then applying the divergence 
theorem and Eq. (1) and (5), we obtain Eq. (6)ß In the 
application of the divergence. theorem, it is assumed 
that u and v and their first and second derivatives are 

continuous inside the volume V. 

For steady elastic waves with a time factor exp(-feet), 
the displacement amplitude satisfies the reduced elastic 
wave equation 

a* (u) = - pco•. (9) 

If both u and v satisfy Eq. (9) with the same circular 
frequency co, the volume integral in Eq. (6) vanishes. 
We thus obtain 

•s it(u) ß v - t(v). u]dS = 0. (10) 
Furthermore, the surface S may be deformed into an- 
other surface so long as no new discontinuities are en- 
compassed. This seemingly simple and obvious fact 
was keenly observed by Waterman from a conservation 
principle and was applied by him to derive a transition 
matrix? 

B. Basis functions in spherical coordinates 

For elastic waves in a three-dimensional medium, the 
total motion may be decomposed into three parts: L, 
M, and N. The L represents. the dilatational (longitudi- 
nal) motion propagating with speed c• and wave number 
k = co/c•; and M and N are the rotational (transverse) 
parts, moving with speed c, and wave number x--- co/c s. 
The two wave speeds are giw.m by c•= (• + 2g)/p and 

[n spherical coordinates (•, •, (•), the three elastic 
wave functions satisfying Eq. (9) are (p. 1865 of Ref. ?) 

L•. (1/k)V[k,•-)Y•,.(8, •)] 

= h.(kr)A..+ (n 2 + n)'n[h.,•r)/kr] B•., (11) 

M•. = V x [rh.(•r)Y}.(O, 0)] 

= (n 2 + n)mh.(•r)C}. , (12) 

N,, = (1/•)V x M,. (13) 

In the above equations, h• is the spherical Hankel func- 
tion of the first kind. It can be replaced also by one of 
the spherical Bessel functions j• and y, and the spheri- 
cal Hankel functions of the second kind. The ¾• are 
the spherical surface harmonics, which have been split 
into an even part (a= 1) and m• odd part (a= 2), 

Y l•(a, •))---- P •'(cosa) cosm• (even), 
(14) 

x q•) = P .• (eosO) (odd) Y,,.(O, sintoO . 

The P• is the associate Legendre polynomials, re=O, 

1, ... , n, and n= 0, 1, 2 .... , •o. The three mutually 
perpendicular vectors A, B, and C are related to the 
three unit vectors er, co, and e, in spherical coordi- 
nates: 

A,,•= er Y,,, , 
a 2 

(15) 
= (n•+ .)-m[e•a/a0 + (eelsme)a/80] •., 

C•..= (n 2 + n)'•nV x (rY.•.) = - e. x B}.. 
The tractions at a surface with unit normal n can be 

calculated from Eq. (4), or 

t= Xn(V. u) + gn- (Vii +uV). (16) 

Hence we have 

ß L.. + •n- (VL.. + 

t(MZ.) = ira- (VM•,. + MZ.V), (17) 

t(l•.) = tin' (VNet. + N•.V). 

In spherical coordinates, the components of a dyadic 
(VA+AV) are listed in Ref. 7 (p. 117). If rl=er, as in 
the case of a spherical surface, the three fractions are 

[ t'(h•.)= 2u• (n 2 + n- «•r •) 

-2 A}.+L •r 3 + .),n •.., 
t • (M•.) = •[• (•) - •. (•)/•](.• + •)' nCL, 

t' (•.)= 2g• (n • + n)AZ. 

Throughout this paper, a prime over a function •dicates 
the derivative with respect to its ar•ment. Thus 
[x•(x)]' = x<(x} + h.(x), and <(x) = 

The asymptotic formulae for spherical Bessel func- 
tions • large arguments (z-•) are 

j.(z)- (l/z) eos(z - r.), 

h.(z} - (l/z) e•(iz - i• 0 , (19) 
<(z) - (i/z) exp0z - in.), 

where u.= (n+ 1)=/2. Apply•g them to gqs. (11)-{13), 
we find, as •r- • or KF-- •; 

LL- (i/•r) e•(i•r - i•.)AL, 

M•. - (1/•r) exp(i•r - i=.)(n • + n)'a•., (20) 

N•.- (i/•r) e•(i•r - i•.)(n • + n)'nB•.. 

