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New Formulation of Acoustic Scattering 

P. C. 

.lilTRE Uorporalbm, Bed. ford, Mas.•'achltsells 

Upon introducing the outgoing spherical (or circular cylindeo partial wares {½n} as a hasis, the equatinn 
aT- - Re (Q) is obtained for the transition matrix 1' describing scattering for general incidence on a smnoth 
objec• of arbitrary shape. Elemems of Q involve inlegrals over the objecl surface. e.g. 

where lhe . + apply for Dirichlet and Neumann conditions, respectively. [:or quadric (separable} sur- 
faces, • is symmetric. Symmetry and unilarily lead t• a secular equation defining eigenfunctions for general 
hodies. Some apparently new closed-form results are obtained in the low frequency limit• and the transition 
matrix is COml)UlCd numerically for Ihe intlnite slrip. 

INTRODUCTION 

Thrcc methods extensively employed in the lilerature 
on scattering and diffraclion, especially where explicit 
numerical resttits are desired, are separation of v,tri- 
ables, variational techniques, aqd the direct numerical 
solution of integral equations. The separalion-of-vari- 
ables procedure is, of course, extremely well known, • -:' 
and tonstitutes a formal solntion for g class of objects 
bounded by quadric surfaces. In practice, a good part of 
the computational effort goes into evaluation of the 
wavefunctions themselves except for the sphere and the 
circular cylinder, for which efficient recursion relations 
are available. The variational method, descrihed by 

Levine and .qchwinger a and others, '-"*-n is equiwtlent to 
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(;ale,'kin's reelhod, as was shown by Jo,•es? .n For 
general bodies, the principal effort goes into evaluating 
lnatrix elements, which consist of repeated surface or 
volume integrals with singular kernel, and require, re- 
spectix'el3' , fourfold and sixfold numerical quadrature? 
The integral equation method consists of approximating 
an integral (nvcr the surface or volume of the scattering 
region) by a discrete sum, then solving the resulting 
system o'f equations numerically24 In recent ye0,rs, 
several applications of this approach have appeared, 
using the digital coinpurer. u,•:' • 

The purpose of the present work is to describe a new 
matrix formulation of scattering. In structure, the 
resulting equations most nearly resemble those of the 
variational method, with however the computational 
advantage that, for both surface- and volume-type 
scattering, elemeuts of the matrix to be inverted are 
described by a single surface integral with no singulari- 
ties in the integrand. Essentially the same matrix 
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FIG. 1. Geometry of 
an obstacle bounded 
by a smooth closed 
surface a. 

applies for both Dirichlet and Neumann boundary 
conditions. 

In brief, the plan is as follows: In Sec. I, equations 
are derived for the transition matrix describing the 
scattering for general incident wave, using a spherical 
partial wave basis. The derivation is based on the 
Helmholtz integral formula as applied to both the 
interior and exterior of the scattering region, and sup- 
plemented with analytic continuation arguments. The 
idea that exterior boundary-value problems can be 
solved by considerations in the interior is not new, 
incidentally, and appears to have first been applied in 
electrostatics by Smythe, in 19567 Symnmtry and 
unitarity are employed in Sec. II to obtain a secular 
equation for the eigenvalues and eigenvectors of the 
scattering or transition nmtrix; and the eigenvectors, in 
turn, generate eigenfunctions associated with a specified 
scatterer (including boundary conditions). The matrix 
elements appropriate to both two- and three-dilnensional 
problems are written out explicitly in Sec. III, and 
various reductions discussed that depend on the 
geometry of the scattering region. Finally, in Sec. IV, 
the transition matrix is computed numerically for the 
infinite strip. Symmetry and unitarity are verified, and 
equivalence of the eigenfunctions of Sec. I1 with the 
elliptic cylinder functions demonstrated. By specializing 
to plane wave incidence, the results of earlier workers • 
are, in effect, extended to the geometrical optics 
limit. 

It should be emphasized that the method in its 
present stages is formal in the sense that no rigorous 
proofs are available dealing with convergence of 
truncated solutions of the (infinite) matrix equations 
derived below. It is hoped that the present work may 
stimulate activity along these lines. In addition to the 
analytical and numerical results presented here, 
numerical results have also been obtained for electro- 

magnetic scattering by conducting 2L2• and dielectric 

• w. R. Smythe, J. Appl. Phys. 27, 917-920, (1956)• 33, 
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obstacles, 2a using a vector formulation of the method. 
Aside from obvious differences of the vector and scalar 

cases, the present work goes further in that a unified 
derivation is given for both surface- and volume-type 
scattering regions and, what is more important, works 
directly with the transition matrix, in which setting the 
r61e of reciprocity and energy conservalion is explicitly 
displayed. 

I. DERIVATION OF MATRIX EQUATIONS 

Consider the exterior boundary-value problem that 
consists of finding a solution to the scalar Hehnholtz 
equation 

•½+•'•= 0, (•) 

subject to boundary conditions to be described sub- 
sequently on the (two- or three-dimensional) closed 
surface •r shown in Fig. 1. The surface is assumed smooth 
in the sense of having continuous turning normal fi, 
and only simple harmonic time dependence is con- 
sidered; a factor exp(-ia/) is suppressed in all field 
quantities. 

The total velocity potential ½ consists of the stun of a 
known incident wave •i, having no sources in the in- 
terior of •r, and a scattered wave ½•, having the form of 
outgoing radiation at infinity. Under these conditions 
the well-known Helmholtz formula asserts that 2•.2:' 

½(r') / . , 1 
ß 

for r' Iotaside ½ ]inside a ' (2) 
where •. and •. •+• are the total field and its normal 
gradient on the surface of the obstacle, approached 
from the outside, and g is the free space Green's func- 
tion •khom(kR)=(1/R)expUkR) •in two dimensions 
i•'Ho(•)(kR), the Hankel function of order zero, of the 
first kindS. 

We choose as a basis the set of functions 

{•b,•(r); n= 1, 2, ... } 

consisting of the outgoing partial wave solutions of 
Eq. 1 in circular polar or spherical polar coordinates, 
depending on the dimensionality of the problem. The 
various indices needed to express parity, and so forth, 
have been reordered into a single index for simplicity. 

•ap. C. Waterman, "Scattering by Dielectric Obstacles," 
presented at URSI Symposium on Electromagnetic Waves, 
Stresa, Italy (24-29 June 1968), Alta Frequenza (to be published). 

•4 B. B. Baker and E. T. Copson, The Mathema/ical Theory of 
lIuygen's Principle (Clarendon Press, Oxford, England, 1953), 
2nd ed., pp. 23•6, 48 52. 

•s H. H6nl, A. W. Maue, and K. Westpfahl in Handbuch der 
Physik, S. Fliigge, Ed. (Springer-Verlag, Berlin, 1961), Vol. 25/1, 
pp. 218-573. 



NEW FORMU[.A'FION 01: ACOUSTIC SCATTERING 

The detailed form of the basis functions, including 
normalization, is discussed subsequently. 

