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New Formulation of Acoustic Scattering

P. C. WATERMAN

MITRE Corporation, Bedlford, Massachuselts (11731

Upon introducing the outgoing spherical (or circular cylinder) partial waves {¢.} as a hasis, ihe equation
QT — —Re(Q) is obtained for the transition matrix 7" describing scattering for general incidence on a smooth
object of arbitrary shape. Elements of Q involve integrals over the object surface, e.g.

Q,‘m=:l:(;)6,..q+(8/; ) [ do - T[Re(mgn].

where the

. + apply for Dirichlet and Neumann conditions, respectively. For quadric (separable) sur-

faces, ( is symmetric. Symmetry and unitarity lead o a secular equation defining eigenfunctions for general
hodies. Some apparently new closed-form results are obtained in the low frequency limit, and the transition

matrix is computed numerically for the infinite strip.

INTRODUCTION

Three methods extensively emploved in the literature
on scattering and diffraction, especially where explicit
numerical results are desired, are separation of vari-
ables, variational techniques, and the direct numerical
solution of integral equations. The separation-of-vari-
ables procedure is, of course, extremely well known,'~?
and constitutes a formal solution for a class of objects
bounded by quadric surfaces. In practice, a good part of
the computational effort goes into evaluation of the
wavefunctions themselves except for the sphere and the
circular cvlinder, for which efficient recursion relations
are available. The variational method, described by
Levine and Schwinger® and others,> ! is equivalent to
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Galerkin’s method, as was shown by Jones.™ For
general bodies, Lthe principal effort goes into evaluating
matrix elements, which consist of repeated surface or
volume integrals with singular kernel, and require, re-
spectively, fourfold and sixfold numerical quadrature.'
The integral equation method consists of approximating
an integral (over the surface or volume of the scattering
region) by a discrete sum, then solving the resulting
syvstem of equations numericallv.® In recent vears,
several applications of this approach have appeared,
using the digital computer. 12717

The purpose of the present work is to describe a new
matrix formulation of scattering. In structure, the
resulting equations most nearly resemble those of the
variational method, with however the computational
advantage that, for hoth surface- and volume-type
scattering, elements of the matrix to be inverted are
described by a single surface integral with no singulari-
ties in the integrand. Essentially the same matrix
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Fi6. 1. Geometry of
an obstacle bounded
by a smooth closed
surface o.

applies for both Dirichlet and Neumann boundary
conditions.

In brief, the plan is as follows: In Sec. 1, equations
are derived for the transition matrix describing the
scattering for general incident wave, using a spherical
partial wave basis. The derivation is based on the
Helmholtz integral formula as applied to both the
interior and exterior of the scattering region, and sup-
plemented with analytic continuation arguments. The
idea that exterior boundary-value problems can be
solved bv considerations in the interior is not new,
incidentally, and appears to have first been applicd in
electrostatics by Smythe, in 1936." Symmetry and
unitarity are employved in Sec. IT to obtain a secular
equation for the eigenvalues and eigenvectors of the
scattering or transition matrix; and the eigenvectors, in
turn, generate eigenfunctions associated with a specified
scatterer (including boundary conditions). The matrix
elements appropriate to both two- and three-dimensional
problems are written out explicitly in Sec. 111, and
various reductions discussed that depend on the
geometry of the scattering region. Finally, in Sec. IV,
the transition matrix is computed numerically for the
infinite strip. Symmetry and unitarity are verified, and
equivalence of the eigenfunctions of Sec. TT wilh the
elliptic cvlinder functions demonstrated. By specializing
toplane waveincidence, the results of earlier workers!?:2°
are, in effect, extended to the geometrical optics
limit.

It should be emphasized that the method in its
present stages is formal in the sense that no rigorous
proofs are available dealing with convergence of
truncated solutions of the (infinite) matrix equations
derived below. Tt is hoped that the present work may
stimulate activity along these lines. In addition to the
analytical and numerical results presented here,
numerical results have also been obtained for electro-
magnetic scattering bv conducting?!:?* and dielectric
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obstacles;? using a vector formulation of the method.
Aside from obvious differences of the vector and scalar
cases, the present work goes further in that a unified
derivation is given for both surface- and volume-type
scattering regions and, what is more important, works
directly with the transition matrix, in which setting the
role of reciprocity and energy conservation is explicitly

displayed.

I. DERIVATION OF MATRIX EQUATIONS

Consider the exterior boundary-value problem that
consists of finding a solution to the scalar Helmholtz
equation

Ay kg =0, (m

subject to boundaryv conditions to be described sub-
sequently on the (two- or three-dimensional) closed
surface ¢ shown in IFig. 1. The surface is assunied smooth
in the sense of having continuous turning normal 4,
and only simple harmonic time dependence is con-
sidered; a factor exp(—iw!) is suppressed in all field
quantities.

The total velocity potential ¢ consists of the sum of a
known incident wave ¢? having no sources in the in-
terior of ¢, and a scattered wave %, having the form of
outgoing radiation at infinitv. Under these conditions
the well-known Helmholtz formula asserts that?+.2?

¢(r')} _ 1
=¢1(r’)—f——/doﬁ
0 4r

[ Vgklr—r']) =gk r—1r") ¥ y]

[outsidc g
forr’ ] , (2)

inside ¢

where ¢, and #- V¢ are the total field and its normal
gradient on the surface of the obstacle, approached
from the outside, and g is the free space Green’s func-
tion ikh, V(kR)=(1/R) exp(zkR) [in two dimensions
i,V (kR), the Hankel function of order zero, of the
first kind].

We choose as a basis the set of functions

Walr);n=1,2,---}

consisting of the outgoing partial wave solutions of
Eq. 1 in circular polar or spherical polar coordinaltes,
depending on the dimensionality of the problem. The
various indices needed to express parity, and so forth,
have been reordered into a single index for simplicity.
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NEW FORMULATION OF
The detailed form of the basis functions, including
normalization, is discussed subsequently.

The incident wave is to have no singularities in the
neighborhood of the origin, and hence can be expanded
in the regular wave functions {Rey.(r)}. One writes

Yi=3 a. Rey,, (3)

where the expansion coefficients {a,) are assumed to he
known. Similarly the free-space Green’s function may
be expanded in the form?6

gl r—1")=ik 2. ¥ulkrs) Regulkrs), (4%
where 7> and r. are respectively the greater and lesser
of 7, #’.! Inserting this expansion in the Helmholtz
formula, the scattered wave, which may be identified
with the surface integral, is seen to he given for all
points outside the circumscribed cylinder (sphere) of
Iig. 1 by

=2 fb, ()

with expansion coeflicients

ik
fomt / Ji-[¥ (Rep 1 — (R Vo,

4

n=1,2---. (6%
On the other hand, for field points inside the inscribed
cvlinder (sphere), use of Eqs. 3 and 4 will reduce the
entire right side of 1. 2 to an expansion in the com-
plete set of functions {Rey,}. This expansion must
vanish, and because of orthogonality cach coefticient
must vanish separately, giving the set of equations

s
o A R
dr
n=12,---. (7%

Observe that the right side of Eq. 2 is a regular solution
of the differential Eq. 1 of elliptic type throughout the
interior of ¢. By analytic continuation, it follows that
this field will vanish identically not just inside the in-
scribed volume but throughout the entire interior.

