IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 1, JANUARY 1997 147

Extrapolation of Time-Domain Responses from
Three-Dimensional Conducting Objects
Utilizing the Matrix Pencil Technique

Raviraj S. Adve,Student Member, IEEETapan Kumar Sarkafellow, IEEE
Odilon Maroja C. Pereira-Filhcstudent Member, IEEEand Sadasiva M. Ra&enior Member, IEEE

Abstract—In this paper, we use the matrix pencil approach Time-domain solutions can be formulated as differential
to extrapolate time-domain responses from three-dimensional (3- equations or integral equations. In both approaches, the infinite

D) conducting objects that arise in the numerical solution of a6 gomain analytical description of the problem is reduced
electromagnetic field problems. By modeling the time functions ¢ finite d . ical d ioti | diff tial
as a sum of complex exponentials, we can eliminate some of the'© @ _'n' e omal.n, numerical descrip 'O,n' n a dieren 'a_
instabilities that arise in late times for the electric-field integral €quation formulation, the unknowns are field values on a grid

equation in the time domain. However, this method can also covering the entire region of interest. For an integral-equation
be utilized for extending the responses obtained using a finite- formulation, the unknowns are confined to a surface. In a
difference time-domain (FDTD) formulation. scattering problem where the space is usually unbounded, the
Index Terms—Time-domain analyses. differential equation approach requires that the discretization
grid be terminated at a suitable distance from the scatterer in
a suitable fashion. For the integral equation approach we will
need significantly fewer unknowns.
N most of computational electromagnetics the solution The time-domain formulation using integral equations usu-
technique assumes a time-harmonic behavior for all fiefgly results in the method of marching on time (MOT).
quantities. This implies that the solution is in the frequengyere, the value of an unknown at any given time is
domain. The principal reason for this has been that tr@gpendem on the excitation @ and the values of the
frequency domain approach is more tractable analyticallynknowns fort < ¢;. By properly choosing a time step, an
Time-domain solutions are then found using an inverse Fouriggplicit solution for the unknowns can be obtained. However,
transform. MOT algorithms suffer from some serious defects. One main
However, with the increasing speed and memory of digitgisadvantage is the persistent presence of late-time high-
computers, many scattering problems are being performgdquency oscillations. These oscillations are present even
in the time domain. There are three basic reasons for timghen the time step is chosen such that the Courant stability
domain modeling [1]. In certain electromagnetic problemgondition is satisfied [2]. Many different approaches have been
fewer arithmetic operations are required when the solutigfyggested to overcome these instabilities [3]-[5]. For example,
approach is in the time domain. Second, in seeking broagle approach proposed in [6] utilizes a relaxation method. In
band information, a time-domain model is intrinsically a bettgt], a conjugate gradient approach is applied by converting the
choice. The transient response obtained is limited only Byperbolic partial differential equation to an elliptical one (a
the bandwidth of the excitation and the Spatial diSCfetizatiOBoundary value prob]em)’ whereas in [8], a ﬁ|tering technique
In such a case, a frequency-domain model would require th§s been proposed to eliminate late-time instabilities.
solution to be performed at each frequency point of interest. |n this work, we present the use of the matrix pencil
The other reason for time-domain modeling is that problenaggorithm to eliminate the late-time instabilities. The approach
involving nonlinear media can usually be modeled easily 8 to model the free response (the time-domain response
the time domain. This advantage holds true for time-Varyirwter the excitation has died down) as a sum of Comp|ex
media. Handling nonlinear media and time-varying media c@kponentials. The input to the matrix pencil algorithm is the
be extremely difficult in the frequency domain. Another benefgutput from the MOT code for a short period of time after
of time-domain analysis is that gating can be used to eliminafg excitation has died down. Usually, in this short period the
unwanted reflections. instabilities have not set in. Modeling the free response as a
sum of complex exponentials results in a stable time-domain
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bodies. For two-dimensional structures, one has to (in additidbgtails of the proof are available in [12]. In this paper we
deal with a branch cut [9]. shall consider the matrix pencil method.

In this paper, we assume that we have been given theDefine two matrices; and Y>
currents on the scatterer as a response to a known excitation.

