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New Formulation of Acoustic Scattering

P. C. WATERMAN

MITRE Corporation, Bedford, Massachusetts 01730

Upon introducing the outgoing spherical (or circular cylinder) partial waves {{»} as a basis, the equation
QT = —Re(Q) is obtained for the transition matrix T describing scattering for general incidence on a smooth
object of arbitrary shape. Elements of Q involve integrals over the object surface, e.g.

Qma==% (g )éim,d— (g—r)/da-V[Re Wm¥nl,

where the —, + apply for Dirichlet and Nzumann conditions, respectively. For quadric (separable) sur-
faces, Q is symmetric. Symmetry and unitarity lead to a secular equation defining eigenfunctions for general
bodies. Some apparently new closed-form results are obtained in the low-frequency limit, and the transition

matrix is computed numerically for the infinite strip.

INTRODUCTION

Three methods extensively emploved in the literature
on scattering and diffraction, especially where explicit
mumerical results are desired, are separation of vari-
ables, variational techniques, and the direct numerical

- solution of integral equations. The separation-of-vari-
| ables procedure is, of course, extremely well known,5
- and constitutes a formal solution for a class of objects
' bounded by quadric surfaces. In practice, a good part of
- the computational effort goes into evaluation of the

wavefunctions themselves except for the sphere and the
drcular cylinder, for which efficient recursion relations

- are available. The variational method, described by

i Levine and Schwinger® and others,> ™! is equivalent to
—_—

'P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953), pp. 494-523, 1360~

|- 1813, 1759-1767.

*C. J. Bouwkamp, Rep. Progr. Phys. 17, 35-100 (1954).
*C. Veh, J. Math, Phys. 4, 65-71 (1963); J. Opt. Soc. Amer. 55,

3 39314 (19653).

‘C. Yeh, J. Acoust. Soc. Amer. 42, 518-521 (L) (1967).
*J. E. Burke, J. Acoust. Soc. Amer. 43, 871-875 (1968).
H. Levine and J. Schwinger, Phys. Rev. 74, 958-974 (1948);

;B 1423-1432 (1949,

"W. Magnus, Quart. Appl. Math. 11, 77-86 (1953).
"A.T. de Hoop, Appl. Sci. Res. B4, 151-160 (1954).

(I;SA:‘)T‘ de Hoop, Proc. Kon. Ned. Akad. Wetensch. B58, 401-411
D).

g i: F. B. Sleator, J. Math. and Phys. 39, 105-120 (1960).

R. F. Harrington, Field Computation by Momeni M ethods
(The Macmillan Co., New York, 1968). pp. 1-21.

Galerkin’s method, as was shown by Jones.2® For
general bodies, the principal effort goes into evaluating
matrix elements, which consist of repeated surface or
volume integrals with singular kernel, and require, re-
spectively, fourfold and sixfold numerical quadrature.’?
The integral equation method consists of approximating
an integral (over the surface or volume of the scattering
region) by a discrete sum, then solving the resulting
system of equations numerically.* In recent years,
several applications of this approach have appeared,
using the digital computer.1.15-17

The purpose of the present work is to describe a new
matrix formulation of scattering. In structure, the
resulting equations most nearly resemble those of the
variational method, with however the computational
advantage that, for both surface- and volume-type
scattering, elements of the matrix to be inverted are
described by a single surface integral with no singulari-
ties in the integrand. Essentially the same matrix

2D. S. Jones, IRE Trans. Antennas Propagation 4, 297-301
(1956).

¥ D. S. Jones, The Theory of Electromagnetism (The Macmillan
Co., New York, 1964), pp. 269-271.

“ F. B. Hildebrand, Methods of A pplied Mathematics (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1952), pp. 444-451.

5 R. P. Banaugh and W. Goldsmith, J. Acoust. Soc. Amer. 35,
1590-1601 (1963).

K. K. Mei and J. G. Van Bladel, IEEE Trans. Antennas
Propagation 11, 185-192 (1963).

M. G. Andreasen, IEEE Trans. Antennas Propagation 12,
746—754 (1964); 13, 303-310 (1965).
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Fi6. 1. Geometry of
an obstacle bounded
by a smooth closed
surface o.

applies for both Dirichlet and Neumann boundary
conditions.

In brief, the plan is as follows: In Sec. I, equations
are derived for the transition matrix describing the
scattering for general incident wave, using a spherical
partial wave basis. The derivation is based on the
Helmholtz integral formula as applied to both the
interior and exterior of the scattering region, and sup-
plemented with analytic continuation arguments. The
idea that exterior boundary-value problems can be
solved by considerations in the interior is not new,
incidentally, and appears to have first been applied in
electrostatics by Smythe, in 1956.!% Symmetry and
unitarity are employed in Sec. II to obtain a secular
equation for the eigenvalues and eigenvectors of the
scattering or transition matrix; and the eigenvectors, in
turn, generate eigenfunctions associated with a specified
scatterer (including boundary conditions). The matrix
elements appropriate to both two-and three-dimensional
problems are written out explicitly in Sec. I1I, and
various reductions discussed that depend on the
geometry of the scattering region. Finally, in Sec. IV,
the transition matrix is computed numerically for the
infinite strip. Symmetry and unitarity are verified, and
equivalence of the eigenfunctions of Sec. IT with the
elliptic cylinder functions demonstrated. By specializing
to plane wave incidence, theresults of earlier workers?-20
are, in effect, extended to the geometrical optics
limit.

It should be emphasized that the method in its
present stages is formal in the sense that no rigorous
proofs are available dealing with convergence of
truncated solutions of the (infinite) matrix equations
derived below. It is hoped that the present work may
stimulate activity along these lines. In addition to the
analytical and numerical results presented here,
numerical results have also been obtained for electro-

21,22

magnetic scattering by conducting®**? and dielectric

13W. R. Smythe, J. Appl. Phys. 27, 917-920, (1936); 33,
2966-2967 (1962).
( 1;]5; M. Morse and P. J. Rubenstein, Phys. Rev. 54, 895-898
1938).

2 S, Skavlem, Arch. Math. Naturvidenskab 51, 61-80 (1951).

2P, C. Waterman, Proc. IEEE 53, 805-812 (1965).

22 R. H. T. Bates, Proc. IEE (London) 115, 1443-14435 (1968).
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obstacles,?® using a vector formulation of the methog,
Aside from obvious differences of the vector and scaly;
cases, the present work goes further in that a unifieg The incident
derivation is given for both surface- and volume-type % jeighborhood o:
scattering regions and, what is more important, works * in fhe regular v
directly with the transition matrix, in which setting the

role of reciprocity and energy conservation is explicitly

displayed. ;
!
{

The detailed fi
pormalization, i

where the expar
known. Similar.
be expanded in

I. DERIVATION OF MATRIX EQUATIONS

Consider the exterior boundary-value problem that
consists of finding a solution to the scalar Helmholt; glkir—
equation }

AYy+ k=0, ()

subject to boundary conditions to be described sub- i
sequently on the (two- or three-dimensional) closed
surface o shown in Fig. 1. The surface is assumed smooth
in the sense of having continuous turning normal #,
and only simple harmonic time dependence is con-
sidered; a factor exp(—iwt) is suppressed in all field
quantities.