The procedure from this point will consist of the
following: The unknown surface quantities ¥, - V.
are expanded in a complete set of functions, utilizing
the boundary conditions, so far unspecified, so as to
introduce only a single set of independent expansion
coefficients, sav {a,}. Substitution in Eq. 7 will then
give a svstem of linear algebraic equations for comput-
ing the surface fields {«,) from the incident wave {a.}.
In similar fashion, Eq. 6 will give a system of equations
lo compute the scattered wave {f.} from the surface
lields {e,}. Our principal concern is with the transition
matrix T connecting the {f,} with the {a.}, and an

?

26 This and subsequent equations marked with an asterisk apply
to the three-dimensional case. I'or the two-dimensional case,
replace the factor “&” by .

ACOUSTIC SCATTERING

equation for T may finallv be obtained by eliminating
the surface fields {@,} between Eqgs. 6 and 7.

To proceed with this plan, consider first the homoge-
neous Dirichlet boundary condition

Y, =0o0ng. (8)

Note that when this condition is inserted in Eq. 2, the
remaining kernel, g, is sufficiently well behaved as to
produce no jump in value of the integral when crossing
the surface. Thus, satisfaction of Eq. 7, which is neces-
sary and sufficient to make the right-hand side of
Eq. 2 vanish throughout the interior, also guarantees
that ¢ will take on the desired boundary value from the
exterior. An analogous argument can be made for the
Neumann boundary condition discussed below. The
choice of expansion functions to represent the unknown
surface quantity #- v, is somewhat arbitrary. One
useful choice, for reasons that will become clear, is the
normal gradients of regular wave functions, i.e.,
{7-v Rey,.}. Thus, assuming these functions are com-
plete?” on the surface ¢ described by r=7(8) [or, in
three dimensions r=r(6,¢) ], one writes

#(r) V() =2 aui(r) - V[Reg.(r)]; ronag. (9)

Substitution of this expansion in Egs. 7 and 6 now
gives respectively, in an obvious matrix notation (prime
denotes matrix transpose)

i a=q, (10)
f=—1Re(())q, (11)
where the matrix elements of () are given by
k
()mnE*" /dU'V(R('¢nz)an (12*)
dar

and may be obtained either analyvtically or by numerical
integration, depending on the complexity of the surface
geometry.

I'ormal elimination of the surface field o between
Eqs. 10 and 11 results in a system of equations

J=—Re(@)(Q)a (13)

relating the scattered wave directly to the incident
wave. The transition matrix T for the Dirichlet problem
is defined as just this connecting matrix, which generates
the coeflicients of the scattered wave by premultiplica-
tion on the coethcients of the incident wave. Thus one
has (we assume svmmetry in order to replace 77 by T';
see Sec. IT)
QT=—Re(Q) (14)

for determination of the transition matrix.

For the Neumann problem, on the other hand, one
has the boundary condition

#-Vy=0on o,

(15)

27 See Appendix.
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and this time the remaining surface field ¢, is assumed
to be representable®” in regular wavefunctions {Rey,}.
The procedure leading to Eq. 14 follows exactly as
before, except that () must be replaced by a new matrix
O with elements given by

i
Omu= -~ / do-Re(n) V..

T

At this point results may be collected in a more
symmetric form, as follows: Applving the divergence
theorem to (O—()), using a volume bounded outside
by ¢, and inside by the inscribed circle (sphere), this
difference is readily seen to vanish except for the
imaginary parts of diagonal elements, i.e., Q—Q=1il
where 1 is the identity matrix having elements §,,,=1
for m=n, 8,,,=0 otherwise. On the other hand, by
inspection one sees that the sum Q+() can be written
as an integral involving the gradient of the product of
wavefunctions. Solving these equations for () and O,
one has that Eq. 14 is applicable to either boundary
condition, with matrix elements given by

anzzpilamu_f_g_ /dG'V[RC(¢n,)¢I,], (16*)

m

with the minus and plus signs referring to Dirichlet and
Neumann conditions, respectively.

This expression has an interesting feature from the
numerical point of view. For indices m, n>k%a (hence,
in the low-frequency limit, all elements) where a equals
the maximum radius of the obstacle, the product of
radial functions in the integrand can be approximated
by the leading term arising from the appropriate power-
series expansions. Similarly, the product of angular
functions can be expanded in a finite set of angular
functions—e.g., in two dimensions

cosmb cosnf=4% cos(m—n)i+3 cos(m—+n)6.

The dominant numerical contribution to the off-diagonal
elements generally would be expected to arise from the
first and more slowly varving of these terms. Examina-
tion of Eqg. 16, however, reveals that the contribution in
question consists of the surface integral of the normal
gradient of a potential function, and hence by the
divergence theorem vanishes idenlically for all off-
diagonal elements. Because of the term containing 4,,.,,
this cancellation does not occur with diagonal elements,
which might therefore be expected to dominate their
off-diagonal neighbors, resulting in a matrix better
suited for inversion by numerical techniques. An
analogous effect can be seen to occur in Eq. 20 below,
and in the three-dimensional case, although the situa-
tion is much more complex in the latter because of the
additional index attached to the wavefunctions.

For the more general acoustic boundary-value prob-
lem, in which fields penetrate the interior of the obstacle,
Number 6 1969
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propagation 1n the interior is described by propagation
constant *’, in accord with density o’ and stiffness
modulus (reciprocal compressibility) M’, all of which
may differ from the parameters £, p, M of the sur-
rounding medium. Boundary conditions require that
the pressure, and the normal component of particle
velocity, be continuous across the interface, giving,
respectively,
1//+=(P/"PW’—| _
y (17)
7ALV+1,[/=ﬁV,¢ ’
Observe that, for &’ real, the waveiunctions {Rey, (k'r)}
form a complete orthonormal set of functions for the
total field in the interior, which may hence be expanded
in the form

1,[/(1') = z Bm Re‘xbm(/?lr) :

Assuming that this expansion and its normal gradient
converge on the boundary,?” the interior surface fields
Y, - V_y, and hence through the boundary conditions
Eq. 17 the exterior surface fields, are all expressible in
terms of expansions involving 3. Substituting these
forms back in E¢s. 6 and 7, and eliminating 3 as before,
one finally obtains

r inside ¢.

