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Through echolocation, a bat can perceive not only the position of
an object in the dark; it can also recognize its 3D structure. A tree,
however, is a very complex object; it has thousands of reflective
surfaces that result in a chaotic acoustic image of the tree. Tech-
nically, the acoustic image of an object is its impulse response (IR),
i.e., the sum of the reflections recorded when the object is ensoni-
fied with an acoustic impulse. The extraction of the acoustic IR from
the ultrasonic echo and the detailed IR analysis underlies the bats’
extraordinary object-recognition capabilities. Here, a phantom-
object playback experiment is developed to demonstrate that the
bat Phyllostomus discolor can evaluate a statistical property of
chaotic IRs, the IR roughness. The IRs of the phantom objects
consisted of up to 4,000 stochastically distributed reflections. It is
shown that P. discolor spontaneously classifies echoes generated
with these IRs according to IR roughness. This capability enables
the bats to evaluate complex natural textures, such as foliage
types, in a meaningful manner. The present behavioral results and
their simulations in a computer model of the bats’ ascending
auditory system indicate the involvement of modulation-sensitive
neurons in echo analysis.

The neural interpretation of sensory input into an object-
based sensory scenery is a major focus in neuroscience. The

echolocation of bats and dolphins is an ideal model system,
because echolocating mammals have perfect control over their
sensory data acquisition due to the active nature of echolocation.
A useful analysis of the acoustic scenes, as they are represented
in sequences of echoes, requires the identification of the acous-
tically complex objects surrounding the animals in their natural
habitat. Many studies have provided insights into the extraor-
dinary capabilities of echolocating animals in object recognition
and classification (1–12).

In their natural nocturnal habitat, bats are forced to orient in
and navigate through a highly structured environment. How can
echolocation serve these tasks? The echoes produced by poten-
tial landmarks for orientation, such as trees or bushes, are highly
chaotic: the ultrasonic emission of a bat is reflected from a
multitude of surfaces, the leaves, which are chaotically distrib-
uted in space and angle to the sound source and receiver. Thus,
the echoes reflected from such an object will have a chaotic
waveform and no systematic spectral interference pattern (Fig.
1). Moreover, the echoes are highly unstable over time, because
they are susceptible to both changes of the bat’s observation
angle and, e.g., wind-induced movement of the object. Thus, a
bat will rarely receive the same echo of an individual object
twice.

Until now, object recognition in echolocation has been studied
only with deterministic echoes from small objects with very few
reflections. The echoes from such objects can be evaluated
according to their characteristic waveforms and�or frequency
patterns (2, 9, 13). However, these concepts appear insufficient
to describe the analysis of the chaotic echoes a bat has to cope
with in its natural habitat.

An echo as it is perceived by a bat consists of its ultrasonic
emission convolved with the acoustic impulse response (IR) of
the ensonified object. The IR is the sum of the reflections when
the object is ensonified with an acoustic impulse of theoretically
infinite shortness and infinite amplitude. Thus, the IR is a

physical object property, whereas the echo as it is perceived by
a bat also depends on the structure of the emitted sound.

What are the typical characteristics of the IRs of large natural
objects? A conifer, for example, has needle-shaped densely
distributed leaves, i.e., many surfaces, each of them producing
only a faint reflection. Thus the IR will consist of many
chaotically distributed reflections, each with a relatively low
amplitude. A synthetic IR with these characteristics is shown in
Fig. 2a. In contrast, a broad-leafed tree has fewer surfaces, each
of them producing a stronger reflection. Thus the IR will consist
of fewer chaotically distributed reflections, each with a relatively
larger amplitude (Fig. 2c). Thus, although both IRs are chaotic,
they will differ in the statistical description of their envelopes: a
conifer has a smoother IR than a broad-leafed tree (Fig. 1).
Recent theoretical work has confirmed the power of statistical
echo analysis for the classification of large natural objects (14).

This study investigates whether bats are able to evaluate
statistical properties of complex IRs in a behavioral experiment.
The fruit-eating bat, Phyllostomus discolor, was trained to eval-
uate echoes digitally generated from their ultrasonic emissions
and IRs with up to 4,000 reflections.

Methods
Animals. The experimental animal, the lesser spear-nosed bat, P.
discolor, forages for fruit, nectar, pollen, and insects in a
neotropical forest habitat. Hence, this species has to navigate
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Fig. 1. Illustration of sonar emissions of a bat and the echoes it may receive
from different foliage types. Note that a conifer produces a smoother echo
than a broad-leafed tree.
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through highly structured surroundings. P. discolor emits brief
(�3-ms) broadband multiharmonic echolocation calls covering
the frequency range between 45 and 100 kHz (15). Four female
individuals took part in the experiments.