The total velocity potential ¢ consists of the sum of a
known incident wave ¥?, having no sources in the in-
terior of o, and a scattered wave y*, having the form of
outgoing radiation at infinity. Under these conditions
the well-known Helmholtz formula asserts that?4?®

¥(r') ]r

where #> and 7.
of 7, #'.1 Inser
formula, the sc
i with the surfac
points outside
Fig. 1 by

with expansion

ik
fo=— / doti-[
4r
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1
=iy )4+ — /daﬁ
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[ ve(k l l'_l’f! )—g(k| r—r’[ )V

outside ¢
forr’ ¢ oo ) i

inside ¢ — | deA-T4.¥%

- | doi [y

where ¥, and #- V, are the total field and its normal
gradient on the surface of the obstacle, approached 1
from the outside, and g is the free space Green’s func- .
tion kkh, @ (ER)=(1/R) exp(ikR) [in two dimensions
irH, D (kR), the Hankel function of order zero, of the
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presented at URSI Symposium on Electromagnetic Wav )
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NEW FORMULATION OF ACOUSTIC SCATTERING

The detailed form of the basis functions, including

© pormalization, is discussed subsequently.

The incident wave is to have no singularities in the

_ peighborhoed of the origin, and hence can be expanded

in the regular wave functions {Rey,(r)}. One writes
3[/2:2 an Re‘pn; (3)

where the expansion coefficients {a,} are assumed to be
known. Similarly the free-space Green’s function may
pe expanded in the form?6

glklr—r'|)=ik 3 Y. (kr>) Reya(bre), (4%

where 7> and 7« are respectively the greater and lesser
of r, 7'.! Inserting this expansion in the Helmholtz
formula, the scattered wave, which may be identified
with the surface integral, is seen to be given for all
points outside the circumscribed cylinder (sphere) of

Fig. 1 by )
Yo=2 fudbu (%)
with expansion coefficients
1k .
f,,=;— / doft- [ V(Red ¥y — (Ren) Vi,
" %=1, 27 (6*)

On the other hand, for field points inside the inscribed
cvlinder (sphere), use of Eqgs. 3 and 4 will reduce the
entire right side of Eq. 2 to an expansion in the com-
plete set of functions {Rey,}. This expansion must
vanish, and because of orthogonality each coefficient
must vanish separately, giving the set of equations

ik

= | e = (V] =,
T

Observe that the right side of Eq. 2 is a regular solution
of the differential Eq. 1 of elliptic type throughout the

- interior of o. By analytic continuation, it follows that

this field will vanish identically not just inside the in-
scribed volume but throughout the entire intericr.

The procedure from this point will consist of the
following: The unknown surface quantities ., - A\
are expanded in a complete set of functions, utilizing
.the boundary conditions, so far unspecified, so as to
Introduce only a single set of independent expansion
Coefficients, say {a,}. Substitution in Eq. 7 will then

‘v give a system of linear algebraic equations for comput-
- 1ng the surface fields {a.} from the incident wave {a,}.

In similar fashion, Eq. 6 will give a system of equations

- to compute the scattered wave {f,} from the surface
“Aﬁdds {a.}. Our principal concern is with the transition

Wirix T connecting the {f,} with the {a,}, and an
k

* This and subsequent equations marked with an asterisk apply
0 the three-dimensional case. For the two-dimensional case,
Replace the factor “4” by .

equation for 7 may finally be obtained by eliminating
the surface fields {a,} between Eqgs. 6 and 7.

To proceed with this plan, consider first the homoge-
neous Dirichlet boundary condition

Y.=0 on o.

8)

Note that when this condition is inserted in Eq. 2, the
remaining kernel, g, is sufficiently well behaved as to
produce no jump in value of the integral when crossing
the surface. Thus, satisfaction of Eq. 7, which is neces-
sary and sufficient to make the right-hand side of
Eq. 2 vanish throughout the interior, also guarantees
thaty will take on the desired boundary value from the
exterior. An analogous argument can be made for the
Neumann boundary condition discussed below. The
choice of expansion functions to represent the unknown
surface quantity #-V,¢ is somewhat arbitrary. One
useful choice, for reasons that will become clear, is the
normal gradients of regular wave functions, i.e.,
{#i-¥v Rey,.}. Thus, assuming these functions are com-
plete*” on the surface o described by r=7(8) [or, in
three dimensions r=7(8,¢) ], one writes

) Vi (=2 anii(r)- V[Reya(r)]; rona. (9)

Substitution of this expansion in Egs. 7 and 6 now
gives respectively, in an obvious matrix notation {prime
denotes matrix transpose)

Q' a=a, (10)
f=—1iRe(Q)a, (11)
where the matrix elements of Q are given by
k
g == /do'V(Re\ﬁm)lﬁn (12%
4r

and may be obtained either analytically or by numerical
integration, depending on the complexity of the surface
geometry.

Formal elimination of the surface field « between
Egs. 10 and 11 results in a system of equations

f==Re(@)(Q)a (13)

relating the scattered wave directly to the incident
wave. The transition matrix T for the Dirichlet problem
1s defined as just this connecting matrix, which generates
the coefficients of the scattered wave by premultiplica-
tion on the coefficients of the incident wave. Thus one
has (we assume symmetry in order to replace 77 by T;

see Sec. I1)
QT=—Re(Q)

for determination of the transition matrix.
For the Neumann problem, on the other hand, one
has the boundary condition

(14)

A-Viy=0on g, (15)

¥ See Appendix.
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and this time the remaining surface field ¥, is assumed
to be representable?” in regular wavefunctions {Rey,}.
The procedure leading to Eq. 14 follows exactly as
before, except that Q must be replaced by a new matrix
Q with elements given by

. k
mnEZ /d(}' Re(ﬂbm)vwn .

At this point results may be collected in a more
symmetric form, as follows: Applying the divergence
theorem to (Q—Q), using a volume bounded outside
by o, and inside by the inscribed circle (sphere), this
difference is readily seen to vanish except for the
imaginary parts of diagonal elements, i.e., 0—Q=il
where 1 is the identity matrix having elements &,,=1
for m=n, 6,,=0 otherwise. On the other hand, by
inspection one sees that the sum (4 can be written
as an integral involving the gradient of the product of
wavefunctions. Solving these equations for  and Q,
one has that Eq. 14 is applicable to either boundary
condition, with matrix elements given by

; k
an = ngamn',_g— /do' v[Re(¢m)¢"]’ (16*)

with the minus and plus signs referring to Dirichlet and
Neumann conditions, respectively.

This expression has an interesting feature from the
numerical point of view. For indices m, n>>ka (hence,
in the low-frequency limit, all elements) where a equals
the maximum radius of the obstacle, the product of
radial functions in the integrand can be approximated
by the leading term arising from the appropriate power-
series expansions. Similarly, the product of angular
functions can be expanded in a finite set of angular
functions—e.g., in two dimensions

cosmf cosnbf=1 cos(m—n)8+3% cos(m—+n)8.

The dominant numerical contribution to the off-diagonal
elements generally would be expected to arise from the
first and more slowly varying of these terms. Examina-
tion of Eq. 16, however, reveals that the contribution in
question consists of the surface integral of the normal
gradient of a potential function, and hence by the
divergence theorem vanishes identically for all off-
diagonal elements. Because of the term containing &,.,
this cancellation does not occur with diagonal elements,
which might therefore be expected to dominate their
off-diagonal neighbors, resulting in a matrix better
suited for inversion by numerical techniques. An
analogous effect can be seen to occur in Eq. 20 below,
and in the three-dimensional case, although the situa-
tion is much more complex in the latter because of the
additional index attached to the wavefunctions.