Similarly, the asymptotical values for tractions are 

t(L•.)- [- • + =•)/•r]e•(i•- 

t(M•.) - (ig•/•r) exp(i•r - iu.)(n • + n)'nC•., (21) 
•(•.)- (- •/•) •x•(i•r - i=.)(n • + n)mBL. 

From the previous e•ations, we note that only as 
is the dilatational wave L polarized in the r•ial direction 
•or •th u and t) •d the rotational waves in the direc- 
tion tangent to the sphere. 
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C. Orthogonality of the spherical basis functions 

ß The three vector functions A, B, and C satisfy the 
orthogonality conditions ? 

" B.•,,. C•. = 0 (22) A;,. 

and 

The integration is over a spherical surface with a solid 
•ngle •= s•O E6 •. The normaliz•Uon const• is 

7•.= E•(2•+ 1)(n- •)Z/4•(n+ m) I, (24) 

where g•= 1 when m=0 and era= 2 when 

There exist no such o•hogonality conditions for wave 
functions • L•,, M•n and •n, even when y is a constant. 
We shall now show that a combination of u •nd t(u) ac- 
cordin• to Eq. (6) satisfies •other form of ortho•o- 
n•i• relation. 

As a compromise of notations used in Refs. 2 and 3, 
we define three basis •ncUons for elastic waves, (•)• 
where •= 1, 2, 3, •d 

I• 3 31• a 

The scalar factors are introduced by Waterm• 3 so t•t 
within a common factor, each • c•ries unit ener• 
fl• out of •y closed surface conta•g the or•in. •r 
factors differ from his • that the factor 1/• • Eq. (24) 
is omitted by him (Eq. (5d) of Ref. 3). •e function 
with L•n is designated as •s, etc., • his paper. • Ref. 
2, the three basis •nctions are (1/•)(•)•,, and they 
have the dimension of displacement. In the sequal, we 
abbrevia• (•)•, as • (•= 1, 2, 3) unless the indices 
m, u must • spec•ied e•licitly. 

For waves which are nonsingular • a region enclos•g 
the orig• of •, we use three basis •nctions, 

Re (26) 

where Re s•nds for the "re•lar pa• of." For real 
wave numbers k and •, as • the case of waves without 
damp•g, Re also me•s the "real pa• of." Thus • is 
obta•ed from • • substi•ting h, • L, M, and N, with 

An i•inite region which is divided • a su•ace S of 
arbitrary shape is shown • F•. 1. We have added two 
spherical surfaces s. and s., e•erior •d interior to S, 
respectively, and a large spherical su•ace s= with 
radius •. Recall t•t • (• = l, 2, 3) are re•l• inside 
s•, and • are re•lar outside s.. H we choose • • Eq. 
(6) • be the region inside s., and let u= 
(•= 1, 2, 3), then the volume •tegral v•ishes, •d Eq. 
(6) re•ces W (•, •= 1, 2, 3) 

= 0. 

Equation (27), which is a special case of Eq. (10), is a form 
of orthogonality conditions for •. Note that the s. can 
be replaced by any surface inside s., such as S or s_. 

Next we take u = • and v = •0 ø and choose V to be the 
region bounded internally by s. and externally by s•. 
Since all • (v= 1, 2, 3) are regular in this region, we ob- 
tain from Eq. (6) 

( • - •.) [t(,•) ß •- t(,•) ß ,•]dS = 0. (28) 
The minus sign of the second integral is used because 
the outer normal at s. in this case is -e,, and we have 
chosen n = + e, for t on all surfaces. From Eqs. (20) 
and (21), we note that as •r_--r. _oo t(•b•). •0•=0 when 
v • c. When • = c, the quantity inside the brackets is 
identically zero. Thus the integral over s• vanishes, 
and we have (v, c= 1, 2, 3) 

. [t(•) - • - t(•')- •]dS = 0. (29) 
Finally, we let u = •/• and v = • (:•, a = 1, 2, 3). Both 

functions are regular in the region V bounded by s, in- 
ternally and s• at the outside, As in the previous case, 
by letting r- •o, we obtain 

. [t (•) ß • - t(•ø) ß •?] •S =(i•/•)•. (30) 
The constant (iiz/•) is calculated by substituting Eqs. 
(20) and (21) into the integral over s• and then by making 
use of the relations in Eq. (23). 

