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Abstract. We introduce a new approach, and associated algorithms,
for the efficient approximation of functions and sequences by short lin-
ear combinations of exponential functions with complex-valued expo-
nents and coefficients. These approximations are obtained for a finite
but arbitrary accuracy and typically have significantly fewer terms than
Fourier representations. We present several examples of these approx-
imations and discuss applications to fast algorithms. In particular, we
show how to obtain a short separated representation (sum of products
of one-dimensional functions) of certain multi-dimensional Green’s func-
tions.

1. Introduction

We consider the problem of approximating functions on a finite real in-
terval by linear combination of exponentials with complex-valued exponents
and discuss several applications of these approximations. The approxima-
tions we obtain in this paper are already being used for constructing Green’s
functions in quantum chemistry and fluid dynamics [8, 14, 15], and we expect
further applications in computing lattice sums, approximating Green’s func-
tions in electromagnetics, and addressing some problems of signal processing
and data compression. In this paper we prove new theoretical results and
develop numerical algorithms for constructing such approximations. Since
our numerical results are far better than our current proofs indicate, we also
point out unresolved issues in this emerging theory.

Since our formulation is somewhat unusual, we first provide two examples.
Let us consider the identity

(1.1)
1

x
=

∫ ∞

0
e−t x dt,

for x > 0. This integral representation readily leads to an approximation of
the function 1

x as a sum of exponentials. In fact, for any fixed ε > 0, there
exist positive weights and nodes (exponents) of the generalized Gaussian
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quadrature such that

(1.2) | 1
x
−

M
∑

m=1

wme−tm x| ≤ ε

x
,

for all x in a finite interval, 0 < δ ≤ x ≤ 1, and where the number of
terms is M = O(log δ). Theoretically the existence of such approximations
follows from [18, 19, 20, 21]. This particular example has been examined in
[25] with the goal of using (1.2) for constructing fast algorithms. Specific
exponents and weights are provided there for several intervals and values
of ε, so that (1.2) can be verified explicitly. The approximation (1.2) has
important applications to fast algorithms that we will consider below.

The second example is the Bessel function J0(bx), where b is a large
parameter and x ∈ [0, 1]. Using the approach developed in this paper, we
obtain for all x on [0, 1],

(1.3) |J0(bx) −
M
∑

m=1

ρmeτm x| ≤ ε,

where ρm and τm are now complex numbers and the number of terms, M , is
minimal and remarkably small; it increases with b and ε as M = O(log b) +
O(log ε−1). In the sum (1.3) we will refer to the coefficients ρm as weights
and to the values eτm as nodes; such terminology is natural since, as it
turns out, eτm are zeros of a certain polynomial as is usually the case for
quadratures. We illustrate (1.3) in Figures 1.1 and 1.2 by showing the error
of the approximation and the location of the weights ρm and nodes eτm

corresponding to b = 100π and ε ' 10−11. The number of nodes is M =
28 and they accumulate at eib and e−ib as expected from the form of the
approximation in (1.3) and the asymptotics of J0 for large argument,

J0(b) ∼
(1 − i)eib + (1 + i)e−ib

2
√
πb

.

Also, since the real part of the exponents is always negative, Re(τm) < 0, all
nodes belong to the unit disk. The approximation (1.3) is remarkable in
that there is no obvious integral, as in (1.1), to represent the function and,
thus, we cannot obtain (1.3) using a quadrature. Clearly, there are many
possible integrals in the complex plane to represent the Bessel function but,
unfortunately, there is no obvious criteria to choose a particular integral or
contour. Yet, upon examination of the weights and nodes in Figure 1.2, it
is clear that their location is not accidental. It appears as if our algorithm
selects a contour on which the integrand is least oscillatory, since that would
minimize the number of necessary nodes. Note that by optimizing the lo-
cation of the nodes, we can reduce their number to keep it well below the
number of terms needed in Fourier expansions or in more general approxi-
mations like those discussed in [10]. We do not have a precise estimate for
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Figure 1.1. The function J0(100πx) and the error (in log-
arithmic scale) of its 28-term approximation via (1.3).

the optimal number of terms but we have observed that it only depends
logarithmically on the parameter b and on the accuracy.

We have obtained similar results for a great variety of functions. The
functions may be oscillatory, periodic, non-periodic, or singular. For a given
accuracy, we have developed algorithms to obtain the approximation with
optimal or nearly optimal number of nodes and weights.

These examples motivate us to formulate the following approximation
problem. Given the accuracy ε > 0, for a smooth function f(x) find the
minimal number of complex weights wm and complex nodes etm such that

(1.4)

∣

∣

∣

∣

∣

f(x) −
M
∑

m=1

wme
tmx

∣

∣

∣

∣

∣

≤ ε ∀x ∈ [0, 1].
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Figure 1.2. The complex nodes (left) and weights (right)
for the approximation of J0 in the interval [0, 100π].

For functions singular at x = 0, we formulate (1.4) on the interval [δ, 1],
where δ > 0 is a small parameter. Depending on the function and/or prob-
lem under consideration, we may measure the approximation error in (1.4)
in a different way, e.g. , we may use relative error.

As in our paper [10], we reformulate the continuous problem (1.4) as a
discrete problem. Namely, given 2N + 1 values of f(x) on a uniform grid
in [0, 1] and a target accuracy ε > 0, we find the minimal number M of
complex weights wm and complex nodes γm such that

(1.5)

∣

∣

∣

∣

∣

f(
k

2N
) −

M
∑

m=1

wmγ
k
m

∣

∣

∣

∣

∣

≤ ε ∀k, 0 ≤ k ≤ 2N.

The sampling rate 2N has to be chosen as to oversample f(x) and guarantee
that the function can be accurately reconstructed from its samples. The
nodes and weights in (1.5) depend on ε and N. Once they are obtained, the
continuous approximation (1.4) is defined using the same weights while the
exponents are set as

tm = 2N log γm,

to match the form in (1.4). The non-linear problem of finding the nodes and
weights in (1.5) is split into two problems: to obtain the nodes, we solve
a singular value problem and find M roots of a polynomial; to obtain the
weights, we use the nodes to solve a well-conditioned linear Vandermonde
system.

If in (1.5) we consider the case ε = 0, we would have an exact represen-
tation of the sequence of samples as a sum of exponentials, the goal of the
so-called Prony’s method. We discuss the problems encountered in Prony’s
method in the next section, but we point out here that by avoiding exact
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representations and incorporating an arbitrary but fixed accuracy ε > 0, we
manage to control the ill-conditioning encountered in solving this problem
and we significantly reduce the number of terms needed in the approxima-
tion.

Historically Gaspard de Prony (circa 1795) was the first to address the
problem of representing sequences by exponential sums. Unfortunately, his
method is numerically unstable and numerous modifications were attempted
to improve its numerical behavior (see references in the recent survey [12]).
We note that the approximation in (1.4) can sometimes be obtained by op-
timization strategies. We refer to [12] for a good review of such approaches.
We also note that the approach in [25] is a special purpose optimization
strategy for computing quadratures as is that in [4, 5] for optimizing rational
approximations in the Laplace domain resulting in a particular example of
(1.4). Whereas optimization strategies (e.g. the variable projection method)
are applicable to a large variety of problems besides (1.4), our approach to
problems in (1.4) and (1.5) makes use of the deep analytic and algebraic
structure of these problems and yields fast algorithms for their solution.

The approach in this paper has grown from that in [10] where we used
properties of bandlimited functions and of Hermitian Toeplitz matrices to
construct solutions of (1.5). Such a construction leads to specific solu-
tions with nodes on the unit circle and positive weights, but not neces-
sarily with the minimal number of terms as, in this case, their number is
always constrained by the Nyquist criterion. In this paper we circumvent
the constraints of Fourier analysis by allowing both nodes and weights to
be complex-valued and significantly reduce the number of terms in the ap-
proximation. Our approach is to construct a Hankel matrix using the values
of the function or sequence to be approximated, and use properties of its
singular value decomposition to determine the location of the optimal nodes
and weights for a given accuracy. In this sense our approach can be under-
stood as a finite dimensional version of the theory of Adamjan, Arov, and
Krĕın (AAK theory), which involves infinite Hankel matrices as a tool for
constructing rational approximations [1, 2, 3] (for a recent exposition see
[23]). We found no other related methods in the literature.