For the more general acoustic boundary-value prob-
lem, in which fields penetrate the interior of the obstacle,

1420 Yolume 45 Number 6 1969

propagation in the interior is described by Propagatioy
constant &', in accord with densitv p’ and Stiffnegs
modulus (reciprocal compressibility) M, all of which
may differ from the parameters &, p, M of the Sur-
rounding medium. Boundary conditions require that
the pressure, and the normal component of particle
velocity, be continuous across the interface, giving,

respectively,
Y =(o"/ Pl

. 17
ﬁ'V_{_gb:ﬁ'V_\b ( )
O]:;serve that, for &’ real, the wavefunctions {Reya (k1))
form a complete orthonormal set of functions for the
total field in the interior, which may hence be expanded
in the form

Y(1)=2 Bm Reyn(k'r); (18)

Assuming that this expansion and its normal gradient
converge on the boundary,?” the interior surface fields
Y-, 7 V¢, and hence through the boundary conditions
Eq. 17 the exterior surface fields, are all expressible in
terms of expansions involving 8. Substituting these
forms back in Eqgs. 6 and 7, and eliminating 3 as before,
one finally obtains

r inside o.

QT: - Re(Q)J

with matrix elements given by

(19)

k 7
anE_“ /dﬂ‘ {iERe\//m(k'r):]len(kr)
477' p
- V[Rewm(k’r)},on(kr)} . (209

Notice also that the restriction to nondissipative ob-
stacles is easily removed. The above argument goes
through with no essential changes provided one expands
the interior field in regular wavefunctions containing the
radial functions of the appropriate complex argument
k'r. The form of Eq. 19 becomes slightly more involved,
but the modifications are straightforward. .
After solving the appropriate equation for the transi-
tion matrix T, the scattering coefficients f are obtainable
from Eq. 13 for each desired incident wave. The farfield
scattering is then described in the usual manner P}’
introducing the large-argument formulas for the radi
functions in Eq. 5. Alternatively, if numerical val}les
of surface field quantities are desired, the expansiod
coefficients « are obtainable by numerical solution' ol
the system of Eqgs. 10. In this event, the scattering
coefficients are given directly by Eq. 11. ;
It is of interest to examine some limiting cases of
Eq. 20. First, taking &'=£#, so that phase Velocities_afe
equal within the scattering region and its surrounding®
{hence the density and stiffness ratios are both arbitrards
but equal, i.e., p'/p=M'/M), one has by inspection

Q="/0)0—Q; K=Fk. (20

. i, sl *
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NEW

FORMULATION OF
{sing this equation, we see the preceding results to
pe limiting cases of the present one. Letting p'/p
: =M'/M —= (rigid boundary), as discussed by
! Ravleigh,*® Eq. 19 goes over to the Neumann case—i.e.,
} ~ 14 using Q. Similarly, for the alternative limit
=M /M — 0 (soft boundary), Eq. 19 yields the
t pirichlet case, involving Q.
‘ A second situation of interest arises when the scat-
tering region is a perturbation on its surroundings, i.e.,
! when A,=(p'~p)/p<K1, Ay=(M'~M)/M<1. n this
i event, ¢ may be transformed, by separating off 1he
first term In the integrand times a factor (p'—p)/s,
‘ then applying the divergence theorem. Neglecting
terms of first order or higher in the small quantities,
one obtains ~
Q— 11,
| sothat, from Eq. 19, the transition matrix in this limit
| isjust proportional to Re(@)) and is given by
kﬁ
T — —A3r /dr Reyn(kr) Rey, (kr)
.{ drr
! k
f —rAp/dTV[Rexpm(kr)]-V[Re%(/er)]. (21%)
i 78)

The scattered wave is obtained according to Egs. 5
and 13, by multiplying by the incident wave coefficients
8, the outgoing wavefunctions .., and summing over
I both indices (see Eqs. 3 and 4). For example, for in-

cdent plane wave exp(ik,-r) one gets, after some
straightforward simplifications,

k?’A_u /' ]
Y(kr) —— ——— [ dr'g(kR)ewo '
r J
A,
: +—= /dr’V’g(kR) Vg
i 4
- k? . .
— Ay — ()4, ]
krow 4y '

X / dr'eithok) s (20%)

Wh§re k, and % are unit vectors in the direction of
madence and observation, respectively,

This extension of the first Born approximation (in
- the usual case 4,=0) has recently been found by dif-
- ferent techniques by Morse and Ingard.?® Tt could

dternatively be obtained by iteration of the integral

presentation given by Gerjuoy and Saxon.?® The
;. Sme result was also found by Kleinman.3! In the low-

T ettt sppnrct= } eprarens 3 oo -

; kPuzs I W. Strutt Lord Rayleigh, The Theory of Sound (Dover

3 };hcauons, Inc., New York, 1945), Vol. 2, p. 284.

GmP - M. Morse and K. U. Ingard, Theoretical Acoustics (Mc-

:w-Hill Book Co., New York, 1968), p. 413.

957 Gerjuoy and D. S. Saxon, Phys. Rev. 94, 1445-1458

314)- See Eq. 11 therein.
R.E. Kleinman, private communication.

ACOUSTIC SCATTERING

frequency limit, the last integral above is seen to
give precisely the volume of the scattering region, and
Eq. 22 agrees with the result originally obtained by
Rayleigh.®?

II. SYMMETRY, UNITARITY, AND EIGENFUNCTIONS

Before proceeding further, it is appropriate to ex-
amine the properties of symmetry and unitarity, as
they relate to the matrix equations. This is conveniently
done in terms of the scattering matrix .S defined by

S=1+42T. (23a)

T serves to compute the expansion coefficients for the
outgoing waves due to a given regular incident wave,
whereas .S performs the same computation for an in-
cident field specified by incoming waves singular at
the origin. More specifically, the total field can be
written (outside the circumscribing sphere of Fig. 1)

¥=3 [ Re(n)+ Trnmibs] ; (23b)

after a little manipulation, this same field becomes

v=03) 20 [antn*+Sum@mibs]. (23c)

The scattering matrix has been discussed by Gerjuoy
and Saxon for acoustic problems.*® Upon introducing
the Incoming-outgoing partial-wave basis in their
results, it is not difficult to show that S must be both
symmetric and unitary, i.e.,

S'=S (or T'=T), (24a)
and

§%S=1 (or T*T=—ReT). (24b)

These conditions stem, respectively, from the reciprocity
principle and energy-conservation requirements.

The matrix equations derived earlier are not in-
dependent of the constraints of Eqgs. 24, but satisfy
them in part, as follows: The basic equation is

QS=—0*, (25)
for which the formal solution is®
S=—Q10*, (26)

Now forming the product S*S from Eq. 26, one im-
mediately obtains
S*§=1. 27

Because of this property, the conditions (Eqgs. 24) are
no longer separate constraints; that is, if S is sym-
metric, it will automatically be unitary, and vice
versa.