The incident wave is to have no singuhtrities in the 
neighborhood of the origin, and hence can be expanded 
in Ihe regular wave functions {Re½,,,(r)}. One writes 

Z a,, Re½,,, (3) 

where the expansion coefficients {a,•} are assumed to be 
known. Similarly the free-space Green's function may 
be expanded in the form =•s 

g(klr-r')=ik • ½,,(kr>) Re•(/er<), (4*) 

where r> and r< are respectively the greater and lesser 
of r, r'. • Inserting this expansion in the Helmholtz 
formula, the scattered wave, which may be identified 
xvith the surface integral, is seen to be given for all 
points outside the circumscribed cylinder (sphere) of 
Fig. 1 by 

z 

with expansion coefficients 

.f,, =-- 
4•r • 

u=l, 2, .... (6*) 

On the other hand, for field points inside the inscrihed 
cylinder (sphere), use of Eqs. 3 and 4 will reduce the 
entire right side of Eq. 2 to an expansion in the com- 
plete set of functions {Re•,•}. This expansion musl 
vanish, and because of orthogonaltry each coelBcieut 
must vanish separately, giving the set of equations 

4•r 
•t=t, 2, .... (7*) 

Observe that the right side of Eq. 2 is it regular solution 
of the differential Eq. 1 of elliptic type throughout the 
interior of •r. By analytic continuation, it follows that 
this fiekl will vanish identically not just inside the in- 
scribed volume but throughout the entire interior. 

The procedure from this point will consist of the 
following: The unknown surface quantities •,+, 
are expanded in a complete set of functions, utilizing 
the boundary conditions, so far unspecified, so as to 
introduce only a single set of independent expansion 
coefficients, say {,,,}. Substitution in Eq. 7 will then 
give a system of linear algebraic equations for comput- 
ing the surface fields {c•,•} from the incident wave {a,•}. 
In similar fashion, Eq. 6 will give a system of equations 
to compute the scattered wave {f,•} from the surface 
lields {•,,}. Our principal concern is with the transition 
martin' T connecting the if,} with the {a,•}, and an 

• This and subsequent equations marked with an asterisk apply 
to the three-dimensional case. For the two-dimensional case, 
replace the factor "k" by •-. 

equation for T may finalIx' be obtained by eliminating 
the surface fields {a,,} between Eqs. 6 and 7. 

To proceed with this plan, consider first the homoge- 
neous l)irichlet boundary condition 

•. = 0 on •r. (8) 

Note that when this condition is inserted in Eq. 2, the 
remaining kernel, g, is sufticientlv well behaved as to 
produce no jump in value of the integral when crossing 
the snrface. Thus, satisfaction of Eq. 7, which is neces- 
sary and sufficient to make the right-hand side of 
Eq. 2 wtnish throughout the interior, also guarantees 
that •, will lake on the desired boundary value from the 
exterior. An analogous argument can be made for the 
Neumann boundary condition discussed below. The 
choice of expansion functions to represent the unknown 
surface quantity •.V+•O is somewhat arbitrary. One 
useful choice, for reasons that will become clear, is the 
normal gradienls of regular wave functions, i.e., 
{•. V Re½,,,}. Thus, assuming these functions are com- 
plete '-'7 on the stirface • described by r=r(O) [-or, in 
three dimensions r= r(0,½)•, one writes 

•(r). V+•,(r)=• c•,•fi(r).V•-Re•,,(r)•; r on ½. (9) 

Substitution of this expansion in Eqs. 7 and 6 now 
gives respectively, in an obvious matrix notation (prime 
denotes matrix transpose) 

iO'.= •, (10) 

f= -i 

where the matrix elements of 0 are given by 

d,,. 02*) 
4•- 

and may be obtained either analylically or by numerical 
integration, depending on the complexity of the surface 
geometry. 

l:orlnal elimination of the surface field c• between 

Eqs. 10 and 11 results in a system of equations 

f= - Re(0') (0')-'a (t3) 

relating the scattered wave directly to the incident 
wave. The transition matrix T fo.r the Dirichlet problem 
is defined its just this connecting matrix, which generates 
the coefficients of the scattered xvave by premultiplica- 
tion on the coefficients of the incident wave. Thus one 

has (we assume symmetry in order to replace T' by T; 
see Sec. II) 

OT= --Re((;) (14) 

for determination of the transition matrix. 

For the Neumann problem, on the other hand, one 
has the boundary condition 

•. v+•k=O on •r, (15) 

•-• See Appendix. 
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and this time the remaining surface field •b+ is assumed 
to be representable 27 in regular wavefunctions {Re½,•}. 
The procedure leading to Eq. 14 follows exactly as 
before, except that Q must be replaced by a new matrix 
0 with elements given by 

4* 

At this point results may be collected in a more 
symmetric form, as follows: Applying the divergence 
theorem to (Q-Q), using a volume bounded outside 
by a, and inside by the inscribed circle (sphere), this 
difference is readily seen to wmish except for the 
imaginary parts of diagonal clements, i.e., O-Q=il 
where 1 is the identity matrix having demerits 15,,,,•= 1 
for )n=n, &,,,=0 otherwise. On the other hand, by 
inspection one sees that the stun Q+Q cao be written 
as an integral involving the gradient of the product of 
wavefunctions. Solving these equations for Q and 0, 
one has that Eq. 14 is applicable to either boundary 
condition, with matrix elements given by 

i k fdq. O.., = 06*) 
2 87r 

with the minus and plus signs referring to Dirichlet and 
Neumann conditions, respectively. 

This expression has an interesting feature from the 
numerical point of view. For indices )n, n>ka (hence, 
in the low-frequency limit, all elements) where a equals 
the maximum radius of the obstacle, the product of 
radial functions in the integrand can be approximated 
by the leading term arising from the appropriate power- 
series expansions. Similarly, the product of angular 
functions can be expanded in a finite set of angular 
functions e.g., in two dimensions 

cos)nO cosn0=« cos()n-n)Od-« COS()nTn)0. 

The dominant numerical contribution to the off-diagonal 
elements generally would be expected to arise from the 
first and more slowly varying of these terms. Examina- 
tion of Eq. 16, however, reveals that the contribntion in 
question consists of the surface integral of the normal 
gradient of a potential function, and hence by the 
divergence theorem vanishes identically for all off- 
diagonal elements. Because of the term containing b 
this cancellation does not occur with diagonal elements, 
which might therefore be expected to dominate their 
off-diagonal neighbors, resulting in a matrix better 
suited for inversion by numerical techniques. An 
analogous effect can be seen to occur in Eq. 20 below, 
and in the three dimensional case, although the situa- 
tion is much more complex in the latter because of the 
additional index attached to the wavefunctions. 

For the more general acoustic boundary-value prob- 
lem, in which fields penetrate the interior of the obstacle, 

propagation in the interior is described by propagation 
constant k', in accord with density •' and stiffness 
modulus (reciprocal compressibility) M', all of which 
may differ from the parameters k, p, ill of the sur- 
rounding medium. Boundary conditions require that 
the pressure, and the normal component of particle 
velocity, be continuous across the interface, giving, 
respectively, 

,•. V+½=h. X' • /" (17) 
Observe that, for k' real, the wavefunctions { Re•,,(k'r) } 
form a complete orthonormal set of functions for the 
total field in the interior, which may hence be expanded 
in the form 

•(r)= 5• •,,• Re•b,,(k'r): r inside a. (18) 

Assuming that this expansion and its normal gradient 
converge on the boundary, '2• the interior surface fields 
½_, h. X'_e, and hence through the boundary conditions 
Eq. 17 the exterior surface fields, are all expressible in 
terms of expansions involving fl. Substituting these 
forms back in Eqs. 6 and 7, and eliminating 3 as before, 
one finalIx' obtains 

OT= --Re(O), (19) 

with matrix elements given by 

(20*) 

Notice also that the restriction to nondissipative ob- 
stacles is easily removed. The above argument goes 
through with no essential changes provided one expands 
the interior field in regular wavefunctions containing the 
radial functions of the appropriate complex argument 
k'r. The form of Eq. 19 becomes slightly more involved, 
but the modifications are straightforward. 