The paper is organized as follows. In the next section we summarize
relevant properties of Hankel matrices and then, in Section 3, we formulate
and prove a new representation theorem for finite Hankel matrices. We
describe the resulting algorithms in Section 4 and provide several examples
as well as applications to fast algorithms in the following section.

As it turns out, several important applications require approximation of
functions with singularities where the approximation should remain valid
over an extremely large relative range. We develop a reduction approach in
Section 6 that allows us to overcome the numerical difficulties of this problem
by constructing the optimal approximation from a suboptimal one (which is
relatively easy to generate). We then apply this approach to approximate the
function f(r) = 1/rα, α > 0 as a linear combination of Gaussians (needed
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in a variety of applications); the initial approximation is obtained using the
trapezoidal rule to discretize an integral representation of 1/rα. We prove
the necessary estimates in the appendix.

2. Preliminary Considerations : Properties of Hankel Matrices

Let us summarize properties of complex-valued Hankel matrices. For a
vector h of complex entries h = (h0, h1, · · · , h2N ), let H = Hh be the
N + 1 ×N + 1 Hankel matrix defined by h,

H =















h0 h1 · · · hN

h1 · · · · · · hN+1
...

...
· · · · · · h2N−1

hN · · · h2N−1 h2N















(2.1)

that is, Hk,n = hk+n for 0 ≤ k, n ≤ N.

2.1. Singular value decomposition and con-eigenvalue problem for

Hankel matrices. For a matrix H we will consider the so-called con-
eigenvalue problem

(2.2) Hu = σu,

where u = (u0, · · · , uN ) is a non-zero vector and σ is real and nonnegative.
For a Hankel matrix, (2.2) is equivalent to

(2.3)

N
∑

n=0

hk+nun = σuk for 0 ≤ k ≤ N.

Following [16, pp. 245], for an arbitrary matrix H and a complex value σ,
a solution u 6= 0 of (2.2) is said to be a con-eigenvector of H and σ is then
its corresponding con-eigenvalue. We can always select a nonnegative σ, the
unique representative of all con-eigenvalues of equal modulus. We refer to
such a σ ≥ 0 as a c-eigenvalue, to its corresponding con-eigenvector u as a
c-eigenvector, and we refer to both of them as a c-eigenpair of the matrix.
The c-eigenvalues are also solutions of an eigenvalue problem,

Proposition 2.1. ([16, Prop. 4.6.6, pp.246]) Let A be any square matrix
and σ a non-negative number. Then, σ is a c-eigenvalue of A if and only if
σ2 is an eigenvalue of AA.

Since Hankel matrices are symmetric, H = Ht, an orthogonal basis of c-
eigenvectors can be obtained from Takagi’s factorization [16, pp. 204] which
asserts the existence of a unitary matrix U and a real nonnegative diagonal
matrix Σ = diag(σ0, · · · , σN ), such that

(2.4) H = UΣU
t
= UΣU?.
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This factorization can also be viewed as a singular value decomposition of
H, where the right singular vectors are the complex conjugates of the left
singular vectors. We note that (2.4) is valid regardless of the multiplicity of
each singular value and that, for Hankel matrices, the c-eigenvalues coincide
with the singular values; we will refer to them in both ways depending on
the context.

2.2. Fast application of Hankel matrices. For any vector x = (x0, · · · , xN )
denote by Px the polynomial Px(z) =

∑

k≥0 xkz
k of degree at most N. We

want to compute the vector Hx, where H is the Hankel matrix defined by
the vector h in C

2N+1. Let L be an integer, L ≥ 2N + 1 and α = ei2π/L a
root of unity. We write

(2.5) hr =
1

L

L−1
∑

l=0

Ph(α−l)αrl,

so that for all entries we have

(2.6) (Hx)k =
1

L

L−1
∑

l=0

Ph(α−l)Px(αl)αlk.

This expression can be cast in terms of the Discrete Fourier Transform
(DFT) so that the Fast Fourier Transform (FFT) provides a fast algorithm
to apply Hankel matrices.

2.3. Prony’s method. Let us connect our formulation with the so-called
Prony’s method. Let H = Hh be a singular Hankel matrix and choose a
vector q in the nullspace of H. Without loss of generality, we set its last
non-zero coordinate to −1 so that q = (q0, · · · , qÑ−1,−1, 0, · · · , 0), where

Ñ ≤ N. If H were non-singular, then we extend the vector h to a vector h̃ =
(h0, · · · , h2N , h2N+1, h2N+2), where h2N+1 is a free parameter and h2N+2 is
chosen in such a way that H

h̃
is a singular matrix.

The equation Hq = 0 is equivalent to a recurrence relation of length Ñ
for the entries of the Hankel matrix

(2.7) hk+Ñ =

Ñ−1
∑

n=0

hk+nqn, k ≥ 0.

Such recurrence can be solved as

(2.8) hk =

Ñ
∑

n=1

wnγ
k
n for all k, 0 ≤ k ≤ 2N,

where {γ1, · · · , γÑ} (which, for now, we assume to be distinct) are the roots

of the polynomial Pq and where the Ñ coefficients wn are the solution of

the Vandermonde system given by the first Ñ equations of (2.8). If Pq

has multiple roots, a similar representation holds where wn are replaced by
pn(k), pn a polynomial of degree strictly less than the multiplicity of the
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root. Since we seek numerical representations of the form (2.8), we will
always assume distinct roots. Even if they are not distinct, a numerical
approximation with distinct roots is always achievable with, perhaps, a few
extra terms.

In conclusion, assuming that Pq has distinct roots, any sequence h (of

odd or even length) can be represented as in (2.8), where Ñ is at most N+1.
These considerations are the essence of Prony’s method to represent a se-
quence in the form (2.8). This construction also points out the numerical
difficulties encountered by Prony’s method. First, in most problems of inter-
est, the Hankel matrix H has a large numerical nullspace that causes severe
numerical problems in obtaining a vector q. Second, the Vandermonde sys-
tem to obtain the weights wn in (2.8) could be extremely ill-conditioned. As
it turns out from our results, extracting the roots γn from the polynomial
Pq and solving the resulting Vandermonde system is equivalent to solving
(2.7) with infinite precision.

In our approach we are not interested in the exact representation (2.8)
but rather in approximate representations for arbitrary but fixed accuracy ε,

(2.9) |hk −
M
∑

m=1

wmγ
k
m| < ε,

with minimal number of terms M . By letting the approximation depend on
the accuracy, we are able not only to avoid the numerical problems we just
mentioned but also reduce the number of terms.

3. Representation Theorems for Finite Hankel Matrices

In this section we present two main theoretical results. We show how
to represent an arbitrary sequence as a linear combination of exponentials
and how to describe this representation as a family of approximations of
finite Hankel matrices by a particular class of Hankel matrices of low rank.
The error of the approximation is expressed in terms of singular values of the
Hankel matrix. In this sense our results are similar to AAK theory of infinite
dimensional Hankel operators, see [1, 2, 3] and a more recent exposition in
[23].

We need some definitions.

• A c-eigenpolynomial of H is the polynomial Pu(z) =
∑N

k=0 ukz
k,

where uk are the entries of the c-eigenvector u.
• For any c-eigenvector u of a N + 1 dimensional Hankel matrix con-

sider the rational function

Ru(z) =
Pu(z−1)

Pu(z)
,
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which has unit modulus on the unit circle. For any integer L, L >
2N, we define the auxiliary sequence d̃ = (d̃0, · · · , d̃L−1) by evaluat-
ing Ru on a uniform grid on the unit circle. We set

(3.1) d̃k = lim
z→αk

Ru(z) for 0 ≤ k < L,

where α = e
2πi
L . The periodic sequence d(L) of entries

(3.2) d
(L)
k =

1

L

L−1
∑

l=0

d̃l α
lk for all k ≥ 0,

describes the error in our constructions.