Next, let us consider the eigenvectors of S. The
eigenvalues of a unitary matrix lie on the unit circle in

 Reference 28, pp. 149-152.
% Note that it follows readily from Eq. 26 that, if S is to be
symmetric, the matrix product Tm(Q) Re(Q) must be symmetric.
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the complex plane, so one can write

Sul) = etiy D,

(28)

where the jth eigenvector #'? has components #;?,
us@, +++, and the \; are real. Because S is in addition
symmetric, one can show (premultiply Eq. 28 by 5™,
then employ Eqgs. 24) that the eigenvectors constitute
a real orthonormal set. Operating on % with the
matrix equality (Eq. 25), there results

eMQu® = —Q*u,

which, in view of the fact that «#(? is real, may be
rewritten

Re(Q)u?=tan(A;/2) Im(Q)u'?. (29a)

This is a real homogenous system of equations, from
which the eigenvectors may be determined after first
solving the secular equation

|ReQ—tan(\;/2) Im(Q)| =0 (29b)

for the eigenvalues.®

The eigenfunctions {¢;(r)} can now be constructed
using the eigenvectors as expansion coefficients with
the basis functions; i.e., by definition

ﬁpi(r)EZ un(j)‘pn(r): _7: 1’ 2, (30)

Just as with the original basis functions, these outgoing
fields have as their counterparts the regular eigen-
functions {Ree;{(r)} which are well behaved at the
origin. The set {¢;(r)} constitute outgoing waves
reflected intact except for a phase shift upon incidence
of the corresponding incoming wave. That is, introduc-
ing the eigenvectors in Eq. 23b, one sees that the linear
combinations o*+exp(iA;) e, F=1, 2, - ~-, are fields
satisfying the boundary conditions imposed by the
presence of the obstacle. Note also that these linear
combinations may be written in terms of the regular
functions as Ree;+ 5[ exp(ih)— 1]e;.

Solution of the scattering problem is immediate in
terms of the eigenfunctions: First, the incident wave is
expanded in regular eigenfunctions to get

V) = ¢ Rees(n). (31a)

The coefficients may be obtained from the observation
that the ¢; are orthogonal with respect to integration
over the large circular cylinder (or sphere) o, at in-
finity, because of orthogonality in Eq. 30 of both the
angular functions appearing in the ¥,, and the eigen-
vectors #?. One thus has

G= / doay* Re(e;) / / do[Re(g) . (31b)

# Eigenvalue problems of this form have been discussed b
W. V, Petryshyn, Phil. Trans. Roy. Soc. (London) A262, 413-458
(1968), and references therein.
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In view of the comments of the preceding paragraph
the resulting scattered wave is given by (assuming the,
expansion converges)

(D) =2 3 —Deses(r). @)

For the elementary case of Dirichlet boundary condi-
tions on a circular cylinder of radius r= g, using circular
cylindrical wavefunctions ¢,, the Q matrix in Eq. 14
is diagonal, and the ¢; coincide with the ¥;. The real
and imaginary parts of the elements Q;; differ only in
containing the factor J;(ka) or Nj(ka), respectively
(Bessel or Neumann functions). From Eq. 29b, one has
tan(\;/2)=J;(ka)/N(ka), and the factor in Eq. 32
yields the well-known result

$(e™—1)= —J;(ka)/H j(ka)

involving the Hankel function of the first kind A;. Cor-
responding known results can be seen to obtain with
Neumann conditions, Eq. 16, or the penetrable acoustic
cylinder, Eq. 19.

Next in order of difficulty would be Dirichlet or
Neumann boundary conditions on a cylinder of elliptic
cross section. In both cases, the eigenfunctions are the
same and are known, from the standard separation of
variables procedure, in the form of products of Mathieu
functions in elliptic cylinder coordinates. Expansion of
the regular eigenfunctions, i.e., the real part of Eq. 30,
has been given for example by Stratton,? who also
gives the expansion of Eq. 31a for an incident plane
wave. In problems of this type, where separation of
variables is directly applicable, the method of the
present section can be reduced to a simpler form, be-
cause both real and imaginary parts of Q turn out to
be symmetric, as is shown below. In this event®it follows
that ImQ and ReQ commute and must have common
eigenvectors. The generalized eigenvalue problem given
in Egs. 29a,b may consequently be replaced by either
one of the two ordinary eigenvalue problems Re(Q)u"
=au?, or Im(Q)u'?=;u? (where a;/f;= tanh;/2)-
These equations are of interest in providing a nev¥
method for determination of the elliptic cylinder waves
functions, not involving elliptic cylinder coordinates
Whether or not the method will turn out to haVe
computational advantages in practice remains t0 be
seen.

If now the boundary conditions be changed, to
apply to a penetrable elliptic cvlinder, then the eigen-
functions are determined from Egs. 29 and 30, using
the matrix @ given in Eq. 20. The separation °
variables procedure, on the other hand, does not lea
to eigenfunctions. As shown by Yeh for the mathe;
matically equivalent problem of the dielectric cylinder’
one can nevertheless solve the problem numerically ?

expanding in elliptic cylinder wavefunctions, if prop®. | h

% J. A. Stratton, Electromagneiic Theory (McGraw-Hil Book o 3

Co., New York, 1941), pp. 375-387.
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NEW

FORMULATION OF

account is taken of the fact that all coefficients are
coupled through the boundary conditions.

For this last problem, or the general case of non-
separable boundary geometry, the merits o.f employing
eié,;enfuncti(ms, rather than the original basis funcrions,
in practice have not been established. One- criterion,
nowever, consists of the relative numerical difficulty
of straight matrix inversion of Q (in truncation) to
solve, sav, Eq. 14, versus the resolution into eigen-
vectors and eigenvalues described by Egs. 29a,b.

III. STRUCTURE OF THE Q MATRIX

In order to understand the matrix equations better,
it is helpful to examine the matrix elements Qmn in
some detail. For two dimensions, the basis functions
are!

cos
¢<e/o)n(r> = (e'n>% neHn(kr>
sin

(33)

in circular cylinder coordinates 7, §. The Neumann
factor e, has the value e,=1, e,=2 otherwise. It is
notationally convenient to break Q into four blocks
according to parity, writing

Qeo

Qoa:l.

Q [Qee
0
A corresponding block notation is then used for the
transition matrix in Eq. 14.

The discussion can be simplified slightly by making
the restriction that the obstacle have mirror symmetry
across the plane y=r sinf=0, so that r(8)=r(2xr—0),
and the integrals involving mixed products of sines and
cosines are seen to vanish. Because of the block diagonal
nature of Q in Eq. 34, the matrix equation, Eq. 14, is
now seen to reduce to the two (single) block equations

QeeTee= _ReQee; QO0T00= —REQOO. (35)

For the matrices Q¢ and T, indices run m, n=0, 1, 2,
*+-; whereas for Q°° and 7%, one has m, n=1, 2, ---.
From Eq. 16, it is not difficult to show that

27 70
de[._
or

(34)

0
ldr o
—_—— ——]J,,LH

Where 7 is set equal to 7(6) after the partial derivatives
are taken. The low-frequency limiting form of ) may

cosm8 cosnd

, (36)

n
sinmé sinnf

- Low be obtained by keeping only the leading terms in

€ power-series expansions of the Bessel and Hankel
nctions, Tt has already been noted, following Eq. 16,
hat certain numerically dominant terms will integrate
tO.zero for off-diagonal elements. From an analytical
Pomt of view, on the other hand, writing 7(8) = ap(6),

ACOUSTIC SCATTERING

so that a and p(8) characterize the size and shape, re-
spectively, of the obstacle, Eq. 36 reduces schematically
to (for either Q¢ or 0?9
Re(Qnn) = emn
m,n=1,2 ---
Im(Qumn) =€

(37a)
(37b)

for e=ka<k1. For Q¢, one can verify in addition the
terms

Re(Qom®) =Re(Qmo) =em?; m=0,1,---,  (37¢)
Im(Qon®®) = ™, Im(Qmo®?)=e™; m=1,2,---, (37d)
and finally
¢* (Dirichlet)
Q) | NS
1 (Neumann)

The form of the numerical coefficients appearing on the
right-hand side of Egs. 37, including dependence on
Ine in some cases, is easily obtained from Eq. 36.