Equations (27), (29), and (30) are the "orthogonality con- 
ditions" for the basis functions, which are needed in de- 
riving the transition matrix. 

II. TRANSITION MATRIX FOR AN ELASTIC 
INCLUSION 

A. Incident, refracted, and scattered waves 

Let the region inside S as shown in Fig. I be tilted 
with a material different from the surrounding one, and 
let all material constants inside S be designated with a 
subscript 0 (•0, g0, P0, •0, and g0)- An incident wave 
u")(r) impinging on this inclusion is refracted into the 

FIG. 1. Waves soattered by an inclusion bounded by the sur- 
faces $. 
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inclusion material as u (s) and scattered into the sur- 
rounding medium as u (s). Each of the three waves can 
be represented by a series of the basis functions within 
a specific region: 

a•½ (r), r<r. (31) u, ,(r) •_ •-• % , 

u•S'(r) =• f•(r), r-<r.. (33) 

Since • is an abbreviation for (•0),,n, the coefficients 
a•, c•, and f• also carry the indices v, m, n. The sym- 
•1 • is then an abbreviation for four summations: 
from 1 to 3, q from I (even',, to 2 (odd), • from 0 to i•in- 
ity, and m from 0 to n. The subscript 0 of • means 
t• •he same subscript shmtld be a•ached to al[ wave 
numbers •d material constats con•ed in these re•- 
far basis •nctions. 

The incideat wave is given and the series in Eq. (31) 
is uniformly convergent for • < r•. ff the •cident wave 
is generated by a point or l•e s•rce, the radius 
should pass through this source. For plane •cident 
waves, • is infinite. 

The basis functions for u (s• are re•lar outside the 
inclusion, •d the series in Eq. (32) converges uniform- 
ly at and outside a sphere of rad•s r.. •e ac•al val- 
ue for r. is unkno• at this stage, but it can be aseer- 
ta•ed when the unknown coefficients c• are found. Sim- 
ilarly, the series for u (t) is uniformly convergent at 
least at and inside a sphere )f radius r_. Again the 
radius of convergence will be asee•aMed after the de- 
term•ation of the unknown coefficients f, The •o 
spheres s. •d s. need not •, concentric. 

To calculate c•, we consider the region V bounded by 
s. and S, •d let u(r) be a solution of Eq. D) and 
V= •(r) in Eq. (6). The volume integral in Eq. (6) 
then vanishes, and 

$• It(u)' •-t(½•) ß u]•: •,[t(a)' ½•-t(½•)-u]•. (34) 
AsMEq. (28), all n's for t at S •d at s, are in the di- 
rection of 

At the surface S, •th u and t(u) are unknown, and 
they will be denoted by u. •(! t., respectively. How- 
ever, at s., u can be represented by the series M Eqs. 
(31) •d 

Again the summation is over a (a= 1, 2, 3) and three 
more Malices. Since •th se:eies are uniformly con- 
vergent, we e• apply the vector dffferent•l operator t 
as defied by Eq. ½) to the series • Eq. (35) and obtain 

t(u)=• a•t½*)+• c•t(½ •) on s.. (36) 
Substi•tMg Eqs. (35) •d (36) to the right-•d side of 
Eq. {34), we fMd 

The integral associated with c, vanishes because of Eq. 
(29), and that with a, equals 0g/•)• according to Eq. 
(30). Hence we obtain the following identity: 

The subscript + means approaching S from the + n side. 
Since a• are knom, the preceding equation implies that 
the unknown surface traction t. •d surface displace- 
ment u, are not independent of each other. 

Similarly, we let v= •(r) in Eq. (5) and obta• 

This equation shows clearly t•t the coefficients of the 
scalered waves are determined by the dynamic sources 
t. and u. on the surface S. Equations (38) and (39) are a 
m•ffestation of Huygens' principle for elastic waves? 