(18)

QT=—Re(Q). (19)
with matrix elements given by
_ k | o
Qm n=— d(] ‘ “[Rewm(k/r)] vlp” (/\.’r')
ir ] p
—V[Retpm(/e’r):]xp,,(kn‘[ . 20%)

Notice also that the restriction to nondissipative oh-
stacles is easily removed. The above argument goes
through with no essential changes provided one expands
the interior field in regular wavefunctions containing the
radial functions of the appropriate complex argument
kr. The form of Eq. 19 becomes slightly more involved,
but the modifications are straightforward.

After solving the appropriate equation for the transi-
tion matrix 7', the scattering coefficients fare obtainable
from Eq. 13 for each desired incident wave. The fartield
scattering is then described in the usual manner by
introducing the large-argument formulas for the radial
functions in Eq. 3. Alternatively, if numerical values
of surface field quantities are desired, the expansion
coefficients @ are obtainable by numerical solution of
the system of Eqs. 10. In this event, the scaltering
coefficients are given directly by Eq. 11.

It is of interest to examine some limiting cases of
Eq. 20. First, taking £'=£, so that phase velocities are
equal within the scattering region and its surroundings
(hence the density and stiffness ratios are both arbitrary,
but equal, i.e., p’/p=M’/M), one has by inspection

Q=('/00—Q; k=k. (20"
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Using this equation, we see the preceding results 1o
be limiting cases of the present one. Letting p’ p
=M M—= (rigid boundary), as discussed by
Rayleigh,® Eq. 19 goes over to the Neumann case—i.e.,
Eq. 14 using Q. Similarly, for the alternative limit
p' p=M" M — 1t (<oft boundary), Eq. 19 viclds the
Dirichlet case, involving ().

A second situation of interest arises when the scat-
tering region 1s & perturbation on its surroundings, i.c.,
when A =(p'—p) p1, Ay=(M'—M) M1, [n this
event, Q may be transiormed, by separating ofi "¢
first term in the integrand times a factor (p'—p) ¢,
then applyving the divergence theorem. Neglecting
terms of first order or higher in the small quantitics,
one nbtains

O - il,
so that, [rom Eq. 19, the transition matrix in this limit
is just proportional to Re(Q) and is given by

/‘. 4

r,.—

Ay / A7 Re,, (kr) Rey, (fr)
drr .

k .
T / dr¥[Regn(bn)]- Y[Repa (k)] (21%)
Tl N

The scattered wave 15 obtained according 1o Eqs. 3
and 13, by multiplving by the incident wave coefficients
d.. the outgoing wavelunctions ¢, and summing over
both indices {see Eqs. 3 and 4). For example, for in
cident plane wave exp(ik.-r) onc gets, after some
straightforward simplifications,

-ZAY v [
yrlkr) -——— — - /4lr'g(/.’R)e"‘o"'
4r .
A, f
- /([T'T'g(/eR) A WAL
i
A L.
-— — é'""fA = {k.,'k)'_\‘,]
kr -2z -LTI‘

X/llT’el'(ko—kl-r’ (22*)

where B, and % are unit vectors in the direction of
incidence and observation, respectively.

This extension of the frst Born approximation (in
the usual case A,=0) has recently been found by dif-
ferent techniques by Morse and Ingard.? It could
alternatively be obtained by iteration of the integral
representation given by Gerjuoy and Saxon.®® The
same result was also found by Kleinman.®! In the low-

™ J. W suurt Lord Ravleigh, The Theory of Saund (Dover
Publications, Inc.. New York, 1943), Vol. 2, p. 284.

P M. Morse and K. U. Ingard, Theoretical Aconstics {Mc-
Graw-Hill Book Co.. New York, 1968), p. 413.

k. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 1443-145%
(1954, See Eq. 11 therein.

1R, E. Kleinman. private communication.
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frequency limit, the last integral above 1s seen to
give precisely the volume of the scattering region, and
Iiq. 22 agrees with the result originally obtained by
Rayvleigh.*

II. SYMMETRY, UNITARITY, AND EIGENFUNCTIONS

Before proceeding further, it is appropriate to ex-
amine the propertics of symmetry and unitarity, as
they relate to the matrix equations. This is conveniently
done in terms of the scattering matrix .S defined by

S=1+2T. (23)

T" serves 1o compute the expansion coethcients for the
outgoing waves due to a given regular incident wave,
whercas .S performs the same computation for an in-
cident field specified by incoming waves singular at
the origin. More specifically, the total field can be
written (outside the circumscribing sphere of Fig. 1)

¥=2 [a, Re@u)+ Tontnira] ; (23b)

m.n
after a little manipulation, this same field becomes

v=03) X [+ Summipn ). (23¢)

m.n

The scattering matrix has been discussed by Gerjuoy
and Saxon for acoustic problems.?® Upon introducing
the incoming-outgoing parlial-wave basis in their
results, it is not difficult to show that S must be both
symmetric and unitary, iLe.,

S§'=8 (or T'"—~T), (24a)

and

5*8§=1 (or T'*T= —ReT). (24h)

These conditions stem, respectively, from the reciprocity
principle and energy conservation requirements.

The matrix equations derived earlier are not in-
dependent of the constraints of Eqs. 24, but satisfy
them in part, as follows: The basic equation is

5= —(* (25)
for which the formal solution is¥
S=—-0 Y= (26)

Now forming the product §=§ from Eq. 26, one im-
mediately obtains

SE5=1. (27)

Because of this property, the conditions (Eqs. 24) are
no longer separate constraints; that is, if .S is sym-
metric, it will automatically be unitary, and vice
versa.

Next, let us consider the eigenvectors of S. The
cigenvalues of a unitary matrix lie on the unit circle in

2 Reference 28, pp. 149-152.

2 Note that it follows readily from E¢. 26 that, if S is to he
symmetric, the matrix product Tm(Q) Re{(?) must e symmetric.
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the complex plane, so one can write

Su® =gy, (28)

where the jth eigenvector #'? has components #;,?,
@, - -- and the \; are real. Because S is in addition
symmetric, one can show (premultiply Eq. 28 by 5™,
then employ Eqgs. 24) that the eigenvectors constitute
a real orthonormal set. Operating on % with the
matrix equality (Eq. 23), there results

eMQuN = — (P,

which, in view of the fact that #% is real, may be
rewritien
Re(Q)n = tan(A;/2) Tm(Q)a?. (29a)

This is a real homogenous system of equations, from
which the eigenvectors may be determined after first
solving the secular equation

[ReQ—tan(r;/2) Tm(Q)| =0

for the eigenvalues.?*

The eigenfunctions {¢;(r)} can now be constructed
using the eigenvectors as expansion coefhicients with
the basis functions; i.e., by definition

<p,-(l’)EZ w9, (), j=1,2,---.

(29b)

(30)

Just as with the original basis functions, these outgoing
fields have as their counterparts the regular eigen-
functions {Ree;(r)} which are well behaved at the
origin. The set {¢;(r)} constitute outgoing waves
reflected intact except for a phase shift upon incidence
of the corresponding incoming wave. That is, introduc-
ing the eigenvectors in Eq. 23b, one sees that the linear
combinations ¢*+exp(iNj)¢;, j=1, 2, ---, are fields
satisfying the boundary conditions imposed by the
presence of the obstacle. Note also that these linear
combinations may be written in terms of the regular
functions as Re¢j+ [ exp(ir;)— 1] ;.

