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Abstract. In the first part of the paper we present an implementation of Milder's operator
expansion formalism for acoustic scattering from a rough non-periodic surface. Our main
contribution to the forward-field calculation is the development of two accurate ways of computing
the order-zero normal differentiation operafds. The accuracy of our implementation is tested
numerically. In the second part of our paper we apply this approach, combined with a continuation
method, to an inverse scattering problem. The resulting scheme performs significantly better than
the classical first-order methods.

1. Introduction

Scattering theory has been an active area of research for several decades. Several related
problems belong to this field: acoustic and electromagnetic scattering form two large classes,
which are further subdivided by assumptions on the underlying media and on the boundary
conditions.

In direct problems one wants to calculate the field scattered by a given object. In two
common situations, one knows either the values of the field on the scatterer (the Dirichlet
problem), or the values of the normal derivative of the field on the boundary (the Neumann
problem). Direct problems are usually well posed.

Inverse problems involve reconstructing the shape of a scatterer from the scattered field.
These problems are ill posed: the solution has an unstable dependence on the input data.

For the convenience of the reader, we shall outline the progress made in acoustic scattering
in a homogeneous medium from a sound-soft obstacle. A thorough discussion of this and
related problems can be found in the references listed in the bibliography. The list of references
is meant to be representative, rather than comprehensive.

The sound-soft scattering problem is characterized by the condition that the total field
vanishes on the boundary of the scatterer. Thus, acoustic scattering is equivalent to the
Dirichlet boundary value problem for the Helmholtz operator, with the scattered field equal
to the negative of the known incident field. This problem is frequently solved by methods
of potential theory. The single- and double-layer potentials relate a charge density on the
boundary of the scatterer to the limiting values of the field and its normal derivative. The
resulting integral equation is then solved in an appropriate function space, a common choice
being the Lebesgue spaté.
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If the boundary is sufficiently smooti®€, for example) the method of layer potentials falls
within the scope of Fredholm theory, (see [3]). When the boundary is merely Lipschitz, the
Dirichlet problem becomes much more difficult and was first studied for the Laplace operator,
corresponding to a zero wavenumber. The boundedness of the double-layer potential as an
operator onL? is a deep result in real-variable theory, proved in [1] for arbitrary Lipschitz
constants (see also [2] for a survey of related topics). Invertibility of the double-layer potential
in L2 was first proved in [17], and extended to otliérspaces in [6]. A thorough description
of related research, together with an extensive bibliography, is given in [9]. Extensions to
non-zero wavenumbers and higher dimensions are obtained and described in [7,11, 14, 15],
([14] has an extensive bibliography).

For the direct problem, a straightforward numerical solution of the integral equations for
the scattered field leads to ari/d) algorithm.

For the inverse problem, numerical methods must cope with the problem’s inherent ill
posedness. Some commonly used approaches require that the scattered field can be analytically
continued across the boundary of the scatterer, which makes the problem even more unstable.
References [4, 10] contain detailed descriptions of these methods and discuss the difficulties
associated with them.

In this paper, we consider both the direct and inverse problems of acoustic scattering
in a homogeneous medium. Following Milder [12,13], we start from the boundary integral
equation formulation and expand the scattering amplitude in a series of readily computable
terms. The principal tool in this formalism is the admittance operator relating the scattered
field and its normal derivative at the scattering surface. See [18] for a thorough discussion of
the operator expansion method and other issues in rough surface scattering.

We adapt Milder’s theory to fast numerical evaluation of the field scattered from rough
(Lipschitz) surfaces with compact support. Other authors, see [8], have already reported
numerical implementations of Milder’s theory. Our contribution, in the case of forward-
scattering computations, is to implemewy (the order-zero normal differentiation operator)
accurately, for the case of a compact boundary. We resolve the problems caused by the
singularity of the symbol oV, as a pseudo-differential operator and that of the associated
integral kernel. We also implemenb. In two dimensions, the results of our implementations
are compared with the exact solution obtained by classical integral-equation methods. We have
validated our method numerically for boundaries with Lipschitz constant Iessl%han the
second part of the paper, we approximatethe inversion-symmetric form of the admittance
operator, byNy in the forward-field equation and invert the resulting expression to solve an
inverse scattering problem in the far-field regime. We use a continuation method with respect
to the frequency: at each step we apply Newton’s method with the starting point given by the
output from the previous step. Thus at each stage we create an approximation to the curve
filtered at a higher frequency. Our method recovers some nonlinear effects not accounted for
by the classical Fourier inversion method, and works well in some situations where the linear
term approximation fails completely.