We are interested in the structure of the transition
matrix 7 insofar as dependence on powers of ¢ is con-
cerned. In order to balance out the indicated dependence
on the parameter ¢ in Eq. 35, assuming Im(Q) to be
nonsingular, it is necessary that 7°¢ have the form

ImTnee=emt2; m, n=0,1, --- (Dirichlet), (38)

with Rel .. involving higher-order terms in each
element. This can be verified by substitution, along
with Egs. 37, in the first of Egs. 35. One then notes
that any larger terms (i.e., lower powers of ¢) than
shown in Eq. 38 could only be accommodated if Im(Q)
were singular, which is contrary to assumption. In the
Rayleigh limit, the scattering with Dirichlet boundary
conditions is thus isotropic, and described by the leading
term T oo*® which can depend on e only logarithmically.
In order to obtain any of the appropriate numerical
coefficients suppressed on the right side of Egs. 38, it is
necessary in general to solve the infinite matrix Eq. 35
numerically by a limiting process.

The situation is somewhat different with Neumann
boundary conditions. Because of Egq. 37e, similar
analysis leads to (again, ReZ'..°® can involve only
higher powers of ¢ in each element)

et (=0 and/or n=0)
ImT pnoe=

enTn

(39)

m,n=1,2, - (Neumann)

There are thus three leading terms in this case, the
isotropic term T'g%%, and the dipole terms 711°¢ and
T11°° (not shown in Eq. 39), all of order €. The coef-
ficient of the isotropic term can be obtained in closed
form this time, by noting in Eq. 35 that elements of
the top row of Q (i.e, Qou®%, =0, 1, ---) vary like
i+ €, det€b, i+ety, i/ete€®, ---, whereas the first
column of T behaves like ¢e?, 7€, i€f, ---. Correct to
leading terms the product (Q¢¢7¢¢)q is given by the
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first term in the sum over row and column, so that
Qoo oo¢~ —ReQoo®. From Eq. 36, it is easily seen
that

B2 por k24
Qoo“zi——/ abr(0) =1 ——-
8 Jo 4

in terms of the cross-sectional area A of the cylinder,
so one finally obtains
Too*em=— (k24 /4)?—ik2A/4 (Neumann).  (40)
This result agrees with the classical results for the
circular cylinder [—Jo'(ka)/H ' (ka)] and the elliptic
cylinder,®® obtained by separation of variables.
The analysis for a cylindrical volume of scattering
material, starting from Eq. 19, is almost identical, and
one obtains for the isotropic term in the Rayleigh limit

M —MN\2/R2ANE /M —M\ k24
=) (5) (5 ) 5
M 4 M’ 4

In contrast to the low-frequency results discussed
earlier in connection with Eq. 22, where the medium
properties were restricted to a perturbation on their sur-
roundings, this equation is valid for general density and
stiffness ratios, provided both ka and #'e<<1, and with
the exception of the Dirichlet limit M’'/M =p'/p— 0.
Note, for example, that the Neumann limit M'/M
=p'/p—, given in Eq. 40, is obtainable from Eq. 41.
It is also of interest to note that for the corresponding
boundary-value problems in the electromagnetic case,
the dominant terms (i.e., the imaginary parts) of
Eqgs. 40 and 41 have been obtained by Van Bladel hy
invoking magnetostatic or electrostatic considerations.?

The above discussion changes quite radically when
applied to quadric surfaces, for which separation-of-
variables techniques are also available. This comes
about through the orthogonality of the angular func-
tions, coupled with Wronskian relations for the radial
functions in our basis. Consider the elliptic cylinder
having semimajor and semiminor axes @, b, respectively,

defined by

[1/p(6) 2= cos26+ (a/b)* sin%4. (42)
Because there is now a second plane of mirror sym-
metry, the plane x= 0, one easily sees from Eq. 36 that
QOmn=0 1f (m-+n) is odd. For the balance of the ele-
ments, the difference Qummy2ey—Q mi2sym Will contain
under the integral sign a factor

T n(kap) N pyoo(kap) = Jmro(kap) N o(kap).
Now, by applying the standard recursion formulas to

% J. E. Burke and V. Twersky, J. Opt. Soc. Amer. 54, 732-744
(1964)

7. Van Bladel, Appl. Sci. Res. B (Netherlands) 10, 193-202
(1963); Electromagnetic Fields (McGraw-Hill Book Co., New
York, 1964), pp. 393-397.
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the Wronskian relation J,(x)N ,pi(x)—J m+1(x)./\”m(x)
=—2/7x, one can show that

s=—1 /1N 2(~p)
]m(x)zvm-i»%(x) -JM+2s(x>A7m(x) = ; _> ) (43)

where the precise coefficients of the inverse powers of
are not germane to the present discussion and have begy
omitted.*® Identifying » with kap and using Eqgs. 43
with the defining Eq. 36 for (., the second group of
terms in the integrand can be integrated by parts to
remove the factor dr/df. At this point, from Eq. @
one sees that the radial functions in the integrand con-
tribute a finite number of trigonometric functions
{cos2s:10}, with 0<s;<s. On the other hand, the
angular functions contribute only the two terms €os2sf,
cos2(s+m)6. By orthogonality, all of these integrals
vanish except one involving (cos2s6)?, and the latter is
precisely the term that vanishes for general shapes, as
discussed following Eq. 16. It follows that the Q
matrix is exactly symmetric, and given by Eq. 36 using
Jm[]nz ]m>Hm< (44)
for the product of Bessel functions, where ms, m are,
respectively, the greater and lesser of m, .

For the more general case of volume scattering by an
elliptic cylinder, @ is no longer symmetric. Observe,
however, that symmetry of Q implies that, after in-
troducing low-frequency expansions for both J, and
Ny in Eq. 12 and regrouping terms according to ascend-
ing powers of k#, all terms involving inverse powers of
kr vanish upon integration. Comparison of Eq. 12 with
the first term in the integrand of Eq. 20 for Q reveals
that precisely the same terms will vanish in the latter.
Similar comments apply to the second term in the
Integral of Eq. 20 by analogy with (). Thus, @ for
scattering from an elliptic cylindrical volume is given
by Eq. 20 with all singular terms (as described above)
from the radial function expansion simply discarded.

In dealing with quadrics, it is of interest to observe
that an alternative choice of expansion functions for the
surface fields will also lead to a symmetric ¢ matrx
Thus, instead of the functions of Eq. 9, or the cor
responding expansion for Neumann boundary condl-
tions, one can essentially reverse these choices an
employ instead the functions?”

w(r) Reyn(r); ron e (Dirichlet)

L] % V[ Rega(r)];

. . N T e ;o4
where the weight function w(r)=pg%1+(r/7) J

)

ron o (Neumann)

serves to remove a complicating factor appearing the

. . ~ - /
integrands. For example, using the first of Egs. 9 1P

% The coefficients can readily be obtained by comparison with

results given by Watson: G. N. Watson, Theory o” Bessel Funchons. ...