Solution of the scattering problem is immediate in
terms of the eigenfunctions: First, the incident wave 1s
expanded in regular eigenfunctions to get

() =X ¢ Regs(n). (312)

The coefficients may be obtained from the observation
that the ¢; are orthogonal with respect to integration
over the large circular cylinder (or sphere) o, at in-
finity, because of orthogonality in Eq. 30 of both the
angular functions appearing in the ¢,, and the eigen-
vectors (2. One thus has

ci= / day* Re(e;) / f da[Re(p)F.  (31b)

# Eigenvalue problems of this form have been discussed by
W. V. Petryshyn, Phil. Trans. Roy. Soc. (London) A262, 413-158
(1968), and references therein.
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In view of the comments of the preceding paragraph,
the resulting scattered wave is given by (assuming the
expansion converges)

PO =3% 3N —1eioi(r). (32)

For the elementary case of Dirichlet boundary condi-
tions on a circular cylinder of radius r=a, using circular
cylindrical wavefunctions ¢,, the () matrix in Eq. 14
is diagonal, and the ¢, coincide with the ¢,. The real
and imaginary parts of the elements (), ditfer only in
containing the factor J,(ka) or N;(ka), respectively
(Bessel or Neumann functions). From Eq. 29b, one has
tan(\;/2)=J;(ka)/¥;(ka), and the factor in Eq. 32
vields the well-known result

LeN—1)=—J,(ka)/H (ka)

involving the Hankel function of the first kind H;. Cor-
responding known results can be seen to obtain with
Neumann conditions, Eq. 16, or the penetrable acoustic
cvlinder, Eq. 19.

Next in order of difficulty would be Dirichlet or
Neumann boundary conditions on a cvlinder of elliptic
cross section. In bath cases, the eigenfunctions are the
same and are known, from the standard separation of
variables procedure, in the form of products of Mathieu
functions in elliptic cvlinder coordinates. Expansion of
the regular eigenfunctions, i.e., the real part of Eq. 30,
has been given for example by Stratton,* who also
gives the expansion of Eq. 31a for an incident plane
wave. In problems of this tvpe, where separation of
variables is directly applicable, the method of the
present section can be reduced to a simpler form, be-
cause both real and imaginary parts of Q turn out to
be symmetric, as is shown below. In this event¥it follows
that ImQ and ReQ commute and must have common
eigenvectors. The generalized eigenvalue problem given
in Eqgs. 29a,b may consequently be replaced by either
one of the two ordinary eigenvalue problems Re(Q)u'?
=aqu@, or Im(Q)u?=8,u'? (where a; B,=tan);/2).
These equations are of interest in providing a new
method for determination of the elliptic cylinder wave-
functions, not involving elliptic cylinder coordinates.
Whether or not the method will turn out to have
computational advantages in practice remains to be
seen.

If now the boundary conditions be changed, to
apply to a penetrable elliptic cvlinder, then the eigen-
functions are determined from Egs. 29 and 30, using
the matrix @ given in Eq. 20. The separation of
variables procedure, on the other hand, does not lead
to eigenfunctions. As shown by Yeh for the mathe-
matically equivalent problem of the dielectric cylinder,?
one can nevertheless solve the problem numerically by
expanding in elliptic cyvlinder wavefunctions, if proper

M J. A. Stratton, Flectromagnetic Theory (McGraw-Hill Book
Co., New York, 1941), pp. 373-387.
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account is taken of the fact that all coefficients are
coupled through the boundaryv conditions.

For this last problem, or the general case of non-
separable boundary geometry, the merits of emploving
eigenfunctions, rather than the original basis functions,
in practice have not been established. One criterion,
however, consists of the relative numerical difficulty
of straight matrix inversion of (J (in truncation) to
solve, sav, Eq. 14, versus the resolution into eigen-
vectors and eigenvalues described by Eqgs. 29ab.

III. STRUCTURE OF THE Q MATRIX

In order to understand the matrix equations better,
it is helpful to examine the matrix elements (.. in
some detail. For two dimensions, the hasis functions
are!

Cos
noH ,(kr)

sin

ltl’ft,"om(r): (fu)% (33)

in circular cvlinder coordinates r, 4. The Neumann
factor €, has the value ¢,=1, ¢,=2 otherwise. Tt is
notationally convenient to break () into four blocks
according to parity, writing

Qeo

Qua:l‘

Qe
.y
A corresponding block notation is then used for the
transition matrix in Eq. 14.

The discussion can be simplified slightly by making
the restriction that the obstacle have mirror symmetry
across the plane y=r sinf=0, so that r(§) =r(2r—18),
and the integrals involving mixed products of sines and
cosines are seen to vanish. Because of the block diagonal
nature of O in Eq. 34, the matrix equation, Eq. 14, is
now seen to reduce to the two (single) block equations

QoTo=—ReQ>.  (35)

For the matrices Q¢ and 7°¢, indices run m, n=0, 1, 2,
<5 whereas for (0o and 7%, one has m, n=1, 2, - --
I'rom Tiq. 16, it is not difficult to show that

i 1 o rd
(l)mu = ;'7611./‘—’_ (fmfu)ia ([6 -
8Ja

2 or

(34)

()ee Tte: _ RC( ee;

1dr 07 cosmf cosnf

me ; . (36)
rdf 08 sinmf sinnf

where 7 is set equal to r(8) after the partial derivatives
are taken. The low-frequency limiting form of ) may
now be obtained by keeping only the leading terms in
the power-series expansions of the Bessel and Hankel
functions. 1t has already been noted, following Eq. 16,
that certain numerically dominant terms will integrate
to zero for off-diagonal elements. From an analytical
point of view, on the other hand, writing 7(6) = ap(0),

ACOUSTIC SCATTERING

so that @ and p(8) characterize the size and shape, re-
spectively, of the obstacle, Eq. 36 reduces schematically
to (for either Q¢ or Qv°)

(37a)
(37b)

RC (Qm n,) = emtn ‘
mon=1,2---
(@)= em ’

for e=ka<<1. FFor (¢, one can verify in addition the
terms

Re(Qun) =Re(Q,*) =€, m=0,1, - -, (37¢)
Im(Qont) = e Im(Q %) =e™; m=1,2,---, (37d)

and finally
¢’ (Dirichlet)
Im(Qgo) = (37¢)

1 (Ncumann).

The form of the numerical coeficients appearing on the
right-hand side of Egs. 37, including dependence on
Ine in some cases, is easily obtained from Eq. 36.