The paper is organized as follows. Section 2 introduces the notation used in the paper.
Section 3 contains a detailed description of Milder's formalism, as well as the algebraic
transformations to ensure that the relevant operators always act on functions of compact
support. Then we describe two implementations of the operégg@nd compare them. The
section concludes with numerical results for the forward-field computations. We consider an
inverse scattering problem in section 4 and discuss our continuation method for solving it. This
section also includes some numerical experiments in surface reconstruction. We conclude with
a summary in section 5.
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2. Notation and definitions

We shall associate with the vect&ir = (x1, xp, x3) € R3, the vectorX = (x1, x2, —x3). x
without subscripts will denote a vector R? and we shall sometimes wrié as(x, x3). Our
scattering surface is denoted Byand is given by the graph of a compactly supported Lipschitz
function¢ : R? — R. The points on the surface are thus of the f@rmz (x)). The free-space
Green’s functionG (X, Y) for the wavenumbek is given by the formula

1 exp[ik|X — Y]]

G(X,Y) =
X =0 X — Y|

)

for X £7.
We shall frequently deno@ (X, Y) by G x (Y). We shall also use the following expression
for G:

G((x, 2), (x0, 20)) = g(I(x, 2) — (x0, 20)|) 2
where(x, z) # (xo, z0) and
1 eikr
gr) = ET (3

Functions satisfying the Helmholtz equation will be called metaharmonic.

3. Computation of the scattered field

We consider the Dirichlet problem for acoustic scattering from a compactly supported
perturbation of the plane. In subsection 3.1, we describe Milder's operator expansion
formalism. We also discuss a modification we make to ensure that all integrations are
performed over compact regions. The next two subsections (3.2 and 3.3) form the main
part of our contribution to the forward-scattering computations: two implementations of the
order-zero normal differentiation operatd. Because of the central rolg, plays in the
expansion formalism, we feel it is of interest to describe different ways of implementing it.

In subsection 3.4, we compare the two methods. The last subsection (3.5) presents some
numerical examples of computations of the scattered field.

3.1. The operator expansion formalism

The surfacéd” of the scatterer is given by the graph of a compactly supported Lipschitz function
¢ : R? — R. We consider the Dirichlet problem for the Helmholtz equation, i.e. we wish to
solve

(A + k%) Pscar=0 @)
in the region lying abové', with the sound-soft boundary condition
cIDscaﬂl“ = _q’inch“ (5)

where®j,. is the (known) incoming wave anflsc,;is the scattered wave.
Following Milder, see [12, 13], we begin with the Green—Helmholtz integral for the
scattered field:

G 1o
%Mm=/(aﬂm%mm— “meaﬁm@) (6)
r n on
where the free-space Green'’s function is defined by
explik|X — R
Gr(x) = ZPMX K] @)

47| X — R|



444 R Coifman et al
Milder has modified this formula to obtain
DscalR) = 2/2 GRr(y, £(y)(Ns@inc)(y) dy 8)
R

whereNg has a formal operator power series expansion i@nly even powers of occur in
the expansion, an¥s can be written as a series of operators

o0
Ns = Npj = No+Np+---. )
j=0
Already, the first two terms of this expansion provide an order-four approximation to the

scattered potential, which surpasses the classical ones of Bragg or Kirchhoff (see [12]). The
expressions for the operataks and N, are given by the following formulae:

Nof = (iViZ=Tnf ) (10)

Naf = —3Nol¢. [¢. Noll No f (11)
where

[, Nolg = ¢(Nog) — No(¢g) (12)

f is the Fourier transform anf is the inverse Fourier transform ¢t

Higher-order terms have simple expressions in terms of higher-order commutators,
although their implementation gradually becomes more difficult.