(Cambridge University Press, Cambridge, England, ! 2h
2nd ed., pp. 145-130.
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NEW FORMULATION
0 7* gives a new Q matrix with elements
0 561'00:(%)(6,,@,1)%/ dﬁ(k?’)z
M
0
i cosmd cosnd

X T wller)H o (kr) (36"
sinmd sinnd

}N’ow essentially by inspection, using Eq. 42, it may be
een again that all terms on the right-hand side of
‘gg. 43 will drop out in the course of the integration,
f So‘that this alternate version of Q is also symmetric,
' “sith Eq. 44 applicable.

For the special boundary considered, Eq. 36" is
gpparently slightly preferable to Eq. 36 because of the
omewhat less involved integrands of the former.
Notice, however, that one pays for this advantage in
| ss of generality, i.e., the earlier Eq. 36 was applicable
+wboth Dirichlet and Neumann conditions. Numerical
-wsults have been obtained with Eq. 36/, and are
4 described subsequently. . )

| The simplifications that occur in 0O, O, and  for
 oundaries of elliptical cross section are of in‘erest
fiom both theoretical and practical viewpoints. Note
st that it is possible to obtain systematically as many
Jterms as desired in the low frequency expansion for the
tnsition matrix. From a practical point of view, the
mtrices are probably very well behaved as regards
“tuncation and numerical inversion (in this connection,
s the following section). Finally, the advantage of
being symmetric in the eigenfunction computation has
ben discussed earlier.

~Turning now to the three-dimensional case the
- wavefunctions for the basis are chosen to bel

Yomn(R1) = (Yma) Ba(kr) Vmn®(8,8), (45a)

m terms of the spherical Hankel functions of the first
.[‘kind ha, and the spherical harmonics

oS
Y (6,0)=YVoun*=  moP,m(cosh). 45b)
sin
VZ,The normalizing constants in Eq. 45a are given by
3 Y= en(2nA-1) (n—m) Y (ntm) . (d50)

E&Om Eq. 16, the general matrix element becomes

e ’l k 2T T
; .—.,:vam'm:"/ =F 840/ 8mm: Opns —— / / a8d or® sind
‘B 2 8r Jo 0

dr 1 30

d r 0 Fo 9

x| | ReWenHmn: (40
72sin%6 d¢

e ro=0r(0,0)/30, r,=0dr(8,0)/3¢, and r is set
Mal to 7(6,0) in the wavefunctions after the addi-
Ma] partial derivatives have been taken.
arious reductions of the () matrix are possible, de-
Ading on the symmetry of the problem. If the obstacle

OF ACOUSTIC
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has a plane of mirror symmetry normal to the polar
axis—i.e., the plane #=r/2, then from the parity of the
associated Legendre functions one has

Qamna'm’n’ = O; (m+7l+'m/+ n/) Odd (-}7?1)

On the other hand, for a plane of mirror symmetry
containing the polar axis, e.g., the plane of azimuth
¢=0, or the plane ¢p=7/2, one has
c#Fa’, (47b)

and if botk the latter symmetry planes are present then
in addition to Eq. 47b

Qam'rw’m'n’ = 0;

m—+m’ odd. (47¢)

If the body possesses an axis of rotational symmetry,
so that r=7(6), then in addition to Eq. 47b, there is no
coupling of the different azimuthal modes (m’sm), and
one can write

Qamnv’m’n’z aaa’émm’an’a—m- (48)

Thereare thus two families of matrices, 0¢"(m =0, 1,- - -)
and Q(m=1, 2,---), each member of which may be
treated independently. From examination of Eq. 46,
one can furthermore see that the families are identical,
Le., Q=0 (except for 0, which does not exist).

In view of the governing matrix equation (Eq. 14), it
follows that each of the above reduction must apply
also to the transition matrix. Note also that the full
transition matrix may not be required for a particular
problem. For example, a rotationally svmmetric inci-
dent wave contains only the modes m= 0. If the scatter-
ing surface also possesses rotational symmetry about
the same axis, then it is only necessary to invert Q¢ and
compute T, in order to obtain a complete description
of the scattering.

Finally, consider the ellipsoid

(x/a)*+ (y/0)*+ (s/c)*=1,

which is the most general quadric surface having the
three symmetry planes of Eqs. 47a, b, c. In spherical
coordinates one can verify without difficulty that the
ellipsoid is given by '

L1/7(8,0) 2= Vo4 Viar+ Vo (49)

to within constant coefficients depending on a, b, c.
In close analogy with Eq. 43 the spherical Bessel
functions may be seen to satisfy?s

Qamnvm’n’= 07

s—1 1 2(s—p)
wmmm@%wmwmwﬁz<§ . (50)

=0 \X

For the products of spherical harmonics, one has an
expansion theorem of the form?®

Yo Vo 7= V0 (51)
7

where u=|m'—m|, wm'+m, |n'—n <yv<w'+n. In-
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troducing Eq. 50 into the difference (with m-+m" even,
n+n’ even, e=¢’ in view of symmetries)

Qamnam’n’ —Qam’n’umn

formed from Eq. 48, one can integrate by parts to
remove the terms r¢ and r,. From this point, the pro-
cedure is closely analogous to that leading to Eq. 44.
The inverse powers of (k7)? contribute a finite sum of
spherical harmonics, as can be seen from Eqgs. 49
and 51. The angular functions give a second finite sum
of spherical harmonics, using Eq. 51. Where the indices
are distinct, the corresponding integrals vanish by
orthogonality. For the one case where indices coincide,
the integral contains the normal gradient of a potential
function, and must be identically zero by the divergence

theorem. Thus for the ellipsoid @ is symmetric in the

sense

(52)

vanam’ n' = Qam’ n’omny

so that j.>/,< can be employved for the product of
radial functions.

By similar analysis, one can establish that this
symmetry also obtains for quadrics of rotational sym-
metry, but not the mirror symmetry of Eq. 47a, i.e.,
the surface 1/7(f)=1—B cosf, which constitutes a
prolate spheroid (0<<B<(1) or a paraboloid of revolu-
tion (B=1). Using the notation of Eq. 48, one has in

this case
an,aszn,nam_

Returning to the general equation (Eq. 46) it appears
that, in contrast to the notation adopted in Eq. 48
for rotationally symmetric bodies, the general computa-
tion is more conveniently organized in terms of a super-
matrix 9, each element of which is a matrix having just
the number of degrees of freedom required to handle all
azimuthal indices and parities associated with the values
n, #'. Thus the element 9, is a matrix of (2n-+1) rows
by (2n'+1) columns. A corresponding notation is
employed for the transition matrix 7. Carrying out
an analysis exactly paralleling that of Eqs. 37-40, this
time in terms of elements 9,, of the supermatrix, it
again turns out that the isotropic term can be obtained
in closed form for Neumann conditions from the single
equation DpeT o= —Re9q. Keeping leading powers of
kr in Eq. 46 one has

(53)

k3 7.3
,‘?_00—% —_—— / /d@d(ﬁ Sin(?—
4z J 3

i k?
—{——(?1%—1—!——— //d@dgp sinfy? > (54)
2 6

The first integral is just the volume V of the obstaclzs
so that, correct to leading terms in real part and
imaginary part separately,