After solving the appropriate equation for the transi- 
tion matrix T, the scattering coefficieuts fare obtainable 
from Eq. 13 for each desired incident wave. The farfield 
scattering is then described in the usual manner by 
introducing the large-argument formulas for the radial 
functions in Eq. 5. Alternatively, if numerical values 
of surface field quantities are desired, the expansion 
coefficients a are obtainable by numerical solution of 
the system of Eqs. 10. In this event, the scattering 
coefficients are given directly by Eq. 11. 

It is of interest to examine some limiting cases of 
Eq. 20. First, taking k'-k, so that phase velocities are 
equal within the scattering region and its surroundings 
(hence the densit), and stiffness ratios are both arbitrary, 
but equal, i.e., pt/p= M'/M), one has by inspection 

O=(,'/,)O-o; /•' =/•. (20') 
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X E\\' FO R.M t'I..\TION OF _\COI-?4TI C SCATTER I NG 

Using this equation, we see lhe preceding restills In 
he limiting cases of the present one. 1.elting p'p 
=M' .U•z (rigid boundary•, as discussed by 
R% leigh, • Eq. 19 goes over to lhe Neumann case•i.e., 
Eq. 14 usine •. Similarly, for the alternative limil 
p' p=.lf' M• fl (•oft boundary), Eq. 19 viclds the 
Dirichlct case, involving Q. 

A second situation of interest arises when the Seal- 

toting region is a pertuft)alton on its snrmundings, i.e., 
when 5•(p'--pl p<<l, 5u•(M'--M) M<<I. In this 
cvcnl, 0 may be transformcd, t)y separating off 
first term in the integrand times a factor (p'•) 
lhcn applying the divergenre theorem. Neglecting 
ternis of firs• order or higher in the small quantities, 
one obtains 

O•il, 

so lhal, from Eq. 19, the Iransilion realfix in Ibis limit 
is jusl proportional to Re(Q• and is given by 

T.,,, --, .5 u ..IT Re•,,,(kr) Re•k•(kr) 
4•ri ' . 

- -.L [ &VERe,h,,(kr)]. VERe4,.(kr)]. (2l*) 
4rci J 

The scattered wave is obtained according, Io Eqs. 5 
aml 13, by multiplying by the incident wave coefficients 
a,,, the outgoing wavefunctions •b,,,, and summing over 
both indices (se• Eqs. 3 and 4). For example, for in 
cidcnt plane wave cxp(ik.-r) one gets, afler some 
straightforward simplifications, 

where •'o and k are unit vectors in the direction of 
incidence and observation, respectively. 

This extension of the first Born approximation (in 
the usual case ...Xo=0} has recently been found by dif- 
ferent techniques by Morse and lngard? It could 
alternatively be obtained by iteration of the integral 
representation given by Gerjuoy and Saxon? The 
same resnit was also found by Kleinman.'" In Ihe low- 

:' J. W Strutt Lord Rayleigh, The Theory at' Sourot IDovcr 
Putdications, Inc.. New York, 1045), Vol. 2, p. 294. 

'-'• P. 5I. Morse and K. U. Iugard, Theoretical ..lctntqics 
Graw-Hill Book Co.. New York, 1968), p. 413. 

a, E. Gerjuoy and D. S. Saxon, Phys. Rex-. 9.1, 1445-1458 
(1954k ,See Eq. 11 therein. 

:• R. E. Kleinman. private COlnmullicatimL 

frc(luency limil, the last inlegral above is seen to 
give prccisdy the volume of the scattering region, and 
Eq. 22 agrees wilh the rcsuh originally obtained by 
Rayleigh 

II. SYMMETRY, UNITARITY, AND EIGENFUNCTIOrqS 

Bc[orc proceeding [m'ther, it is appropriate to 
amine the properties of svmmelrv and unitarity, as 
they relate to the matrix equations. This is conveniently 
done in terms of lhc scattering matrix S cleftned by 

S= l+2T. (23a• 

T se,-ves •o coralrole Ihe expansion coefficients for the 
outgoing waves due to a given regular incident xvave, 
whereas S performs the same computation for an in- 
cident field specified by incoming waves singular at 
the origin. More specifically, the total field can be 
written (outside the circmnscribing sphere of Fig. 1) 

•,= •.. Fa,, Re(•,,,)+T,,,,,a,d,,,]; (23b) 

after a little manipuhttion, this same field becomes 

(23c) 

The scattering matrix has been discussed by Gerjuoy 
and Saxon for acoustic problemsfi n Upon introducing 
the incoming-outgoing partial-wave basis in their 
restilts, it is not difficult to show lhat S must be bolh 
symmetric and unitary, i.e., 

S'= S (or T'- T}, (24a) 
and 

S'*S= 1 (or T'*T= -- ReT). (24b) 

These conditions stem, respectively, from the reciprocity 
principle and energy conservation requirements. 

The nmlrix equations derived earlier are not in- 
dependent of the constraints of Eqs. 24, but satisfy 
lhem in part, as follows: The basic equation is 

q.S: -0'. (25) 

for which the formal solution is :•:• 

S=--{_) 1Q*. (26) 

Now forming the product S•S from Eq. 26, one 
mediateIv obtains 

S'S= 1. (27) 

Because of this properly, Ihe conditions (Eqs. 24) are 
no longer separate constraints: that is, if S is sym- 
metric, i• will automatically bc unitary, and vice 
versa. 

Xcxt, let us consider the eigcnvectors of S. The 
eigcnvalues of a unita,'y mat,'ix lie on the tinit circle in 

.•o. Reference 28, pp. 140-152. 
*a Xote that it follows readily from Eq..296 that, if S is to he 

symmetric, the malrix product Im(Q) Re(Q) must be sy'mmetrlc. 
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the complex plane, so one can write 

Sl, g (J) •--- ½ ixiu($), (28) 

where the jth eigenvector u u3 has components 
u• o), ß .., and the Xj are real. Because S is in addition 
symmetric, one can show (premultiply Eq. 28 by S •*, 
then employ Eqs. 24) that the eigenvectors constitute 
a real orthonormal set. Operating on u (• with the 
matrix •uality (Eq. 25), there results 

which, in view of the fact that u (5) is real, may be 
rewritten 

ReO)u ø) = tan(X•/2) Im(Q)u ø). (29a) 

This is a reM homogenous system of equations, from 
whi& the eigenvectors may be determined after first 
relying the •cular equation 

[ReQ- tan(X•/2) Im(Q) ] = 0 (29b) 

for the eigenvalues. aa 
The eig•functions {•(0} can now be constructed 

using the eigenvectors as expansion coefficients with 
the basis functions; i.e., by definition 

e•(O•E tt,,(i•,,(0 , /=1, 2,---. (30) 

just as with the original basis fnnctions, these outgoing 
fields have as their counterparts the regular eigen- 
functions {Reds(r)} which are well behaved at the 
origin. The set {•(r)} constitute outgoing waves 
reflected intact except for a phase shift upon incidence 
of the corresponding incoming wave. That is, introduc- 
ing the eigenvectors in Eq. 23b, one sees that the linear 
combinations •ci*--kexp(iXj)•j, j= 1, 2, ..-, are fields 
satisfying the boundary conditions imposed by the 
presence of the obstacle. Note also that these linear 
combinations may be written in terms of the regular 
functions as Re,j+ •[exp(iXj)-- 

Solution of the scattering problem is immediate in 
terms of the eigenfunctions: First, the incident wave is 
expanded in regular eigenfunctions to get 

•b•(r) =5-]• ci Re•,5(r). (31a) 

The coefficients may be obtained from the observation 
that the ½i are orthogonal with respect to integration 
over the large circular cylinder (or sphere) ao at in- 
finity, because of orthogonality in Eq. 30 of both the 
angular functions appearing in the •b,,, and the eigen- 
vectors u(i). One thus has 

½i= ,t,o•b • Re(•o•)/ (3lb) 

a• Eigenvalue problems of this form have been discussed by 
W. V. Petryshyn, Phil. Trans. Roy. Soc. (London) A262, 413 458 
0968), and references therein. 