Stimuli. We created complex IRs with different degrees of
roughness; each IR consisted of a 4,096-sample portion of sparse
noise (16). Sparse noise is a Gaussian noise with random-width
temporal gaps (nulls) between the amplitude values. The dif-
ferent degrees of roughness were achieved by varying the
average width of the temporal gaps. All of the resulting IRs had
chaotic waveforms and frequency-independent magnitude spec-
tra (Fig. 2). We quantified the IR roughness by calculating the
base-10 logarithm of the fourth moment (log10M4) of the IRs
(17). The fourth moment is calculated as

M4 �
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where x(t) is the time-domain representation, and T is the
duration of the IR.

For the initial training of the animals, two specific training IRs
were used, a smooth one (log10M4 � 1.75, Fig. 2a) and a rough
one (log10M4 � 2.75, Fig. 2c). For the stimulation in the test
trials, we used 50 test IRs in five groups defined by their average
log10M4. The five groups of IRs had a roughness of 1.75 � 0.005,
2.0 � 0.005, 2.25 � 0.006, 2.5 � 0.016, and 2.75 � 0.026. Error
values represent standard deviations. Thus, each group con-
tained 10 individual IRs with a similar roughness. Fig. 2 shows
three examples of the IRs used. All IRs had the same rms
amplitude. At the given sampling rate (250 kHz), the IRs had a
duration of 16.4 ms, corresponding to an object depth of �2.8 m.

Experimental Setup. The bats were trained in a two-alternative
forced-choice playback setup, consisting of a horizontal Y-
shaped maze (45 � 30 cm; wire mesh) in an echo-attenuated
chamber. A starting perch was located at the bottom leg of the
Y, and a reward feeder was mounted at the end of each upper
leg. The inner width of each leg was 10 cm. To indicate its
decision, the bat had to crawl from the starting perch to the
reward feeder in either the left or the right upper leg of the
maze. For the playback of the echoes, an ultrasonic speaker

Fig. 3. Discrimination and classification of chaotic IRs by P. discolor. Perfor-
mance is quantified as percent of trials judged as smooth. The solid and dashed
strong horizontal lines show the discrimination of the smooth and rough IR in
the training trials, respectively. The thin horizontal lines represent standard
errors. The bars show the spontaneous classification of unknown chaotic IRs as
a function of IR roughness. The bats’ spontaneous classification is monoton-
ically related to the IR roughness. Error bars represent interindividual standard
errors.

Fig. 4. Classification of chaotic IRs by two P. discolor in a roving-level
paradigm. Classification performance is plotted in the same format as in Fig.
3. The echoes in the training trials (horizontal lines) were attenuated by 6 dB
relative to the main experiment. The echoes in the test trials were played back
at randomized levels (�6 dB) roving around that of the training echoes. Note
that the bats spontaneously classified the IRs in a similar way as shown in Fig. 3.

Fig. 2. Three examples of complex IRs with increasing roughness (from a to
c) as used in the experiments. IR roughness is quantified as the log10M4 (see
Methods). The IRs are plotted as waveform (Left) and magnitude spectrum
(Right). Every nonzero amplitude value in the waveform represents a single
reflection from a surface of a complex object. Note the frequency-
independent magnitude spectrum of all three IRs despite the large waveform
differences. Each IR had a duration of 16.4 ms and equal rms amplitude.

Grunwald et al. PNAS � April 13, 2004 � vol. 101 � no. 15 � 5671

N
EU

RO
SC

IE
N

CE



(Matsushita EAS10 TH800D, Osaka) was mounted centrally
between the upper legs of the Y maze, directed toward the
starting perch. Further, a 1�4-inch ultrasonic microphone (Brüel
& Kjaer Instruments 4135, Naerum, Denmark) was located on
top of the speaker to pick up the sonar emissions of the bat. The
microphone speaker unit was located at 25-cm distance from the
perch. During the experiment, the amplified and band-pass
filtered (20–100 kHz, 24 dB�oct, Krohn Hite 3550, Brockton,
MA) echolocation calls were digitized by a data-acquisition
board (Microstar DAP 5200a, Bellevue, WA) at a sampling rate
of 250 kHz. Each recorded call was convolved with a specific IR
on the DAP board by multiplication of the complex spectra of
the recorded emission, zero-padded to 4,096 samples, and the
IR. This mathematical operation corresponds to the physical
formation of the echo from a real object. Thus, any change of the
bat’s ultrasonic emission resulted in an immediate change of the
perceived echo. The resulting echo was converted from digital to
analogue and played back to the bat after a total delay of 18 ms
relative to emission. This delay corresponds to a target distance
of �3 m.