To determ•e f•, we consider the region V inside the 
inclusion •unded by s_ and S. Again we let in Eq. (6), 
t(u)=t. and u=u- at S, •d 

u =u'/'= Z fo •, (40) 
on $.. 

t(u) =• for (•), (41) 

By setting v= ½• and ½[ in successive order, we obtain 

0= i It_. u-]as, (42) 

•=1,2,3. 
(43) 

The subscript - means approaching S from inside (-n 
direction). In the derivation of the above results, we 
have made use of Eqs. (27) and (30), respectively. Equa- 
tions {42) and {43) are a mathematical representation of 
Huygens' principle for waves inside the inclusion. 

B. Transition matrix for an elastic inclusion 

If an elastic inclusion is perfectly welded to the sur- 
rounding medium, traction and displacement must be 
continuous at the interface $: 

on S. (44) 
U.=l/., 

Thus the u. and t. in Eqs. (38) and (39) can be replaced 
by u. and t_, respectively. Furthermore, we prove in 
the Appendix that the series in Eq. (33) is not just con- 
vergent within r •< r_, it is also convergent and differen- 
ttable throughout the interior volume of the inclusion, 
including the surface approached from inside. There- 
fore, we extend the series representation of u •t} to S: 
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on S. (45) 

Substituting the above series into Eq. (38) for u. and 
because of the continuity condition, we find 

a•= - i •-• Q'øf o , (46) 

where 

Q•=• [t(½•) ß •-t(•)- ½•]dS (elastic). (47) 
Similarly, a substitution of Eq. (45) into Eq. (39) gives 
rise to 

cv---i•fo , (48) 
where 

@ =• • [t(•'). •-t(•). •]•. (49) 
Note that • is the re•lar part of •. 

In matr• notation, Eqs. (46) •d (48) are 

a = - i•, (50) 

e=i4•, 
where a, e, f are column matrices, and Q, • are 
•ua•e matrices. Recall that each of 0• and • earties 
three more indices in the form of (•)•, and the and 
• should also carry the same indices as (•)•. Thus 
the • • Eqs. (48) and (49) means a quad•ple summa- 
tion over four •diees, •d • and • are •f•ite matra. 

•noting the inverse of the matr• Q by •'•, we obtain 

f = iffaa, (52) 

e = - (•")a = T a . (53) 

The product • is called the tradition matrix T, 

T•-4•' or -•=Tq. (•4) 
It relates the un•o• scattering eoeffiei•nta e to the 
given incident coefficients a. The refracting coefficients 
f are related to • through the Q'• matra. Based on con- 
sedation laws, the T matr• has •en shown to be sym- 
metric?' a 

•e elements of • depend on the •tegrals of the basis 
•netions over the surface of a sea•erer. In Eqs. (4•) 
•d (49), the sym•ls • (v= 1, 2, 3) stand for h•, M•, 
and • as defined in Eq. (25), and h•, t(h•), etc., 
are listed in Eqs. (11) •d (1•), respectively. S•ee we 
have chosen the spherical elastic wave functions as the 
basis functions, these integrals can be evaluated •alyti- 
rally • S is spherical. •he•ise, Q• and • can only 
be evaluated numerically. 

C. Transition matrix for a cavity and a rigid inclusion 

In Refs. 2 and 3, where a transition matrix for a 
fixed and rigid insert, a cavity, and a fluid inclusion 

are given, each is derived from a distinct set of bound- 
ary conditions. In principle, the results for these spe- 
cial cases should be derivable from those for the elastic 

inclusion. We shall show that this is indeed the case. 

The problem of a cavity is particularly simple, as we 
can set in Eq. (44) 

t_=o OhS, (55) 

and leave u. unspecified. Thus t.----0 in Eqs. (38) and 
(30). By assuming 

U,= Z b• a on S, (56) 

we obtain 

a,• = - i • Q•'b•, , (57) 

c•=+ i• 4•b, , (58) 
where 

@ =•s [t(½•)' •]dS (cavity) . (59) 
E•licit expressions for • are given • Ref. 2. 

Note that Eq. •59) can • deduced directly from •q. 
½7) • s•ting }(½•)= 0 because of Eq. (55), and by 
changing ½g to • because the unspecified displacements 
should • eont•uous at S. 