We prove

Theorem 3.1. Let {σ,u} be any c-eigenpair of the N+1 dimensional Han-
kel matrix H defined by the complex-valued vector h = (h0, · · · , h2N ). As-
sume that the c-eigenpolynomial Pu has N distinct roots {γ1,··· ,γN} and
choose L > 2N . Then, there exists a unique vector (w1, · · · , wN ) such that

(3.3) hk =
N

∑

n=1

wnγ
k
n + σd

(L)
k for all k, 0 ≤ k ≤ 2N,

where d
(L)
k is the sequence of unit l2 norm in C

Ldefined in (3.2).

A similar theorem can be formulated in terms of Hankel matrices. Let us
write the approximation sequence as

(3.4) ak =
N

∑

n=1

wnγ
k
n 0 ≤ k ≤ 2N

and denote as ‖·‖ the matrix 2-norm.

Theorem 3.2. With the assumptions of Theorem 3.1, let Hd and Ha be

the Hankel matrices defined by the vector d = (d
(L)
0 , · · · , d(L)

2N ) in (3.2) and
the vector a = (a0, · · · , a2N ) in (3.4). Then

(1) The Hankel matrix H defined by the vector h satisfies

(3.5) H = Ha + σHd,

(2) The Hankel matrix Hd has unitary 2-norm,

(3.6) ‖Hd‖ = 1,

(3) The relative error of approximating the Hankel matrix H by the Han-
kel matrix Ha is

‖H −Ha‖
‖H‖ =

σ

σ0
,

where σ0 be the largest singular value of H.
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Remark 3.3. Theorem 3.1 yields a different representation for each L > 2N
even though γn and σ remain the same. That is, for the same set of nodes
we have different choices for the weights. The theorem implies that we
can obtain the weights w = (w1, · · · , wN ) as the unique solution of the
Vandermonde system

(3.7) hk − σdk =

N
∑

n=1

wnγ
k
n for 0 ≤ k < N.

Since the last equation is also valid for N ≤ k ≤ 2N, it follows that the least
squares solution (ρ1, · · · , ρN ) to the overdetermined problem

(3.8) hk =

N
∑

n=1

ρnγ
k
n for 0 ≤ k ≤ 2N,

has error with l2−norm less than σ.

Remark 3.4. The assumption that the c-eigenpolynomial of u has N distinct
roots {γ1,··· ,γN} can be relaxed. As explained in Section 2.3, we ask for
distinct roots to obtain a sum of exponentials with constant coefficients.
Nevertheless, zero could be a multiple root and the representation remains
valid except for the first term h0. Similarly, the c-eigenpolynomial may have
less than N roots, yielding a shorter sum in (3.3).

Remark 3.5. Theorems 3.1 and 3.2 may be viewed as a finite dimensional
analogue of AAK theory for infinite dimensional Hankel operators [1, 2, 3].
Note that we prove these theorems without any restrictions on the Han-
kel matrices. However, a practical use of the results requires fast decay of
their singular values. In this paper we do not attempt to characterize condi-
tions leading to this property but rather explore some applications of these
representations. In this regard we note that in potential signal processing
applications no singular value may be very small, a fact that indicates the
level of noise in the signal.

Proof. (of Theorem 3.1) We will show that the sequence hk in (3.3) is the
explicit solution of a non-homogeneous linear recurrence of length N + 1.
Such a solution can be expressed as the sum of a solution of the homogeneous
recurrence (the exponential sum) and a particular solution (the sequence

σd
(L)
k ).
We extend the definition of the c-eigenvector u to a periodic sequence

of period L, where we set uk = 0 for N < k < L, and use this extended
sequence to formulate the following problem. Find a sequence xk that is the
unique solution of

(3.9)

N
∑

n=0

xk+nun = σuk for k ≥ 0,



ON APPROXIMATION OF FUNCTIONS BY EXPONENTIAL SUMS 11

satisfying xk = hk for 0 ≤ k ≤ N − 1. Such a sequence xk solves a linear
recurrence equation with constant coefficients andN initial conditions. Since
we are assuming that Pu(z) has N distinct roots, we have uN 6= 0 and thus
(3.9) is equivalent to

xN+k = −
N−1
∑

n=0

xk+n
un

uN
+ σ

uk

uN
for k ≥ 0,

where x0, · · · , xN−1 are given. If x
(p)
k is a particular solution of (3.9), any

other solution can be written as

xk =

N
∑

n=1

wnγ
k
n + x

(p)
k ,

where the wn are uniquely determined by the initial values. In fact, they
are the solution of the square Vandermonde system

N
∑

n=1

wnγ
k
n = hk−x(p)

k for 0 ≤ k ≤ N − 1.

To prove the theorem, we only need to show that σd
(L)
k , for d

(L)
k defined

in (3.2), is a particular solution of (3.9), or because of the periodicity of u

and d(L), show that

(3.10)
N

∑

n=0

d
(L)
k+nun = uk for 0 ≤ k ≤ L− 1.

Using (3.2) we expand the left hand side of (3.10)

N
∑

n=0

d
(L)
k+nun =

1

L

L−1
∑

l=0

d̃l α
kl

N
∑

n=0

un α
nl =

1

L

L−1
∑

l=0

d̃lPu(αl)αkl,

and, due to (3.1), the last term equals

1

L

L−1
∑

l=0

Pu(α−l)αkl = uk.

Finally, since |d̃k| = 1 for all k, the l2 norm of d(L) equals 1. �

Next, we prove Theorem 3.2.

Proof. Part 1 is a direct consequence of (3.3), while Part 3 follows from the
first two. For Part 2, (3.10) implies

Hdu = u,

and with the notation ‖·‖ for both the matrix 2−norm and the vector

l2−norm, we derive ‖Hd‖ ≥ ‖Hdu‖
‖u‖ = 1; thus, the norm is at least one.



12 GREGORY BEYLKIN AND LUCAS MONZÓN

To see that it is at most one, let v ∈ C
N+1 and use (2.6) and (3.2) to write

for 0 ≤ k ≤ N,

(Hdv)k =
1√
L

L−1
∑

l=0

(
d̃lPv(αl)√

L
)αkl.

The right hand side of the last equation is well defined for 0 ≤ k ≤ L − 1,

and corresponds to the DFT of the vector d̃lPv(αl)√
L

. Since the DFT is unitary

and |d̃l| = 1, we obtain

‖Hdv‖2 ≤
∥

∥

∥

∥

∥

d̃lPv(αl)√
L

∥

∥

∥

∥

∥

2

= ‖v‖2 .

The last inequality holds for any vector v, implying that ‖Hd‖ ≤ 1. �

3.1. Number of nodes and decay of the singular values. Although
Theorem 3.1 holds for any singular value σ, we plan to use (3.4) as an ap-
proximation of the given sequence hk with absolute error at most σ. For this
reason we are interested only in small singular values. Moreover, we discard
many terms in the exponential sum (3.4) because we have observed that
most of them have weights with values below σ. We have already encoun-
tered this situation in [10], where the number of terms in the approximation
is controlled by the index of the singular value. If we label the singular
values in decreasing order,

σ0 ≥ σ1 ≥ · · · ≥ σN ,

and choose the index M, M ≤ N, in such a way that σM is close to the
accuracy sought, we have observed that only M weights in (3.4) are larger
than σM . In Figure 3.1 we display the locations of all the roots of the c-
eigenpolynomial corresponding to σ28 ∼ 10−10 using our previous example
with the Bessel function J0(x) in the interval [0, 100π]. The 28 significant
weights (see Figure 1.2) are associated with the nodes inside the unit disk.
We note that the nodes corresponding to the discarded terms are located
outside but very close to the unit circle. The error of the 28-terms approxi-
mation is displayed in Figure 1.1.

By keeping only the terms with significant weights, the singular value
index M provides a M -term approximation of the sequence hk with error
of the order of σM . This behavior matches that of indices of the singular
values in AAK theory, where the M th singular value of the Hankel operator
equals the distance from that operator to the set of Hankel operators of rank
at most M .