Toom= — £V /4r)?—ik’T /47 (Neumann).  (53)
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Note that this result is in accord with the €nergy re.
quirement of Eq. 24b. The dominant imaginary term
in Eq. 55 agrees with results independently obtaineq
by Van Bladel®’; agreement is also obtained with the
spheroid results given by Seniort! and Burke.*

For the ellipsoid, @ is symmetric (see Eq. 52) anq
in the low-frequency limit “diagonal” correct to lowest.
order terms in kg, i.e., the isotropic scattering can be
obtained from the 1X1 matrix equation preceding Eq.
54 in the text, the dipole terms 71 from a 3:X 3 matriz
equation, and so forth. The Neumann result is of course
as given in Eq. 55. For the Dirichlet case, using the
minus sign in Eq. 54, with the ellipsoid surface defined
by

(abc)?/r*(8,¢)=(c sinb)?(b? cos® o+ a? sin?e)+-(ab cosh)?,

the integral involving #? is recognized as an inverse
elliptic function,® i.e., (for 6<¢),

. dwab ¥
//d0d¢ sinfr?=—— / dul (1 —u?)(1— k22
$ Jo

4mab
=-———sn"'{,

§

with argument {=[1—(8/c)*J% and modulus given by
k*=(c*—a?)/(c*—b?). The isotropic scattering is then

(57)

(56)

Too== ~ (ke /sn1¢) —iket /sn~i¢ (Dirichlet).

The ellipsoid has been considered by Sleeman, who
constructed the formal solution using separation of
variables,* and subsequently obtained explicit results®
using the low-frequency iterative procedure developed
by Kleinman.* Equation 57 is in precise agreement with
Sleeman’s results [ which also included terms of order
(ket)¥]. Note that Eq. 57 contains as special cases the
elliptic disk (¢=0),¥ prolate (a=b<c¢) and oblat¢
(a<b— c) spheroids considered by Senior! and Burke,”
and of course the circular disk (¢=0; b—¢).?

Finally, in the event one is dealing with a volume
scattering region of general shape, the analysis leading
to Eq. 40 can again be applied with the result that

e A
M’ 4 M’ 47

in the low-frequency limit, with arbitrary disparities

# A. Messiah, Quanium Mechanics, J. Potter, Transl (Johe
Wiley & Sons, Inc., New York, 1965), p. 1037. )

7. Van Bladel, J. Acoust. Soc. Amer. 44, 1069-1073 (1968

4T, B. A. Senior, Can. J. Phys. 38, 1632-1641 (1960).

27, E. Burke, J. Acoust. Soc. Amer. 40, 323-330 (1966)-

48 Reference 1, p. 432.

# B. D. Sleeman, J. Inst. Math. Its Appl. 3, 4-13 (1967)- _

4 B. D. Sleeman, J. Inst. Math. Its Appl. 3, 201-312 (1967),

“R! E. Kleinmak, Arch. Rat. Mech. Anal. 18, 205-229 (1965

3

4 B. D. Sleeman, Proc. Cambridge Phil. Soc. 63, 1273~
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NEW FORMULATION

compressibility and density. This apparently new
" ult is verified in one instance by comparison with
purke, who obtained all terms up to order £° for pene-
} irable spheroids, using low-frequency expansions of the
: ‘spheroidal wavefunctions.?

f ; IVv. NUMERICAL RESULTS AND DISCUSSION

As an example showing the usefulness of the present
1 rechniques in practice, consider the two dimensional
‘roblem of scattering by the strip y=0, —a<x< ¢ with
pirichlet boundary conditions. This problem has been
cnsidered by many authors.??% Numerical results were
_obtained by Morse and Rubenstein, using separation
“of variables to carry out the analysis in terms of
Mathieu functions.!* Among subsequent extensions,
the work of Skavlem for a slit (equivalent by Babinet’s
principle) is particularly useful for present purposes in
that tables of numerical results were included.2°
In applying the present method to the strip, two
aspects of theoretical interest can be anticipated. First,
the singularities of the outgoing wave functions ¢, fall
"on the path of integration for matrix elements Oy, and
must be dealt with. Second, the edge condition requires
that the unknown surface field behave like [ 1—(x/a)? %
times an analytic function of x.25 Both of these aspects
*are handled without difficulty by considering the strip
as the limit of the elliptic cylinder, Eq. 42, when & — 0.
For the Q matrix we employ Eq. 36’ with the auxiliary
symmetry condition of Eq. 44. The variable of integra-
tion can be changed over to Cartesian coordinates by
observing that

Rp——

P—

R

[P

dirt=dxr?/x' ()= —bdx[ 1—(x/a)* ] (59)

Thus the nonanalytic behavior required by the edge
| wndition enters naturally in the Wronskian of the
| ansformation from polar to Cartesian integration
“variable.

Using Eq. 39 in Eq. 36", the limit 5 — 0 is readily
' taken. All elements of Q°° vanish identically, and for
0" one obtains®

pre—

~l

(emen)? ] dx[ 1 — 22147 s (k) H o (kax);

£ an =

(m+n) wen (60)

0 otherwise.

OT=—Re(Q),

ith T,,,=0 for (m+n) odd.
he'elements of Q may be computed either by
erical quadrature, or analytically by expansion of

(61)

We have dropped a factor 4%ab (common to both sides of
61) in front of the integral sign and introduced a dimension-
Integration variable by letting « — ax.

OF ACOUSTIC SCATTERING

TaBiE I. Complex even-index elements Tmn Of.the trans.i-
tion matrix for ka=0.2. The exponentiation factor is shown In
parentheses, e.g., 1.483(—3)=1.483 X103,

Ton n
m 0 2 4
— 2.966(—1) — 1.483(—3) — 9.271(—7)
0 —14.567(—1) —42.283(—3) —3i1.427(—6)
— 1.483(=3) — 7.417(—6) — 4.636(—9)
2 —42.283(—3) —43.068(—3) —i3.986(—8)
— 9.271(=7) — 4.636(—9) — 2.897(—12)
4 —41.427(—6) —13.986(—8) —i3.513(—11)

the product JsH < in powers of kax (including terms
in Inkax).3®* We employ the latter method, which Is
somewhat more convenient for small to moderate
values of ka. For large ka, precision difficulties would
presumably be encountered because of strong cancella-
tions among numerically large terms in the series (as
occurs with the expansion of sinx, for example). Term-
by-term integration of the series is straightforward in
terms of tabulated integrals,’® and we proceed directly
to results.

Equations 61 were programmed for solution on the
Philco 2000 computer by successive elimination of all
off-diagonal elements of ) on the left-hand side, pro-
ceeding column by column. For the low-frequency case,
ka=0.2, Table I shows the even-index elements of the
transition matrix that resulted by truncating Eq. 61
at 3)X 3 matrices (i.e., m, n=0, 2, 4). Observe that T'1s
exactly symmetric to the four significant figures shown.
One can easily verify that the energy requirement
T"*T=—ReT of Eq. 24b is also satisfied to three or
four significant figures.