The boundary conditions for a rigid •clusion are often 
assumed as 5' 16 

u- = o. (60) 

The traction t- is left unspee•ied. From Eq. (47• 
can derive the • for a r•id inclusion by setting •= 0 
because of Eq. (60) and by ehang•g the unspee•ied 
t(•) to t(• •) at s. The answer is 

Q•=-• • [½'-t(•*)]• (r•id). (61) 
The reader should be cautioned that Eqs. (60) and (61) 

will yield a result for the rate of scattering energy which 
contradicts Rayleigh's law of •verse fourth power 
wave length. Details are discussed at the end of the 
next section. 

For a fluid inclusion, the tangental traction 
v•ishes at S, but the t•genUal displacement vector 
does not vanish and is discontinuous at S. Thus if is 

d•fi•lt to derive the Q• directly from Eq. (47). We 
believe, however, the elements of Q•* for a fluid •clu- 
sion can be properly derived by applyi• a limiting pro- 
cess to all radial functions (in, hn, etc. ) •side the in- 
tegrand. This process is illustrated with examples for 
a spherical inclusion • Sec. •. 

III. TRANSITION MATRIX FOR A SPHERICAL 
INCLUSION 

A. Elastic sphere in a solid 

When $ is the surface of a sphere with radius a, the 
t(½•), t(•), etc., in the integrals for Q• and Q• are 
replaced by t'(L), if(M), and if(N) in Eq. (18), each 
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multiplied by a constant as defined in Eq. (25). The re- 
sulting integrals can all be evaluated in dosed forms 
by applying Eq. (23). As in Ref. 3, we adopt the nota- 
tion that the argument of a spherical Bessel function is 

omitted whenever it is multiplied or divided by the same 
argument, that is, (hah,) -- kah,(ka), (h./Ka)-= (1/Ka) 
xh,(•a), (kah',)-= kad[h,(ka)]/d(ka), etc. The elements 
for Q as found from Eq. (47), are 

+ 1)koa] O-'•5•koaj.}(kah•'), 

(62) 

Each element carries with i't three more indices in the 
form (Q)m.. These expressions are identical to those 
in Ref. 3 [Eq. (64)]. 

The elements of the T ma•:rix are as follows: 

T 33 = - 
aT = _ , 
&Tt3= •11Qt3 _ 01aQtt, (63) 

T12= T21= T 23= T 32=0, 
and 

A-- QnQ3a _ Q•,Q13 . (64) 
Substitution of the above resnits in Eq. (53) and then in 
Eq. (32) completes the solution for the waves scattered 
by a sphere, which has been investigated by. many 
authors 3, 3, •0, u. 

Ci= Tllal + T13a3 , 

c2 = TZZa•, (65) 
C3= T31•! + T33a3. 

B. Fluid sphere in a solid 

In the case of a fluid inclusion, g0 approaches 0 and 
P0 and •0 are finite. Thus •0 approaches •, but k 0 re- 
mains finite. To compare orders of magnitude, we use 
o(½) to denote the "order of i•ffinitesimal ½," and 0(1/½) 
to denote the•order of infinity (1/•). For convenience, 
we let 

/t0//• = o(½2), •0a= 0(1/½). (66) 
From Eq. (19), we find as •0a- •, 

j.(t•oa) = o(½), j'n(t•oa) = o((). (67) 
Applying these limiting values to Q•O in Eq. (62), and 
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neglecting terms of higher order of ½ in each element, 
we obtain, 

Qn_ 

{[(2n 2 + 2n - •2a2)(koaj•' ) - 2n(n+ 1)j.(koa) ]h•(ka) 
+ [(2n 2 + 2n+ po•2a2/p)j.(koa ) - 

Q• - {j. (K0a)}(•a) a 

Q3a_ {j.' (•0a)} [(2n 2 + 2• - tr2a•)h•(•a) - 2(gah.)'], (68) 
Q•3_ {j;(•0a) } [k(n2 + n)/•]•/22(ka)•(h./ka), ' 
Q•- {(1/g0a) 3/•} [(n 3 + n)koa] 

x {(koajn •) -jn(koa)]2(•a)Z(hn/tra) t 

+ J.(koa)[(Oo/P - 1)(•a) 2 + 2(n • + n - 2)]h.(•a)}. 
In the preceding expressions, we have grouped all func- 
tions that involve •0 a inside curly brackets as the first 
factor of each element. 