These currents have been calculated as a function of time & Y2 YL
over a limited region. The details of a MOT algorithm can  [y;] = b2 vs oL @)
be obtained in any of the numerous references listed in [1] : : :
or from [2]. LYN—L  YN—L+1 " UN-1d (N_LDyxL
In the next section, we present the matrix pencil as a © U T
mathematical tool to model a time-domain sequence as a sum U s oy
of complex exponentials. We then present the application of [Y3] = ) . ) . . (B
the MOT and matrix pencil algorithms to some examples. : : - :
Finally, some conclusions as to the efficacy of our method LYN—L-1 YN-L " YN-21(N_L)xL
are drawn. . .
These matrices can be written as
II. MATRIX PENCIL Y1] =[Z1][R][Zo][Z2] (6)
Consider a functiory(t) that represents the current at a [Yao] =[Z1][R][Z2] (7)
particular position on a three-dimensional conduction scatterer
as a function of time. This current is the transient respon¥&'ere
to some known excitation. We model the function, after the Tl 1 1
excitation had died down, as a sum of complex exponentials. 2 29 M
[Z1] = : : . . 8
M : : . :
y(t) = ZRiesit- 1) -ZJEN_L_I) ZSN_L_U ZE\?Y_L_U (N—L)xM
i=1 I T 55
Such a model is valid because the scatterer can be treated as 1 7; o /;;L—l
a linear time-invariant (LTI) system. It is well known that for[Z,] = . . ) 9)
a LTI system, the eigenfunctions of the transfer operator are oo ' :
of the forme®st wheres; are the poles of the system. Also, L1z e 751%4_1 MXL
these eigenfunctions are complete in the output space, i.e., any 2 0
output response can be modeled as a weighted sum of these 0 2z - 0
eigenfunctions. Zol=1]. - . . (10
As a result of the MOT algorithmN samples of this oo
function are available at intervals df,. Therefore, (1) can L0 0 e zmd
be written as Ry 0 - 0
yr =y(kT; + To) [R] = 0 R 0 , (11)
M . . . .
IZRizf k=0,---,N-1 2) LO 0 - Rydyum
i=1

) Now, consider the matrix pencil
where1y has been introduced to make sure that the response

is the free response of the system after the excitation has died (Y1] — A[Y2] = [Z1][R{[Zo] — A]}[Z2]. (12)
down. In addition
ProvidedM < L £ N — M, the matrix[Y1] — A[Y;] has
rank A/ [13]. However, if A\ = z,i =1, --., M the rank is
= (oI (3) reduced toM — 1. This implies thaty;'s are the generalized
eigenvalues of the matrix pa{fY1], [Y2]}. Therefore,

2 =8l

and
a;negative of the damping factor of th&* pole; (Y1][rs] = zi[Y2][ri] (13)
;angular frequency of thé” pole;
R;complex amplitude of thé** pole;
Nnumber of data samples;

wherer; is the generalized eigenvector corresponding;to
Or in the equivalent form

Mnumber of poles of the signal. {[YQ]T[Yl] _ Zi[_f]}[”] =[0] (14)
The problem reduces to finding the best estimates for
M, R;, andz,i = 1, ---, M. This problem can be solvedwhere [Y]" is the Moore-Penrose pseudo-inverse [Bj]

in various ways. Prony’s method [10] and the matrix pendil4]. From (14), we can obtaig;’s from the eigenvalues of
[11] are amongst the most popular. The matrix pencil methde]*[Y;]. Hence, for the matrix pencil method, the poles are
is computationally more efficient and more robust to noisebtained directly as a one-step process.
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Once M andz;'s are known, the amplitudes of the modes Comparing the definition of the matricgg] (16), [Y1] (4),
R;’s are easily solved from the following least squares probleand [Y>] (5) we obtain

Yo 1 1 e 1 Rl [Y] = [Cl, Yl]
o I B oM R.2 (15) =[Y¥2, cr41] (22)
yN.—l Z{\"—l Zé\f'—l Z]]\\;_l le\l wherec; represents théth column of [Y].