Alternatively, No can be viewed as a convolution operator with ketkiét, y) given by

K(x.y) = 58 (Ix —yD (13)
lx — yl
where
1 eikr
g(r) = o (24)
T T

Note, that the kernek (x, y) is singular and is not a rapidly decaying functiorj.of y|. Any
accurate numerical implementation has to overcome these problems.
In our experiments the incident field originates at a point source locatedsatthat

q)inc(Y) = GS(Y)- (15)

We calculate the scattered fiedel.o( R) using No or Ng + N, instead ofNs. The resulting
approximations are correct through second and fourth ordgrriespectively. However, one
cannot use formula (8) directly, since the functia#igbinc, (No + N2)®@inc andG(y, ¢(y))

are supported on the whole plane. Therefore, we modify formula (8) so that all non-local
operators are applied to compactly supported functions and the final integration is performed
on a compact set. First, sin€g(y) is metaharmonic above the boundary, (8) applied §6y)

gives:

G5(B) = =2 [ Ga(y. £NN:G() dy (16)
wheres is the reflection ofs across thex Y -plane. Combining (15), (16) with (8), we obtain
DusalR) = ~G(R) +2 [ Gr(y. CONNGs = G5 () . 17)

Note that the differenc& s — G5 vanishes outside the supportaf



Operator expansion algorithm for scattering 445

Even thouglG s — G is compactly supportedVs(Gs — G), in general, is not. We shall
now describe the additional modifications that are made to (17) Mftex replaced byVy, to
ensure integration over a compact set. Defining

P (R) = —G3(R) + 2/ Gr(y,L(y))No(Gs — G3)(y)dy (18)
we have

®2 (R) = —G3(R) +2 / Gr(y, ONo(Gs — G5)(y) dy

+2/(GR()’» () — Gr(y,0)No(Gs — Gg)(y) dy. (19)
SinceNy is a symmetric operator, and
G -
NoGr(y) = NoG(y) = —-2(y,0) (20)
Y3
we immediately obtain
G 3
W%l R) = ~Gy(R) +2 [ T G)(») dy
+2/(GR()’7 () — Gr(y,0)No(Gs — Gg)(y) dy. (21)

Since bothGr(y, ¢(y)) — Gr(y,0) and dG ;/dys are compactly supported, we see that
the evaluation of®2_(R) can be reduced to evaluation of inner products of the form
(Nof, g) = [ Nof(y)g(y)dy, where bothf andg are compactly supported.

The operatoV, requires several similar decompositions starting from (17). We omit the
details.

3.2. Implementation of the operatdf

As shown in the previous subsection, computation of the approximate scattered field can be
reduced to evaluation of inner products of the fdndg f, g), where bothf andg are compactly
supported.

A straightforward numerical implementation &% would consist of approximating the
Fourier integral by a DFT, multiplying by the symbol 8§, and then applying an approximate
inverse Fourier transform via another DFT. However, the symbdbafs a pseudo-differential
operator, {/k2 — |n2|, is not differentiable on the circlg| = k. Therefore, this directapproach
would result in a low-order integration scheme and require a very fine uniform discretization
in frequency to give accurate results.

In this subsection, we demonstrate one way of resolving this problem. Our approach can
be applied to compute other Fourier integral operators with singular kernels. In our numerical
experiments, we approximate Lipschitz curves and surfaces by smooth functions. Thus the
function f (andg) is smooth in addition to being compactly supported. Therefore, the function
f is numerically compactly supported and integrations involving producfsao effectively
on compact subsets of the frequency space.

Our method of computingNVy f, g) involves expressing/p as a sum of two operatorg,
andT,, with the following properties:

o the symbol ofT; is continuously differentiable to a prescribed order, and
e T, is a convolution with a smooth function.
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We evaluatel; using the FFT on the frequency side. Since the symbdhaé several
times differentiable, it can be sampled relatively coarsely and still yield a good approximation.
The convolution with the smooth kernel &f can be implemented efficiently by an FFT,
where this time the FFT is not viewed as a discretization of the continuous Fourier transform,
as it was when evaluatinfj;, but as an algebraic operation which diagonalizes the discrete

convolution.(Ny f, g) is then evaluated by integration over the compact suppaqst of

We shall exhibit the decomposition &f; in three dimensions, the result being valid in
two dimensions with only minor modifications.