We are interested in the structure of the transition
matrix 7 insofar as dependence on powers of e is con-
cerned. In order to balance out the indicated dependence
on the parameter e in Eq. 33, assuming Im(Q) to be
nonsingular, it is necessary that 7¢ have the form

Im7Tne=emt*; m, n=0,1,--- (Dirichlet), (38)

with Re7,.,*" involving highcer-order terms in each
element. This can be verified by substitution, along
with Egs. 37, in the first of Egs. 35. One then notes
that anv larger terms (i.e., lower powers of €) than
shown in Eq. 38 could only be accommodated if Im{Q)
were singular, which is contrary to assumption. In the
Rayleigh limit, the scattering with Dirichlet boundary
conditions is thus isotropic, and described by the leading
term 7'g* which can depend on ¢ only logarithmically.
In order to obtain any of the appropriate numerical
coefficients suppressed on the right side of Egs. 38, it is
necessary in general to solve the infinite matrix Eq. 35
numerically by a limiting process.

The situation is somewhat dilferent with Neumann
boundary conditions. Because of Eq. 37e, similar
analysis leads to (again, ReT .. can involve only
higher powers of e in each element)

et (=0 and/or n=0)

ImT,,, %= (39)

et m =12, -+ (Neumann)

There are thus three leading terms in this case, the
isotropic term 7, and the dipole terms 71 and
71 (not shown in Eq. 39), all of order €. The coef-
ficient of the isotropic term can be obtained in closed
form this time, by noting in Eq. 33 that elements of
the top row of Q (i.e., Qo' #=0, 1, ---) vary like
i+ €, deted, i+e, /et €, -, whereas the first
column of T behaves like 1€, €%, 1e¥, ---. Correct lo
leading terms the product (Q¢T)q is given by the
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first term in the sum over row and column, so that
Quo®* T’ = —ReQoo®*. From Eq. 36, it is easilv seen
that

B2 o B2

in terms of the cross-sectional area 4 of the cvlinder,
so one finally obtains
Tore=—(k2d 42—ik21 4 (Neumann). (40)
This result agrees with the classical results for the
circular cylinder [—Jo'(ka) Hy'(ka)] and the elliptic
cvlinder,?% obtained by separation of variables,
The analysis for a cylindrical volume of scattering
material, starting from Eq. 19, is almost identical, and
one obtains for the isotropic term in the Rayvleigh limit

MOSANRANE M= A
re=(T) () - (57) o
ITVAN! M /o4

In contrast to the low-frequency results discussed
earlier in connection with Eq. 22, where the medium
properties were restricted to a perturbation on their sur-
roundings, this equation is valid for general density and
stiffness ratios, provided both ka and ka1, and with
the exception of the Dirichlet limit M'/M=p"/p— 0.
Note, for example, that the Neumann limit M',/'M
=p'/p—o0, given in Eq. 40, is obtainable from Eq. 41.
It is also of interest to note that for the corresponding
boundary-value problems in the electromagnetic case,
the dominant terms (i.e.,, the imaginarv parts) of
Eqs. 40 and 41 have been obtained by Van Bladel by
invoking magnetostatic or electrostatic considerations.*

The above discussion changes quite radically when
applied to quadric surfaces, for which separation-of-
variables techniques are also available. This comes
about through the orthogonality of the angular func-
tions, coupled with Wronskian relations for the radial
functions in our basis. Consider the elliptic c¢ylinder
having semimajor and semiminor axes @, 4, respectively,

defined by

[1 p(8) B=cos?8+ (a b)? sin?4. (42)
Because there is now a second plane of mirror sym-
metry, the plane x=0, one easily sees from Eq. 36 that
Qma=0 if (m+n) is odd. For the balance of the ele-
ments, the difference . mg2.) —Fonpam Will contain
under the integral sign a factor

Jm(kaP)A\vm-{-‘)s(kaP) ~Jm+’_’.~1(kap)-\'m (kdp).
Now, by applying the standard recursion formulas to

36 J. E. Burke and V. Twersky, J. Opt. Soc. Amer. 34, 732-744
(1964

37 ], Van Bladel, Appl. Sci. Res. B (Netherlands) 10, 195-202
(1963); Lleciromagnetic Fields (McGraw-Hill Book Co., New
York, 1964), pp. 393-397.
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the Wronskian relation J,(x)N,..1(x)— T, 2(x)V,.(x)
= —2/zx, one can show that

1 /1N
T ()N mp2e(d) =T g (D V(D) = 3 <-) , (13)

It Ay

where the precise coefficients of the inverse powers of x
are not germane to the present discussion and have been
omitted.*® Identifving x with kap and using Eqs. 43
with the defining Eq. 36 for {J,.., the second group of
terms in the integrand can be integrated by parts to
remove the factor dr/dg. At this point, from Eq. 42
one sees that the radial functions in the integrand con-
tribute a finite number of trigonometric functions
{cos2si8), with 0<s;<s. On the other hand, the
angular functions contribute only the two terms cos2sd,
cos2(s+m)9. By orthogonality, all of these integrals
vanish except one involving (cos2s6)?, and the latter is
precisely the term that vanishes for general shapes, as
discussed following Eq. 16. 1t follows that the Q
matrix is exactly svmimetric, and given by Eq. 36 using
]mIIn =]m>Hm< (44)
for the product of Bessel functions, where ms,, m< are,
respectively, the greater and lesser of m, n.

For the more general case of volume scattering by an
elliptic cylinder, @ is no longer symmetric. Observe,
however, that symmetry of ( implies that, after in-
troducing low-frequency expansions for both J,, and
N, in Eq. 12 and regrouping terms according to ascend-
ing powers of k7, all terms involving Inverse powers of
kr vanish upon integration. Comparison of Eq. 12 with
the first term in the integrand of Eq. 20 for Q reveals
that precisely the same terms will vanish in the latter.
Similar comments apply to the second term in the
integral of Eq. 20 by analogv with Q. Thus, @ for
scattering from an elliptic cylindrical volume is given
by Eqg. 20 with all singular terms (as described above)
from the radial function expansion simply discarded.

In dealing with quadrics, it is of interest to observe
that an alternative choice of expansion functions for the
surface fields will also lead to a symmetric () matrix.
Thus, instead of the functions of Eq. 9. or the cor-
responding expansion for Neumann boundary condi-
tions, one can essentiallv reverse these choices and
employ instead the functions®

w{r) Rey,(r); ron s (Dirichlets
La(r) Y- v[Rey,(r)1;
where the weight function w@(r)=k%{14+(' r)* ]

serves to remove a complicating factor appearing in the
integrands. For example, using the tirst of Eqs. 9 in

r on ¢ (Neumann) (9)

-8 The coethcients can readily be olitained Ly comparison with
results given by Watson: G. \. Watson, Theory o- Bessel Funcizons
(Cambridge University Press, Cambridge. FEngland, 1962),
2nd ed., pp. 145-150.
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Eq. 7% gives 2 new 0 matrix with elements

Green* ’“‘=(})(e,,.e,,)§/ A (kr)?
0

cosnnd cosnd
X uller) I, (kr)
sinmd sinnd

(30%)

Now essentially by inspection, using Eq. 42, it may be
seen again that all terms on the right-hand side of
Eq. 43 will drop out in the course of the integration,
so that this alternate version of Q is also symmetric,
with Eq. + applicable.