Therefore, using[Y”] instead of [Y] in (22) results in

filtering the noise in botHY;] and [Y>]. From (21) and (22)

A. Total Least-Squares Matrix Pencil we can write
The procedure detailed above is efficient and yields good e T
results in the absence of numerical errors and random noise 1] = [U][E][V2] (23)
in the available data. However, in the applications of matrix [Ya] = [U'][=1v" (24)

pencil to real-life problems, the given data is perturbed from . ) .
its true value due to numerical errors or noise. In this case, tygere [V/] and [V;] are equal to ¥’] without the last and

perturbations corrupt the eigenvalues. This results in errorstiif first row, respectively. UTsing (23) and (24), the poles of
all aspects of the solution method—the choice of the number'B€ Signal (eigenvalues §¥>]"[Y1]) are given by the nonzero
poles (1), the solution for the polesz() and the amplitudes €igenvalues of
(£2). NT v+ T

In the case of noisy data, an alternative and more stable L)
method exists—thg totql least-squares mat_rix pencill('l_'LSMR,)niCh are the same as the eigenvalues of
method. To explain this method, we begin by defining the

matrix VI
Yo oo WL The number of modes\/ is chosen by the number of
] = v Y2 YLl . (16) dominant singular values in the range
: : -
YN—L—1 YN—_L e YN—1 (N—L)X(L-l—l) Omax >0 > 10 Omax
Define the singular value decomposition (SVD)6fas where %" is the number of significant decimal digits in the
data.
The ratios /omax as a function of the index (singular value
Y] = [UIE]V]F (17) number) can be used to determine the proper valuk/dbr

the assumed precision. Practically, if we overestingtave

find spurious modes of small magnitude. These do not severely
U is the(N — L) x (N — L) unitary matrix whose columns areaffect the solution. On the other hand, underestimatidg
the eigenvectors of Y7 V is the (L + 1) x (L + 1) unitary would lead to large errors. Hence, it is always preferable to
matrix whose columns are the eigenvectorsYdfY and X overgstimgteM . .
is the (N — L) x (L + 1) diagonal matrix with the singular ~Using this better choice ai/, we can evaluate the poles
values ofY (square root of the eigenvalues B'Y) in its and the amplitude®; using the previously detailed approach.
main diagonal in descending order.

If the given datay,, were noise freef)’] would have exactly ll. N UMERICAL EXAMPLES
M nonzero singular values. However, due to the noise, the_l_ luate th licati f th i i\ algorith
zero singular values are perturbed. This results in seve{al 0 evaluate the appiication of the matrix pencil aigoriihm
ﬁthe elimination of instabilities inherent in a MOT program,

small nonzero singular values. This error due to the noise s his tested on fi les. A ¢ luat
be suppressed by eliminating these spurious singular val(st approachis tested on live examples. A program to evaluate

from [X] and the corresponding left and right singular vectorg."? currents on an e}rbitrary—shapgd closed or open body
Define[%] as thel x M diagonal matrix with thel/ largest using the electric field integral equation (EFIE) and triangular

singular values of Y] on its main diagonal. Further, definepatching is used [2]. The triangular patching approximates

["] and [V'] as submatrices of” and V' corresponding to the surface of the scatterer with a set of adjacent triangles.

these singular values. Since the singular values/gfgdppear The current perpendicular to ?aCh nonboundary edgg IS an
in a descending order in%], we can write in MATLAB unknown to be solved. In this paper, we do not discuss
notation ' the details of the MOT algorithm used. The specifics of the

algorithm are available in [2]. Vechinski's algorithm uses an

(U] =[U(:, 1: M) (18) a\./er.aging technique to _reduce the instabilities, b_ut does not
V] =[V(, 1: M) (19) eliminate them. The bodies chosen are a plate, a disk, a sphere,
) T a cube, and a cone-hemisphere combination. All bodies are
(B =[(1:M,1: M) (20) assumed to be perfectly conducting. Although the program
Y =U=virE. (21) can be used with an arbitrary excitation, we used a linearly
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Fig. 2. (a) Early time response. (b) Late time response.
where
t—to — r.k The spectrum of the Gaussian pulse is given by
C
g F(jw) = V2roe exp {— [% +jwto} }

u; is the unit vector that defines the polarization of the |n all our ComputationsEO is chosen to be 377 V/m. A
incoming plane wave; _ singular value is considered zero if it less tham4@imes
Ey is the amplitude of the incoming wave; the maximum singular value. This implies that the assumed
o controls the width of the pulse; precision of the given data is four decimal digits using single-

to is a delay and is used so the pulse rises smoothly frQsfecision computation.
zero for timet < 0 to its value at time; In the following sections, the five examples are presented.
r is the position of an arbitrary point in space; Example 1—Square PlateThe first example we present is
k is the unit wave vector defining the direction of arrival Ob square plate of zero thickness and side dentered at the
the incident pulse. origin. The plate is located in they plane. Eight divisions