Currently we do not have a characterization of the conditions under which
finite Hankel matrices may satisfy the results of the infinite theory. We only
note that assuming fast decay of the singular values and that N −M terms

have small weights in (3.3), the approximation bk =
∑M

m=1 wmγ
k
m has the
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Figure 3.1. Locations of all roots of the c-eigenpolynomial
corresponding to the singular value σ28 in the approximation
of J0 in [0, 100π]. In practice, we only use the 28 roots inside
the unit disk.

optimal number of terms. Indeed, let Hb be the corresponding Hankel
matrix for b. Since Hb has rank M , we have

(3.11) σM ≤ ‖H−Hb‖ < σM + δ

for some δ > 0. Under the assumptions of N −M small weights and of fast
decay of the singular values, it is reasonable to expect δ small enough so
that σM + δ ≤ σM−1, therefore preventing an approximation with a shorter
sum.

The practical value of our approximation depends then on the fast decay
of the singular values of the Hankel matrix Hh. Fortunately, in problems of
interest, we have observed such decay. In fact in many problems the decay
is exponential and we obtain approximations where the number of terms
increases only logarithmically with the accuracy. In Figure 3.2 we illustrate
this property for the Bessel function J0(x).

3.2. Computation of weights. In our paper [10] weights are computed via
a fast algorithm based on implementation of the relations (3.3) for nodes on
the unit circle. We use the fact that the solution of a Vandermonde system
is obtained as polynomial evaluation on the Vandermonde nodes. The coef-
ficients of the polynomial are computed using the FFT and the evaluation
on the nodes is computed via the unequally spaced FFT (USFFT) (see e.g.



14 GREGORY BEYLKIN AND LUCAS MONZÓN

0 20 40 60 80 100

-60

-50

-40

-30

-20

-10

0

Figure 3.2. Example of exponential decay of singular values
(log of singular values as a function of their index) in the
approximation of J0(100πx) in [0, 1].

[11, 7]) because the nodes are on the unit circle. We also showed in [10] that
even though Vandermonde systems can be arbitrarily ill-conditioned, the
approximation problem on the unit circle is well-posed due to the particular
location of the nodes and the specific right hand sides.

In this paper nodes are typically inside the unit disk, thus preventing the
direct use of the USFFT. Nevertheless, since the number of significant terms
is small, to solve the Vandermonde system (3.7) both polynomial evaluation
or the least squares formulation (3.8) are efficient options. We choose the
particular approach depending on the location of nodes or additional infor-
mation about the problem.

3.3. Trigonometric moments and Toeplitz matrices. In [10] we have
shown how to approximate non-periodic bandlimited functions as linear com-
binations of exponentials with imaginary exponents, that is, with nodes on
the unit circle. In that paper, samples of the function to be approximated
(which can be thought as trigonometric moments of a positive measure)
are used to build a Hermitian Toeplitz matrix whose eigenpolynomials hap-
pen to have roots on the unit circle. Even though most of the results in
[10] are based on the particular properties of bandlimited functions, and
as such, cannot be directly obtained by the general method of this paper,
some results in [10] are immediate consequences of the general approach
presented here. As an example, consider T a Toeplitz Hermitian matrix
and {σ, u} an eigenpair of T; we assume that the entries of u satisfy
uN−k = uk, 0 ≤ k ≤ N and that the eigenpolynomial Pu has distinct
roots. Let J be the matrix with ones in the antidiagonal. Then H = JT is
a Hankel matrix and {σ, u} is a c-eigenpair of H; since the eigenpolynomial

of u satisfies Pu(z−1) = z−NPu(z), the entries of the sequence d̃ in (3.1)
satisfy

d̃k = e−
2πkiN

L



ON APPROXIMATION OF FUNCTIONS BY EXPONENTIAL SUMS 15

and so the error sequence d(L) in (3.3) has entries

d
(L)
k = δk N ,

which coincides with our previous description of the error for a Toeplitz
Hermitian matrix [10, Theorem 4.1 and Corollary 4.1].

4. A new algorithm for approximations by sum of exponentials

We now describe how to compute the approximation described in (1.5).
Given the target accuracy ε and 2N + 1 samples

(4.1) hk = f(
k

2N
), 0 ≤ k ≤ 2N

of the function to be approximated in the interval [0, 1], our goal is to find
an optimal (minimal) number of nodes γm and weights wm such that

(4.2)

∣

∣

∣

∣

∣

hk −
M
∑

m=1

wmγ
k
m

∣

∣

∣

∣

∣

< ε ∀k, 0 ≤ k ≤ 2N.

If the function f(x) is properly oversampled, we also obtain the continuous
approximation (1.5) of f(x) over the interval [0, b].

Let us describe the steps of the algorithm to obtain an approximation of
the function f with accuracy ε.

(1) Sample the function f as in (4.1) by choosing appropriate N to
achieve the necessary oversampling. Using those samples define the
corresponding N + 1 ×N + 1 Hankel matrix Hkl = hk+l.

(2) Find a c-eigenpair {σ,u}, Hu = σu, with the c-eigenvalue σ close
to the target accuracy ε. We use an algorithm that recovers the
c-eigenpairs starting from the largest c-eigenvalue up to the one we
seek. Because we are interested in functions which exhibit fast de-
cay of their c-eigenvalues, only a small number of c-eigenpairs are
computed. We label the computed c-eigenvalues in decreasing order
σ0 ≥ σ1 ≥ · · · ≥ σM , where M � N .

(3) If the c-eigenvector u has entries (u0, · · · , uN ), we findM roots of the

c-eigenpolynomial
∑N

k=0 ukz
k in the “significant” region. We denote

these roots γ1, · · · , γM and refer to them as c-eigenroots. In finding
c-eigenroots corresponding to the significant weights, we typically
use a priori information on their location, such as being inside the
unit disk, being close to the unit circle, located on a curve, etc.

(4) We obtain the M weights wm by solving the Vandermonde system
(3.7) or the overdetermined Vandermonde system (3.8).

Remark 4.1. If the approximation problem does not involve a explicit func-
tion but the goal is to obtain the approximation (4.2) of a given sequence
hk, the same algorithm is used but without the first step.
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5. Examples

Let us describe how to apply the algorithm in Section 4 to obtain the
approximation (1.3) of the Bessel function J0(bx) in [0, 1], where b = 100π
and ε = 10−10. The function and the approximation error are displayed in
Figure 1.1. Our choice of N = 214 includes 16 extra samples to improve
the accuracy at the edges of the interval. We compute the c-eigenpairs us-
ing the power method and the fact that c-eigenvectors are orthogonal; see
(2.4) and recall that c-eigenvalues coincide with the singular values of H.
In this example, starting with σ0 = 8.34, we compute a total of 29 singular
values until we reach the accuracy ε. In fact we obtain σ27 = 2.295 10−10

and σ28 = 7.527 10−11 ; the decay of the first 110 singular values is captured
in Figure 3.2. To obtain the nodes, we now need to find 28 particular roots
of the c-eigenpolynomial. In order to show that these roots belong to a
well defined region, we actually compute all 214 roots and display them in
Figure 3.1. Two distinctive regions can be seen. The first region is outside
but very close to the unit circle and the second is inside the unit disk, with
28 roots accumulating at ei and e−i. It is instructive to observe how roots
in the first region stay some distance away from these accumulation points.
As we have mentioned in the introduction, this accumulation can be ex-
pected from the asymptotics of the Bessel function. More important from a
computational perspective is that the nodes slowly change their locations as
we modify either the approximation interval (parametrized by the constant
b) or the accuracy ε (parametrized by the singular values). In this way,
computation of roots can be performed efficiently by, if necessary, obtaining
first the nodes for a small b and using them as starting points in Newton’s
method. To illustrate this property, in Figure 5.1 we display the nodes for
a range of singular values varying from 6.7 10−9 to 4.7 10−15.