For the special boundary considered, Eq. 36" is
apparently slightly preferable to Eq. 36 because of the
somewhat less involved integrands of the former.
Notice, however, that one pavs for this advantage in
loss of generality, i.e., the earlier Eq. 36 was applicable
to both Dirichlet and Neumann conditions. Numerical
results have been obtained with Eq. 36/, and are
described subsequently.

The simplifications that occur in Q, 0, and Q for
boundaries of elliptical cross section are of interest
from both theoretical and practical viewpoints. Note
lirst that it is possible to obtain systematically as many
terms as desired in the low frequency expansion for the
transition matrix. From a practical point of view, the
matrices are probably very well behaved as regards
truncation and numerical inversion (in this connection,
see the following section). Finally, the advantage of ()
being symmetric in the eigenfunction computation has
been discussed carlier.

Turning now to the three-dimensional case, the
wavefunctions for the basis arc chosen to bet

‘I’«mm(kr) = (‘Ymn);hu(kr) I',,,,‘"(G,d)),

in terms of the spherical Hankel functions of the first
kind 4., and the spherical harmonics

(43a)

Cos
Vor®(0,0)=Vauto=  mgl,m(cosh).
sin

(43b)

The normalizing constants in £q. 432 are given by
You= €204 1(m—m}! (n+m)'. (43¢)

IFrom Eq. 16, the general matrix clement becomes

i /\, LT AT
()/l"luu"u'u' =:F'5aa'6mm’6uu‘+ / / 110‘199"2 siné
2 0 [

8.
d 7 d 7y d
X[ _— . ] ReWomu Warmenr  (46)
dr a8 risin*@de

where re=dr(8,¢) 96, r,=dr(8,¢) d¢, and r is sel
equal to 7(8,¢) in the wavefunctions after the addi-
tional partial derivatives have been taken.

Various reductions of the ) matrix are possible, de-
pending on the symumnetry of the problem. Ui the obstacle
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has a plane of mirror symmetry normal to the polar
axis——i.e., the plane =7 2, then from the parity of the
associated Legendre functions one has

()dl" na'm = 0:

On the other hand, for a plane of mirror sy mmetry
containing the polar axis, e.g., the plane of azimuth
¢=0, or the plane ¢== 2, onc has

(_)nm ' n' = 0,
and if botk the latter svmmetry planes are present then
in addition to Eq. 47b

()umnam'u' = Uv

If the body possesses an axis of rotational symmetry,
so that r=7(0), then in addition to Eq. 47b, there is no
coupling of the ditferent azimuthal modes (m’5 m), and
one can write

(m+n+m'+n'y odd. (47a)

aFa’, (17h)

m+m’" odd. (H7¢)

(48)

()amua’m’u' = 51:) 6::.»:‘{,\),. ,-'q" .

There are thus two families of matrices, (F™(m—0,1,---)
and Qo(m=1, 2,- ), each member of which may be
treated independently. From examination of Eq. 1o,
one can furthermore see that the fumilies are identical,
i.e., Q=0 (except for O™, which does not exist).

In view of the governing matrix e juation (Eq. 14), it
follows that cach of the above reduction must apply
also to the transition matrix. Note also that the full
transition matrix may not be required for a particular
problem. For example, a rotationally symmetric inci-
dent wave contains onlv the modes s = 0. If the scatter-
ing surface also possesses rotational svmmetry about
the same axis, then it is only necessary to invert Q¢ and
compute T in order to obtain a complete description
of the scattering.

Finally, consider the ellipsoid

(x a4+ (y 5P+ o — 1,
which is the most general guadric surface having the
three symmetry planes of FEgs. +7a, b. ¢. In spherical
coordinates one can verify without difhculty that the
ellipsoid is given by
[1 7(0,‘;)]23 Fow+ o+ Ty

(o within constant coefficients depending on a, b, c.

In close analogy with Eq. 43 the spherical Bessel
functions may be secn o satisfy®

(19)

o1 1\2*—m
¥ () g (D) = fo e (0 (0= <—> . (30)

R¥

For the products of spherical harmonics, one has an
expansion theorem of the form*

l'mud]'m’r'.’iz I’y:—’ (51)

where u="m'—m , m'+m. n'—n <v<n'+n. In-
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troducing Eq. 30 into the difference (with m+m" even,
n+n' even, e=4’ in view of symmetries)

Qamndm’n’ _Oam’ n'amn

formed from Eq. 48, one can integrate by parts to
remove the terms rg and r,. From this point, the pro-
cedure is closely analogous to that leading to Eq. 44.
The inverse powers of (kr)2 contribute a finite sum of
spherical harmonics, as can be seen from Eqgs. 49
and 51. The angular functions give a second finite sum
of spherical harmonics, using Eq. 51. Where the indices
are distinct, the corresponding integrals vanish by
orthogonality. For the one case where indices coincide,
the integral contains the normal gradient of a potential
function, and must be identically zero by the divergence
theorem. Thus for the ellipsoid () is symmetric in the
sense

Qamnum’n’:Qum’n’amn, (52)
50 that j.5h.< can be emploved for the product of
radial functions.

By similar analvsis, one can establish that this
symmetry also obtains for quadrics of rotational sym-
metry, but not the mirror symmetry of Eq. 47a, i.e.,
the surface 1/r(8)=1—B cosd, which constitutes a
prolate spheroid (0<B<1) or a paraboloid of revolu-
tion (B=1). Using the notation of Eq. 48, one has in
this case

QM=

Returning to the general equation (Eq. 46) it appears
that, in contrast to the notation adopted in Eq. 48
for rotationallv symmetric bodies, the general computa-
tion is more conveniently organized in terms of a super-
matrix 9, each element of which is a matrix having just
the number of degrees of freedom required to handle all
azimuthal indices and parities associated with the values
n, #'. Thus the element 9, is a matrix of (2n+1) rows
by (2#'+41) columns. A corresponding notation is
employed for the transition matrix 7. Carrving out
an analysis exactly paralleling that of Egs. 370, this
time in terms of elements 9,,- of the supermatrix, it
again turns out that the isotropic term can be obtained
in closed form for Neumann conditions from the single
equation Q7 0w=—ReJy. Keeping leading powers of
kr in Eq. 46 one has

X #
Yp— —— /fd@dcp sinf—
A 3

i k*
+~(:Fl-|- 14— /[(lﬁtl(,a sinfr? ) (62))
2 O

The first integral is just the volume I” of the obstacle
so that, correct to leading terms in real part and
imaginary part separately,

Too= — (k31" /4m)2— k31" /4w (Neumann).

n’nam- (53)