As mentioned earlier, one of the advantages of using a timere made in the: direction and nine in the direction. By
domain formulation is that the bandwidth of the analysis igining the diagonals of each resulting rectangle, 144 triangular
limited only by the frequency content of the excitation. Apatches with 199 unknowns are obtained. This division scheme
discrete Fourier transform (DFT) of the time-domain signalllows us to evaluate the current at the center of the plate.
gives the frequency response of the scatterer to the excitatidhe excitation arrives from the directich=10, ¢ =0, i.e.,

The DFT is chosen over the quicker fast Fourier transforailong the negative direction.u; is along ther axis. In this
(FFT) because in a DFT, unlike the FFT, there are no rexample,c = 2ns andt, = 10ns The time step used in the
strictions on the frequency step. To test the validity of thiSIOT program is 92.59ps.

approach, we compare the DFT of the extrapolated time-In this example, the MOT program evaluates the current
domain response with the frequency response obtained frorfoa the first 1500 time steps (from = 0 to ¢ = 0.138
frequency-domain method of moments (MoM) program [15§). Time samples from number 188 17.31ns) to number
The MoM code uses the same triangle patching scheme as288 ¢ = 21.48ns) are used as the input to the matrix pencil
MOT. The MoM code calculates the frequency response pfogram, i.e.N = 46. By usingt = 17.31 ns, the value of the
the scatterer. Hence, to compare the two results we multigycitation has fallen to less than one-thousandth its maximum
the frequency response of the scatterer with the spectrumvafue. L in the matrix pencil method is chosen to be 24. After
the excitation. Fig. 1 shows an example of the triangulatidiitering the singular values, the estimate for the number of
scheme used for a disk. modes isM = 2.
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Fig. 3. (a) Real part of the frequency response. (b) Imaginary part of the ()
frequency response. Fig. 4. (a) Early time response. (b) Late time response.

The numerical values of the amplitudes and the exponeitained from a frequency-domain MoM program. Fig. 3(a)
of the modes are shows the real part while Fig. 3(b) shows the imaginary part
Ry =—0.167024 + j0.293158 of the response. The agreement is within the accuracy of the
. MoM program.
71 =—224472+76.437 12 Example 2—Disk:The next example is a disk of zero
Ry =-0.167024 — 50.293 158 thickness, as shown in Fig. 1. The disk lies in the plane
zo =—2.24472 — j6.437 12. and is centered at the origin. It has a radius of@.3he trian-

ulation uses 128 triangles resulting in 208 edges. Thirty-two

We see that the amp!ltudes and the exponent; of the t\g’ the edges are boundary edges yielding 176 unknowns. The
modes are complex conjugates of each other. This guarantg Station arrives frond — 0, ¢ = 0, i.e., along the negative

that the resulting extrapolat_|on is real. Also, the_ real pa irection.u; is along ther axis. Herep — 1ns andty — 10ns
of the exponents are negative, hence guaranteeing a st S time step used is 47.76ps

extrapolation. .
; . The MOT program evaluates the current at the first 1500
Ulsmtg éhfe \;T?tlufs;loﬁgl’ il)t a_ndo(%é 22) trlf c;rrehnt 'S time steps (fromt = 0 to ¢ = 71.59 ns). Sixty-six time samples
evajuated frome = 120N 107 = B.135u S. FIg. 2 SNOWS 50y 1 mper 2684 = 12.75 ns) to number 333 (= 15.90 ns)

:Eg :ﬁ;?r:f fgrngi}Ise;)r(;ragglti;[fr:/;/it\:lveth??&azet g}eﬂ:gsﬂtg e used as input to the matrix pencil program. The program
P P X uses this data to extrapolate the current from 15.90ns to

program. Since the data has a large range, the results hg\v:e 71.59ns. L is chosen to be 34. The required number of

been shown fromt = 0 to ¢ = 50ns [Fig. 2(a)] and from : :
T : . modes is four §/ = 4). The values of the amplitudes and
t = 50ns to 0.138y s [Fig. 2(b)]. In Fig. 2(a), we see thatexponents of the modes are

where the results of the MOT algorithm are stable, the output

of the matrix pencil program is exactly the same. However Ry =—0.448306 — j0.459212
[as seen from Fig. 2(b)], while the MOT program has started 71 =—4.628 63 + 512.6044
to give erroneous results and the current values appear to be Ry = —0.448 306 + 50.459212

diverging, the matrix pencil produces stable results. :