No detailed numerical study of the alternative
eigenfunction formulation of Sec. II has been performed
as yet. One can, however, verify in part the approrpiate
relationships using Table I. In elliptic cylinder coordi-
nates, the expansion coefficients for the eigenfunctions
in circular wave functions coincide with those for ex-
panding the radial Mathieu functions in Bessel func-
tions.? Numerical values can be obtained from results
of Barakat and co-workers®; for the case at hand, one
gets for the first Mathieu function Je, the (normalized)
coefficients

1.000
u®= (5.000)(10‘3 . (62)
3.124 X108

This column array should be an eigenvector of the
transition matrix, and indeed is. Using Table I, one

W, Grobner and N. Hofreiter, Integraltafel, Part Two,
Definite Integrals (Springer-Verlag, Vienna, 1950), pp- 38, 79.

51R. Barakat, A. Houston, and E. Levin, J. Math. and Phys.
42, 200-247 (1963).
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F16. 2. Normalized scattering width versus %a, for the infinite s:rip with Dirichlet boundary conditions. Points shown by small circles

were computed by Skavlem for normal incidence.?¢

verfies that

1.000

5.000X 10‘3] ,
3.125X107%

1.000
4.999X10-3
3.124X10-¢

Re(T)u®=—10.2966 X

(63)

Im(T)u®=-0.4367X

The complex amplitude coefficient arising from Egs.
63 is also seen to agree well with the appropriate
quotient of Mathieu functions

—Jeo/Heg= —0.2967—10.4368 (64,

obtained from the tables.®

Numerical behavior of the solutions of Eq. 61 versus
truncation is excellent. For example, for the case of
Table I, keeping only one equation in one unknown,
the isotropic term I is obtained correct to five sig-
nificant figures, as judged by comparison with the
larger svstems of VXA equations with N=2, 3 4, 3.
For N> 2, Ty is found to remain constant to nine
significant figures (computer precision is about 1C
figures). Ty and 7T, obtained as in Table I, agree
to seven figures.

At higher frequencies, more elements of the transi-
tion matrix are required for an accurate description of
scattering. It is found that the elements remain roughly
in the range 0.1<i 7, <1 until one, or both, of the
1428  Volume 45

Number 6 1969

indices m, 7 exceed the numerical value of ka. Thus for
ka=10, the largest value considered, somewhat more
than 50 elements are required (recall that the Twms
vanish unless indices are both even, or both odd).

Once the transition matrix has been obtained, the
scattering coefficients f=Ta are easily computed for
any incident wave of the form Eq. 3, and the scattered
wave is given, for r>a, by y*= -y where ¢ is regarded
as a column vector made up from the basis functions of
Eq. 33. These computations have been performed for
plane waves with direction of incidence forming &b
angle  with the positive  axis (plane of the strip). It
this event the scattered wave may be written in full

AY
Y (t)= 3 (0)™(emen) Tomn cosma cosndH ,(kr);

m,n=0

Er>ka

~ fla)(2/irkr)t exp(ikr); Er>>1 (63)

with farfield amplitude given by

N 66}
f,8)= 2 )™ "(emen) T mn cosma cosnd. (60

m,n=0

. . . g -
The scattering width o(a) may be computed, uS}Z;},
the forward amplitude theorem, from the expres®® .

©) &

o(e)=— (4/B) Re f(a,a).
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¥ pesults of this computation are shown in Fig. 2, in
<hich o(¢) (normalized by twice the strip width 4a) is
‘ glotted versus frequency up to ka= 10, foy directions of
\ acidence ranging from grazing (e=0) to normal
| =90°). The curves appear in good qualitative agree-
, pent with those given for a smaller range in ka by
lorse and Rubenstein.!® The circled points shown Zor
¢ jormal incidence are those of Skavlem,’® and agree
 umerically to the precision given (five or six significent
ﬁgureS) with present results at all k¢ values common to
| both computations (0.8, 1, 2, 4, 8). Finally, the geo-
metrical optics limiting values o(e)/4a — sina are shown
5t the right margin. Observe that for angles of incidence
at least 30° from grazing, this limit is substantially
0 wchieved at ka=10.
One concludes that the present computation offers

SIN a

w
o

of actual numerical computation in the two methods
appears comparable; the additional complexity of
matrix inversion in the present method is offset by the
advantage of working with circular rather than Mathieu
functions, particularly if the latter must be generated
in the course of the computation.
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s Appendix A. Completeness of the Regular Wavefunctions
The expansion of Eq. 9 employs normal gradients of In particular, for the homogenecus Neumann case,
,___9..6 ‘ regular wave functions, restricted to the smeoth closed  the equations
|

surface o, to represent an unknown surface field. This
expansion is convergent in the mean provided com-
pleteness can be established,*! and we assert that,
considered as a function of &, the functions in question
are complete with the exception of those discrete re-
quencies at which interior resonances (solutions of the
homogeneous Neumann problem) occur.

To show this, the interior counterparts of Egs.
§-7 are first obtained, starting from the alternate form
of the Helmholtz formula.2425 In this manner, the total
- field (no incident wave present) in the interior volume
isfound in the form

L by small circles

f ka. Thus for
mewhat more
tha,t the Tmn
1 odd).

obtained, the
computed for
the scattered
Y is regarded

s functions of | y=2 d. Reyn, (A1)
serformed for ) ) .
» forming an | with coefficients given by?*®
the strip). In PR
ten in full b= / dofi [(Vealy-—¥a¥ 4], (A2
78
n(kr); 1 n=1,2, -,
kr>ka l Where 7 in Fig. 1 now points into the interior. The
6 | surface fields themselves are specified by the equations
o ik
4r / do#t [V (Reyn )y~ — (Rey,) Vo] =0, (A3%)
!’ 4
osnd. (00 n=1,2,--,

. - a . ) "
puted, using gmented with boundary conditions.

1e expressioh

(67)

- (I: IR, Courant and D. Hilbert, Methods of Mathematical Pliysics
: tpﬂ'scieréce Publishers, Inc., New York, 1933), Vol. 1, pp. 51
¢ Ty Pp. 110-111.

/ doi-V(Repdo_=0, n=1,2, -+ (A4)

are necessary and sufficient conditions for determining
¥_. Furthermore, this problem is known to have only
the trivial solution ¢_=0, provided that % does not
coincide with any of the discrete resonance frequencies
(eigenvalues of the interior).A*4% In this event, by
definition, the gradient functions appearing in Eq. A4
form a closed, and hence complete, set.A! By a similar
argument, the wavefunctions {Rey,} used with Eq. 15
are complete except at eigenvalues of the interior
Dirichlet problem. The above discussion applies also to
the “reverse” choice, Egs. 9, upon absorbing the weight
function in the surface field.

Difficulties with the exterior problem at eigenvalues
of the interior are not new, incidentally?®; methods of
treating them have been discussed by Werner# and
Schenck.45 These difficulties do not appear to be
fundamental in the present context. All complicatons
arising at an interior resonance are eliminated upon
choosing an alternate set of functions for the expansion
of Eq. 9 that is complete without exception, e.g., the
spherical harmonics. The latter are not to be preferred
in general, however, in that they fail to possess the
convenient analytical and computational properties
shown to exist with the regular wavefunctions.

A2 F. B. Hildebrand, Finite-Difference Equations and Simula-
tions (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1968), pp.
278-285.

A3 Reference 37, p. 295, pp. 306-312.

44 P Werner, J. Math. Anal. Appl. 7, 348-395 (1963).

A5 . A. Schenck, J. Acoust. Soc. Amer. 44, 41-58 (1968).
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