(55)
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Note that this result is in accord with the energy re-
quirement of Eq. 24b. The dominant imaginary term
in Eq. 55 agrees with results independently obtained
by Van Bladel!; agreement is also obtained with the
spheroid results given by Senior*! and Burke.#

For the ellipsoid, 9 is symmetric (see Eq. 32) and
in the low-frequency limit “diagonal” correct to lowest-
order terms in ka, i.e., the isotropic scattering can be
obtained from the 1X1 matrix equation preceding Eq.
54 in the text, the dipole terms 773 from a 3X3 matrix
equation, and so forth. The Neumann result is of course
as given in Eq. 35. For the Dirichlet case, using the
minus sign in Eq. 54, with the ellipsoid surface defined
by

(abc)?/r*(8,¢)=(c sin@)2(b? cos’c+a? sin’e)+ (abd coshd)?,

the integral involving 72 is recognized as an inverse
elliptic function,® i.e., (for 6<¢),

4rad
//(161[¢ sinfr’ =
e

dwab
= s,

$

t
/ du[ (1 —>)(1 =k
0

(56)

with argument {=[1—(8/¢)*]}, and modulus given by
2= (?—a?)/(c>—b?). The isotropic scattering is then

(57)

The ellipsoid has been considered by Sleeman, who
constructed the formal solution using separation of
variables,** and subsequently obtained explicit results
using the low-frequency iterative procedure developed
by Kleinman.? Equation 37 is in precise agreement with
Sleeman’s results [ which also included terms of order
(kct)?]. Note that Eq. 37 contains as special cases the
elliptic disk (a=0)," prolate (e=56<c) and oblate
(a<b— ¢) spheroids considered by Seniort! and Burke,*
and of course the circular disk (a=0;5—¢).2

Finally, in the event one is dealing with a volume
scatlering region of general shape, the analysis leading
to Eq. 40 can again be applied with the result that

(M =M P\ (M —M) BT
)
M drr M dr

in the low-frequency limit, with arbitrary disparities

Toor~= — (ket fsn¢)2— ket /sn *¢ (Dirichlet).

3 A, Messiah, Quantum Mechanics, J. Potter, Transl. (John
Wiley & Sons, Inc., New York, 1963), p. 1037.

10 J_ Van Bladel, J. Acoust. Soc. Amer. 44, 1069-1073 (1968).

4T, B. A. Senior, Can. J. Phys. 38, 1632-1641 (1960).

12 j_E. Burke, J. Acoust. Soc. Amer. 40, 323-330 (1966).

42 Reference 1, p. 432.

# B. D. Sleeman, J. Inst. Math. Its Appl. 3, 4-15 (1967).

# B. D. Sleeman, J. Inst. Math. Its Appl. 3, 201-312 (1967).

16 R. E. Kleinman, Arch. Rat. Mech. Anal. 18, 205-229 (1965).

47B. D. Sleeman, Proc. Cambridge Phil. Soc. 63, 1273-1280
(1967).

8 J. E. Burke, J. Acoust. Soc. Amer. 39, 826-831 (1966).
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in compressibility and density. This apparenty new
result is verified in one instance by comparison with
Burke, who obtained all terms up to order 4% for penc-
trable spheroids, using low-frequency expansions of the
spherotdal wavefunctions.?

IV. NUMERICAL RESULTS AND DISCUSSION

As an example showing the usefulness of the present
techniques in practice, consider the two dimensional
problem of scattering by the strip y=0, —e<x<a with
Dirichlet boundary conditions. This problem has been
considered by many authors.®?* Numerical results were
obtained by Morse and Rubenstein, using separation
of variables to carry out the analysis in terms of
Mathieu functions.! Among subsequent extensions,
the work of Skavlem for a slit (equivalent by Babinet’s
principle) is particularly useful for present purposes in
that tables of numerical results were included.*"

In applying the present method to the strip, two
aspects of theoretical interest can be anticipated. First,
the singularities of the outgoing wave functions ¢, fall
on the path of integration for matrix elements (), and
must be dealt with. Second, the edge condition requires
that the unknown surface field behave like [1— (x/2)?]
times an analytic function of x.2% Both of these aspects
are handled without difficulty by considering the strip
as the limit of the elliptic cylinder, Eq. 42, when b — 0.
For the () matrix we employ Eq. 36’ with the auxiliary
symmetry condition of Eq. 4. The variuable of integra-
tion can bhe changed over to Cartesian coordinates by
observing that

dbr=drr?/x'(6)= —bds[1—(x/a)?] % (39)

Thus the nonanalytic behavior required by the edge
condition enters naturally in the Wronskian of the
transformation from polar to Cartesian integration
variable.

Using Eq. 39 in Eq. 36/, the limit & — 0 is readily
taken. All elements of (% vanish identically, and for
Q¢ one aobtains®

al
(encen)? ] Aol 1 —x?] o (kax)H o (kax);
Q

Qun= (m~+n) coen  (60)

0 otherwise.
The transition matrix 7 is then determined from

OT=—Re(Q), (61)
with Tha=0 for (m+n) odd.

The elements of (¢ may be computed cither by
numerical quadrature, or analvtically by expansion of

19 We have dropped a factor k%ab (common to hoth sides of
Eeq. 61) in front of Lhe integral sign and introduced a dimension-
less integration variable by letting v — ax.
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_Tasce L Complex even-index elements 7., of the transi-
tion matrix for ka=0.2. The exponentiation factor is shown in
parentheses, e.g., 1.483(—3) =1.483 X 19~

Tun n
m 0 2 4
— 2.966(—1) — 1.483(-3) — 9.271(—17)
0 —i4.367(—1) —i2.283(—3: —i1.427(—6)
— 1.483(—3) — 7H7(—6) — 4.636(—9)
2 —12.283(—3) —15.008(—3) —i3.986(—8)
— 9.271(-7) — $.636(—9; — 2.897(—12)
4 —i1.427(—6) —i3.986(—8) —13.5313(—11)

the product J.s11 ..« in powers of kax (including terms
in Inkax).’® We employ the latter method, which is
somewhat more convenient for small 1o moderate
values of ka. For large ka, precision difficulties would
presumably be encountered because of strong cancella-
tions among numerically large terms in the sertes (as
occurs with the expansion of sinx, for example). Term-
by-term integration of the series is straightforward in
terms of labulated integrals,® and we proceed directly
to results.

Equations 61 were programmed for solution on the
Philco 2000 computer by successive elimination of all
off-diagonal elements of () on the left-hand side, pro-
ceeding column by column. For the low-frequency case,
ka=0.2, Table I shows the even-index elements of the
transition matrix that resulted by truncating Eq. 61
at 3X3 matrices (i.e., m, =0, 2, 4. Observe that T is
exactly symmetric to the four significant iigures shown.
One can easily verify that the energy requirement
T'*T=—ReT of Eq. 24b is also satisfied to three or
four significant figures.