The frequency content of the extrapolated time-domain 72 =—4.62863 — j12.6044
function are shown in Fig. 3. We evaluate the spectrum of R3 =-0.01355 — j0.007 036
the time-domain response extrapolated by the matrix pencil 23 = —20.2747 — §16.7159
method, using a DFT, since a FFT would restrict the fr.eque.ncy Ry = —0.01355 + j0.007 086
step that can be chosen. We compare the real and imaginary
part of the frequency response with the frequency response zg = —20.2747 + j16.7159.
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Fig. 5. (a) Real part of the frequency response. (b) Imaginary part of the (b)
frequency response. Fig. 6. (a) Early time response. (b) Late time response.

The amplitudes of modes #1 and #2 are conjugates of eaclThe excitation arrives fromd = /2, ¢ = 7, i.e., along
other, as are their exponents. This also holds true for modesté& x direction. u; is along thez axis. In this example
and #4. Hence, again, the extrapolation is real. Also, all modes= 3ns and, = 22ns The time step used in the MOT pro-
have exponents with a negative real part, thus guaranteegrgm is 0.19943 ns.

a stable extrapolation. We see that modes #3 and #4 hav&@he MOT program evaluated the current for the first 500
relatively low amplitude and a very high-damping factor. time steps (fromt = 0 to ¢ = 99.515ns). Sixty-one time

We compare the extrapolation with the results of the MO3amples from number 123 (= 24.131ns) to number 183
algorithm. Fig. 4(a) shows the comparison for the early 1@ = 36.29ns) are used as the input to the matrix pencil
middle times. The agreement in this region is excellerprogram.L is chosen to be 32. The estimate for the number
Fig. 4(b) shows the comparison of the late time response. \®emodes (1) is four.
see that while the output of the MOT program has startedThe numerical values of the amplitudes and the exponent
diverging, the matrix pencil produces stable results. of the modes are

The frequepcy response of .the disk .obta.ined frgm the Ry =0.154758 + j0.004330
extrapolated time-domain data is shown in Fig. 5. Fig. 5(a) )
shows the real part, while Fig. 5(b) shows the imaginary part 71 ==1.90179 + 75.45202

and compared with a MoM code utilizing the frequency- Ry, =0.154758 — j0.004 330
domain EFIE formulation. The two curves are nearly indis- 2 =—1.90179 — j5.45202
tinguishable. . . -
Example 3—SphereOur next example is a sphere of radius 3 =0.136469 — J9'411 5999
0.5m. The sphere is centered at the origin. The “top” half of z3 =—1.29296 + 53.038 59
the sphereq = 0 to § = #/2) has six divisions in the R4 =0.136469 + 70.411 5999
direction. The first “ring” extends frond = 0 to § = 7 /16. 24 =—1.29296 — j3.038 59.

The other five rings are equispaceddrfrom § = = /16 to

6 = = /2. Each ring, starting from the top has 6, 16, 20, 24, Using these values ofR;, z;),i = 1 --- 4, the current is

28, and 32 triangular patches. The sphere is symmetric wihaluated fromy = 36.291ns to¢ = 99.515ns. We compare
respect to thery plane. This scheme is chosen so all trianglebe results of the extrapolation with the results of the MOT
as close to equilateral as possible. If théirection were also program in the same time range. Fig. 6 shows the results of
divided uniformly, the triangles would be skewed. Also, thithis extrapolation. Again, the time axis has been split into
scheme allows us to evaluate the current at the peity, two—from¢ = 0to¢ = 50ns [Fig. 6(a)] and front = 50ns to

0.0, 0.0). t = 100ns [Fig. 6(b)]. Where the output of the MOT program
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Fig. 7. (a) Real part of the frequency response. (b) Imaginary part of thgy 8. (a) Early time response. (b) Late time response.
frequency response.