We note (see [13]), that

Nof(x) =

1 o
2 )2 /Rz'q(n)e'x'”f(n) dn (22)

whereq () = /k2 — |n|? is chosen to have a positive imaginary part whgf > k2.
We fix a positive integem and a positive reat;. We decompos@/y f into two terms:

Nof (1) = Tof (1) + Tof (¥)
1 . : A
= 202 /R gL — €109]" e f () diy

+

202 /Rz ig(m{l—[1— 1mx]mexn £ () dy. (23)

Let us first look atf;. Its symbol,o (1), is given by

o(Ty) =ig(m[l— eiCI(H)X3]m

2 2 m
=iq(n) [—iQ(n)xs + % . ]

= 19" () + c2g™ P () + ... (24)
If m is odd, thenn + 1 is even, ang”*1(n) is a polynomial. Now, forj = 1, 2,

d d 1/2 cn;

— g = — (K2 —pA)7 = 2L 25

dnjq(n) an, (k> = n1°) pres) (25)
and

d

—q'(n) = cq' 2 ()n;. (26)

dT]j
Thus, each derivative in reduces the exponent gfby two. If I = 2j + 1, theng'(n) is j
times continuously differentiable. In the abovepif=2n+1,m+2 = 2(n + 1) + 1, then
o (T1), the symbol off3, isn + 1 times continuously differentiable.
As for the operatofls, we write

R = [ Ke-nfody. @7
One can show that -
m o m
K(x) = ;(—1)" 1(n>h(k,x,nx3) (28)
where
explik,/x2 + x2]
hk, x, x3) = —2—{ik(x2 +x)7V2 (kP53 + (a2 + x5t

471,/x2+x§

—3ikx3(x? +x3)"¥% + 33 (x2 + x%)_z}. (29)
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Moreoveri(k, x, x3) is a smooth function of for a positivexs, and thusk (x) is also smooth.
Details of the derivation are given in the appendix.

3.3. An alternative implementation of the operaiy

There is an alternative way ofimplementing the operaprWe can regard/y as a convolution
with an integral kernel, which has a singularity at zero. This section sketches the details of this
approach. The interested reader may see [16] for a thorough discussion of the relevant issues.
In the following we derive an explicit expression for the kernel.

The Green’s function for the upper half-spaGg.q can be expressed in terms of the
free-space Green'’s functiah as follows,

G- ((x, 2), (x0, 20)) = G((x, 2), (x0, 20)) — G((x, —2), (X0, 20))- (30)

The Poisson kerngi for the upper half-space is the outward normal derivative of the Green’s
function

0
p(x, (xo,20) = _B_ZG{Z>0}(('X7 2), (x0, 20))

z=0
’ <0
= 2g¢'(|(x, 0) — (x0, 20)|) —————. 31
¢ > D160 = (o, 2001 Y
The Dirichlet-to-Neumann operatdf can be expressed by the formula
. ad
Nof(x) = llmo—a—/ Py, (x,2) f(y) dy. (32)
> Z JRr2

The kernelK (x, y) of the Dirichlet-to-Neumann operatadvy, for x # y, is therefore the
outward normal derivative of the Poisson kerpdkee also [18]),

0 "(|x —
Koy = —2p(y, 2| =282 (33)
9z =0 lx — yl
The operatoiNy has been implemented via the following approximation
Nof (x) ~ Trapezoidal sum for/ K(x,y)f(y)dy
ter f ()R + oA f ()h + ca f (x)k?h + O(h®) (34)

whereA is the Laplace operator iR? and# is the side-length of an elementary grid square.
The constantsy, ¢z, c3 can be computed numerically from the formula (34) using Richardson
extrapolation, see [5], p 269.

A similar approach applies to the two-dimensional case. The free-space Green'’s function
is then given by the formula

i
p(r) = ZHO(kr) (35)
and the kernel oy is equal to

p'(r) _ ik Ha(klx = y)

K(x,y)=-2
Y 2 x—yl

(36)

We use the following approximation:

Nof (x) ~ Trapezoidal sum for thef K(x,y)f(y)dy +ay(h) f(x) +ax(h) f"(x) (37)
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where
o 11 LN WP T C R S P

ai(h) = % 2 E 5 + I09<4n>> hk T (27r)3h k* + 4hk 8
_ ﬁ ) 3,

@) = ot 2y

andE = 0.577 215.. . is the Euler constant.