Note that in the second form of Eq. (54), a common 
factor which appears in the same column of both ma- 
trices 1• and Q can be cancelled without altering the T 
matrix. We thus drop the first factor (inside the curly 
brackets) of all elements to obtain the @•ø for a fluid 
spherical inclusion. The results so obtained disagree 
with those given in Ref. 3 [Eq. (52)], but they can be 
reduced to the latter by multiplying the Q matrix in 
Eq. (68) with a real matrix. 

C. Spherical cavity in a solid 

The case of a cavity is discussed in the previous sec- 
tion. It can also be considered as a special case of a 
fluid inclusion with •0- 0 and P0 - 0. Since the dilata- 
tiphal wave speed (lo/Oo) •/• should be also approaching 
zero, we have k0- •. 

To calculate the limiting values, we let, in addition 
to Eq. (66), 

Xo/h = o(e•), Do/P= o(½), koa= O(C1/2). (69) 
The results thus derived from Eq. (68) are 
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Qii_ {(koa)alaj•,(koa)}(k/g)tl2 

x [(2n 2 + •.n- •2a2)h.(ka) - 4(kah'.)], 

q?2_ (•a), •a)', 

Qua_ (2n2 + 2n - •2aZ)h,(•a) - 2(•ah,)' , (70) 

Qta_ 2In(n+ 1)k/•]•t•(ka)a•ka) ' , 

Q• - {(•0a)•a/; (•0a)}• (n • + n) m (•aF (•a)'. 

By dropping the common factor that involves •0 a (inside 
curly brackets) of Qt• and Qat, we obta• the Q• for a 
spherical cavity. These answers are the same as those 
derived directly from Eq. (59), •d they also agree 
with those given • Ref. 3 [Eq. ½4b)]. 

D. Elastic sp•m in a fluid 

The same limit•g process can be applied to the case 
when •e surrounding medium is fhffi. We let g-0 in 
Eq. (62), •d assume 

U/go = o(•2), •a = O(1/•). (71) 

The Q• are reduced to the following e•ressions when 
higher order terms are neglected: 

+ [(•o/ko):(koa•n) + 4•'•(koa) - 2n(,+ 1)(j,/koa)](ka•}, 

Q33 __ {(•ah•)/g}(2 •o/•o a) 

[(•0aj.- (-2+ •- • -•2)).(•0a)], (72) 

As in the previous cases, we have grouped all quanti- 
ties •volving • and •a as the first factor of each ele- 
ment (Mside the curly brackets). Note that M this ease, 
there are no common factors • the eorrespon•ng col- 
umn • Q and • matrices. However, we can still sub- 
sti•te Eq. (72) Mto Eq. (63) =d then compare the order 
of magnitudes of T •. After •bsti•tion, we find that 
T H does not con,in •y function which involves •a. 
remaining elements which involve j•(•a) or •(•a) are of 
the follbw•g orders as •a-- •: 

T::= o(•ø), Taa= o(•ø), 

T •a = O(e•/:), T a• = 

For an •eident wave in a fluid medium, a==aa=0 
Eqs. (31) =d (65). Thus we f•d c•= T•a• and ca= 
The ca factor is troublesome as T a• is approaeh•g in- 
finity in the limit. However, we note from Eq. (20), 
{ •a(r){ = o(•) as ifs- •. Therefore, we can drop the 
pro•et caSa(r) in the scattered waves, Eq. (32), 

= (r)•.(a,)•.(• )•., (•4) 

where 

Tit = - (&llqaa - &laqal)/(ql tqa3 -- qalqia). (75) 

The q• in the above quotient are obtained from Eq. (72) 
by dropping the factor (gZg)-1/2 or (tgah•)/g in Q•. The 
result in Eq. (74) can be compared with that in Ref. 19.. 