1 1 1

The numerical values of the amplitudes and exponents of
is stable, the two results are indistinguishable. However, fire modes are
the MOT program, instabilities begin to appear as early as Ry = —0.04925 + 50.130665
t = 40ns. As can be seen from Fig. 6(b), the MOT program
gives results that are obviously wrong. The extrapolation
using the matrix pencil, on the other hand, continues to be

21 =—2.21533 + 98.95793
Ry =-0.049 25 — 50.130665

stable. 7y =—2.21533 — 38.95793
Next, we compare the frequency content of the extrapolated R3 =-0.311722 + 50.251 171
time-domain results utilizing the matrix pencil approach with 25 = —1.589 59 + j4.426 77

the frequency-domain results obtained from the MoM pro- .

gram. Fig. 7(a) shows the real part of the frequency response. Ry =-0.311722 - 50.251 171

Fig. 7(b) shows the imaginary part of the response. In both 74 =—1.58959 — j4.42677.

cases, the agreement is excellent. Using these values fofR;, #),i = 1, --- , 4, the current
Example 4—CubeThe fourth example is a cube of sideat the center of the top face is evaluated fréra- 30.17ns

1m centered at the origin. The faces of the cube are linéd¢ = 78.41ns. In Fig. 8, we present the comparison between

along the three coordinate axes. The faces at 0.5 m and the extrapolated current and that evaluated using the MOT.

z# = —0.5 m have five divisions in the, and » direction. Fig. 8(a) shows the comparison uptte= 40ns. In this region

All other faces have four divisions in one direction and fivéhe instabilities in the MOT results have not set in and the

in the other. This allows us to find the current at the centgXtrapolation faithfully reproduces the waveform. In Fig. 8(b)

of the top face. The excitation arrives from the directiod® Se€ that the MOT results are unstable while the matrix

§=0,4=0, ie., along the—z axis. u; is along ther axis pencil extrapolation continues to be stable.
mn%p.leﬂa — 9.357ns ;lndo _ 120ns The time ste.p _The frequency content of the current waveform is shown in
chosen for the MOT brogram i< 0.157 13ns Fig. 9 and compared with the results of the frequency-domain

) FIE code. Fig. 9(a) shows the real part of the spectrum,
The MOT program evaluated the current for the first 5 hile Fig. 9(b) shows the imaginary part. In both cases, the

time steps (from¢ = 0 to ¢ = 78.41ns). Sixty-four time agreement is very good.

samples from number 130 (= 20.11ns) to number 193  Example 5—Cone-Hemispher&he final example we have

(t = 30.17ns) are as input to the matrix pencil prograi. chosen is a combination of a cone and a hemisphere. The
is chosen to be 32. The estimate for the number of modeshismisphere is attached to the base of the cone forming one
four. compound 3-D object. The base of the cone and hemisphere
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Fig. 11. (a) Real part of the frequency response. (b) Imaginary part of the
frequency response.

are atz = 2.0, x = 1.75, z = 14, z = 1.05, z = 0.7,

z = 0.35, andz = 0. Each ring, starting from the top, has 7,
16, 20, 24, 28, and 32 triangles, respectively. The hemisphere
has three divisions in thé direction. The “rings” extend from
=ntof=2r/3, 6 =>5r/61t06 =2x/3, andbd = 27/3

to ¢ = w/2. Each ring, starting from the bottom, has 13, 28,
and 32 triangular patches, respectively. Such a triangulation
scheme allows for the current at the poirtO(1, 0.0, 0.0) to

be evaluated.

The excitation arrives fromd = 7/2, ¢ = 7, i.e., along
the z direction. u; is along thez axis. In this example,
o = 6ns andy = 25ns The time step used is 90.39ps.

The MOT program evaluated the current for the first 1300
time steps (from¢ = 0 to ¢ = 0.11742 4+ s). One hundred-
sixty time samples from number 328-€ 29.02ns) to sample
number 482 { = 43.48ns) are used as input to the matrix
pencil program.L is chosen to be 60. The estimate for the
number of modesX/) is four.