No detailed numerical studv of the alternative
eigenfunction formulation of Sec. IT has been performed
as yet. One can, however, verify in part the approrpiate
relationships using Table 1. In elliptic cvlinder coordi-
nates, the expansion coefficients for the eigenfunctions
in circular wave functions coincide with those for ex-
panding the radial Mathieu functions in Bessel func-
tions.’ Numerical values can he ohtained from results
of Barakat and co-workers®; for the case at hand, one
gets for the first Mathicu function Je, the (normalized)
coefhicients
1.000
3.000X 103
31241075

0=

(62)

This column array should be an eigenvector of the
transilion matrix, and indeed is. Using Table I, one

0 W, Grobner and N. Hofreiter. Integraltaiel, Parl Tio,
Definite Integrals (Springer-Verlag, Vienna, 1950,, pp. 38. 79.

3 R. Barakat, A. Houston, and E. Levin, J. Math. and Phys.
42, 200-247 (1963).
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Fie. 2. Normalized scattering width versus ka, for the infinite strip with Dirichlet boundary conditions. Points shown by small circles

were computed by Skavlem for normal incidence.20

verfies that

1.000

3.000X 1073 ||
L3.125X10-

(1.000
Im(THe = —0.4367 X ’ 4.999x 10~
2 3.124X10-°

Re(T)u = —0.2966 X

The complex amplitude coefficient arising from Egs.
63 is also seen to agree well with the appropriate
quotient of Mathieu functions

—Jeg Hey= —10.2967—i0.4568 (64)

obtained from the tables.™

Numerical behavior of the solutions of Eq. 61 versus
truncation is excellent. For example, for the case of
Table 1, keeping onlyv one equation in one unknown,
the isotropic term Ty is obtained correct to five sig-
nificant hgures, as judged by comparison with the
larger systems of VXV equations with V=2, 3, 4, 3.
For N>2, Ty is found to remain constant to nine
significant figures (computer precision is about 10
figures). 7y and 7., obtained as in Table I, agree
to seven figures.

At higher frequencies, more elements of the transi-
tion matrix are required for an accurate description of
scattering. It is found that the elements remain roughly
in the range 0.1< ' T,,,' <1 until one, or both, of the
1428 Yolume 45
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indices m. n exceed the numerical value of ka. Thus for
ka=10, the largest value considered, somewhat more
than 30 elements are required (recall that the 7,,,
vanish unless indices are both even, or both odd).

Once the transition matrix has been obtained, the
scattering coefficients f=Ta are easily computed for
any incident wave of the form Eq. 3, and the scattered
wave is given, for r>a, by ¢*= f-y where ¢ is regarded
as a column vector made up from the basis functions of
Eq. 33. These computations have been performed for
plane waves with direction of incidence forming an
angle o with the positive x axis (plane of the strip). In
this event the scattered wave mayv be written in full

N
)= 2 (D"(ene )T pn cosma cosndH ,(kr);

e Rr>ka
~ fla,®)(2/irkr)t exp(ikr); kr>>1 (65)
with farfield amplitude given by
~
fla,0)= 3 ()" "(eme) T, cosma cosnd.  (66)

m,n=(

The scattering width o(e) may be computed, using
the forward amplitude theorem, from the expression

o(a)=—(4/k) Re f(e,c). (67)
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Results of this computation are shown in Fig. 2, in
which g(e) (normalized by twice the strip width 4a) is
plotted versus frequency up to ka= 10, for dircctions of
incidence ranging from grazing («=0) to normal
{a=90). The curves appear in good qualitative agree-
ment with those given for a smaller range in ka by
Morse and Rubenstein.™ The circled points shown for
normal incidence are those of Skavlem,” and agree
numerically to the precision given (11ve or six significant
figures) with present results at all ke values common to
both computations (0.8, 1, 2, 4, 8). Finally, the geo-
metrical optics limiting values o) “4e — sine are shown
at the right margin. Observe that for angles of incidence
at least 30° from grazing, this limit is substantally
achieved at ka=10.

One concludes that the present computation ollers
an interesting and practical alternative to the separa-
tion of variables procedure lor scattering by a strip.
Without making an exhaustive comparison, the amount

OF

ACOUSTIC SCATTERING

of actual numerical computation in the two methods
appears comparable; the additional complexity of
matrix inversion in the present method is offset by the
advantage of working with circular rather than Mathicu
functions, particularly if the latter must be generated
in the course of the computation.
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Appendix A. Completeness of the Regular Wavefunctions

The expansion of Eq. 9 emplovs normal gradients of
regular wave functions, restricted to the smooth closed
surface g, to represent an unknown surface held. This
expansion is convergent in the mean provided com-
pleteness can be established, ' and we assert that,
considered as a function of £, the functions in question
arc complete with the exception of those discrete fre-
quencies at which interior resonances (solutions of the
homogencous Neumann problem) occur.

To show this, the interlor counterparts of Igs.
3-7 arc first obtained, starting from the alternate form
of the Helmholtz formula.?*2* In this manner, the total
ficld (no incident wave present) in the interior volume
is found in the form

y=>d. Rey,, (A1)
with coefficients given by**
ik g ;
d, =~ / daii - [(VY W_—y, T ], (A2¥)
4.

where /1 in Fig. 1 now points into the interior. The

surfuce fields themselves are speciiied by the equations
ik ; ,

— Jdat [V (Rey, - — (R, ) ¥y =0, (A3*)

4

n=1,2 .-

augmented with boundary conditions.
AL R, Coutant and . Hilhert, Methods o Mathematical Phyvsics

{Interscience Publishers, Inc., New York, 1933, Vol. 1. pp. 31
7., pp. 110-111.

In particular, for the homogencous Neumann case,
the equations

/zlm‘/-\"(‘l{cw,‘,)tp\:(), =12 .- (AH

are necessary and suflicient conditions for determining
_. Furthermore, this problem is known to have only
the trivial solution ¢_ =10, provided that £ does not
coincide with anyv of the discrete resonance frequencies
{(cigenvalues of the interior).** A% In this event, by
definition, the gradient functions appearing in Eq. A4
form a closed, and hence complete, set.*! By a similar
aregument, the wavefunctions {Rey,} used with Eq. 15
are complete exeept at eigenvalues of the interior
Dirichlet problem. The above discussion applies also to
the “reverse” choice, Eqs. 9/, upon absorbing the weight
function in the surface field.

Difticulties with the exterior problem al eigenvalues
of the interior are not new, incidentally?®; methods of
treating them have been discussed by Werner™ and
Schenck.* These difheultics do not appear to be
fundamental in the present context. All complicatons
arising at an interior resonance are eliminated upon
choosing an alternate set of functions for the expansion
of Eq. 9 that is complete without exception, c.g., the
spherical harmonies. The latter are not to be preferred
in general, however, in that theyv fail to possess the
convenicent analvtical and computational properties
shown to exist with the regular wavefunctions.
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