In view of the comments of the preceding paragraph, 
the resulting scattered wave is given by (assuming the 
expansion converges) 

•b•(r) =Y• «(e 'x'-- 1)c•(r). (32) 

For the elementary case of Dirichlet boundary condi- 
tions on a circular cylinder of radius r = a, using circular 
cylindrical wavefunctions •,, the Q matrix in Eq. 14 
is diagonal, and the •j coincide with the •j. The real 
and imaginary parts of the elements Qjj differ only in 
containing the factor J•(ka) or A'i(ka), respectively 
(Bessel or Neumann functions). From Eq. 2Oh, one has 
tan(Xi/2)=Ji(ka)/.V•(ka), and the factor in Eq. 32 
yields the well-known restlit 

l) = - 

involving the Hankel function of the first kind Hi. Cor- 
responding known results can be seen to obtain with 
Neumann conditions, Eq. 16, or the penetrable acoustic 
cylinder, Eq. 19. 

Next in order of difficulty would be Dirichlet or 
Neumann boundary conditions on a cylinder of elliptic 
cross section. In both cases, the eigenfunctions are the 
same and are known, froin the standard separation of 
variables procedure, in the form of products of Mathieu 
functions in elliptic cylinder coordinates. Expansion of 
the regular eigenfunctions, i.e., the real part of Eq. 30, 
has been given for example by Stratton, a who also 
gives the expansion of Eq. 31a for an incident plane 
wave. In problems of this type, where separation of 
variables is directlr applicable, the method of the 
present section can be reduced to a simpler form, he- 
cause both real and imaginary parts of Q turn out to 
be symmetric, as is shown below. In this eventgait follows 
that lmQ and ReQ commute and must have common 
eigenvectors. The generalized eigenvalue problem given 
in Eqs. 29a,b may consequently be replaced br either 
one of the two ordinary eigenvalue problems Re(Q)uO* 
=a•u •i}, or Im(Q)u•i)=l•u ø• (where •i &=tanX•/2). 
These equations are of interest in providing a new 
method for determination of the elliptic cylinder wave- 
functions, not involving elliptic cylinder coordinates. 
Whether or not the method will turn out to have 

computational advantages in practice remains to be 
seen. 

If now the boundary conditions be changed, to 
apply to a penetrable elliptic c.vlinder, then the eigen- 
functions are determined from Eqs. 29 and 30, using 
the matrix 0 given in Eq. 20. The separation of 
variables procedure, on the other hand, does not lead 
to eigenfunctions. As shown by Yeh for the mathe- 
matically equivalent problem of the dielectric cylinder, '• 
one can nevertheless solve the problem numerically by 
expanding in elliptic cylinder wavefunctions, if proper 

•J. A. Stratton, 'Fdectrornagnet-ic Theory (McGraw-Hill Book 
Co., New York, 1941), pp. 375-387. 
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account is taken of the fact that all coefficients are 

conpied through the boundary conditions. 
For this last problem, or the general case of non- 

separable boundary geometry, the merits of employing 
eigenfunctions, rather than the original basis functions, 
in practice have not been established. One criterion, 
however, consists of the relative numerical difficulty 
of straight matrix inversion of 0 (in truncation) to 
solve, s•ty, Eq. 14, versus the resolution into eigen- 
vectors and eigenvalnes described by Eqs. 29a,b. 

III. STRUCTURE OF THE O MATRIX 

In order to understand the matrix equations better, 
it is helpful to examine the matrix elements () ..... in 
some detail. For two dimensions, the basis funclions 
are I 

COS 

½ •/o,r,(r)= (•,•51 nOH,•(kr) (33) 
Sill 

in circnlar cylinder coordinates r, 0. The Neumann 
factor e• has the value co=l, •,,=2 otherwise. tt is 
notationalh' convenient to break Q into four blocks 
according to parity, writing 

= [()• (_) •o•. (34) O LQ .... Oooj 
A corresponding block notation is then used for the 
transition matrix in Eq. 14. 

The discussion can be simplified slightly by making 
the restriction that the obstacle have mirror symmetry 
across the plane y=r sin0=0, so that r(O)=r(2•r-O), 
and the integrals involving mixed products of sines and 
cosines are seen to vanish. Because of the block diagonal 
nature of 0 in Eq. 34, the matrix equation, Eq. 14, is 
now seen to reduce to the two (single) block equations 

9•?,•=_RoQ,•; ooor .... ReOoo. (35) 

For the matrices 0 •* and T% indices run m, n=0, l, 2, 
ß ..; whereas for 0 © and T © , one has m, n= 1, 2, ß ... 

l:rom Eq. 16, it is not difiicnh to show that 

v,,,,,' ..... z0C - 8 LOr 

1 dr 0 • costa0 eosn0 (36) r dO OOJ J'"H'• sinre0 sinn0' 
where r is set equal to r(O) after the partial deriwttives 
are taken. The low-frequency lindting form of Q may 
now be obtained by keeping only the leading terms in 
the power-series expansions of the Bessel and Hankel 
fnnctions. tt has already been noted, following Eq. 16, 
that certain numericall 5' dominant terms will integrate 
to zero for off-diagonal elements. From an analytical 
t)oint of view, on the other hand, writing r(O)=ap(O), 

so that a and p(O) characterize the size and shape, re- 
spectively, of the obstacle, Eq. 36 reduces schematically 
to (for either Q• or Qoo) 

Re(Q,,,,) '- •"•+"' m, (37a) II = l , 2, ''' 
fm(Q,,,,) '-• ...... (37b) 

for •=ka<<l. I:or Q"", one can verify in addition the 
ternis 

Re(Qo,,*')'=Re(Q,,o•O;e"*+2; re=O, l,..., (37c) 

tm(O•,.,"O-'•'-'-"', Im(Q,,o•O--'e'"; m= l, 2, .-., (37d) 

and finally 

tin(000 •") '- / •'" (DMchlet) (37e) 
/ 1 (Neumann)' 

The form of the numerical coefficients appearing on the 
right-hand side of Eqs. 37, inclnding dependence on 
ln• in some cases, is easily obtained from Eq. 36. 

x37 are interested in the structure of the transition 
matrix T insofar as dependence on powers of • is con- 
cerned. In order to balance out the indicated dependence 
on the parameter • in Eq. 35, assuming Ira(Q) to be 
nonsingular, it is necessary that T • have the form 

[mT,,,,,•'-½'q"; re, n=0,1,-.. (Dirichlet), (38) 

with ReT,,,,ff" involving higher-order terms in each 
element. This can be verified by substitution, along 
with Eqs. 37, in the first of Eqs. 35. One then notes 
that any larger terms (i.e., lower powers of •) than 
shown in Eq. 38 could onh' be accommodated if Ira(Q) 
were singular, which is contrary to assumption. [n the 
Rayleigh limit, the scattering with Dirichlet boundary 
conditions is thus isotropic, and described by the leading 
term 5/'o."" which can depend on e only logarithmically. 
In order to obtain an 5 ' of the appropriate numerical 
coefficients suppressed on the right side of Eqs. 38, it is 
necessary in general to solve the infinite matrix Eq. 35 
numerically by it limiting process. 