As we noted for Figure 1.2, the locations of nodes and weights suggest the
existence of some integral representation of J0 on a contour in the complex
plane where the integrand is least oscillatory; integration over such contour
yields an efficient discretization that would correspond to the output of our
algorithm.

The final approximation (1.4) exhibits an interesting property that we also
have observed for other oscillatory functions. Suppose that we would like
to obtain a decreasing function (an envelope) that touches each of the local
maxima of the Bessel function and, similarly, a increasing function going
through each of the local minima. The approximation (1.4) provides such
functions in a natural way. Estimating the absolute value of an exponential
sum, we define its positive envelope env(x) as

|
M
∑

m=1

wme
tmx| ≤

M
∑

m=1

|wm|eRe(tm)x = env(x),
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Figure 5.1. Nodes corresponding to singular values in the
range [4.7 · 10−15, 6.7 · 10−9] for the approximation of
J0(100πx)
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Figure 5.2. The Bessel function J0(100πx) together with
its envelope functions.

and its negative envelope as −env(x). In Figure 5.2 we display the Bessel
function J0(100πx) together with its envelopes. We note that we are not
aware of any other simple method to obtain such envelopes.
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5.1. The Dirichlet kernel. Another representative example is the periodic
Dirichlet kernel,

(5.1) Dn(x) =
1

N

n
∑

k=−n

e2πikx =
sinNπx

N sinπx
,

where N = 2n + 1. We would like to construct an approximation (1.4) of
Dn on the interval [0, 1]. Since Dn is an even function about 1/2 and it
approaches 1 near x = 1 (see Figure 5.4), decaying exponentials are not
sufficient to capture this behavior. Therefore, the approximation must have
nodes both inside and outside the unit circle. In this case the Vandermonde
matrix for computing the weights is extremely ill conditioned. As a way to
avoid this difficulty, we reduce the problem to that of approximation of an
auxiliary function with a proper decay.

Using the partial fraction expansion of the cosecant

∑

k∈ �

(−1)k

x+ k
=

π

sin(πx)
,

we have

Dn(x) =
sin(Nπx)

Nπ

∑

k∈ �

(−1)k

x+ k
=

∑

k∈ �

sin(Nπ(x+ k))

Nπ(x+ k)
.

Motivated by this identity, we introduce the function

Gn(x) =
sin(Nπx)

Nπ

∑

k≥0

(−1)k

x+ k
=

∑

k≥0

sin(Nπ(x+ k))

Nπ(x+ k)
,

and observe that

(5.2) Dn(x) = Gn(x) +Gn(1 − x) .

We then solve the approximation problem for Gn in [0, 1],

(5.3) |Gn(x) −
M
∑

m=1

ρmetmx| ≤ ε ,

where weights and nodes are complex and |etm | < 1. In Figure 5.3 we dis-
play the location of the nodes and weights where n = 50 and ε = 10−8.
The singular values of the corresponding Hankel matrix are decaying expo-
nentially, similar to the decay in Figure 3.2. The number of terms grows
logarithmically with the accuracy and with n, M = O(log n) + O(log ε).

Using (5.2) and (5.3), we obtain the approximation for the Dirichlet ker-
nel,

(5.4) |Dn(x) −
M
∑

m=1

ρmetmx −
M
∑

m=1

ρmetm(1−x)| ≤ 2ε .

We note that |e−tm | > 1 and, thus, the final approximation of Dn has
nodes both inside and outside of the unit disk. In Figure 5.4 we display
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Figure 5.3. The 22 nodes (left) and weights (right) for the
approximation of the auxiliary function G50 in [0, 1].

the Dirichlet kernel D50 and the error of the approximation given by this
construction.

5.2. The kernels log sin2(πx) and cot(πx). Let us consider two examples
of important kernels in harmonic analysis. The function log sin2(πx) is the
kernel of the Neumann to Dirichlet map on the unit circle for functions
harmonic outside the unit disk whereas cot(πx) is the Hilbert kernel for
functions on the unit circle. We note that the Hilbert kernel represents a
singular operator.

We first find identities similar to (5.2). Using the reflection formula for
the Gamma function,

(5.5) Γ(x)Γ(1 − x) =
π

sin(πx)
,

we obtain

(5.6) log Γ(x) + log Γ(1 − x) = log π − 1

2
log sin2 πx .

For the cotangent we use the reflection formula for the digamma function,

ψ(x) = (ln Γ(x))′ = Γ′(x)
Γ(x) ,

(5.7) ψ(x) − ψ(1 − x) = −π cot πx.

We now solve the approximation problems on [δ, 1),

| log Γ(x) −
M
∑

m=1

ρ0
me−t0mx| ≤ ε ,
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Figure 5.4. Dirichlet kernel D50 (top) and the error (in
logarithmic scale) of its 44-term approximation via (5.4).

and

| − ψ(x) −
M
∑

m=1

ρ1
me−t1mx| ≤ ε ,

where t0m and t1m are real and δ > 0 is a small number. We then obtain the
final approximations as

(5.8) |1
2

log sin2(πx) − log π +

M
∑

m=1

ρ0
me−t0mx +

M
∑

m=1

ρ0
me−t0m(1−x)| ≤ 2ε ,
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and

(5.9) |π cot πx−
M
∑

m=1

ρ1
me−t1mx +

M
∑

m=1

ρ1
me−t1m(1−x)| ≤ 2ε.

5.3. Fast evaluation of one dimensional kernels. Let us consider com-
puting

(5.10) g(x) =

∫ 1

0
K(x− y)f(y)dy ,

at points {xn}N
n=1, xn ∈ [0, 1]. In practice, we need to compute the sum

(5.11) g(xn) =

L
∑

l=1

K(xn − yl)f(yl),

where we assume that the discretization of the integral (5.10) has already
been performed by some appropriate quadrature and we include the quad-
rature weights in f(yl).

The direct computation of (5.11) requires N · L operations. If we first
obtain an M -term exponential approximation of the kernel, an elegant algo-
rithm [26] computes the sum with accuracy ε in O(2M ·(L+N)) operations,
where M is the number of terms in

(5.12) |K(s) −
M
∑

m=1

ρmetms| ≤ ε for s ∈ [0, 1]

assuming that the kernel K is an even function, K(−s) = K(s). Al-
ternatively, we also need an exponential approximation of the kernel on
the interval [−1, 0] and, in such case, the number of operations becomes
O((M+ +M−) · (L+N)), where M+ and M− are the number of terms for
the approximation on [0, 1] and [−1, 0].

For a simplified version of the algorithm, split the sum (5.11) as

(5.13) g(xn) =
∑

0≤yl≤xn

K(xn − yl)f(yl) +
∑

xn≤yl≤1

K(xn − yl)f(yl),

and compute each term separately. Using (5.12), we approximate the first
term in (5.13) as

M
∑

m=1

wmqn,m, where qn,m =
∑

0≤yl≤xn

etm(xn−yl)f(yl)

and similarly for the second term in the sum.
Following [26], we observe that

qn+1,m = etm(xn+1−xn)
∑

0≤yl≤xn

etm(xn−yl)f(yl) +
∑

xn<yl≤xn+1

etm(xn+1−yl)f(yl),
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and, thus, qn,m is computed via the recursion

qn+1,m = etm(xn+1−xn)qn,m +
∑

xn<yl≤xn+1

etm(xn+1−yl)f(yl).

As long as Re(tm) ≤ 0, we have a stable recursion which takes O(N + L)
operations to evaluate. Since we need to compute qn,m for m = 1, . . . ,M for
both terms in (5.13), the resulting computational cost is O(2M · (L+N)).

If the kernel has a singularity at x = y, the splitting in (5.13) should be
done as to maintain an appropriate distance from the singularity. This is,
in fact, how the algorithm was originally designed in [26]. In that paper the
approximation for the non-singular Dirichlet kernel (5.1) is constructed by
approximating 1/ sin(πx), an approach that introduces an artificial singu-
larity. Algorithmically such singularity forces an additional term in (5.13)
for the direct evaluation of the kernel near the singularity; this is avoided if
we use (5.12) to approximate the Dirichlet kernel.