3.4. Comparison of the two methods

We have described two different methods of implementfigg The first one, expressin
as a sum off; and 7,, seems to be rather general and may prove useful for other integral
operators. The main idea is that a non-decaying, singular symbol is broken into two parts: the
first is non-decaying but smooth, while the second is singular but rapidly decaying at infinity.
The first part can be applied on the frequency side with a relatively coarse discretization to
functions with a fast decaying Fourier transform. Thus we can accurately ev@jyatehen
f is smooth. The second symbol is not applied on the frequency side, but as a convolution
operator on the space side. Since this symbol is rapidly decaying, the convolution kernel is
smooth and, again, a relatively coarse discretization can be used. Thus we can accurately
evaluateT, f when f is compactly supported.

The second method of implementing illustrates how to calculate a convolution with
a kernel having a singularity at 0 numerically. The method is more direct, but the correction
coefficients have to be computed for each particular kernel.

3.5. Numerical results

In this subsection we present examples of numerical computations of approximate scattered
fields. We report our results in two dimensions and compare them with the accurate values
obtained using the classical integral-equation approach. We used the two-dimensional version
of formula (18) to calculat®? ,(R), and a similar expression wheéf is replaced by + N».
The results have been obtained wih implemented by the method described in section 3.3,
after verifying that both methods give nearly identical results in test cases.

The integral-equation method requires, however, that the scatterer be bounded. When the
scatterer is defined by a non-negative, compactly supported furigtibis possible to reduce
the Dirichlet problem on the open domain abgvi® the Dirichlet problem for the exterior of
a bounded region. To this end, we first construct a solutitmthe Dirichlet problem for the
upper half-space. The boundary values should match the given data away from the support
of the curve and can be chosen arbitrarily on the support. Next we consider the lens-shaped
region formed by reflecting about the plane = 0, and the antisymmetric Dirichlet boundary
conditions given as follows: the boundary values on the upper half of the region are equal to the
original ones minus the values ofon the curve, while the boundary values on the lower half
are the negatives of the corresponding values on the upper half. We now solve the Dirichlet
problem for the resulting symmetric domain with antisymmetric boundary values. Note that
the solution vanishes everywhere on the plaae0 outside the bounded region. The sum of
u and the solution for the symmetric region is the solution to the original problem.

Tables 1-3 present results of numerical simulations for a simple test curve. In all cases,
the relative errors are computed for the reduced potedtiad ®scar+ G5(R). Using the full
potential, the relative errors are much smaller, but less meaningful. The errors are computed
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Table 1. Relative error of the reduced potential with ~ Nog.
Height
Wavenumber 1 0.5 0.25 0.125 0.0625
b3 6.72x 101 1.74x101 477x102 127x102 327x10°3
27 810x 101 324x10! 856x102 220x102 560x10°3
4x 952x 101 392x101 774x102 185x102 4.66x10°3
8r 1.13x 10° 519x 101 943x102 216x102 505x 103
167 1.24x 10° 482x101 864x102 221x102 537x10°3
321 130x10° 568x10! 834x102 206x102 549x103
Table 2. Relative error of the reduced potential with ~ Ng + N>.
Height
Wavenumber 1 0.5 0.25 0.125 0.0625
T 282x 101 221x102 184x10° 134x10* 244x10°
2r 381x 101 210x102 176x10°3 125x10* 328x10°
4 1.06 x 10° 9.09x 102 567x103% 372x10% 532x10°°
8r 781x101 221x10! 981x10°% 418x10*% 7.59x10°3
167 1.04 x 10° 364x 101 918x10°% 447x10% 215x10°*
327 112 x 10° 522x 101 798x10°% 509x10* 676x 104
Table 3. Relative difference of the reduced potentials with~ Ng andN; ~ Ng + N.
Height
Wavenumber 1 0.5 0.25 0.125 0.0625
b3 859x 101 1.95x10°1 494x102 128x102 3.28x10°3
27 868x 101 338x101 869x102 221x102 562x10°3
4x 986x 101 452x101 821x102 188x102 4.68x10°3
8r 1.03x 10° 580x 101 1.03x10! 220x102 507x10°3
167 981x 101 654x101 942x102 225x102 539x10°3
327 1.02 x 10° 770x 101 9.04x102 209x102 548x 103
in thel2 norm:
(19— &i12)
E = ; (39)
(3 18:12)

where®; is the reduced potential at tlith receiver obtained by the algorithm add is the
corresponding value obtained by solving the combined field integral equations directly (see [4],
p 67, for a thorough description).