The situation is solnewhat different with Xeumann 

boundary conditions. Because of Eq. 37e, similar 
analysis leads to (again, ReT,,,• '• can involve only 
higher powers of e in each element) 

e '+"+ø- (m = 0 and//or u = 05 (39) Im7'"'"•=' [•'"+'* m, ½t=l, 2, -.. (Neumann) 
There are thus three leading terms in this case, the 
isotropic term Too% and the dipole terms Tn"' and 
Tu øø (not shown in Eq. 395, all of order •'-'. The coef- 
ficient of lhe isotropic term can be obtained in closed 
form this time, by noting in Eq. 35 that elements of 
the top row of O (i.e., Q0,, '•', n=0, 1, ...) vary like 
id-e ø-, ie+e :l, i-be', i/ed-e:', ..., whereas the first 
column of T behaves like ie 2, i• a, ie 4, '''. Correct to 
leading terms the product (O•T")oo is given by the 
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first term in the sum over row and column, so that 

Qoo'eToo'e=--ReQoo 'e. From Eq. 36, it is easily seen 
that 

k'" fo • k'-'. t Qo0•e• i--- d0r"(0) = i--- 
8. 4 

in terms of the cross-sectional area .4 of the cylinder, 
so one finally obtains 

Too .... (k".t 4l•--ik'-'A 4 (Neumann). (40) 

This restilt agrees with the classical results for the 
circular cylinder F--Jo'(ka) H'o'(ka)] and the elliptic 
cylinder, aø obtained by separation of variables. 

The analysis for a cylindrical volume of scattering 
material, starting from Eq. 1O, is almost identical, and 
one obtains for the isotropic term in the Rayleigh linfit 

Tøø•"• \ M' /\ 4 / \ M' / 4 ' 
In contrast to the low-frequency results discussed 
earlier in connection with Eq. 22, where the medium 
properties were restricted to a perturbation on their sur- 
roundings, this equation is valid for general density and 
stiffness ratios, provided both ka and k'a<<l, and with 
the exception of the Dirichlet limit M'/M=p'/p--• O. 
Note, for example, that the Neumann limit M'/M 
=p•/p --•m, given in Eq. 40, is obtainable from Eq. 41. 
It is also of interest to note that for the correspondin• 
boundary-value problems in the electromagnetic case, 
the dominant terms (i.e., the imaginary parts) of 
Eqs. 40 and 41 have been obtained by Van Bladd by 
invoking magnetostatic or electrostatic considerations? 7 

The above discussion changes quite radically when 
applied to quadric surfaces, for which separation-of- 
variables techniques are also available. This comes 
about through the orthogonaltry of the angular func- 
tions, coupled with Wronskian relations for the radial 
functions in our basis. Consider the elliptic cylinder 
having semimajor and semiminor axes a, b, respectively, 
defined by 

[1 p(O)]"=cos'-'O+(a b)" sin-•0. (42) 

Because there is now a second plane of mirror sym- 
metry, the phme x= 0, one easily gees from Eq. 36 that 
Q•,•=o if (re+n) is odd. For the balance of the ele- 
ments, the difference Q,,,o,,+'-',•-Q,,+-•)•, will contain 
under the integral sign a factor 

J• ( kap).V,•+ 2• ( kap) -- J ,,+•_, ( kap) Y, ( kap). 

Now, by applying the standard recursion formulas to 

a• j.E. Burke and Y. Twersky, J. Opt. Soc. Amer. 54. 732-744 
(1964) 

a, j. Van Bladel, Appl. Sci. Res. B (Netherlands) 1O. 195-202 
(1963); Electromag•etic Fields (McGraw-Hill Book Co., New 
York, 196t), pp. 393-397. 

the Wronskian relation 
=--2,'•rx, one can show that 

J,,(x)N,,•+•(x)--J,,,+._,•(x).V,,,(x) '- ,5 , (43) 
where the precise coefficients of the invcrse powers of x 
are not germane to •he present discussion and have been 
omitted? Identifying x with kap and using Eqs. 43 
with the defining Eq. 36 for Q ...... the second group of 
terms in the integrand can be integrated by parts to 
remove the factor dr/dO. At this point, from Eq. 42 
one sees that the radial functions in the integrand con- 
tribute a finite number of trigonometric functions 
{cos2s•O}, with O_<s•<s. On the other hand, the 
auguhtr functions contribute only the two terms cos2s0, 
cos2(s+m)0. By orthogonalit3-, all of these integrals 
vanish except one involving (cos2s&, and the latter is 
precisely the term that vanishes for general shapes, as 
discussed following Eq. 16. It follows that the Q 
matrix is exactly symmetric, and given by Eq. 36 using 

J.,H,• = J,,,>H ,• < (44) 

for the product of Bessel functions, where m>, m< are, 
respectively, the greater and lesser of m. n. 

For the more general case of volrune scattering by 
elliptic cylinder, Q is no longer symmetric. Observe, 
however, that symmetry of Q implies that, after in- 
troducing low-frequency expansions for both J,,, and 
_V,, in Eq. 12 and regrouping terms according to ascend- 
ing powers of kr, all terms involving inverse powers of 
kr vanish upon integration. Comparison of Eq. 12 with 
the first term in the integrand o( Eq. 20 for Q reveals 
that precisely the same terms will vanish in the latter. 
Similar comments apply to the second term in the 
integral of Eq. 20 by analogy with O- Thus, O for 
scattering from an elliptic cylindrical volume is giveu 
by Eq. 20 with all singular terms (as described above) 
from the radial function expansion simply discarded. 

In dealing with quadries, it is of interest to observe 
that an alternative choice of expansion functions for the 
surface fields will also lead to a symmetric Q matrix. 
Thus, instead of the functions of Eq. 9. or the cor- 
responding expansion for Xeumann boundary condi- 
tions, one can essenliallv reverse thcs½ choices and 
employ instead the functions •; 

w(r) Re½,,(r); r on , (Dirichlett 

[-w(r)•-t,•.V[-Re½,,(r)3; r on cr (Neumann) (9') 

where the weight function w(rl=k'2r[l+(r ' 
serves to remove a complicating factor appearing iu the 
integrands. Vor example, usinz the fir.•t of Eqs. 9' in 

•8 The coe•cients can readily be obtained by comparison with 
results given b 3- Watson: G. N. Watson, Theory o' Bessd Ftt}•clio}•s 
(Cambridge University Press. Cambridge. Eneland, 1962), 
2nd ed., pp. 145-150. 
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Eq. 7 • gives a new 0 matrix with elements 

..... 
XJ,,,(kr)H,,(kr) . (30') 

sintoO sinnO 

Now essentially hy inspection, ubing Eq. 42, it may be 
seen again that all ternis on the right-hand side of 
Eq. 43 will drop out in the course of the integration, 
so that this alternate version of 0 is also symmetric, 
with Eq. 44 applicable. 