6. Reduction of Number of Terms

The algorithm in Section 4 allow us to find approximations for a large
variety of functions but it is not well suited to deal with the extremely large
ranges needed in some applications. Also, we would like to have a mechanism
to approximate functions that can be expressed in terms of other functions
for which we already have exponential sum approximations. Clearly, the
nodes and weights for the sum or product of two known approximations are
readily available, but their number is non optimal. Similarly, an accurate but
suboptimal expansion may be available, for example as the result of using
some quadrature rule or simply applying the Discrete Fourier transform
of the data to be approximated. We now show how to take advantage
of accurate but suboptimal approximations using a general approach on
how to reduce (optimize) the number of terms of a given exponential sum.
It consists of applying the algorithm of Section 4 to a function which is
already a linear combination of exponentials on the interval [0, 1] and taking
advantage of some simplifications which hold for this particular class of
functions. We obtain a fast algorithm for the following problem. Given

(6.1) f(x) =

M0
∑

m=1

bme−τm x ,

and ε > 0, let us find a function (of the same form),

(6.2) g(x) =

M
∑

m=1

wme−tm x ,

with M <M0 and such that

(6.3) |f(x) − g(x)| ≤ ε , for x ∈ [0, 1].
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Without loss of generality, we assume distinct τm and non-zero bm in
(6.1). Following the algorithm in Section 4, for some appropriate N �M0,
we construct the Hankel matrix H = hn+n′ , n, n′ = 0, . . . , N , where

(6.4) hn = f(
n

2N
) =

M0
∑

m=1

bme−
τm
2N

n.

Denoting rm = e−
τm
2N , m = 1, . . . ,M0, we have

(6.5) hn =

M0
∑

m=1

bmr
n
m,

and, therefore, a factorization of the Hankel matrix

(6.6) H = VBVt,

where V is the N + 1 ×M0 Vandermonde matrix

(6.7) Vkm = rk
m

and B is the diagonal matrix with entries (b1, · · · , bM0
). We note that the

matrix H has a large nullspace of dimensionN+1−M0. In fact, the nullspace
consists of vectors with coordinates given by the coefficients of the polyno-
mials

∏M0

m=1(z − rm)p(z), where p(z) is any polynomial of degree at most
N −M0.

By excluding the nullspace of H, which corresponds to zero c-eigenvalues,
we now show how to reduce a c-eigenproblem for H to a c-eigenproblem for
an auxiliary matrix of size M0×M0. We also show how to use this approach
to effectively compute the nodes and weights in the approximation of hn.

Consider σ > 0 and u = (u0, · · · , uN ) 6= 0, a solution of the c-eigenproblem
of H,

(6.8)

N
∑

n′=0

hn+n′un′ = σ un , n = 0, . . . , N.

Equation (6.5) allows us to rewrite (6.8) as

(6.9)

M0
∑

m=1

bmr
n
mPu(rm) = σ un,

where Pu is the c-eigenpolynomial of u. Multiplying (6.9) by zn and sum-
ming over the index n, we obtain

(6.10)

M0
∑

m=1

bm
1 − (rmz)

N+1

1 − rmz
Pu(rm) = σPu(z) .

Even though the c-eigenpolynomial has degree N , it has a short, rational-like
representation suitable to compute its zeros. This representation depends on
its values on the given locations rm. We now obtain those values as solutions
of an auxiliary c-eigenproblem.
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Let us write the polar decomposition of the coefficients bm,

bm = ρme
iθm , withρm > 0

and denote their square roots as cm =
√
ρme

iθm/2.
Substituting z = rk in (6.10) and multiplying by ck we obtain

(6.11)

M0
∑

m=1

ck
1 − (rmrk)

N+1

1 − rmrk
c2m Pu(rm) = σckPu(rk).

Introducing the M0 ×M0 matrix A,

(6.12) Akm = ck
1 − (rmrk)

N+1

1 − rmrk
cm,

and defining the vector v of coordinates

vk = ckPu(rk),

we rewrite (6.11) to obtain

(6.13) Av = σ v.

Since u 6= 0, (6.10) guarantees that not all Pu(rm) are zero and thus v 6= 0.
We conclude that if {σ, u} is a c-eigenpair of H and σ 6= 0, then {σ, v} is
a c-eigenpair of A. In Proposition 6.1 we show that the converse result is
also true. Thus, instead of solving (6.8) for a large size matrix, we solve the
small size c-eigenvalue problem (6.13) for an appropriate σ = σM close to
the target accuracy ε. We use (6.10) to describe the c-eigenpolynomial Pu

of the original matrix H as

(6.14) Pu(z) =
1

σM

M0
∑

m=1

cm
1 − (rmz)

N+1

1 − rmz
vm.

Using (6.14) we find the M zeros in the region of interest, Pu(γm) = 0,
1 ≤ m ≤ M . The final exponents tm for the reduced approximation (6.2)
are then tm = −2N log γm. Finally, we solve for wm, 1 ≤ m ≤M using the
overdetermined system,

(6.15) hn =

M
∑

m=1

wmγ
n
m , n = 0, · · · , 2N.

The normal equations of this system are,

(6.16)

2N
∑

n=0

γs
nhn =

M
∑

m=1

wm

2N
∑

n=0

(γmγs)
n =

M
∑

m=1

wm
1 − (γmγs)

2N+1

1 − γmγs
.
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Substituting (6.5) into (6.16) we obtain wm, 1 ≤ m ≤ M as the unique
solution of

M
∑

m=1

1 − (γmγs)
2N+1

1 − γmγs
wm =

M0
∑

m=1

1 − (rmγs)
2N+1

1 − rmγs
bm.

We note that the auxiliary M0×M0 matrix A in (6.13) is positive definite.
In fact, (6.12) is equivalent to

(6.17) A = S∗S for S = VC,

where C is the diagonal matrix with entries (c1, · · · , cM0
) and V is the

rectangular Vandermonde matrix in (6.7). Thus, for any non-zero vector

x, the inner product 〈Ax, x〉 = ‖VCx‖2 is always positive because V has
zero nullspace. Therefore, by [16, Thm. 4.6.11, pp. 248], there exist a
nonsingular matrix M and a diagonal matrix D such that A = MDM−1.
The c-eigenvalues of A are the eigenvalues of AA (see Proposition 2.1).
Note that for A with complex entries, the M0 c-eigenvalues of A (which are
real and positive) do not need to coincide with their singular values.

Proposition 6.1. Let H be a N + 1 ×N + 1 Hankel matrix defined by the
vector (6.5) and A the M0×M0 positive definite matrix in (6.12). Consider
any c-eigenpair of A,

Av =σv,

and define the vector u of entries

(6.18) uk =
1

σ

M0
∑

m=1

cmvmrk
m,

where vm are the entries of the c-eigenvector v. Then

(1) The value σ and the vector u are a c-eigenpair of H, Hu =σu.
(2) The polynomial Pu, with coefficients that are the entries of u, satis-

fies the identity (6.14).
(3) The c-eigenpolynomial Pu at any of the original nodes rm has values

Pu(rm) =
vm

cm
, for 1 ≤ m ≤M0.

Proof. With S defined as in (6.17), we have H = SSt,A = S∗S, and u = Sv
σ .

Then,

Hu =
SS∗Sv

σ
=

SAv

σ
= Sv = σu.

For the second part we mimic the steps used to obtain (6.10) and we also
use (6.18). The last part follows from (6.14) with z = rl,

Pu(rl) =
(Av)l

σcl
=
vl

cl
.