Note how the relative errors increase with the height of the curve, but that they remain
nearly constant at a fixed height as the wavenumber increases.

Table 4 records the result of a scattering experiment performed for a curve having only
low-frequency components. The objective was to determine the dependence of théterm
on the wavenumber of the incident field. We find that the error depends only weakly on the
wavenumber of the incident field once it exceeds the highest frequency of the curve.



450 R Coifman et al

Table 4. Relative difference of the reduced potentials with ~ No and Ns ~ Ng + N, for a
smooth curve.

Height

Wavenumber  0.25 0.125 0.0625 0.03125 0.015625 0.007 8125
P 117x 101 308x102 807x10°3 207x10°3 526x10% 1.33x10*
2r 167x101 397x102 101x102 258x10°3 652x10% 1.64x10*
4 212x 101 350x102 7.75x10°% 188x103% 464x10% 116x10*
8t 243x 101 414x102 774x10°% 176x103% 431x10% 107x10*
167 213x 101 465x102 995x10°% 189x102% 431x10* 105x10*
327 173x 101 416x102 111x102 247x10°% 471x10% 1.07x10*
647 167x 101 371x102 996x 103 273x10°3 6.15x10% 1.18x10*
1287 170x 101 361x102 895x10°3 247x10°3 6.82x10% 154x10*
2567 168x 101 368x102 874x10°3 222x10°3 615x10% 1.70x10°*

4. Inverse scattering

We now turn to the problem of inverse scattering. We wish to study nonlinear interactions of
the scatterer with itself in the problem of reconstructing a surface given its far field. Milder’s
formalism, with its order-by-order expansion in powerg gbrovides a convenient framework

for such analysis. One of our goals is to reconstruct a surface, for which the classical linear
approach fails. Section 4.1 describes our experiment and methodology, while section 4.2
contains numerical examples.

4.1. Description of the experiment

Starting from formula (21), we first develop an expansionddg,, in negative powers of the
distance between receiver and scatterer.

We introduce some more notation. We shall wikte= ra, S = ro, R = ro, where
la| = lo] = || = 1. As before, a bar will denote that the third coordinate has a negative
sign, for example, ifr = (a1, a2, a3), thena = (a1, ao, —a3). Also, as before, fo¥ e R3,
andY on the scattering boundary, we shall wiite= (y, ¢(y)), wherey = (y1, y») € R2. We
denote the scalar product of vectdfsandY by X - Y.

The formula (21) derived in section 3.1

G »
- R(,00(Gs — G5)(y) dy
y3

q)gcat(R) =—G3(R) + 2/

+2 / (Gr(y ¢()) — Gr(y, 0)No(Gs — G5)(y) dy (40)

gives rise to a far-field approximation. Assuming thiat < |S| = r, we have the following
asymptotic expansions

Y-S 1
IS—Y|=V|S2—2Y-S+|Y2=r— +o(-) (41)
r r

r

|S—Y|_1=;—L+O<£2) (42)

_explik|S—Y|] et , 1
GS(Y)—m—meXp[—”(Y'S/F]"‘O r_z . (43)
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From (43) we find that
ikr

Gs(y,£(») = Gs(y, E(y) = —i2
Ty

Similarly,

. . 1
expl-ik(an, o) slsin(hac (1) +0 (). (44)

ghr _ N 1
Gr(y: ¢() = Gr(y, 0) = 7— expl-ik(ws, w2) - Y] (e Mhest®) ‘1)+°(72>' (45)

Moreover,
ikr

. 1
expl-iki - (v, y9)] + O (—2) (46)
TV r

Gr(y,y3) =

and therefore
3G 7 gk 1
R (3. 0) = ikws o explik(wr, wp) - Y] + O (—) | (47)
dys3 A r r2
Combining (44), (45), (47) with (40), we obtain
ikr