Procedure. First, four individuals were trained in a two-
alternative forced-choice paradigm to discriminate two specific

IRs. A smooth IR (Fig. 2a) was associated with a food reward at
the left feeder. A rough IR (Fig. 2c) was associated with a reward
at the right feeder.

Data acquisition started when the bats had achieved a per-
formance of at least 85% correct choices in this discrimination
task. Then, test trials were randomly interspersed with a prob-
ability of 25%. In these test trials, one of the 50 unknown IRs was
presented, and the bats were rewarded independently of their
decision. Behavioral results are based on at least 40 test trials per
animal and IR group.

Simulations. The classification of the IRs was simulated based on
one of two representations of the perceived echoes: the auditory
spectrograms or the output of a modulation filterbank. These
representations were obtained from a detailed computer model
of the auditory peripheral processing in P. discolor. This model
was fed with echoes, i.e., with the experimental IRs convolved
with a typical P. discolor echolocation call. We have simulated
the manipulation of acoustic stimuli applied both by the animals’
outer and middle ear (18) and by cochlear processing based on
distortion-product otoacoustic emission suppression tuning
curves (19). Inner-hair cell processing was simulated by half-

Fig. 5. Simulated echoes generated with IRs as used in the behavioral experiments and their auditory representations as simulated in a computer model of
the peripheral auditory system of P. discolor. (Left and Right) Representations for the two IRs used in training; (Center) representation for a single test IR from
the IR group with a log10M4 of 2.0. (Top) Echo waveforms; (Top Center) simulated auditory spectrograms; (Bottom) simulated modulation filterbank outputs.
The gray scale (Middle and Bottom) encodes the simulated neural activation in arbitrary units.
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wave rectification, exponential compression (exponent � 0.4),
and filtering with a second-order low-pass filter at 1 kHz (20) to
simulate the loss of phase locking. These manipulations resulted
in an auditory-spectrogram representation of the perceived
echoes. In the first simulation, these auditory spectrograms,
arranged along the time- and auditory-frequency axes, were
considered as the model output.

For the second simulation, the auditory spectrograms were fed
into a modulation filterbank model (21, 22) with 10 modulation
filters with center frequencies logarithmically spaced between 30
and 500 kHz. The model output for the second simulation was
the alternating current-coupled rms of the modulation-
filterbank output (23).

The model decisions were based on the similarity of the model
output computed with a test IR relative to the model outputs
computed with the two training IRs. The similarity was quan-
tified as the rms distance (Euclidean distance) between the
different model outputs.

For each test IR, classification performance in percent was
calculated according to the following equation

judged�smooth�(%) � 100 � �1 	
EDsmooth

EDsmooth 
 EDrough�,

where EDsmooth is the Euclidean distance between the model
outputs computed with a test IR and the smooth training IR, and
EDrough is the Euclidean distance between the model outputs
computed with a test IR and the rough training IR.

Results
Behavioral Performance. In a two-alternative forced-choice para-
digm, the four individuals were successfully trained to discrim-
inate a single smooth IR (Fig. 2a) from a single rough one (Fig.
2c). The horizontal lines in Fig. 3 show the bats’ discrimination
performance recorded in the subsequent test phase.

In this test phase, we investigated to which extent the bats can
generalize roughness to test IRs that the bats had not experi-
enced before. The spontaneous responses to these test IRs are
shown in Fig. 3 as a function of IR roughness. The five bars
represent the bats’ spontaneous classification of unknown test
IRs from the five groups with an IR roughness as specified on
the abscissa.

The bars show that spontaneous classification is monotonically
related to IR roughness: unknown IRs with low roughness were
spontaneously judged ‘‘smooth’’ in a high percentage of test
trials; unknown IRs with high roughness were only rarely judged
‘‘smooth.’’ IRs with intermediate roughness resulted in a similar
amount of smooth or rough judgements.

Human psychophysical studies have shown that stimuli with
the same sound pressure level and long-term spectrum can
produce different degrees of masking (24, 25) and loudness (26)
depending on their degree of envelope fluctuation. To investi-
gate whether the bats may have based their decisions on differ-
ences in perceived echo loudness, we repeated the classification
experiment with a roving-level paradigm: the echoes of the
training IRs were attenuated by 6 dB compared to the level in
the original paradigm; the echoes of the test IRs were presented
at levels roving by �6 dB around that of the training IRs. The
results of this control experiment, performed with two of the
four bats are shown in Fig. 4. The IRs were classified in the same
manner as in the original experiment. This control experiment
shows that the classification performance of the bats was not
based on differences in perceived echo loudness.