�
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7. Approximation of power functions and separated

representations

Let us discuss how to approximate the power functions r−α, α > 0, with
a linear combination of Gaussians,

(7.1) |r−α −
M
∑

m=1

wme
−pmr2 | ≤ r−αε,

for r ∈ [δ, 1]. This approximation provides an example of an analytic con-
struction of a separated representation as introduced in [9]. It also has
ubiquitous applications and has already been used in the construction of a
multiresolution separated representation for the Poisson kernel [8, 14, 15]
and for the projector on the divergence free functions[8]. Setting α = 1 in
(7.1), we obtain the approximation of the Poisson kernel in R

3 as a sum of
separable functions,

(7.2)
∣

∣

∣

1

||x|| −
M
∑

m=1

wme
−pm||x||2

∣

∣

∣
≤ ε

||x|| ,

for 0 < δ ≤ ||x|| ≤ 1. It turns out that in some important applications, it is
essential to obtain this approximation for small δ. By replacing r by r1/2 in
(7.1), the approximation becomes that in Section 4,

(7.3) |r−α/2 −
M
∑

m=1

wme
−pmr| ≤ r−α/2ε,

for δ2 ≤ r ≤ 1. Unfortunately, the algorithm of Section 4 is ill-suited
to obtain (7.3) due to the large number of samples necessary to cover the
range of interest. On the other hand, if we use the reduction procedure of
Section 6, we only need an accurate, initial approximation to then minimize
the number of nodes without experiencing the size constraints. Such initial
approximation for (7.1) has been used in [8, 14, 15] and is based upon the
discretization of the integral

(7.4) r−α =
1

Γ(α/2)
2

∫ ∞

−∞
e−r2e2s+αsds.

In this paper we analytically estimate the number of terms in (7.1) as a
function of the accuracy and the range.

Since the integrand (7.4) has either exponential or super-exponential de-
cay at the integration limits, for a given accuracy and range 0 < δ ≤ r ≤ 1,
we select a < 0 and b > 0, the end points of the finite interval of integration,
so that the discarded integrals are small and, at a and b both the integrand
and a sufficient number of its derivatives are smaller than the desired ac-
curacy. We also select K, the number of points in the quadrature, so that
we can accurately discretize (7.4) by the trapezoidal rule, namely, by set-
ting pk = e2sk and wk = 2

Γ( α
2
) e

αsk h, where sk = a + kh, k = 0 . . . ,K and

h = b−a
K .
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Figure 7.1. Relative error (in logarithmic scale) of approximat-

ing the Poisson kernel in the range 10−9 ≤ ||x|| ≤ 1 as a linear

combination of 89 Gaussians.

Such explicit discretization is readily available but it is not optimal. We
then use the reduction procedure of Section 6 to minimize the number of
terms and, if necessary, adjust the type of relative error in the estimate. As
an example, in Figure 7.1 we display the error in (7.2) after optimization.
The number of terms is only M = 89 providing an uniform error in the
whole range.

In order to estimate the number of terms in the approximation (7.1) of
r−α we demonstrate

Theorem 7.1. For any α > 0, 0 < δ ≤ 1, and 0 < ε ≤ min
{

1
2 ,

8
α

}

, there
exist positive numbers pm and wm such that

(7.5)
∣

∣

∣
r−α −

M
∑

m=1

wme
−pmr2

∣

∣

∣
≤ r−αε, for all δ ≤ r ≤ 1

with

(7.6) M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1],

where ck are constants that only depend on α. For fixed power α and accu-
racy ε, we have M = O(log δ−1).

The proof (see the appendix) is based on the fact that in (7.4) the inte-
grand function

(7.7) gα,r(s) = e−r2e2s+αs
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satisfy

Dngα,r(s) = pα
n(−r2e2s)gα,r(s),

where pα
n(x) are polynomials of degree n.

Before ending this section, we would like to remark on another application
of the reduction algorithm to the summation of slowly convergent series.
These results will appear separately and here we only note that our approach
yields an excellent rational approximation of functions like r−α, α > 0,
providing a numerical tool to obtain best order rational approximations as
indicated by Newman [22] (see also [17, pp. 169]).

8. Conclusions

We have introduced a new approach, and associated algorithms, for the
approximation of functions and sequences by linear combination of expo-
nentials with complex-valued exponents. Such approximations obtained for
a finite but arbitrary accuracy may be viewed as representations of func-
tions which are more efficient (significantly fewer terms) than the standard
Fourier representations. These representations can be used for a variety of
purposes. For example, if used to represent kernels of operators, these ap-
proximations yield fast algorithms for applying these operators to functions.
For multi-dimensional operators, we have shown how the approximation of
r−α, α > 0 leads to separated representations of Green’s functions (e.g., the
Poisson kernel).

We note that we just began developing the theory of such approximations
and there are still many questions to be answered. We have indicated some of
these questions but, in this paper, instead of concentrating on the theoretical
aspects we have chosen to emphasize examples and applications of these
remarkable approximations.

9. Appendix

We show how to choose the parameters involved in the approximation of
r−β, β > 0 by linear combination of exponentials as well as estimate the
number of terms. Theorem 7.1 follows by substituting β 7→ α

2 , r 7→ r2,

δ 7→ δ2 and choosing N = O(log ε−1) in the next

Theorem 9.1. For any β > 0, 0 < δ ≤ 1, and 0 < ε ≤ min
{

1
2 ,

4
β

}

, there

exist positive numbers pm and wm such that

(9.1)
∣

∣

∣
r−β −

M
∑

m=1

wme
−pmr

∣

∣

∣
≤ r−βε, for all δ ≤ r ≤ 1

with

(9.2) M ≤ cβ(2N + 1)

π
[β−1 log 4(βε)−1 + log 2qδ−1 + log(log q(δε)−1)],
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where

(9.3) cβ =

{

1, 0 < β < 1
β, 1 ≤ β

,

N is any positive integer chosen to satisfy

(9.4)
2N !

(2N + 1)2N
≤ ε

4
,

and q = 2N − 1 + β.
For fixed power β and accuracy ε, we thus have M = O(log δ−1).

The approximation is based on the discretization of the integral represen-
tation of the function r−β for Re(β) > 0 and r > 0,

(9.5) Γ(β)r−β =

∫ ∞

−∞
fβ,r(t)dt,

where

fβ,r(t) = e−ret+βt.

The integral in (9.5) follows by substituting x = ret in the standard defini-
tion of the Gamma function,

Γ(β) =

∫ ∞

0
e−xxβ−1dx.

Note that (7.4) is obtained substituting β 7→ α
2 and r 7→ r2 in (9.5).

Using the Euler-Maclaurin formula (see [6] or [13, pp. 469-475] for exam-
ple), we approximate the integral of a smooth function f(t) by the trape-
zoidal rule,

TK
h = h(

K−1
∑

k=1

f(a+ kh) +
f(a) + f(b)

2
),

with the error given by

∫ b

a
f(t)dt− TK

h = h2N+1

∫ K

0

B2N (t− [t])

2N !
D2Nf(a+ th)dt

−
N

∑

n=1

b2n

2n!
h2n(D2n−1f(b) −D2n−1f(a)),(9.6)

where h = b−a
K is the step size, [t] is the integer part of the real number t,

bn are the Bernoulli numbers, and Bn(t) the Bernoulli polynomials. For all
x ∈ [0, 1] and n ≥ 1 we have the inequalities (see e.g., [13, pp. 474]),

|B2n(x)|
2n!

≤ |b2n|
2n!

=
2

(2π)2n

∑

k≥1

k−2n ≤ 4(2π)−2n.
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We then estimate the error in (9.6) as
∣

∣

∣

∣

∫ b

a
f(t)dt− TK

h

∣

∣

∣

∣

≤ 4(
h

2π
)2N

∫ b

a
|D2Nf(t)|dt

+ 4
N

∑

n=1

(
h

2π
)2n(|D2n−1f(b)| + |D2n−1f(a))|).(9.7)

Using (9.7) and (9.5), we obtain

(9.8) |Γ(β)r−β − TK
h | ≤ Ia + Ib + I + Sa + Sb,

where

Ia =

∫ a

−∞
fβ,r(t)dt,

Ib =

∫ ∞

b
fβ,r(t)dt,

St = 4

N
∑

n=1

(
h

2π
)2n|D2n−1fβ,r(t)|,

I = 4(
h

2π
)2N

∫ ∞

−∞
|D2Nfβ,r(t)|dt.