Dscal R) ~ —G5(R) + kw3 /2 expl—ik(w1 + 01, w2 + 02) - y]sin (koz¢) dy

ikr )
—im /1;2 expl-ik(wy, wp) - y] (€7 — 1)
<No @XPL-ik(on, o2) Yl sinthost)) dy +0 (5 ). 48)
This leads to an expression in terms of the Fourier coefficients
Dscal R) ~ —G5(R) + kws - [Sln(k03§)] (kwy + ko1, kwp + koy))
. ePkr

~i2 53 [(e—”‘wsf — 1) No (exp[—ik(o1, 02) - y] sin (kaz))]” (kwr, k)

+0 (%) . (49)

In the special case, when the source is directly above, this formula becomes
ikr
Dgcal(R) ~ —Gs(R) + ka)34 [Sm(kC)]A (kw1, kwo)

eZIkr ikt ) N 1
—i [(e — 1) No (sin(k¢))]” (kwa, kwp) +O <ﬁ) ) (50)

A7 2y2
Similarly, for the two-dimensional case, one can derive the following formula:
ikr
Dgcal(R) ~ _Gs(R) + |w3

[sm(k;)]A (kew1)
ikr

—ikws . A 1
+27rkr [(e kwss 1) No (sm(k{))] (kwy) + O(r—2> ) (51)

Although we used expression (51) in our numerical experiments, we would like to mention
the following formula because of its appealing simplicity. For small elevattgnshe sines
and the exponentials can be expanded in powers of their arguments, yielding
ikr
DgeafR) & —G:(R) +ik
scatl(R) s( ) w3 oy

1
€ choer hop+0(5 ). 62)
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A similar result holds in three dimensions.

Let us now describe the geometric setup in two dimensions. The funici®aupported
on the interval £1, 1]. The receivers at which we measure the scattered field are located on a
semicircle of radius 10in such a way that their projections on thexis are equispaced. The
number of receivers ig2k /x |. The source is located at the poidt 10°).

Our reconstruction of proceeds as follows.

e Step O We set the initial approximation to zero.
e Step 1 We choose an initial value for the wavenumbkend seek an approximation to
the function¢ by a trigonometric polynomial of degree not exceedingubstituting

k

r= ) c,e (53)

n=—k

in (51), we solve for the coefficients, using Newton’s method with the previous
approximation as the starting point. The resulting solution represents the Fourier
coefficients oy corresponding to the frequencies not exceeding

e Step 2 We increas& to a new value’ (k" = 2k is a convenient choice). We repeat
step 1 with the previous approximation ¢oas our starting point. More precisely, we
approximate; by the Fourier seriei’,‘l/?k, c,€" and determine the coefficients by
solving (51) using Newton’s method starting from the previous result:

Cn for |n| <k

- 54
n 0 for n| > k (54)

where the coefficients, come from step 1.

We now iterate step 1 and step 2 until we reach a prescribed freqkgnegr a complete
reconstruction we need to chodggarger than the highest frequency of the curve.

We have observed experimentally that the continuation method described above converges
for a larger class of surfaces than Newton’s method startigg=a0.

0.07

filtered curve ——
second order reconstruction ----
first order reconstruction

0.064

0.054

0.04+

0.034

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 1. Reconstructions of the curve filtered/at= n. Filtered curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.



Operator expansion algorithm for scattering 453

4.2. Numerical results

Figures 1-6 illustrate the continuation method as described in the previous subsection. The
solid curve in the final figure is the unknown curve to be reconstructed. The first figure
shows a filtered version of that curve at wavenumbegand the reconstruction carried out
using Newton’s method starting from the zero curve. The second-order reconstruction is
plotted together with the ‘classical’ linear reconstruction. The output of the second-order
reconstruction is then the starting point for the next stage, where the wavenumber doubles (and
so does the number of receivers on the semicircle). We proceed successively, as outlined in
section 4.1, until we reach the wavenumber that is above the highest frequency of the curve. At
each stage we attempt to reconstruct the true curve filtered at the corresponding wavenumber.
The final reconstruction using the second-order method with continuation approximates the

\ filtered curve —
secod order reconstruction ----
firs¢order reconstruction

0.06+

0.054

0.044

0.034

0.024

0.01-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Figure 2. Reconstructions of the curve filtered/at= 2z. Filtered curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.