For the special boundary considered, Eq. 36' is 
apparently slightly preferable to Eq. 36 because of the 
somewhat less involved integrands of the former. 
Notice, however, that one pays for this advantage in 
loss of generalit)', i.e., lhe earlier Eq. 36 was applicable 
to both Dirichlet and Neumann conditions. Numerical 

results have been obtained with Eq. 36', and are 
described subsequently. 

The simplifications that occur in 0, 0, and • for 
boundaries of elliptical cross section are of interest 
from both theoretical and practical viewpoinls..Note 
lirst that it is possible to oblain systematically as many 
terms as desired in the low fr•uency expansion for the 
Iransition matrix. From a practical point of view, the 
maltices are probably very well behaved as regards 
trnncation and munerical inversion (in this connection, 
see the followin• section). Finally, the advantage of • 
being symmetric in the eigenfunction compulation has 
been di•ussed earlier. 

Turnin• now to the three-dimensional case, the 
wavefunctions for the basis are chosen to be t 

• .... (kr) = (%,,,,)lh,,(kr) I',,,,,'(O,•), (45a) 

in letres of the spherical Hankel functions of lhe first 
kinct h,,, and the spherical harmonics 

cos 

t'.,,,•(0,•)= I',,,.,' o= m½l',,'"(cos0). (45b• 
sin 

The normalizin• conslants in Eq. 45a are •ivcn by 

x,,,, = ,,,,(2-n+ 1 fin-m)! '(n+m)'.. (450 

From Eq. 1o, Ihe general matrix demenl becomes 

(• ....... ..,.,,. = •-&o.&,.,.g,,,,.+ dodot • sin0 
2 8•. 

X • ß Re(• ...... )•,,,,,,,, (46) 
Or r • 00 r•sin200•3 

where r•=Or(O,C) 0•, r•=Or(O,½) 0v', and r is set 
equal to r(0,½) in the wavefunctions after the addi- 
tional partial derivatives have been taken. 

Various reductions of the Q matrix are possible, de- 
pending on the svnnnetrv of the problem. If the obstacle 

has it plane of mirror SVlllllleil'V normal to lhc polar 
axis i.e., the phme 0= • 2, then from the parity of the 
associated l,egendre functions onc has 

(I ....... ,,,,,,,=0; (m+nwm'+n'l odd. (47a} 

On the other hand, for a plane of mirror s•mmetrv 
containing lhe polar axis, e.g,, the plane of azimuth 
½=0, or lhe phme ½=• 2, one has 

and if bo& the latter svmmelrv plane> are prcsenl then 
in addition to Eq. 47b 

0 .......... ,,,,=0; m+m' odd. (47c) 

If the body possesses an axis of rotational symmetry, 
so that r=r(O), lhen in addition Io Eq. 47b, there is no 
coupling of the different azimuthal modes (m'•m), and 
one can write 

There are thus lwo families of realrices, •*'"'(m- (I, 1,- - -) 
and ()ø"(m= 1, 2,...), each member of which may be 
treated independently. From examination of Eq. 46, 
one can furthermore see that the families are identical, 
i.e., Q ..... Oo, (ext ept for 0% which does not exist). 

In view of lhe <overning matrix e lualion (Eq. 14), it 
follows thai each of the abovc rcduclion nmst apply 
also to lhe lransilion matrix. Note also lhat the full 

transilion realfix may not be required for a particular 
l)mblem. For example, a rotationally symmetric inci- 
denl wave conlains only lhe modes m = O. If the scatter- 

ing surface also possesses rotational symmetry about 
lhe same axis, then it is only necessary to invert Q' and 
compute T •, in order to o•)lain a complete description 
of the scattering. 

Finally, consider the ellipsoid 

(x a)•+(y bl•+(z c• •- 1, 

which is the mo•l general quadric surface having the 
three svmmelrv planes of Eq,. 47a, b, c- In spherical 
coordinales one can verify xvithom difiicuhv Ihat the 

ellipsoid is given by 

•o within constant coefficients depending on a, b, c. 
!n close analogy with Eq. 43 the =pherical Bessel 

functions nlav be seen to 5alisfx -:*' 

For the producls of spherical harmonics, one has an 
expansion lheorem of Ihe form '•" 

where g='m.'--m , m'+m. ';d-n <u<n'+n. In- 
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troducing Eq. 50 into the difference (with mq-m' even, 
n+n' even, •= a' in view of symmetries) 

formed from Eq. 48, one can integrate by parts to 
remove the terms ro and %. From this point, the pro- 
cedure is closely analogous to that leading to Eq. 44. 
The inverse powers of (kr) 2 contribute a finite sum of 
spherical harmonics, as can be seen from Eqs. 49 
and 51. The angular functions give a second finite sum 
of spherical harmonics, using Eq. 51. Where the indices 
are distinct, the corresponding integrals vanish by 
orthogonalit3'. For the one case where indices coincide, 
the integral contains the norn•al gradient of a potential 
function, and must be identically zero by the divergence 
theorem. Thus for the ellipsoid Q is symmetric in the 
sense 

Q ..... ...... (52) 

so that j•>h,,< can be employed for the product of 
radial functions. 

By similar analysis, one can establish that this 
symmetry also obtains for quadries of rotational sym- 
metry, but not the mirror symmetry of Eq. 47a, i.e., 
the surface 1/r(O)=l--B cosg, which constitutes a 
prolate spheroid (0_<B< 1) or a paraboloid of revolu- 
tion (B= 1). Using the notation of Eq. 48, one has in 
this case 

Q•, .... Q•,,r". (53) 

Returning to the general equation (Eq. 46) it appears 
that, in contrast to the notation adopted in Eq. 48 
for rotationally symmetric bodies, the general computa- 
tion is more conveniently organized in terms of a super- 
lnatrix •O, each element of which is a matrix having just 
the number of degrees of freedom required to handle all 
azimuthal indices and parities associated with the values 
n, n'. Thus the element •,•, is a matrix of (2n-l-1) rows 
by (2n'+l) columns. A corresponding notation is 
employed for the transition matrix -7. Carrying out 
an analysis exactly paralleling that of Eqs. 37-40, this 
time in terms of elements o•,,,, of the supermatrix, it 
agMn turns out that the isotropic term can be obtained 
in closed form for Neumann conditions from the single 
equation •00T00=--Re•,0. Keeping leading powers of 
kr in Eq. 46 one has 

kaff r:' •.oo --• ---- dOd • sin0-- 
4rr 3 

q-•(:Fl+lnUi•//dOd•sinOr'). (54) 
The first integral is just the volume V of the obstacle 
so that, correct to leading terms in real part and 
imaginary part separately, 

-7•a • -- (k a V/4r) 2-- ik a l'/4x (Neumann). (55) 

Note that this result is in accord with the energy re- 
quirement of Eq. 24b. The dominant imaginary term 
in Eq. 55 agrees with results independently obtained 
by Van Blade14a; agreement is also obtained with the 
spheroid results given by Senior •l and Burke? 