How may the bats’ auditory systems evaluate echo roughness?
As stated above, the bat does not perceive the IR as such but the
IR imprinted on its own sonar emission, an echo. A spectral
analysis of the echo envelope shows that the envelope spectrum
is monotonically related to the echo roughness. In the mamma-

lian auditory system, properties of the envelope spectrum can be
encoded by modulation-sensitive neurons. Hence, it is conceiv-
able that modulation-sensitive neurons described in the bats’
auditory brainstem (27–29) can encode the roughness of per-
ceived echoes.

Simulation Results. As outlined in Methods, simulations of the
behavioral performance were based on either auditory-
spectrogram representations of the perceived echoes or on the
outputs of a hypothetical modulation filterbank as a functional
implementation of neural envelope analysis. Exemplary repre-
sentations of the echo waveforms, the generated auditory spec-
trograms, and the modulation filterbank outputs are shown in
Fig. 5.

Simulation results are shown in Fig. 6. The simulation based
on similarities in the auditory spectrograms (Fig. 6a) shows only
a weak correlation to the bats’ performance in the experiment.

The simulation based on similarities in the modulation filter-
bank outputs (Fig. 6b) generates a better fit to the behavioral
data. This is true despite the fact that the modulation filterbank
outputs appear not to vary very much with IR roughness (Fig. 5
Bottom).

Discussion
The present results show that echolocating bats spontaneously
evaluate and generalize the roughness of chaotic IRs. Such

Fig. 6. Simulation results of the behavioral performance based on two
different auditory representations of the generated echoes. The simulation
based on auditory spectrograms (a) provides a poor fit to the experimental
data (Fig. 3) because, in the auditory spectrogram, the temporal structure of
the echo waveform is encoded in a deterministic fashion. A subsequent
analysis of the auditory spectrograms in a modulation filterbank (b) provides
a better representation of echo roughness and consequently results in an
improved fit to the experimental data.
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chaotic IRs arise from large natural objects like trees and bushes,
and they are thus abundant in the animals’ natural habitat.

Which neural processing strategies may underlie the analysis
of IR roughness? The bats do not perceive the IR of an object
but the object’s IR convolved with their sonar emission, i.e., an
echo. Earlier studies have indicated that bats may be able to
reconstruct the IR from the detailed comparison of their sonar
emission and the echo (2, 9). However, it is not clear whether P.
discolor can do so with such complicated IRs consisting of
thousands of reflections. Thus, at present we simulate the
auditory analysis of chaotic echoes based on the echoes them-
selves, not on the IRs.

The simulation results show that an auditory spectrogram
representation of the perceived echoes, as it would exist in the
bats’ auditory nerve, does not provide a reliable estimate of IR
roughness. The deterministic encoding of the echo temporal
structure in the auditory spectrograms precludes a successful
evaluation of statistical echo properties.

When the information from the auditory nerve is subjected to
a modulation-filterbank analysis, the modulation-filterbank out-
put provides an improved fit to the experimental data. The
success of the modulation-filterbank simulation results from the
stability of the filterbank output across different realizations of
stochastic IRs with similar roughness.

The modulation filterbank analysis revealed that modulation
magnitude in the modulation frequency range �80–200 Hz can
be used to evaluate the roughness of the experimental echoes.
Modulation-sensitive units covering this range have been char-

acterized physiologically in bats (28, 29). Thus, the simulations
support the hypothesis that modulation-sensitive neurons, e.g.,
in the auditory midbrain may play an important role in the
processing of stochastic echoes.

However, even with a modulation-filterbank analysis, the fits
to the experimental data are not fully satisfactory. Better fits to
the experimental data can be obtained if a simulation was based
on the evaluation of the IR itself, not on the echo. This, however,
requires the preceding reconstruction of the IR from the echo.
Future studies will reveal to which extent P. discolor can recon-
struct the IR of complex objects having thousands of reflective
surfaces.

In previous research, chaotic echoes from natural textures
have mostly been regarded as disturbing ‘‘clutter.’’ In light of
the current data, these chaotic echoes should be regarded
as a contribution to a meaningful acoustic image of the bat’s
surroundings.

It is conceivable that for flying bats, the perception of an
acoustic stream on the basis of changes of echo roughness
facilitates navigation guided by echolocation. The spontaneous
classification of unknown chaotic IRs along an ecologically
meaningful parameter indicates the significance of a statistical
evaluation of echo properties for the natural behavior of bats.
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