E. Rigid sphere in a solid 

The problem of a rigid sphere in solids has often 
been treated with the boundary condition Eq. (O0). 
However, solutions so derived by the eigenfunetion ex- 
pansion method lead to the conclusion that the scattering 
cross section of the rigid sphere in the Rayleight limit 
is independent of the wave length of the incoming wave. iø 
This conclusion contradicts Rayleigh's law that, at 
long wavelength, the rate of energy scattering is in- 
versely proportional to the fourth power of wavelength. 
As pointed out later, this contradiction is a result of the 
stringent boundary condition u. -- 0. 8 

For if an inclusion made of very rigid material is in- 
bedded in an elastic matrix material, its deformation 
might be small, but it can still translate and rotate with 
the surrounding matrix. By setting u. =0 at the bound- 
ary, one also has eliminated the rigid body motion. 
Thus the inclusion is not only rigid, but also fixed inside 
the elastic matrix. The condition of fixation is very dif- 
ficult to secure in reality. 

In the case of a rigid circular cylinder inside an elas- 
tic matrix, it was shown that the solution derived from 
the rigid and fixed boundary conditions u_ = 0 is a limit- 
ing case of a rigid inclusion with an infinite mass den- 
sityfi a We shall now examine the limiting values of 
inEq. (62) as h 0-% g0-% undo0-% 

Note that k0= o•/%o, •o = o•/C,o and c•0= [0t0 + 
po] ta, c,0= (g0/P0) •/2. Thus the values for c•0 and %o 
are indeterminate when h0, g0, and P0 approach infinity. 
The wave speeds inside the inclusion could be larger, 
about equal, or much smaller than the corresponding 
speeds of the surrounding medium. If ½ denotes an in- 
finitesimal, these three conditions may be stated as 
follows: 

(1) c•o/c• and C•o/c,=O{½'l•). This implies 

go/g, (X0 + 2g0)/(A + 2g) = O(1/{ 2); p0/p= O(1/½). (76) 
(2) %o/% and c,o/c• = o(½ø). This implies, 

•0/• (x0 + 2•0)Ax + 2•), p0/• = o(•/d). (•) 
(3) c•o/c• and c,o/c, = o(•ltz). This implies, 

go/g, 0t0 + 2g0)/{X + 2g) = O(1/• 2); Polo = O 
{•8) 

Case (1) means that k0a= o(• tt2) and •0 a---- o(•1;2). The 
expressions of Q• can be simplified somewhat by apply- 
ing the asymptotic formula of j,(z) as z- 0. Case 
leads to no simplification of Q•o. Case (3) gives rise to 
a simplified result. 

In the third case, koa equals o{½'1•), and g0 a equals 
o(½'1•2). Applying Eq. (19) to all j,(goa) and j,koa) in 
Eq. (62), and keeping only terms of largest magnitude 
according to Eq. (78), we obtain 
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Q22 _ {(_ po/p)( Jn/•oa)'}(,ia) 2 (aah,) , 

Q•3 _ {(V0/V) (•oaj,)}(gah.) ' (79) 

q•- {(po/p)(ga):( jdgoa)}[n(n + 1)k/g]•tzh,ka) , 

Qs• _ {(ko/•o)St2(po/p)( j•/koa)}[n(n + 1) ]m(•a)2h,(•a) . 

•1 factors involving gas, boa, •o, and P0 are grouped 
•side the curly brackets. Note that pog2/pgg= 
Thus the same columns of •?• and • conta• a common 
real factor (insffie the curly brackets) which ran • can- 
celed while emulating T •. •ence we finally o•ain 

•aa_ ½ah,)', (80) 

- [n(n + 

The last e•ressions, which are derived by additional 
c•cellations of factors in the same column, agree with 
those given • Refs. 3 and 10. The la•er was derived 
by applying the boundary condition m = 0 on S. 

Note that the conditions in gq. (•8) imply the following 
in•ualities: 

Po/P > (po•o/P•) m > •o/P., (81) 
po/p > [p0(x0 + 2u0)/p(x + :,,•)]m > (•0 + 2•0)/(• + 2•). 

Consulting the table in "Acoustic Properties of Solid 
Materials, ,,14 which lists 26 materials, ranging from 
heavy metals like platinum and tungsten to light metals like 
beryllium and light-weight polymers like polyethylene 
(specific density-- 0.90), we find that only a tungsten in- 
clusion inside aluminum ma•.•rix can satisfy all condi- 
tions in Eq. (81). However, for the tungsten-aluminum 
combination, /•0//• = 13.4/2.4 = 5.58, and Po/P = •9. O/ 
2.69= 7.06. Both ratios are of the same order, and Eq. 
(78) is not satisfied. 