For the ellipsoid, • is symmetric (see Eq. 52) and 
in the low-frequency limit "diagonal" correct to lowest- 
order terms in ka, i.e., the isotropic scattering can be 
obtained from the 1 X 1 matrix equation preceding Eq. 
54 in the text, the dipole terms .7n from a 3X3 matrix 
equation, and so forth. The Nemnann result is of course 
as given in Eq. 55. For the Dirichlet case, using the 
minus sign in Eq. 54, with the ellipsoid surface defined 
by 

(abc)•/rø-(O,•) = (c sin0)-*(b ø- cosø•-{-a ø- sin•v)q - (ab cos0) •, 

the integral involving r -• is recognized as an inverse 
elliptic function, 4a i.e., (for b_<c), 

ff 4**fo dO,l• sin 0r'-' = du[(1 -- u •ø) (1 -- k•uZ] -• 

4•rab 

- .sn-'•', (56) 

with argmnent •'= [1--(b/c)•] •, and modulus given by 
k•-= (cø---a2)/(c•---b'-'). The isotropic scattering is then 

Too• -- (kcl'/sn-'f) •- ikc;/sn •f (Dirichlet). (57) 

The ellipsoid has been considered by Sleeman, who 
constructed the formal solution using separation of 
variables, 44 and subsequently obtained explicit results •a 
using the low-frequency iterative procedure developed 
by Kleinman? Equation 57 is in precise agreement with 
Sleeman's results [•which also included terms of order 
(kc•')a-]. Note that Eq. 57 contains as special cases the 
elliptic disk (a=0), •* prolate (a=b<c) and oblate 
(a < b • c) spheroids considered by Senior • and Burke, •a 
and of course the circular disk (a= 0; b • c)? 

Finally, in the event one is dealing with a volume 
scattering region of general shape, the analysis leading 
to Eq. 40 can again be applied with the result that 

•o0 • (58) 
L M' J • 4• / k M' J 4• 

in the low-frequency limit, with arbitrary disparities 

a* A. Messiah, Quantum Mechanics, J. Potter, Transl. (John 
Wiley & Sons, Inc., New York, 1965), p. 1057. 

•o j. Van Bladel, J. Acoust. Soc. Amer. 44, 1069-1073 (1968). 
•XT. B. A. Senior, Can. J. Ph3s. 38, 1632-1641 (1960}. 
• J. E. Burke, J. Acoust. Soc. Amer. 40, 325430 (1066). 
•a Reference 1, p. 432. 
• B. D. Sleeman, J. Inst. Math. Its Appl. 3.4-15 (1967). 
4a B. D. Sleeman, J. Inst. Math. Its Appl. 3, 201-312 (1967). 
•a R. E. Kleinman, ,M-ch. Rat. Mech. Anal. 18, 205-229 (1965). 
47 B. D. Sleeman, Proc. Cambridge Phil. Soc. 63, 1273-1280 

(1967). 
•s j. E. Burke, J. Acoust. Soc. Amer. 39, 826-831 (1966). 
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in compressibility and density. This apparently new 
result is verified in one instance bv COlnparison with 
Burke, who obtained all terms up to order k • for pene- 
trable spheroids, using low-freqnency expansions of the 
spheroidal wavefunctions. s 

IV. NUMERICAL RESULTS AND DISCUSSION 

As an example showing the usefulness of the present 
techniques in practice, consider the two dimensional 
problem of scattering by the strip y= 0, -a< x< a with 
l)irichlet boundary conditions. This problem has been 
considered by many authors.'-'.'-':' Numerical results were 

obtained by Morse and Rubenstein, using separation 
of variables to carry out the analysis in terms of 
Mathieu functions. • Among subsequent extensions, 
the work of Skavlem for a slit (equivalent by Babinet's 
principle) is particularly usefill for present pt, rposes in 
that tables of numerical results were included? 

In applying the present method to the strip, two 
aspects of theoretical interest can be anticipated. Firsl, 
the singularities of the outgoing wave functions •,,, f'A1 
on the path of integration for matrix elelnents Q .... and 
must be dealt with. Second, the edge condition requires 
that the unknown snrface field behave like [-1-- (x/a)"]-i 
times an analytic function of x? 'a Both of these aspects 
are handled without difficulty by considering the strip 
as the limit of the elliptic cy'linder, Eq. 42, when b • 0. 
For the Q matrix we employ Eq. 36' with the auxiliary 
%-minetry' condition of Eq. 44. The variable of integra- 
tion can be changed over to ('artesian coo,'dinates by 
observing that 

dot' = dxra/x'(O) = -- bdx[ 1-- (x/a)a]-h (59) 

Thus the nonanalytic behavior required by the edge 
condition enters naturally in the Wronskian of the 
transformation from polar to Cartesian integration 
variable. 

Using Eq. 59 in Eq. 36', the limit b--• 0 is readily 
taken. All elements of Qøø vanish identically, and for 
Q• one obtains • 

[(e,,,,,)«]0 d.,:•l-.r •] Ij,,,>(kax)H,,<(kax); 
O..= 1 (m+.) ..... (60) 

{.0 otherwise. 

The transition matrix T • is then determined from 

pT= -Re(Q), (613 

with T,,,•= 0 for (mOrn) odd. 
The elements of Q may be computed either bv 

numerical quadrature, or analytically by expansion of 

• We have dropped a factor k=ab (common to both sides of 
Eq. 613 in lront ol the integral sign and introduced a dimension- 
less integration variable by letting x • ax. 

TAhoE I. Complex even-inde,c elements T.,, of the transi- 
lion matrix for ka=0.2. The exl,onentiation factor i= shown in 
parentheses, e.g., 1.483 (--3) = 1.483 X 1 ,O -'•. 

m (} 2 

-- 2.966(--13 -- 1.483(--3• -- 9.271(--•) 
½1 -i4.567(-I) -i2.283(-3 -il.427(-63 

- t.483(-33 - 7.417(-6• - 4.636(-93 
2 -i2.283(-33 -i5.068(- 51 - 13.986(-83 

-- 9.271(--73 -- 4.636(-9• -- 2.897(--123 
4 --il.427(--63 -- 13.986(--gJ --i3.513(-- I I) 

the prodnet J,•>H,,< in powers of ka.r (including terms 
in lnka.r)? We employ the latter method, which is 
somewhat more convenient for small to nmderate 

wlues of ka. For large ka, precision di•culties would 
presumably be encountered because of strong cancella- 
lions among numerically large terms in the series (as 
occurs with the expansion of sinx, for exainple). Term- 
by-term integration of the series is straizhtforward in 
terms of tabnhttcd integrals, a• and we proceed directly 
to results. 

Equations 61 were programmed for solntion on the 
Philco 21•30 cumtmter by successive diminution of all 
off-diagonal elements of Q on the left-hand side, pro- 
ceeding cohmm by cohmm. For the low-frequency case, 
ka= 0.2, 'Fable I shows the even-index elements of the 
transition matrix that resulted by truncating Eq. 61 
at 3X3 matrices (i.e., m, n=0, 2, 4. Observe that T is 
exactly symmetric to the four significant figures shown. 
One can easily verify that the energy r•uirement 
T'*T=--ReT of Eq. 24b is also satisfied to three or 
fonr significant figures. 

No detailed numerical study of the alternative 

eigenfunction forlnulation of Sec. I I hns been performed 
as yet. One can, however, verify in part the approrpiate 
relationships using Table I. In elliptic cylinder coordi- 
nates, the expansion coe•cients [or the eigenfunctions 
in circular wave functions coincide with those for ex- 

panding the radial Mathieu functions in Bessel func- 
tions. as Numerical values can be obtained from results 

of Barakat and co-workersa'; for the case at hand, one 
gets for the first Malhieu fnnction Jeo the (normalized) 
coe•cients 

"'"' = / s.000x I- 
t 3.124X 

This cohlmn array should be an eigenvector of the 
transition matrix, and indeed is. Using Table I, one 

søW. (;riilmer itml N. Hofreiter. ln/e.,,ralta,Yl. Purl Ti, o. 
Deftnile l*zlegrals (Springer-Verlag, Vienna, 1050•. pp. 38. 79. 