We will derive conditions on the parameters a, b,K, and N so that the first
four terms in the estimate (9.8) are less than ε/6 and the last term is less
than Γ(β)r−βε for all r, δ ≤ r ≤ 1. Since for β > 0 and 0 < r ≤ 1,
r−βΓ(β) ≥ Γ(β) ≥ 0.886.. > 4/5, we obtain

|Γ(β)r−β − TK
h | ≤ 4ε/6 + Γ(β)r−βε/6 < Γ(β)r−βε,

and (9.1). To obtain these estimates, we use some auxiliary results collected
in

Lemma 9.2. The derivatives of the function fβ,r are

(9.9) Dnfβ,r(t) = F β
n (−ret)fβ,r(t),

where F β
n (x) are polynomials of degree n, satisfying the recurrence

(9.10) F β
n+1(x) = xF β+1

n (x) + βF β
n (x),

with F β
0 (x) = 1. These polynomials can be written as

(9.11) F β
n (x) =

n
∑

k=0

An
k(β)xk,

with nonnegative coefficients

(9.12) An
k (β) =

n
∑

j=k

(

n
j

)

Sj
kβ

n−j
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where Sj
k are the Stirling numbers of the second kind, Sj

0 = δj0 and Sj
k = 0

if k > j. These combinatorial numbers satisfy [13, Eq. 6.15 and 7.47] ,

n
∑

j=k

(

n
j

)

Sj
k = Sn+1

k+1(9.13)

∞
∑

n=k

Sn
k z

k =
1

∏k
l=1(z

−1 − l)
for |z| < 1

k
.(9.14)

Properties of the polynomials F β
n can be easily derived from the relation-

ships

F β
n (x) = a(β)

n (−x) =
n

∑

j=0

(

n
j

)

βn−jφj(x),

where a
(β)
n are the actuarial polynomials [24, pages 123–125] and φj are the

exponential polynomials [24, pages 63–69]. Let us now establish conditions,
to bound each of the five terms in (9.8).

9.1. Condition for Ia < ε. We have
∫ a
−∞ e−ret

eβtdt ≤
∫ a
−∞ eβtdt = eβa

β <

ε, if the left end of the interval of integration satisfies

(9.15) a <
ln(εβ)

β
.

9.2. Condition for Ib < ε. If we denote L = [β], then Ib =
∫ ∞
b e−ret

eβtdt ≤
∫ ∞
b e−δet

e(L+1)tdt = δ−L−1
∫ ∞
δeb e

−ssLds. Integrating by parts L times, we
have

δ−L−1

∫ ∞

δeb

e−ssLds = δ−L−1EL(δeb)e−δeb

,

where EL(x) =
∑L

l=0
xl

l! . Note that EL(x) ≤ e xL for x ≥ 1. Assuming

(9.16) δeb ≥ e,

we obtain Ib < ε provided the right end of the interval of integration satisfies

(9.17) e([β]+1)be−δeb

< ε.

9.3. Estimates for St < ε, for t = a and t = b. Using (9.9) and (9.11),
for r ≤ 1, we have
(9.18)

St ≤ 4fβ,r(t)
N

∑

n=1

(
h

2π
)2n

2n−1
∑

k=0

A2n−1
k (β)rketk ≤ 4eβt−ret

N
∑

n=1

(
h

2π
)2n

2n−1
∑

k=0

A2n−1
k (β)etk .

Denoting

dh =
N

∑

n=1

(
h

2π
)2n

2n−1
∑

k=0

A2n−1
k (β),
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let us show that dh ≤ 1/cβ if

(9.19) c =
hcβ
2π

≤ 1

2N + 1
.

Using (9.12) and (9.13), we obtain

dh ≤
N

∑

n=1

(
h

2π
)2nc2n−1

β

2n−1
∑

k=0

2n−1
∑

j=k

(

2n− 1
j

)

Sj
k =

1

cβ

N
∑

n=1

c2n
2n
∑

k=1

S2n
k

=
1

cβ

2N
∑

k=1

N
∑

n=1

S2n
k c2n ≤ 1

cβ

2N
∑

k=1

∞
∑

n=k

Sn
k c

n.

Since we have assumed (9.19), with (9.14) for all 1 ≤ k ≤ 2N , we estimate

2N
∑

k=1

∞
∑

n=k

Sn
k c

n =

2N
∑

k=1

1
∏k

l=1(c
−1 − l)

≤
2N
∑

k=1

1
∏k

l=1(2N + 1 − l)
≤ 1,

where the last inequality follows by induction on N .
Under the condition (9.19), we consider two cases in (9.18). If t = a < 0,

Sa ≤ 4eβadh ≤ 4

cβ
eβa

and to obtain Sa < ε , we need

a <
1

β
ln(

εcβ
4

).

Since β ≤ cβ , we obtain both the last inequality and (9.15) by requiring

(9.20) a <
1

β
ln(

εβ

4
),

which, due to the assumptions on ε, ensures that the left end of the interval
of integration is negative.

If t > 0 and denoting q = 2N − 1 + β ≥ [β] + 1, we have

St ≤ 4eβt−ret

dh ≤ 4

cβ
eβte−δet

e(2N−1)t =
4

cβ
eqte−δet ≤ 4eqte−δet

,

and thus we obtain both, inequality (9.17) and Sb < ε provided that

ln(2qδ−1 ln(qδ−1(
ε

4
)
− 1

q ) < b,

a condition that follows from Lemma 9.3 below. Since ε ≤ 1
2 , assumption

(9.4) implies that N ≥ 2 and, therefore, ( ε
4)−

1

q ≤ ε−1. Therefore, we set the
following condition for the right end of the interval of integration,

(9.21) ln(2qδ−1 ln(q(δε)−1) < b,

which also implies (9.16).
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Lemma 9.3. Let p, δ, and ε be positive numbers such that pδ−1ε
− 1

p ≥ e
1

2

and define t0 = ln 2pδ−1 ln(pδ−1ε
− 1

p ). Then the inequality

(9.22) epte−δet

< ε

holds for all t ≥ t0.

Proof. Taking the logarithm in both sides of (9.22) we get t− δet

p < ln ε
p , and

introducing the new variable x = δet

p ≥ 1, we obtain

(9.23) ln(pδ−1x) − x <
ln ε

p

or

c = ln pδ−1ε−
1

p < x− lnx.

Since 1 − x ≤ − lnx for positive x, we have

c < 2c− ln 2 + (1 − c) ≤ 2c− ln(2c),

and, thus, (9.23) holds for x ≥ 2c since x− lnx is increasing for x ≥ 1. �

9.4. Condition for I and selection of the step size h. Let us show by
induction on n ≥ 0, that for all β > 0

(9.24)

∫ ∞

−∞
|Dnfβ,r(t)|dt ≤

∫ ∞

−∞
|F β

n (−r et)|fβ,r(t)dt ≤ Γ(β + n)r−β2n.

The case n = 0 follows from (9.5) and, using the recurrence (9.10) and the
induction assumption, we have
∫

|F β
n+1(−r et)|fβ,r(t)dt ≤ r

∫

|F β+1
n (−r et)|fβ,r(t)dt+ β

∫

|F β
n (−r et)|fβ,r(t)dt

≤ rΓ(β + 1 + n)r−β−12n + βΓ(β + n)r−β2n

≤ Γ(β + n+ 1)r−β2n + (β + n)Γ(β + n)r−β2n.

Observing that

(9.25) Γ(β + n) ≤ n! Γ(β) cnβ ,

where cβ is defined in (9.3) and denoting L = 2N , we estimate I as

I ≤ 4(
h

2π
)LΓ(β + L)r−β2L ≤ 4(

hcβ
π

)LL! Γ(β) r−β ≤ εΓ(β)r−β,

provided
hcβ
2π

≤ 1

2
(
ε

L!4
)

1

L .

Using (9.4), we satisfy both the last inequality and (9.19) if the step size
satisfies

(9.26) h ≤ 1

cβ

π

2N + 1
.
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Finally, the sampling rate K = b−a
h and, therefore, the number of terms

in (9.1) can be chosen as to verify (9.2) if we collect the estimates (9.20),
(9.21), and (9.26).
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