In conclusion, we find thai. although Eq. (80) is a valid 
approximation mathematically for a heavy and rigid in- 
clusion, it is not valid for real materials. Adoption of 
Eq. (61), or Eq. (80) will lead to a result which contra- 
dicts Rayleigh's inverse fourth power law. 

IV. CONCLUSION 

Starting from the Betti's identity in the theory of elas- 
ticity [Eq. (6)I, we have sho'am that the basis functions 
of elastic waves satisfy the orthogonality conditions, 
Eqs. (27), (29), and (30). The transition matrix which 
relates the unknown scattering coefficients to the coeffi- 
cients of incident waves can then be derived directly 
from the identity and the orthogonality conditions. This 
derivation circumvents the use of Green's dyadics for 
elastic waves and can be adopted easily for any other 
set of basis functions. The case of two-dimensional 

problems, using the circular cylinder wave functions as 
the basis function, along with the derivation of transi- 

lion matrix for scattering of scalar waves based upon 
Green's second identity for scalar potentials is dis- 
cussed in a separate report. is 

The transition matrix is first derived for an elastic 

inclusion of arbitrary shape, Eqs. (4"/), (49), and (54). 
It is then shown that the transition matrices for other 

types of inclusions, including a cavity, a rigid inclusion, 
a fluid inclusion, and a solid in fluid, can all be obtained 
from the general case by a limiting process. 

This limiting process is illustrated by examples of a 
spherical inclusion. Hence the results for an elastic 
sphere, given explicitiy in Eqs. (62)-(65), encompass 
all known solutions for the scattering of elastic (acous- 
tic) waves by a sphere. Explicit expressions for the 
elements of the transition matrix enable us to show that 

the solutions derived from the zero-displacement 
boundary condition are invalid for most of the solid ma- 
terials. 
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APPENDIX 

In applying a series of spherical basis functions to a 
boundary value problem of nonspherical geometry, it is 
important to establish, whenever possible, the region 
of convergence of the assumed series solution? In Eq. 
(33), we have assumed first a series solution for u 
which is convergent within and at the sphere r---•.. 
Later we extended the region of convergence of the same 
series to the boundary of a nonspherical inclusion and 
differentiated the series to obtain t. on S in Eq. (45). 
Such an extension is valid on the basis of a theorem 

which may be stated as follows. 

Huygens' principle [Eqs. (42) and (43)] is a necessary 
and sufficient condition for the convergence and differ- 
entiability of the expansion Eq. (33) throughout the in- 
terior volume of the inclusion, including the surface ap- 
proached from the inside. 

An analogous theorem was given by Watermare a Fol- 
lowing his logic, we furnish the following proof of the 
theorem. 

That the principle is sufficient can easily be estab- 
lished by assuming the series is uniformly convergent 
within the volume bounded by S, and on S, 

U(/•=•/•(r), r inside, and on S (A1) 
(Fig. 1). Since the series can be differentiated to ob- 
tain t (•), we find, on the surface S, 

U_=U (;) , 
on S . (A2) 

t_ = t(u '•}) =•. lot (•), 
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Substitution of (A2) into Eqs. (42) and (43) shows that 
they both are identically satisfied. 

The necessary condition is established by assuming a 
series for u., and another for the derivatives of u_ with 
coefficients f' and f", 

(A3) 

r on S. (A4) 

' + 
Substituting Eq. (A4) into Eq. (2) or Eq. (16), we find 

o.s. 

•bsti•ting •3) and (AS) into Eq. (42) and (43) •d 
rewrRmg f• =f• + • -f•), we obtain the following re- 
sults: 

(A6) O= L/•--J• '•0 , 

-- if,•O/KO).= • (,c, ;,,)Q• _ if,,(LtO/KO ) . J• --Jo 0 

where 

qg=f[ig. t(!g)]as. (AS) 

In the previous derivations, use has bqen made of Eqs. 
(27) and (29) when s. is shrunken to S. 

Since Q• 0 in general, Eq. (A6) is satisfied by 

/o=fo, o= 1, 3. (A9) 

From Eq. (A7), it then follows that 

f•,=f•, , .= 1, 2, 3. (A10) 

The special case of Qf= 0 which corresponds to a 
condition of resonance is discussed in Ref. 3. 
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