0.08+

\ filtered curve ——
\, second order reconstruction ----
\ first order reconstruction

0.074

0.06+

0.05+

0.04+

0.034

0.02+

0.014

Figure 3. Reconstructions of the curve filteredfat= 4r. Filtered curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.
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filtered curve ——
\ second order reconstruction

0.074

first order reconstruction

0.06

0.054

0.044

0.034

0.024

0.014

-0.01+

-0.02+

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Figure 4. Reconstructions of the curve filtered/at= 8r. Filtered curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.

0.084 filtered curve ——

second order reconstruction
first order reconstruction
0.074

0.064

0.054

0.044

0.034

0.024

0.014

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
Figure 5. Reconstructions of the curve filtered/at= 16r. Filtered curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.

curve very well. The first-order reconstruction is good for the first two stages but then moves
further and further away from the actual curve.

5. Conclusions and summary

We present an implementation of Milder’s operator expansion algorithm for acoustic scattering
with Dirichlet boundary condition. We modify the integral used by Milder to ensure that
all integral operators are applied to compactly supported functions and integrations are
performed on bounded sets. Our main contribution to the forward-field calculation has been the
development of two accurate ways of implementing Mjeoperator. We have also combined
Milder's formalism together with a continuation method in frequency to reconstruct accurately
rough boundaries with rather large heights. We have presented examples for which our
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0.08
\ curve —
i second order reconstruction ----

0.07- first order reconstruction

0.064
0.054
0.04+
0.034
0.024
0.014

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Figure 6. Reconstructions of the original curve with= 32 . Original curve ——; second-order
reconstruction - - -; first-order reconstruction - - - -.

method using second-order terms works, but for which the first-order reconstruction fails.
Our numerical results suggest that the higher-order approximation errors from incident fields
having higher wavenumber than the frequency content of the boundary tend to remain nearly
constant as the wavenumber of the incident field increases.

A scheme for the fast evaluation of the Helmholtz potentials can be added to accelerate
the algorithm. Such methods are currently being developed by several authors.
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Appendix

In this appendix, we provide a detailed derivation of the kernel of the convolution op&gator
defined in section 3.2.
From (23) we obtain

1 _ . o

(X)) = == / f ig(m{l—[1 — €90 f(y) dy dn

(27T) R2 JR2

1 ‘ 4

= - i _ 1 — d9mxzymyd(x—y)-

= A;zdyf(y)(zn)z /Rzlq(n){l [1—e?Pu]me " dy

- /R K =) f0)dy (55)
where

1 , : _
K(x) = @n) /RZ ig(m{1—[1— €70]" e dn

m

1 H nt1 M i nx3ix-
= @2 /Rzlq(n);(—l) 1(n>e"”") e*"dy
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= Z(—l)””(m)h(k,x,n&) (56)
n=1 n
with
1 o
h(k =—— | i exneams gy 57
(k, x, x3) 202 /Rzlq(n) n (57)
We note thak(k, x, x3) can also be expressed as
- 92 o i dn
h(k, x, x3) = ——/ g ngainr 2 58
YT @02 0xg? Jpe a(n) (58)
We shall use the spectral form of the free-space Green’s function, see [13],
explik|[X —Y[l] _ i [ : : dn
== explix —y)-n+i - —_— 59
4 X 7| 2 @) Jus Plitx — y) - n +ig(n)lxs ysl]q(n) (59)
Again, sincexs is positive, setting = 0, we obtain
explik,/x2+x2] | 1 dn
== explix - n +ig(n)xz] —— 60
tr iz 2@0)7 /R Pl AR e (60)
wherex? = x2 + x2. Substitution of (60) into (58) gives
92 [ explik,/x2 +x3]
hk,x,x3) = —2— | ——F— (61)
dx3 A /x2 + x5
After a straightforward calculation, we obtain:
explik,/x2 + x2]
hk, x, x3) = —2 —{ik(x2 +x3) 72— (kPxE+ (2 + x5t
A [x2 + x5
—3ikx3(x? +x3)"¥% + 33 (x% + xg)_z}. (62)
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