The numerical values of the mode amplitudes and exponents
are

Ry =-0.205264 + j0.364285
z1 =—0.907949 4 52.551 35
Ry =—-0.205 264 — j0.364 285

Fig. 9. (a) Real part of the frequency response. (b) Imaginary part of the
frequency response.
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Reconstructed Time Response ——
L5 Time Response from MOT
1 |- -
f)
05 i
0 \/
20.5 L It L it it
0 1e-08 2e-08 3e-08 4e-08 5e-08 6e-08
time (in seconds)
(@)
0.05 ; T :
0
-0.05 [ R
f(#)
-0.1 + -
-0.15 |- -
0.2 1 L L L L
6e-08 Te-08 8e-08 9e-08 1e-07  1.1e-07  1.2¢-07
time (in scconds)
(b)
Fig. 10. (a) Early time response. (b) Late time response.

is centered at the origin. The base of the cone and hemisphere
have a radius ofsk. The height of the cone isi2. The central

axis of the combination lies on the axis.

The triangular patch approximation for the cone has six
divisions in thez direction. The planes defining the “rings”

72 =—0.907949 — 52.551 35
R3; =-0.002816 + 50.002 763
73 =—9.64474 4 59.755 56
R, =-0.002816 — j0.002 763
z4 =—5.64474 — 79.755 56.
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Using these values for the amplitudes and exponents, the de I'alkool a differentes temperatures?aris J. 'Ecole Polytech.vol.
current values are extrapolated fron= 43.48ns tot = 1, pp. 24-76, 1795.

Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-

e : : 11]
0.11742 1 s. This is compared with the values obtained fror{" rameters of exponentially damped/undamped sinusoids in ndEERE

the

Fig.

MOT program. The comparison is shown in Fig. 10. Trans. Acoust., Speech, Signal Processing. 38, pp. 814-824, May

; e ; ; 1990.
10(a) shows the comparison upte: 60ns; in this region, ] O. M. Pereira-Filho and T. K. Sarkar, “Using the matrix pencil method

the agreement is very good. Fig. 10(b) shows the comparison’ to estimate the parameters of a sum of complex exponentid&E
from¢ = 60ns tot = 0.117 42 i1 s; in this region, the advantage  Antennas Propagat. Magvol. 37, pp. 48-55, 1995.

of the matrix pencil program can be clearly seen. The resu {s

] F. Hu, “The band-pass matrix pencil method for parameter estimation
of exponentially damped/undamped sinusoidal signals in noise,” Ph.D.

of the MOT program have already started oscillating and the thesis, Syracuse Univ., 1990.
errors are growing exponentially. However, the results of tH&4 G. H. Golub and C. F. Van LoarMatrix Computations. Baltimore,

MD: Johns Hopkins Univ. Press, 1989.

matrix pencil are stable. [t1)5] S. M. Rao, “Electromagnetic scattering and radiation of arbitrarily
y

The frequency response of the time-domain data obtained

shaped surfaces by triangular patch modeling,” Ph.D. thesis, Univ.

the matrix pencil approach of the cone-hemisphere combina- Mississippi, 1978.
tion can be calculated using the DFT. The comparison between

the DFT of the extrapolated time response and the MoM results

using a frequency-domain EFIE program is shown in Fig. 11.

Fig.

11(a) shows the real part, while Fig. 11(b) shows the

imaginary part. In both cases, the agreement is excellent. Raviraj S. Adve (S'88) was born in Bombay,

In this paper, we have presented the matrix pencil te
nigue to eliminate instabilities arising in a marching-on-tim
program used to compute the time-domain response of
conducting bodies. We have demonstrated that the instabili
in the computation can be eliminated. The technique presen

India. He received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology,
Bombay, India, in 1990. He is currently working
toward the Ph.D. degree at Syracuse University,
Syracuse, NY.

His research interests include the applications
of adaptive antenna theory to radar systems and
wireless communications. He has also investigated
the applications of signal processing technigues to
numerical and experimental electromagnetics.

IV. CONCLUSION

is robust and can be used even if the given data is noisy.
Since the matrix pencil approach is a signal-processing algo-
rithm, the specific example is irrelevant. The approach works
equally well for extrapolating time-domain responses from
finite-difference time-domain and time-domain finite-element Tapan Kumar Sarkar (S'69-M76-SM'81-F'92)

techniques. The technique presented eliminates the instabili
that are often found in EFIE utilizing a MOT algorithm. Th
extrapolation of time-domain data using limited time-domai
information does provide accurate results as compared to
results obtained independently from frequency-domain Mo
codes.
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