• R. Flarakat, A. Houston, and E. !.erin, J. Math. and Phy's. 
42, 200 247 (1963). 
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FiG. 2. Normalized scattering xx idth versus ka, for the infinite strip with Dirichlet boundary conditions. Points shown by small circles 
were COlnputed by Skavlem for normal incidence? 

verfies that 

? 1.000 Re(T), •" =-0.2066X 5.000X10 a 
.3.125X 10 

(63) 

? 1.000 [m(T)u'" •-().4567X 4.999X10 -• 
i. 3.124X 10 -• The complex amplitude coefficient arising from Eqs. 

63 is also seen to agree well with the appropriate 
quotient of Mathieu functions 

--.[e• He•,: - 0.2967-- i0.4568 (64') 

obtained from the tablesJ 't 

Numerical behavior of the solutions of Eq. 61 versus 
truncation is excellent. For example, for the case of 
Table I, keeping only one e<tuation in one unknown, 
the isotropic term Tot, is obtained correct to five sig- 
nificant fignres, as judged by comparison with the 
larger systems of .VXX equations with iX-= 2, 3, 4, 5. 
For N_>2, Too is found to remain constant to nine 
significant figures (computer precision is about 10 
figures). Te• and T;2, obtained as in Table I, agree 
to seven figures. 

At higher frequencies, more elements of the tl'ansi- 
tion matrix are reqnired for an accurate description of 
scattering. It is found that the elements remain roughly 
in the range 0.1 < ! T,,,, < 1 until one, or both, of the 

indices m. n exceed the numerical value of ka. Thus for 

ka= 10, the largest value considered, somexvhat more 
than 50 elements are required (recall that the T 
vanish unless indices are both even, or both odd). 

Once the transition matrix has been obtained, the 
scattering coefficients f= Ta are easily computed for 
any incident wave of the form Eq. 3, and the scattered 
wave is given, for r>a, by •b '•=_f-•b where •b is regarded 
as a column vector made up from the basis functions of 
Eq. ,33. These computations have been performed for 
plane waves with direction of incidence forming an 
angle a with the positive x axis (plane of the strip). In 
this event the scattered wave may be written in full 

•b"(r) = •. (i)"(e,,,e,,)«T .... cosma cosnOH,,(kr); 

kr> ka 

•/(a,O) (2/i•rkr) • exp(ikr); kr>> 1 

with farfield amplitude given bx 

(65) 

/½,0) = 22 (i) ..... (e,,,e,,)•T ..... cosmc• costtO. (66) 

The scattering width •r(ct) may be computed, using 
the forward amplitnde theorem, from the expression 

a(a)=-(4/k) Re.f(•,a). (67) 
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P. osuJts of this computation are shown in Fig. 2, 
which e(a) (normalized by twice the strip widlh 4al 
plotted versus frequency up to ha= 10, for directions 
incidence ranging from arazina (c•=O• to normal 
(or= 90ø). The ore'yes appear in good qualitative 
merit with those given for a smaller range in /,'a by 
Morse and Rubenstein. •½' The circled points shown for 
normal incidence are those of Skax'lcm, '•" and 
nttmcricallv to the precision •ivcn (live or six signilicant 
fi•ures) with present resohs :tl all ha •'alucs co11/tllol1 
both computations (0.8, l, 2, 4, N•. Finally, the gem 
metrical optics limiling values a(•,) 4a • sin•z are shm• 11 
at the right margin. Observe that for angles of incidence 
at Mtst 30 ø from grazing, this limit is substantially 
achieved at ka= 10. 

One concludes that the present computation offers 
an interesting and practical altc•'nativc Io lhc sct)ara 
lion of variables procedure for scattering by a 
;• ithout making an exhaustive c,mq)arisotl. the amount 

of actual numerical compt•tation in the two methods 
appears comparable; the additional complexity of 
matrix inversion in the present rodhod is offset by the 
advanlage of working with circttla•' rather lhan Xlathicu 
functions, I•;trlicularly if the latter must be generated 
in the course of the computation. 
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Appendix A. Completeness of the Regular Wavefunctions 

The expansion of E( 1. 9 cmplo 3 s normal •x'adients of 
rcqttlar wave functions, restricted tc the smooth olosed 
surface o, to rq)rcgcnt an ttnknown surface lid& This 
expansion is convergcnt in the mean provided com- 
[)letchess can be established, -x• and we assert that, 
considered as ;t function of k, the ftmctions in (leeslion 
are complete with lhe cxcq3tion of those dis(:rctc fro 
qucncics at whith intcri<n- •-csonanccs (solutions of tiao 
honlogcncous Neumann problem) occur. 

To show this, the interior counterparts of 
5-7 are lirst obtained, starting from the alternate form 
of the Hehnholtz formula. :l'2a In •his manner, the tolal 
ticl(1 (no incident wave prcscnt• in the interior volume 
is found in the form 

•b- • d,, Re½,,, (_\1) 

with coefficients ;ziven by 

,/,,=- 

x•hcrc •3 in Fig. 1 now poinls int() the interior. The 
sin-face lidds themsalves a•'c 

ik f 4• 

atx•mcnted with t)oLmdarv conditions. 

A• R. eaurant and D. Hilbcrt, .Ih'lh,ds o• _llathemalic(d l'hv•'itx 
(Interscience Publishers, Inc., Now York, 1953),Vol. 1, Pl). 51 
15'.. pI ). 110 111. 

In pa•'ticuhtr, for the homo.<cneous Netl;]•ann. case, 
the e(lUations 

do-•3.X'(Reg,,,)•_=(h u=l, 2, ... (A4) 
',n'c nueessal'v and sufficient conditions for determining 
• . l"urthcrmot'c, this prohlum is known to have only 
the trivial solution • =0, provided that k does not 
('oinci(lc wilh any of the discrete resonance frequencies 
(eigcnvalues of lhe interior). x2.xa In this event, by 
definition, the gradient functions appearing in Eq. A4 
form a closed, and hence complete, set. x• By a similar 
argument, lhe wavefunctions { Re•,,} used with Eq. 15 
are complete except at cigenvalues of the interior 
Dirichlet problem. The above discussion applies also to 
the "reverse" (:halco, E(ts. 9', upon absorbing the weight 
function in the surface field. 

Difficulties with the exterior problem at eigenvalues 
of the inlerior are not new, incidentalIrma; methods of 
treating them have been discusseel by XVerner x4 and 
Schenck. xa These difficulties clo not appear to be 
fundamental in the [)resent contcxl. All complicatens 
arising at an interior resonance are eliminated upon 
choosing an altomale set of functions for the expansion 
of E( I. 9 thai is OOml)lete without exception, e.;5. , the 
spherical harmonics. The lat/et' are not to be preferred 
in general, however, in that they fail to possess the 
convenient analytical and (:omputational properties 
shown to exist with the regular wavefunctions. 

x2 1:. B. Hildebrand, l:inile-/)t•[ference l'5]ualimts a•z4 .gi,tula- 
Ifo•s (PreI•tice-ltalt, Inc., I':nglewood ('lifts, X. J., 1968), 1)1). 
278-285. 

•:; Reference 37, p. 295, [)1 ). 306 312. 
x• p. Werner, J. Math. Anal. Al)l)l. 7, 348 39S (1963•. 
xatf. A. Schcnck, J. Acoust. Sac. Amer. 4-l, 41 58 (1968). 
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